1
|
Fan CH, Yeh CK. Theranostic nanomaterials for intervention of the blood–brain barrier. THERANOSTICS NANOMATERIALS IN DRUG DELIVERY 2025:395-410. [DOI: 10.1016/b978-0-443-22044-9.00014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Tian Y, He X, Yuan Y, Zhang S, Wang C, Dong J, Liu Z, Jing H. TME-Responsive Nanoplatform with Glutathione Depletion for Enhanced Tumor-Specific Mild Photothermal/Gene/Ferroptosis Synergistic Therapy. Int J Nanomedicine 2024; 19:9145-9160. [PMID: 39258005 PMCID: PMC11386068 DOI: 10.2147/ijn.s475698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
Background Triple negative breast cancer (TNBC) is one of the worst prognosis types of breast cancer that urgently needs effective therapy methods. However, cancer is a complicated disease that usually requires multiple treatment modalities. Methods A tumor microenvironment (TME)-responsive PFC/TRIM37@Fe-TA@HA (abbreviated as PTFTH) nanoplatform was constructed by coating Fe3+ and tannic acid (TA) on the surface of TRIM37-siRNA loaded phase-transition perfluorocarbon (PFC) nanodroplets and further modifying them with hyaluronic acid (HA) to achieve tumor-specific mild photothermal/gene/ferroptosis synergistic therapy (MPTT/GT/ Ferroptosis) in vitro. Once internalized into tumor cells through CD44 receptor-mediated active targeting, the HA shell of PTFTH would be preliminarily disassembled by hyaluronidase (HAase) to expose the Fe-TA metal-phenolic networks (MPNs), which would further degrade in response to an acidic lysosomal environment, leading to HAase/pH dual-responsive release of Fe3+ and PFC/TRIM37. Results PTFTH showed good biocompatibility in vitro. On the one hand, the released Fe3+ could deplete the overexpressed glutathione (GSH) through redox reactions and produce Fe2+, which in turn converts endogenous H2O2 into highly cytotoxic hydroxyl radicals (•OH) for chemodynamic therapy (CDT). On the other hand, the local hyperthermia generated by PTFTH under 808 nm laser irradiation could not only improve CDT efficacy through accelerating the Fe2+-mediated Fenton reaction, but also enhance TRIM37-siRNA delivery for gene therapy (GT). The consumption of GSH and accumulation of •OH synergistically augmented intracellular oxidative stress, resulting in substantial tumor cell ferroptosis. Moreover, PTFTH possessed outstanding contrast enhanced ultrasound (CEUS), photoacoustic imaging (PAI) and magnetic resonance imaging (MRI) ability. Conclusion This PTFTH based multiple-mode therapeutic strategy has successfully achieved a synergistic anticancer effect in vitro and has the potential to be translated into clinical application for tumor therapy in future.
Collapse
Affiliation(s)
- Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| | - Xiang He
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| | - Yanchi Yuan
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| | - Shijie Zhang
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| | - Chunyue Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| | - Jialin Dong
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| | - Zhao Liu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| | - Hui Jing
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| |
Collapse
|
3
|
Sheng D, Liu T, Qian L, Chen J, Wei Y, Chen H, Chang C. Sonodynamic and sonomechanical effect on cellular stemness and extracellular physicochemical environment to potentiate chemotherapy. J Nanobiotechnology 2024; 22:358. [PMID: 38907270 PMCID: PMC11191306 DOI: 10.1186/s12951-024-02623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/05/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Hypoxia-activated prodrug (HAP) is a promising candidate for highly tumor-specific chemotherapy. However, the oxygenation heterogeneity and dense extracellular matrix (ECM) of tumor, as well as the potential resistance to chemotherapy, have severely impeded the resulting overall efficacy of HAP. RESULTS A HAP potentiating strategy is proposed based on ultrasound responsive nanodroplets (PTP@PLGA), which is composed of protoporphyrin (PpIX), perfluoropropane (PFP) and a typical HAP, tirapazamine (TPZ). The intense vaporization of PFP upon ultrasound irradiation can magnify the sonomechanical effect, which loosens the ECM to promote the penetration of TPZ into the deep hypoxic region. Meanwhile, the PpIX enabled sonodynamic effect can further reduce the oxygen level, thus activating the TPZ in the relatively normoxic region as well. Surprisingly, abovementioned ultrasound effect also results in the downregulation of the stemness of cancer cells, which is highly associated with drug-refractoriness. CONCLUSIONS This work manifests an ideal example of ultrasound-based nanotechnology for potentiating HAP and also reveals the potential acoustic effect of intervening cancer stem-like cells.
