1
|
Chang X, Cao Y, Hu ZL, Zhai Y, Zhang YY, Lv YF, Li CQ. PHLDA2 overexpression facilitates senescence and apoptosis via the mitochondrial route in human nucleus pulposus cells by regulating Wnt/β-catenin signalling pathway. IUBMB Life 2024; 76:788-802. [PMID: 38721892 DOI: 10.1002/iub.2829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/04/2024] [Indexed: 10/19/2024]
Abstract
Low back pain is a common clinical symptom of intervertebral disc degeneration (IVDD), which seriously affects the quality of life of the patients. The abnormal apoptosis and senescence of nucleus pulposus cells (NPCs) play important roles in the pathogenesis of IVDD. PHLDA2 is an imprinted gene related to cell apoptosis and tumour progression. However, its role in NPC degeneration is not yet clear. Therefore, this study was set to explore the effects of PHLDA2 on NPC senescence and apoptosis and the underlying mechanisms. The expression of PHLDA2 was examined in human nucleus pulposus (NP) tissues and NPCs. Immunohistochemical staining, magnetic resonance imaging imaging and western blot were performed to evaluate the phenotypes of intervertebral discs. Senescence and apoptosis of NPCs were assessed by SA-β-galactosidase, flow cytometry and western blot. Mitochondrial function was investigated by JC-1 staining and transmission electron microscopy. It was found that the expression level of PHLDA2 was abnormally elevated in degenerated human NP tissues and NPCs. Furthermore, knockdown of PHLDA2 can significantly inhibit senescence and apoptosis of NPCs, whereas overexpression of PHLDA2 can reverse senescence and apoptosis of NPCs in vitro. In vivo experiment further confirmed that PHLDA2 knockdown could alleviate IVDD in rats. Knockdown of PHLDA2 could also reverse senescence and apoptosis in IL-1β-treated NPCs. JC-1 staining indicated PHLDA2's knockdown impaired disruption of the mitochondrial membrane potential and also ameliorated superstructural destruction of NPCs as showed by transmission electron microscopy. Finally, we found the PHLDA2 knockdown promoted Collagen-II expression and suppressed MMP3 expression in NPCs by repressing wnt/β-catenin pathway. In conclusion, the results of the present study showed that PHLDA2 promotes IL-1β-induced apoptosis and senescence of NP cells via mitochondrial route by activating the Wnt/β-catenin pathway, and suggested that therapy targeting PHLDA2 may provide valuable insights into possible IVDD therapies.
Collapse
Affiliation(s)
- Xian Chang
- Department of Orthopaedics, Xinqiao Hospital, The Army Medical University, Chongqing, PR China
| | - Ya Cao
- Department of Pathology, Xinqiao Hospital, The Army Medical University, Chongqing, PR China
| | - Zhi-Lei Hu
- Department of Orthopaedics, Xinqiao Hospital, The Army Medical University, Chongqing, PR China
| | - Yu Zhai
- Department of Orthopaedics, Xinqiao Hospital, The Army Medical University, Chongqing, PR China
| | - Yu-Yao Zhang
- Department of Orthopaedics, Xinqiao Hospital, The Army Medical University, Chongqing, PR China
| | - Yang-Fan Lv
- Department of Pathology, Xinqiao Hospital, The Army Medical University, Chongqing, PR China
| | - Chang-Qing Li
- Department of Orthopaedics, Xinqiao Hospital, The Army Medical University, Chongqing, PR China
| |
Collapse
|
2
|
Chen X, Chen K, Hu J, Dong Y, Zheng M, Hu Q, Zhang W. Multiomics analysis reveals the potential of LPCAT1-PC axis as a therapeutic target for human intervertebral disc degeneration. Int J Biol Macromol 2024; 276:133779. [PMID: 38992527 DOI: 10.1016/j.ijbiomac.2024.133779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Intervertebral disc degeneration (IDD) is a highly prevalent musculoskeletal disorder that is associated with considerable morbidity. However, there is currently no drug available that has a definitive therapeutic effect on IDD. In this study, we aimed to identify the molecular features and potential therapeutic targets of IDD through a comprehensive multiomics profiling approach. By integrating transcriptomics, proteomics, and ultrastructural