Collapse
Affiliation(s)
- Danli Sheng
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Tianzhi Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Lang Qian
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jufeng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Yi Wei
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
| | - Cai Chang
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
4
|
Riemer K, Tan Q, Morse S, Bau L, Toulemonde M, Yan J, Zhu J, Wang B, Taylor L, Lerendegui M, Wu Q, Stride E, Dunsby C, Weinberg PD, Tang MX. 3D Acoustic Wave Sparsely Activated Localization Microscopy With Phase Change Contrast Agents. Invest Radiol 2024; 59:379-390. [PMID: 37843819 DOI: 10.1097/rli.0000000000001033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
OBJECTIVE The aim of this study is to demonstrate 3-dimensional (3D) acoustic wave sparsely activated localization microscopy (AWSALM) of microvascular flow in vivo using phase change contrast agents (PCCAs). MATERIALS AND METHODS Three-dimensional AWSALM using acoustically activable PCCAs was evaluated on a crossed tube microflow phantom, the kidney of New Zealand White rabbits, and the brain of C57BL/6J mice through intact skull. A mixture of C 3 F 8 and C 4 F 10 low-boiling-point fluorocarbon gas was used to generate PCCAs with an appropriate activation pressure. A multiplexed 8-MHz matrix array connected to a 256-channel ultrasound research platform was used for transmitting activation and imaging ultrasound pulses and recording echoes. The in vitro and in vivo echo data were subsequently beamformed and processed using a set of customized algorithms for generating 3D super-resolution ultrasound images through localizing and tracking activated contrast agents. RESULTS With 3D AWSALM, the acoustic activation of PCCAs can be controlled both spatially and temporally, enabling contrast on demand and capable of revealing 3D microvascular connectivity. The spatial resolution of the 3D AWSALM images measured using Fourier shell correlation is 64 μm, presenting a 9-time improvement compared with the point spread function and 1.5 times compared with half the wavelength. Compared with the microbubble-based approach, more signals were localized in the microvasculature at similar concentrations while retaining sparsity and longer tracks in larger vessels. Transcranial imaging was demonstrated as a proof of principle of PCCA activation in the mouse brain with 3D AWSALM. CONCLUSIONS Three-dimensional AWSALM generates volumetric ultrasound super-resolution microvascular images in vivo with spatiotemporal selectivity and enhanced microvascular penetration.
Collapse
Affiliation(s)
- Kai Riemer
- From the Department of Bioengineering, Imperial College London, London, United Kingdom (K.R., Q.T., S.M., M.T., J.Y., J.Z., B.W., L.T., M.L., P.D.W., M.-X.T.); NDORMS, University of Oxford, Oxford, United Kingdom (L.B., Q.W., E.S.); and Department of Physics, Imperial College London, London, United Kingdom (C.D.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Dong F, An J, Guo W, Dang J, Huang S, Feng F, Zhang J, Wang D, Yin J, Fang J, Cheng H, Zhang J. Programmable ultrasound imaging guided theranostic nanodroplet destruction for precision therapy of breast cancer. ULTRASONICS SONOCHEMISTRY 2024; 105:106854. [PMID: 38537562 PMCID: PMC11059134 DOI: 10.1016/j.ultsonch.2024.106854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 03/17/2024] [Accepted: 03/23/2024] [Indexed: 04/26/2024]
Abstract
Ultrasound-stimulated contrast agents have gained significant attention in the field of tumor treatment as drug delivery systems. However, their limited drug-loading efficiency and the issue of bulky, imprecise release have resulted in inadequate drug concentrations at targeted tissues. Herein, we developed a highly efficient approach for doxorubicin (DOX) precise release at tumor site and real-time feedback via an integrated strategy of "programmable ultrasonic imaging guided accurate nanodroplet destruction for drug release" (PND). We synthesized DOX-loaded nanodroplets (DOX-NDs) with improved loading efficiency (15 %) and smaller size (mean particle size: 358 nm). These DOX-NDs exhibited lower ultrasound activation thresholds (2.46 MPa). By utilizing a single diagnostic transducer for both ultrasound stimulation and imaging guidance, we successfully vaporized the DOX-NDs and released the drug at the tumor site in 4 T1 tumor-bearing mice. Remarkably, the PND group achieved similar tumor remission effects with less than half the dose of DOX required in conventional treatment. Furthermore, the ultrasound-mediated vaporization of DOX-NDs induced tumor cell apoptosis with minimal damage to surrounding normal tissues. In summary, our PND strategy offers a precise and programmable approach for drug delivery and therapy, combining ultrasound imaging guidance. This approach shows great potential in enhancing tumor treatment efficacy while minimizing harm to healthy tissues.
Collapse
Affiliation(s)
- Feihong Dong
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Jian An
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Wenyu Guo
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jie Dang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuo Huang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Feng Feng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiabin Zhang
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Di Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jingyi Yin
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jing Fang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; College of Engineering, Peking University, Beijing 100871, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing, 100871, China; Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, 211899, China.
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; College of Engineering, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Shakya G, Cattaneo M, Guerriero G, Prasanna A, Fiorini S, Supponen O. Ultrasound-responsive microbubbles and nanodroplets: A pathway to targeted drug delivery. Adv Drug Deliv Rev 2024; 206:115178. [PMID: 38199257 DOI: 10.1016/j.addr.2023.115178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/21/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Ultrasound-responsive agents have shown great potential as targeted drug delivery agents, effectively augmenting cell permeability and facilitating drug absorption. This review focuses on two specific agents, microbubbles and nanodroplets, and provides a sequential overview of their drug delivery process. Particular emphasis is given to the mechanical response of the agents under ultrasound, and the subsequent physical and biological effects on the cells. Finally, the state-of-the-art in their pre-clinical and clinical implementation are discussed. Throughout the review, major challenges that need to be overcome in order to accelerate their clinical translation are highlighted.
Collapse
Affiliation(s)
- Gazendra Shakya
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Marco Cattaneo
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Giulia Guerriero
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Anunay Prasanna
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Samuele Fiorini
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Outi Supponen
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland.
| |
Collapse
|
7
|
Abeid BA, Fabiilli ML, Estrada JB, Aliabouzar M. Ultra-high-speed dynamics of acoustic droplet vaporization in soft biomaterials: Effects of viscoelasticity, frequency, and bulk boiling point. ULTRASONICS SONOCHEMISTRY 2024; 103:106754. [PMID: 38252981 PMCID: PMC10830863 DOI: 10.1016/j.ultsonch.2024.106754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
Phase-shift droplets are a highly adaptable platform for biomedical applications of ultrasound. The spatiotemporal response of phase-shift droplets to focused ultrasound above a certain pressure threshold, termed acoustic droplet vaporization (ADV), is influenced by intrinsic features (e.g., bulk boiling point) and extrinsic factors (e.g., driving frequency and surrounding media). A deep understanding of ADV dynamics is critical to ensure the robustness and repeatability of an ADV-assisted application. Here, we integrated ultra-high-speed imaging, at 10 million frames per second, and confocal microscopy for a full-scale (i.e., from nanoseconds to seconds) characterization of ADV. Experiments were conducted in fibrin-based hydrogels to mimic soft tissue environments. Effects of fibrin concentration (0.2 to 8 % (w/v)), excitation frequency (1, 2.5, and 9.4 MHz), and perfluorocarbon core (perfluoropentane, perfluorohexane, and perfluorooctane) on ADV dynamics were studied. Several fundamental parameters related to ADV dynamics, such as expansion ratio, expansion velocity, collapse radius, collapse time, radius of secondary rebound, resting radius, and equilibrium radius of the generated bubbles were extracted from the radius vs time curves. Diffusion-driven ADV-bubble growth was fit to a modified Epstein-Plesset equation, adding a material stress term, to estimate the growth rate. Our results indicated that ADV dynamics were significantly impacted by fibrin concentration, frequency, and perfluorocarbon liquid core. This is the first study to combine ultra-high-speed and confocal microscopy techniques to provide insights into ADV bubble dynamics in tissue-mimicking hydrogels.
Collapse
Affiliation(s)
- Bachir A Abeid
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Mario L Fabiilli
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan B Estrada
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Mitra Aliabouzar
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI USA; Department of Radiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Aliabouzar M, Abeid BA, Kripfgans OD, Fowlkes JB, Estrada JB, Fabiilli ML. Real-time spatiotemporal characterization of mechanics and sonoporation of acoustic droplet vaporization in acoustically responsive scaffolds. APPLIED PHYSICS LETTERS 2023; 123:114101. [PMID: 37705893 PMCID: PMC10497320 DOI: 10.1063/5.0159661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
Phase-shift droplets provide a flexible and dynamic platform for therapeutic and diagnostic applications of ultrasound. The spatiotemporal response of phase-shift droplets to focused ultrasound, via the mechanism termed acoustic droplet vaporization (ADV), can generate a range of bioeffects. Although ADV has been used widely in theranostic applications, ADV-induced bioeffects are understudied. Here, we integrated ultra-high-speed microscopy, confocal microscopy, and focused ultrasound for real-time visualization of ADV-induced mechanics and sonoporation in fibrin-based, tissue-mimicking hydrogels. Three monodispersed phase-shift droplets-containing perfluoropentane (PFP), perfluorohexane (PFH), or perfluorooctane (PFO)-with an average radius of ∼6 μm were studied. Fibroblasts and tracer particles, co-encapsulated within the hydrogel, were used to quantify sonoporation and mechanics resulting from ADV, respectively. The maximum radial expansion, expansion velocity, induced strain, and displacement of tracer particles were significantly higher in fibrin gels containing PFP droplets compared to PFH or PFO. Additionally, cell membrane permeabilization significantly depended on the distance between the droplet and cell (d), decreasing rapidly with increasing d. Significant membrane permeabilization occurred when d was smaller than the maximum radius of expansion. Both ultra-high-speed and confocal images indicate a hyper-local region of influence by an ADV bubble, which correlated inversely with the bulk boiling point of the phase-shift droplets. The findings provide insight into developing optimal approaches for therapeutic applications of ADV.
Collapse
Affiliation(s)
| | - Bachir A. Abeid
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | - Jonathan B. Estrada
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
9
|
Yao L, Luo T, Yang G, Yin J, Li H, Liu Z. An Experimental Study: Treatment of Subcutaneous C6 Glioma in Rats Using Acoustic Droplet Vaporization. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:1951-1963. [PMID: 36916667 DOI: 10.1002/jum.16212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/01/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE The objective of this study was to investigate the treatment effects of acoustic droplet vaporization (ADV) on tumors. METHODS Experiments were conducted on subcutaneous C6 glioma implanted in 37 rats. Twenty-five rats were divided into five groups treated by ultrasound (US) + dodecafluoropentane (DDFP), US + microbubble (MB), US, DDFP, or saline, respectively. ADV was performed using DDFP droplets (2-5 μm) triggered by non-focused pulsed ultrasound. Macroscopic and histological changes of the tumor were compared with investigation of the tumor ablation effect of ADV. Tumor temperature was measured before and immediately after treatment to explore temperature changes. Furthermore, another 12 rats with bilateral tumors were divided into two groups. Six animals received ADV treatment on unilateral tumor, while another six received saline injection on unilateral tumor. The tumor blood perfusion, tumor volume and related immune response were measured. RESULTS The tumors treated by ADV were partially damaged without significant temperature rise. For the animals with bilateral tumors, the tumor blood perfusion around the damaged area on the side receiving ADV still existed. Additionally, the bilateral tumors of animals treated with ADV were smaller than those of animals treated with saline, along with stronger immune response and more tumor cell apoptosis in tumors on both sides. CONCLUSION The study demonstrated that ADV treatment could damage subcutaneous glioma in rats by mechanical effect and enhance systemic immune response to furtherly inhibit the tumor growth.