analyses, we discovered dysfunctions in various organelles, including mitochondria, the endoplasmic reticulum, the Golgi apparatus, and lysosomes. Metabolomics analysis revealed a reduction in total phosphatidylcholine (PC) content in IDD. Through integration of multiple omics techniques with disease phenotypes, a pivotal pathway regulated by the lysophosphatidylcholine acyltransferase 1 (LPCAT1)-PC axis was identified. LPCAT1 exhibited low expression levels and exhibited a positive correlation with PC content in IDD. Suppression of LPCAT1 resulted in inhibition of PC synthesis in nucleus pulposus cells, leading to a notable increase in nucleus pulposus cell senescence and damage to cellular organelles. Consequently, PC exhibits potential as a therapeutic agent, as it facilitates the repair of the biomembrane system and alleviates senescence in nucleus pulposus cells via reversal of downregulation of the LPCAT1-PC axis.
Collapse
Affiliation(s)
- Xi Chen
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Kun Chen
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Jun Hu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yijun Dong
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Menglong Zheng
- Department of medical imaging, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Qingsong Hu
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Wenzhi Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
3
|
Su KK, Yu DC, Cao XF, Li P, Chang L, Yu XL, Li ZQ, Li M. Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Alleviate Nuclear Pulposus Cells Degeneration Through the miR-145a-5p/USP31/HIF-1α Signaling Pathway. Stem Cell Rev Rep 2024:10.1007/s12015-024-10781-9. [PMID: 39212824 DOI: 10.1007/s12015-024-10781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Bone marrow mesenchymal stem cell (BMSC)-derived exosomes possess therapeutic potential against degenerative diseases. This study aimed to investigate the effects of BMSC-derived exosomes on intervertebral disc degeneration (IVDD) and explore the underlying molecular mechanisms. Through transcriptome sequencing and histological analysis, we observed a significant increase in HIF-1α expression in degenerative nucleus pulposus (NP) tissues. The addition of HIF-1α resulted in elevated expression of inflammatory factors IL-1β and IL-6, higher levels of matrix-degrading enzyme MMP13, and lower expression of aggrecan in NP cells. Co-culturing with BMSCs diminished the expression of HIF-1α, MMP13, IL-1β, and IL-6 in degenerative NP cells induced by overload pressure. miRNA chip analysis and PCR validation revealed that miR-145a-5p was the primary miRNA carried by BMSC-derived exosomes. Overexpression of miR-145a-5p was effective in minimizing the expression of HIF-1α, MMP13, IL-1β, and IL-6 in degenerative NP cells. Luciferase reporter assays confirmed USP31 as the target gene of miR-145a-5p, and the regulation of NP cells by BMSC-derived exosomes via miR-145a-5p was dependent on USP31. In conclusion, BMSC-derived exosomes alleviated IVDD through the miR-145a-5p/USP31/HIF-1α signaling pathway, providing valuable insights into the treatment of IVDD.
Collapse
Affiliation(s)
- Kang-Kang Su
- Department of Orthopedics, The First Affiliated Hospital of Air Force Medical University, Xi'an710000, China
| | - De-Chen Yu
- Department of Orthopedics, The First Affiliated Hospital of Air Force Medical University, Xi'an710000, China
| | - Xiong-Fei Cao
- Department of Orthopedics, The First Affiliated Hospital of Air Force Medical University, Xi'an710000, China
| | - Pan Li
- Department of Orthopedics, The First Affiliated Hospital of Air Force Medical University, Xi'an710000, China
| | - Le Chang
- Department of Orthopedics, The First Affiliated Hospital of Air Force Medical University, Xi'an710000, China
| | - Xiao-Lei Yu
- Department of Cardiology, Air Force Medical University Tangdu Hospital, Xi'an710000, China
| | - Zhi-Quan Li
- Department of Orthopedics, The First Affiliated Hospital of Air Force Medical University, Xi'an710000, China.