Collapse
Affiliation(s)
- Lei Yao
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Tingting Luo
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Guoliang Yang
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jiabei Yin
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hui Li
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Zheng Liu
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
10
|
Aliabouzar M, Kripfgans OD, Brian Fowlkes J, Fabiilli ML. Bubble nucleation and dynamics in acoustic droplet vaporization: a review of concepts, applications, and new directions. Z Med Phys 2023; 33:387-406. [PMID: 36775778 PMCID: PMC10517405 DOI: 10.1016/j.zemedi.2023.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 02/12/2023]
Abstract
The development of phase-shift droplets has broadened the scope of ultrasound-based biomedical applications. When subjected to sufficient acoustic pressures, the perfluorocarbon phase in phase-shift droplets undergoes a phase-transition to a gaseous state. This phenomenon, termed acoustic droplet vaporization (ADV), has been the subject of substantial research over the last two decades with great progress made in design of phase-shift droplets, fundamental physics of bubble nucleation and dynamics, and applications. Here, we review experimental approaches, carried out via high-speed microscopy, as well as theoretical models that have been proposed to study the fundamental physics of ADV including vapor nucleation and ADV-induced bubble dynamics. In addition, we highlight new developments of ADV in tissue regeneration, which is a relatively recently exploited application. We conclude this review with future opportunities of ADV for advanced applications such as in situ microrheology and pressure estimation.
Collapse
Affiliation(s)
- Mitra Aliabouzar
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Oliver D Kripfgans
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - J Brian Fowlkes
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mario L Fabiilli
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Riemer K, Toulemonde M, Yan J, Lerendegui M, Stride E, Weinberg PD, Dunsby C, Tang MX. Fast and Selective Super-Resolution Ultrasound In Vivo With Acoustically Activated Nanodroplets. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:1056-1067. [PMID: 36399587 DOI: 10.1109/tmi.2022.3223554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Perfusion by the microcirculation is key to the development, maintenance and pathology of tissue. Its measurement with high spatiotemporal resolution is consequently valuable but remains a challenge in deep tissue. Ultrasound Localization Microscopy (ULM) provides very high spatiotemporal resolution but the use of microbubbles requires low contrast agent concentrations, a long acquisition time, and gives little control over the spatial and temporal distribution of the microbubbles. The present study is the first to demonstrate Acoustic Wave Sparsely-Activated Localization Microscopy (AWSALM) and fast-AWSALM for in vivo super-resolution ultrasound imaging, offering contrast on demand and vascular selectivity. Three different formulations of acoustically activatable contrast agents were used. We demonstrate their use with ultrasound mechanical indices well within recommended safety limits to enable fast on-demand sparse activation and destruction at very high agent concentrations. We produce super-localization maps of the rabbit renal vasculature with acquisition times between 5.5 s and 0.25 s, and a 4-fold improvement in spatial resolution. We present the unique selectivity of AWSALM in visualizing specific vascular branches and downstream microvasculature, and we show super-localized kidney structures in systole (0.25 s) and diastole (0.25 s) with fast-AWSALM outperforming microbubble based ULM. In conclusion, we demonstrate the feasibility of fast and selective imaging of microvascular dynamics in vivo with subwavelength resolution using ultrasound and acoustically activatable nanodroplet contrast agents.
Collapse
|
12
|
Benton RP, Al Rifai N, Stone K, Clark A, Zhang B, Haworth KJ. Impact of Perfluoropentane Microdroplets Diameter and Concentration on Acoustic Droplet Vaporization Transition Efficiency and Oxygen Scavenging. Pharmaceutics 2022; 14:pharmaceutics14112392. [PMID: 36365210 PMCID: PMC9694497 DOI: 10.3390/pharmaceutics14112392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Acoustic droplet vaporization is the ultrasound-mediated phase change of liquid droplets into gas microbubbles. Following the phase change, oxygen diffuses from the surrounding fluid into the microbubble. An in vitro model was used to study the effects of droplet diameter, the presence of an ultrasound contrast agent, ultrasound duty cycle, and droplet concentration on the magnitude of oxygen scavenging in oxygenated deionized water. Perfluoropentane droplets were manufactured through a microfluidic approach at nominal diameters of 1, 3, 5, 7, 9, and 12 µm and studied at concentrations varying from 5.1 × 10-5 to 6.3 × 10-3 mL/mL. Droplets were exposed to an ultrasound transduced by an EkoSonicTM catheter (2.35 MHz, 47 W, and duty cycles of 1.70%, 2.34%, or 3.79%). Oxygen scavenging and the total volume of perfluoropentane that phase-transitioned increased with droplet concentration. The ADV transition efficiency decreased with increasing droplet concentration. The increasing duty cycle resulted in statistically significant increases in oxygen scavenging for 1, 3, 5, and 7 µm droplets, although the increase was smaller than when the droplet diameter or concentration were increased. Under the ultrasound conditions tested, droplet diameter and concentration had the greatest impact on the amount of ADV and subsequent oxygen scavenging occurred, which should be considered when using ADV-mediated oxygen scavenging in therapeutic ultrasounds.
Collapse
Affiliation(s)
- Rachel P. Benton
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Nour Al Rifai
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Kateryna Stone
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Abigail Clark
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Bin Zhang
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Kevin J. Haworth
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
- Correspondence: ; Tel.: +1-513-558-3536
| |
Collapse
|
13
|
Huang S, Guo W, An J, Zhang J, Dong F, Wang D, Feng F, Zhang J. Enhanced Acoustic Droplet Vaporization through the Active Magnetic Accumulation of Drug-Loaded Magnetic Particle-Encapsulated Nanodroplets (MPE-NDs) in Cancer Therapy. NANO LETTERS 2022; 22:8143-8151. [PMID: 36194752 DOI: 10.1021/acs.nanolett.2c02580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The application of drug-loaded nanodroplets is still limited by their insufficient accumulation owing to the enhanced permeability and retention (EPR) effect failure in cancer therapy. To overcome these limitations, we propose an alternative magnetic particle-encapsulated nanodroplet (MPE-ND) with outstanding biosafety and magnetic targeting by encapsulating fluorinated Fe3O4-SiO2 nanoparticles inside the liquid core of the nanodroplets. Meanwhile, doxorubicin (DOX) can be stably loaded into the shell through both electrostatic and hydrophobic interactions to obtain drug-loaded MPE-NDs. Both in vitro and in vivo experiments have consistently demonstrated that drug-loaded MPE-NDs can significantly increase the local drug concentration and enhance the damage of tumor tissues through acoustic droplet vaporization under a static magnetic field (eADV therapy). Histological examination reveals that eADV therapy efficiently suppresses tumor proliferation by inducing apoptosis, destroying supply vessels, and inhibiting neovascularization. Drug-loaded MPE-NDs can be expected to open a new gateway for ultrasound-triggered drug delivery and cancer treatment.
Collapse
Affiliation(s)
- Shuo Huang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Wenyu Guo
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jian An
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jiabin Zhang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, College of Future Technology, Peking University, Beijing, 100871, China
| | - Feihong Dong
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, College of Future Technology, Peking University, Beijing, 100871, China
| | - Di Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Feng Feng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- College of Engineering, Peking University, Beijing, 100871, China
- National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| |
Collapse
|
14
|
Hou J, Zhou J, Chang M, Bao G, Xu J, Ye M, Zhong Y, Liu S, Wang J, Zhang W, Ran H, Wang Z, Chen Y, Guo D. LIFU-responsive nanomedicine enables acoustic droplet vaporization-induced apoptosis of macrophages for stabilizing vulnerable atherosclerotic plaques. Bioact Mater 2022; 16:120-133. [PMID: 35386311 PMCID: PMC8958425 DOI: 10.1016/j.bioactmat.2022.02.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Due to the high risk of tearing and rupture, vulnerable atherosclerotic plaques would induce serious cardiovascular and cerebrovascular diseases. Despite the available clinical methods can evaluate the vulnerability of plaques and specifically treat vulnerable plaques before a cardiovascular event, but the efficiency is still low and undesirable. Herein, we rationally design and engineer the low-intensity focused ultrasound (LIFU)-responsive FPD@CD nanomedicine for the highly efficient treatment of vulnerable plaques by facilely loading phase transition agent perfluorohexane (PFH) into biocompatible PLGA-PEG-PLGA nanoparticles (PPP NPs) and then attaching dextran sulphate (DS) onto the surface of PPP NPs for targeting delivery. DS, as a typical macrophages-targeted molecule, can achieve the precise vaporization of NPs and subsequently controllable apoptosis of RAW 264.7 macrophages as induced by acoustic droplet vaporization (ADV) effect. In addition, the introduction of DiR and Fe3O4 endows nanomedicine with near-infrared fluorescence (NIRF) and magnetic resonance (MR) imaging capabilities. The engineered FPD@CD nanomedicine that uses macrophages as therapeutic targets achieve the conspicuous therapeutic effect of shrinking vulnerable plaques based on in vivo and in vitro evaluation outcomes. A reduction of 49.4% of vascular stenosis degree in gross pathology specimens were achieved throughout the treatment period. This specific, efficient and biosafe treatment modality potentiates the biomedical application in patients with cardiovascular and cerebrovascular diseases based on the relief of the plaque rupture concerns. A new nanomedicine-enabled treatment strategy has been developed for treating vulnerable plaques by employing ADV. The optimal treatment conditions for ADV have been explored, including LIFU irradiation power intensity and plaque stability. The underlying mechanism of nanomedicine-enabled ADV in the treatment of vulnerable plaques has been studied systematically.
Collapse
Affiliation(s)
- Jingxin Hou
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Jun Zhou
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Meiqi Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Guangcheng Bao
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Jie Xu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Man Ye
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Yixin Zhong
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Shuling Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Junrui Wang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Wei Zhang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Dajing Guo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| |
Collapse
|
15
|
Dong F, An J, Zhang J, Yin J, Guo W, Wang D, Feng F, Huang S, Zhang J, Cheng H. Blinking Acoustic Nanodroplets Enable Fast Super-resolution Ultrasound Imaging. ACS NANO 2021; 15:16913-16923. [PMID: 34647449 DOI: 10.1021/acsnano.1c07896] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The advent of localization-based super-resolution ultrasound (SRUS) imaging creates a vista for precision vasculature and hemodynamic measurements in brain science, cardiovascular diseases, and cancer. As blinking fluorophores are crucial to super-resolution optical imaging, blinking acoustic contrast agents enabling ultrasound localization microscopy have been highly sought, but only with limited success. Here we report on the discovery and characterization of a type of blinking acoustic nanodroplets (BANDs) ideal for SRUS. BANDs of 200-500 nm diameters comprise a perfluorocarbon-filled core and a shell of DSPC, Pluronic F68, and DSPE-PEG2000. When driven by clinically safe acoustic pulses (MI < 1.9) provided by a diagnostic ultrasound transducer, BANDs underwent reversible vaporization and reliquefaction, manifesting as "blinks", at rates of up to 5 kHz. By sparse activation of perfluorohexane-filled BANDs-C6 at high concentrations, only 100 frames of ultrasound imaging were sufficient to reconstruct super-resolution images of a no-flow tube through either cumulative localization or temporal radiality autocorrelation. Furthermore, the use of high-density BANDs-C6-4 (1 × 108/mL) with a 1:9 admixture of perfluorohexane and perfluorobutane supported the fast SRUS imaging of muscle vasculature in live animals, at 64 μm resolution requiring only 100 frames per layer. We anticipate that the BANDs developed here will greatly boost the application of SRUS in both basic science and clinical settings.