| | - Mo Li
- Department of Orthopedics, The First Affiliated Hospital of Air Force Medical University, Xi'an710000, China.
| |
Collapse
|
4
|
Xu T, Zhao H, Fang X, Wang S, Li J, Wu H, Hu W, Lu R. Mulberroside A mitigates intervertebral disc degeneration by inhibiting MAPK and modulating Ppar-γ/NF-κB pathways. J Inflamm (Lond) 2024; 21:32. [PMID: 39198816 PMCID: PMC11360712 DOI: 10.1186/s12950-024-00398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/12/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is a common spine disease with inflammation as its main pathogenesis. Mulberroside A (MA), isolated from herbal medicine, possesses anti-inflammatory characteristics in many diseases. Whereas, there is little exploration of the therapeutic potential of MA on IVDD. This study aimed at the therapeutic potential of MA on IVDD in vivo and in vitro and the mechanism involved. METHODS In vitro, western blotting, RT-qPCR, and immunofluorescence analysis were implemented to explore the bioactivity of MA on interleukin-1 beta (IL-1β)-induced inflammation nucleus pulposus cells (NPCs) isolated from Sprague-Dawley male rats. In vivo, X-ray and MRI were applied to measure the morphological changes, and histological staining and immunohistochemistry were employed to investigate the histological changes of intervertebral disc sections on puncture-induced IVDD rat models. RESULTS In vitro, MA up-regulated the expression level of anabolic-related proteins (Aggrecan and Collagen II) and decreased catabolic-related proteins (Mmp2, Mmp3, Mmp9, and Mmp13) in IL-1β-induced NPCs. Furthermore, MA inhibits the production of pro-inflammatory factors (Inos, Cox-2, and Il-6) stimulated by IL-1β. Mechanistically, MA inhibited the signal transduction of mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) pathways in IL-1β-induced NPCs. Moreover, MA might bind to Ppar-γ and then suppress the NF-kB pathway. In vivo experiment illustrated that MA mitigates the IVDD progression in puncture-induced IVDD model. X-ray and MRI images showed MA restore the disc height and T2-weighted signal intensity after puncturing. H&E and Safranin O/Fast Green also showed MA also alleviated morphological changes caused by acupuncture. In addition, MA reversed the expression level of Mmp13, Aggrecan, Collagen II, and Ppar-γ induced in IVDD models. CONCLUSIONS MA inhibited degenerative phenotypes in NPCs and alleviated IVDD progression via inhibiting the MAPK and NF-κB pathways; besides, MA suppressed the NF-κB pathway was attributed to activating Ppar-γ, those supported that MA or Ppar-γ might be a potential drug or target for IVDD.
Collapse
Affiliation(s)
- Tao Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongqi Zhao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuan Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanxi Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Li
- Department of Orthopaedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihua Hu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Rui Lu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Zhang P, Zhai H, Zhang S, Ma X, Gong A, Xu Z, Zhao W, Song H, Li S, Zheng T, Ying Z, Cheng L, Zhao Y, Zhang L. GDF11 protects against mitochondrial-dysfunction-dependent NLRP3 inflammasome activation to attenuate osteoarthritis. J Adv Res 2024:S2090-1232(24)00323-0. [PMID: 39103049 DOI: 10.1016/j.jare.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is a highly prevalent degenerative disease worldwide, and tumor necrosis factor (TNF-α) is closely associated with its development. Growth differentiation factor 11 (GDF11) has demonstrated anti-injury and anti-aging abilities in certain tissues; however, its regulatory role in OA remains unclear and requires further investigation. OBJECTIVES To identify whether GDF11 can attenuate osteoarthritis. To exploring the the potential mechanism of GDF11 in alleviating osteoarthritis. METHODS In this study, we cultured and stimulated mouse primary chondrocytes with or without TNF-α, analyzing the resulting damage phenotype through microarray analysis. Additionally, we employed GDF11 conditional knockout mice OA model to examine the relationship between GDF11 and OA. To investigate the target of GDF11's function, we utilized NLRP3 knockout mice and its inhibitor to verify the potential involvement of the NLRP3 inflammasome. RESULTS Our in vitro experiments demonstrated that endogenous overexpression of GDF11 significantly inhibited TNF-α-induced cartilage matrix degradation and inflammatory expression in chondrocytes. Furthermore, loss of GDF11 led to NLRP3 inflammasome activation, inflammation, and metabolic dysfunction. In an in vivo surgically induced mouse model, intraarticular administration of recombinant human GDF11 alleviated OA pathogenesis, whereas GDF11 conditional knockout reversed this effect. Additionally, findings from the NLRP3-knockout DMM mouse model revealed that GDF11 exerted its protective effect by inhibiting NLRP3. CONCLUSION These findings demonstrate the ability of GDF11 to suppress TNF-α-induced inflammation and cartilage degeneration by preventing mitochondrial dysfunction and inhibiting NLRP3 inflammasome activation, suggesting its potential as a promising therapeutic drug for osteoarthritis.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Haoxin Zhai
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Shuai Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | - Xiaojie Ma
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250012, PR China; Department of Rheumatology and Immunology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250012, PR China
| | - Ao Gong
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250012, PR China; Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250012, PR China
| | - Zhaoning Xu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Wei Zhao
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, Jinan, Shandong 250012, PR China; School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Hui Song
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, Jinan, Shandong 250012, PR China; School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Shufeng Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250012, PR China; Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong 250012, PR China
| | - Tengfei Zheng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250012, PR China
| | - Zhendong Ying
- Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250012, PR China
| | - Lei Cheng
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.
| | - Yunpeng Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.
| | - Lei Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250012, PR China; Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong 250012, PR China; Tissue Engineering Laboratory, Department of Radiology, Shandong First Medical University, PR China.
| |
Collapse
|
6
|
Xue Q, Li J, Qin R, Li M, Li Y, Zhang J, Wang R, Goltzman D, Miao D, Yang R. Nrf2 activation by pyrroloquinoline quinone inhibits natural aging-related intervertebral disk degeneration in mice. Aging Cell 2024; 23:e14202. [PMID: 38780001 PMCID: PMC11320358 DOI: 10.1111/acel.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/11/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Age-related intervertebral disk degeneration (IVDD) involves increased oxidative damage, cellular senescence, and matrix degradation. Pyrroloquinoline quinone (PQQ) is a water-soluble vitamin-like compound with strong anti-oxidant capacity. The goal of this study was to determine whether PQQ can prevent aging-related IVDD, and the underlying mechanism. Here, we found that dietary PQQ supplementation for 12 months alleviated IVDD phenotypes in aged mice, including increased disk height index and reduced histological scores and cell loss, without toxicity. Mechanistically, PQQ inhibited oxidative stress, cellular senescence, and senescence-associated secretory phenotype (SASP) in the nucleus pulposus and annulus fibrosus of aged mice. Similarly, PQQ protected against interleukin-1β-induced matrix degradation, reactive oxygen species accumulation, and senescence in human nucleus pulposus cells (NPCs) in vitro. Molecular docking predicted and biochemical assays validated that PQQ interacts with specific residues to dissociate the Keap1-Nrf2 complex, thereby increasing nuclear Nrf2 translocation and activation of Nrf2-ARE signaling. RNA sequencing and luciferase assays revealed Nrf2 can transcriptionally upregulate Wnt5a by binding to its promoter, while Wnt5a knockdown prevented PQQ inhibition of matrix metalloproteinase-13 in NPCs. Notably, PQQ supplementation failed to alleviate aging-associated IVDD phenotypes and oxidative stress in aged Nrf2 knockout mice, indicating Nrf2 is indispensable for PQQ bioactivities. Collectively, this study demonstrates Nrf2 activation by PQQ inhibits aging-induced IVDD by attenuating cellular senescence and matrix degradation. This study clarifies Keap1-Nrf2-Wnt5a axis as the novel signaling underlying the protective effects of PQQ against aging-related IVDD, and provides evidence for PQQ as a potential agent for clinical prevention and treatment of natural aging-induced IVDD.