Collapse
Affiliation(s)
- Feihong Dong
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Jian An
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiabin Zhang
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Jingyi Yin
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Wenyu Guo
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Di Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Feng Feng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuo Huang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- College of Engineering, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
- Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing 211899, China
| |
Collapse
|
16
|
Yao J, Yang Z, Huang L, Yang C, Wang J, Cao Y, Hao L, Zhang L, Zhang J, Li P, Wang Z, Sun Y, Ran H. Low-Intensity Focused Ultrasound-Responsive Ferrite-Encapsulated Nanoparticles for Atherosclerotic Plaque Neovascularization Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100850. [PMID: 34382370 PMCID: PMC8498883 DOI: 10.1002/advs.202100850] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/22/2021] [Indexed: 05/24/2023]
Abstract
Pathological angiogenesis is a crucial factor that causes atherosclerotic plaque rupture. Sinoporphyrin sodium-mediated sonodynamic therapy (DVDMS-SDT) induces regression of plaque neovascularization in humans without causing obvious side effects. However, a clinical noninvasive theranostic strategy for atherosclerotic plaque neovascularization is urgently needed. A nanoplatform designed for multimodality imaging-guided SDT in plaque angiogenesis theranostics, termed PFP-HMME@PLGA/MnFe2 O4 -ramucirumab nanoparticles (PHPMR NPs), is fabricated. It encapsulates manganese ferrite (MnFe2 O4 ), hematoporphyrin monomethyl ether (HMME), and perfluoropentane (PFP) stabilized by polylactic acid-glycolic acid (PLGA) shells and is conjugated to an anti-VEGFR-2 antibody. With excellent magnetic resonance imaging (MRI)/photoacoustic/ultrasound imaging ability, the distribution of PHPMR NPs in plaque can be observed in real time. Additionally, they actively accumulate in the mitochondria of rabbit aortic endothelial cells (RAECs), and the PHPMR NP-mediated SDT promotes mitochondrial-caspase apoptosis via the production of reactive oxygen species and inhibits the proliferation, migration, and tubulogenesis of RAECs. On day 3, PHPMR NP-mediated SDT induces apoptosis in neovessel endothelial cells and improves hypoxia in the rabbit advanced plaque. On day 28, PHPMR NP-mediated SDT reduces the density of neovessels, subsequently inhibiting intraplaque hemorrhage and inflammation and eventually stabilizing the plaque. Collectively, PHPMR NP-mediated SDT presents a safe and effective theranostic strategy for inhibiting plaque angiogenesis.
Collapse
Affiliation(s)
- Jianting Yao
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Zhuowen Yang
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, P. R. China
| | - Liandi Huang
- State Key Laboratory of Ultrasound in Medicine and Engineering, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Chao Yang
- Department of Radiology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400014, P. R. China
| | - Jianxin Wang
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, P. R. China
| | - Yang Cao
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Lan Hao
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Liang Zhang
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Jingqi Zhang
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, P. R. China
| | - Pan Li
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Zhigang Wang
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Yang Sun
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Haitao Ran
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| |
Collapse
|
17
|
Ho YJ, Huang CC, Fan CH, Liu HL, Yeh CK. Ultrasonic technologies in imaging and drug delivery. Cell Mol Life Sci 2021; 78:6119-6141. [PMID: 34297166 PMCID: PMC11072106 DOI: 10.1007/s00018-021-03904-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
Ultrasonic technologies show great promise for diagnostic imaging and drug delivery in theranostic applications. The development of functional and molecular ultrasound imaging is based on the technical breakthrough of high frame-rate ultrasound. The evolution of shear wave elastography, high-frequency ultrasound imaging, ultrasound contrast imaging, and super-resolution blood flow imaging are described in this review. Recently, the therapeutic potential of the interaction of ultrasound with microbubble cavitation or droplet vaporization has become recognized. Microbubbles and phase-change droplets not only provide effective contrast media, but also show great therapeutic potential. Interaction with ultrasound induces unique and distinguishable biophysical features in microbubbles and droplets that promote drug loading and delivery. In particular, this approach demonstrates potential for central nervous system applications. Here, we systemically review the technological developments of theranostic ultrasound including novel ultrasound imaging techniques, the synergetic use of ultrasound with microbubbles and droplets, and microbubble/droplet drug-loading strategies for anticancer applications and disease modulation. These advancements have transformed ultrasound from a purely diagnostic utility into a promising theranostic tool.
Collapse
Affiliation(s)
- Yi-Ju Ho
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
18
|
Qin D, Zou Q, Lei S, Wang W, Li Z. Predicting initial nucleation events occurred in a metastable nanodroplet during acoustic droplet vaporization. ULTRASONICS SONOCHEMISTRY 2021; 75:105608. [PMID: 34119737 PMCID: PMC8207230 DOI: 10.1016/j.ultsonch.2021.105608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Acoustic droplet vaporization (ADV) capable of converting liquid perfluorocarbon (PFC) micro/nanodroplets into gaseous microbubbles has gained much attention due to its medical potentials. However, its physical mechanisms for nanodroplets have not been well understood due to the disappeared superharmonic focusing effect and the prominent Laplace pressure compared to microdroplets, especially for the initial ADV nucleation occurring in a metastable PFC nanodroplet. The classical nucleation theory (CNT) was modified to describe the ADV nucleation via combining the phase-change thermodynamics of perfluoropentane (PFP) and the Laplace pressure effect on PFP nanodroplets. The thermodynamics was exactly predicted by the Redlich-Kwong equation of state (EoS) rather than the van der Waals EoS, based on which the surface tension of the vapor nucleus as a crucial parameter in the CNT was successfully obtained to modify the CNT. Compared to the CNT, the modified CNT eliminated the intrinsic limitations of the CNT, and it predicted a larger nucleation rate and a lower ADV nucleation threshold, which agree much better with experimental results. Furthermore, it indicated that the nanodroplet properties exert very strong influences on the nucleation threshold instead of the acoustic parameters, providing a potential strategy with an appropriate droplet design to reduce the ADV nucleation threshold. This study may contribute to further understanding the ADV mechanism for PFC nanodroplets and promoting its potential theranostic applications in clinical practice.
Collapse
Affiliation(s)
- Dui Qin
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China.
| | - Qingqin Zou
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Shuang Lei
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Wei Wang
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Zhangyong Li
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China.
| |
Collapse
|
19
|
Gailliègue FN, Tamošiūnas M, André FM, Mir LM. A Setup for Microscopic Studies of Ultrasounds Effects on Microliters Scale Samples: Analytical, Numerical and Experimental Characterization. Pharmaceutics 2021; 13:pharmaceutics13060847. [PMID: 34201070 PMCID: PMC8227135 DOI: 10.3390/pharmaceutics13060847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/23/2022] Open
Abstract
Sonoporation is the process of cell membrane permeabilization, due to exposure to ultrasounds. There is a lack of consensus concerning the mechanisms of sonoporation: Understanding the mechanisms of sonoporation refines the choice of the ultrasonic parameters to be applied on the cells. Cells’ classical exposure systems to ultrasounds have several drawbacks, like the immersion of the cells in large volumes of liquid, the nonhomogeneous acoustic pressure in the large sample, and thus, the necessity for magnetic stirring to somehow homogenize the exposure of the cells. This article reports the development and characterization of a novel system allowing the exposure to ultrasounds of very small volumes and their observation under the microscope. The observation under a microscope imposes the exposure of cells and Giant Unilamellar Vesicles under an oblique incidence, as well as the very unusual presence of rigid walls limiting the sonicated volume. The advantages of this new setup are not only the use of a very small volume of cells culture medium/microbubbles (MB), but the presence of flat walls near the sonicated region that results in a more homogeneous ultrasonic pressure field, and thus, the control of the focal distance and the real exposure time. The setup presented here comprises the ability to survey the geometrical and dynamical aspects of the exposure of cells and MB to ultrasounds, if an ultrafast camera is used. Indeed, the setup thus fulfills all the requirements to apply ultrasounds conveniently, for accurate mechanistic experiments under an inverted fluorescence microscope, and it could have interesting applications in photoacoustic research.
Collapse
Affiliation(s)
- Florian N. Gailliègue
- Institut Gustave Roussy, Metabolic and Systemic Aspects of the Oncogenesis (METSY), Université Paris-Saclay, CNRS, 94805 Villejuif, France; (F.N.G.); (F.M.A.)
| | - Mindaugas Tamošiūnas
- Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia, 19 Raina Blvd., LV-1586 Rīga, Latvia;
| | - Franck M. André
- Institut Gustave Roussy, Metabolic and Systemic Aspects of the Oncogenesis (METSY), Université Paris-Saclay, CNRS, 94805 Villejuif, France; (F.N.G.); (F.M.A.)
| | - Lluis M. Mir
- Institut Gustave Roussy, Metabolic and Systemic Aspects of the Oncogenesis (METSY), Université Paris-Saclay, CNRS, 94805 Villejuif, France; (F.N.G.); (F.M.A.)
- Correspondence: ; Tel.: +33-(0)1421-14792
| |
Collapse
|
20
|
Qin D, Zhang L, Zhu H, Chen J, Wu D, Bouakaz A, Wan M, Feng Y. A Highly Efficient One-for-All Nanodroplet for Ultrasound Imaging-Guided and Cavitation-Enhanced Photothermal Therapy. Int J Nanomedicine 2021; 16:3105-3119. [PMID: 33967577 PMCID: PMC8096805 DOI: 10.2147/ijn.s301734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/01/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Photothermal therapy (PTT) has attracted considerable attention for cancer treatment as it is highly controllable and minimally invasive. Various multifunctional nanosystems have been fabricated in an "all-in-one" form to guide and enhance PTT by integrating imaging and therapeutic functions. However, the complex fabrication of nanosystems and their high cost limit its clinical translation. MATERIALS AND METHODS Herein, a high efficient "one-for-all" nanodroplet with a simple composition but owning multiple capabilities was developed to achieve ultrasound (US) imaging-guided and cavitation-enhanced PTT. Perfluoropentane (PFP) nanodroplet with a polypyrrole (PPy) shell (PFP@PPy nanodroplet) was synthesized via ultrasonic emulsification and in situ oxidative polymerization. After characterization of the morphology, its photothermal effect, phase transition performance, as well as its capabilities of enhancing US imaging and acoustic cavitation were examined. Moreover, the antitumor efficacy of the combined therapy with PTT and acoustic cavitation via the PFP@PPy nanodroplets was studied both in vitro and in vivo. RESULTS The nanodroplets exhibited good stability, high biocompatibility, broad optical absorption over the visible and near-infrared (NIR) range, excellent photothermal conversion with an efficiency of 60.1% and activatable liquid-gas phase transition performance. Upon NIR laser and US irradiation, the phase transition of PFP cores into microbubbles significantly enhanced US imaging and acoustic cavitation both in vitro and in vivo. More importantly, the acoustic cavitation enhanced significantly the antitumor efficacy of PTT as compared to PTT alone thanks to the cavitation-mediated cell destruction, which demonstrated a substantial increase in cell detachment, 81.1% cell death in vitro and 99.5% tumor inhibition in vivo. CONCLUSION The PFP@PPy nanodroplet as a "one-for-all" theranostic agent achieved highly efficient US imaging-guided and cavitation-enhanced cancer therapy, and has considerable potential to provide cancer theranostics in the future.
Collapse
Affiliation(s)
- Dui Qin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People’s Republic of China
| | - Lei Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Hongrui Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Junjie Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Daocheng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, F-37032, France
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yi Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
21
|
Fan CH, Kao WF, Kang ST, Ho YJ, Yeh CK. Exploring the Acoustic and Dynamic Characteristics of Phase-Change Droplets. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1051-1061. [PMID: 33079650 DOI: 10.1109/tuffc.2020.3032441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Acoustic droplet vaporization (ADV) provides the on-demand production of bubbles for use in ultrasound (US)-based diagnostic and therapeutic applications. The droplet-to-bubble transition process has been shown to involve localized internal gas nucleation, followed by a volume expansion of threefold to fivefold and inertial bubble oscillation, all of which take place within a few microseconds. Monitoring these ADV processes is important in gauging the mechanical effects of phase-change droplets in a biological environment, but this is difficult to achieve using regular optical observations. In this study, we utilized acoustic characterization [i.e., simultaneous passive cavitation detection (PCD) and active cavitation detection (ACD)] to investigate the acoustic signatures emitted from phase-change droplets ADV and determined their correlations with the physical behaviors observed using high-speed optical imaging. The experimental results showed that activation with three-cycle 5-MHz US pulse resulted in the droplets (diameter: 3.0- [Formula: see text]) overexpanding and undergoing damped oscillation before settling to bubbles with a final diameter. Meanwhile, a broadband shock wave was observed at the beginning of the PCD signal. The intense fluctuations of the ACD signal revealed that the shock wave arose from the inertial cavitation of nucleated small gas pockets in the droplets. It was particularly interesting that another shock-wave signal with a much lower acoustic frequency (< 2 MHz) was observed at about [Formula: see text] after the first half signal. This signal coincided with the reduction of the ACD signal amplitude that indicated the rebound of the transforming bubble. Since internal gas nucleation is a crucial process of ADV, the first half signal may indicate the occurrence of an ADV event, and the second half signal may further reveal the degrees of expansion and oscillation of the bubble. These acoustic signatures provide opportunities for monitoring ADV dynamics based on the detection of acoustic signals.
Collapse
|
22
|
Oroojalian F, Beygi M, Baradaran B, Mokhtarzadeh A, Shahbazi MA. Immune Cell Membrane-Coated Biomimetic Nanoparticles for Targeted Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006484. [PMID: 33577127 DOI: 10.1002/smll.202006484] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Nanotechnology has provided great opportunities for managing neoplastic conditions at various levels, from preventive and diagnostic to therapeutic fields. However, when it comes to clinical application, nanoparticles (NPs) have some limitations in terms of biological stability, poor targeting, and rapid clearance from the body. Therefore, biomimetic approaches, utilizing immune cell membranes, are proposed to solve these issues. For example, macrophage or neutrophil cell membrane coated NPs are developed with the ability to interact with tumor tissue to suppress cancer progression and metastasis. The functionality of these particles largely depends on the surface proteins of the immune cells and their preserved function during membrane extraction and coating process on the NPs. Proteins on the outer surface of immune cells can render a wide range of activities to the NPs, including prolonged blood circulation, remarkable competency in recognizing antigens for enhanced targeting, better cellular interactions, gradual drug release, and reduced toxicity in vivo. In this review, nano-based systems coated with immune cells-derived membranous layers, their detailed production process, and the applicability of these biomimetic systems in cancer treatment are discussed. In addition, future perspectives and challenges for their clinical translation are also presented.
Collapse
Affiliation(s)
- Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran
| | - Mohammad Beygi
- Department of Agricultural Engineering, Isfahan University of Technology (IUT), Isfahan, 84156-83111, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 51666-14731, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 51666-14731, Iran
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| |
Collapse
|
23
|
Lea-Banks H, Meng Y, Wu SK, Belhadjhamida R, Hamani C, Hynynen K. Ultrasound-sensitive nanodroplets achieve targeted neuromodulation. J Control Release 2021; 332:30-39. [PMID: 33600879 DOI: 10.1016/j.jconrel.2021.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/20/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
Focused ultrasound (FUS) offers an attractive tool for non-invasive neuromodulation, addressing a clinical need to develop more minimally invasive approaches that are safer, more tolerable and versatile. In combination with a cavitation agent, the effects of ultrasound can be amplified and localized for therapy. Using c-Fos expression mapping, we show how ultrasound-sensitive nanodroplets can be used to induce either neurosuppression or neurostimulation, without disrupting the blood-brain barrier in rats. By repurposing a commercial ultrasound contrast agent, Definity, lipid-shell decafluorobutane-core nanodroplets of 212.5 ± 2.0 nm were fabricated and loaded with or without pentobarbital. FUS was delivered with an atlas-based targeting system at 1.66 MHz to the motor cortex of rats, using a feedback-controller to detect successful nanodroplet vaporization and drug release. Neuromodulation was quantified through changes in sensorimotor function and c-Fos expression. Following FUS-triggered delivery, sham nanodroplets induced a 22.6 ± 21% increase in local c-Fos expression, whereas pentobarbital-loaded nanodroplets induced a 21.7 ± 13% decrease (n = 6). Nanodroplets, combined with FUS, offer an adaptable tool for neuromodulation, through local delivery of small molecule anesthetics or targeted mechanical effects.
Collapse
Affiliation(s)
- Harriet Lea-Banks
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| | - Ying Meng
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Sheng-Kai Wu
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|