Collapse
Affiliation(s)
- Qi Xue
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and EmbryologyNanjing Medical UniversityNanjingChina
| | - Jie Li
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| | - Ran Qin
- Department of OrthopaedicsNanjing First HospitalNanjingChina
| | - Mingying Li
- Shenzhen Key Laboratory for Systemic Aging and InterventionShenzhen UniversityShenzhenChina
| | - Yiping Li
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| | - Jing Zhang
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| | - Rong Wang
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and EmbryologyNanjing Medical UniversityNanjingChina
| | - David Goltzman
- Calcium Research Laboratory, McGill University Health Centre and Department of MedicineMcGill UniversityMontrealQuebecCanada
| | - Dengshun Miao
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and EmbryologyNanjing Medical UniversityNanjingChina
| | - Renlei Yang
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| |
Collapse
|
7
|
Camero S, Milazzo L, Vulcano F, Ceccarelli F, Pontecorvi P, Pedini F, Rossetti A, Scialis ES, Gerini G, Cece F, Pomella S, Cassandri M, Porrazzo A, Romano E, Festuccia C, Gravina GL, Ceccarelli S, Rota R, Lotti LV, Midulla F, Angeloni A, Marchese C, Marampon F, Megiorni F. Antitumour effects of SFX-01 molecule in combination with ionizing radiation in preclinical and in vivo models of rhabdomyosarcoma. BMC Cancer 2024; 24:814. [PMID: 38977944 PMCID: PMC11229215 DOI: 10.1186/s12885-024-12536-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Despite a multimodal approach including surgery, chemo- and radiotherapy, the 5-year event-free survival rate for rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in childhood, remains very poor for metastatic patients, mainly due to the selection and proliferation of tumour cells driving resistance mechanisms. Personalised medicine-based protocols using new drugs or targeted therapies in combination with conventional treatments have the potential to enhance the therapeutic effects, while minimizing damage to healthy tissues in a wide range of human malignancies, with several clinical trials being started. In this study, we analysed, for the first time, the antitumour activity of SFX-01, a complex of synthetic d, l-sulforaphane stabilised in alpha-cyclodextrin (Evgen Pharma plc, UK), used as single agent and in combination with irradiation, in four preclinical models of alveolar and embryonal RMS. Indeed, SFX-01 has shown promise in preclinical studies for its ability to modulate cellular pathways involved in inflammation and oxidative stress that are essential to be controlled in cancer treatment. METHODS RH30, RH4 (alveolar RMS), RD and JR1 (embryonal RMS) cell lines as well as mouse xenograft models of RMS were used to evaluate the biological and molecular effects induced by SFX-01 treatment. Flow cytometry and the modulation of key markers analysed by q-PCR and Western blot were used to assess cell proliferation, apoptosis, autophagy and production of intracellular reactive oxygen species (ROS) in RMS cells exposed to SFX-01. The ability to migrate and invade was also investigated with specific assays. The possible synergistic effects between SFX-01 and ionising radiation (IR) was studied in both the in vitro and in vivo studies. Student's t-test or two-way ANOVA were used to test the statistical significance of two or more comparisons, respectively. RESULTS SFX-01 treatment exhibited cytostatic and cytotoxic effects, mediated by G2 cell cycle arrest, apoptosis induction and suppression of autophagy. Moreover, SFX-01 was able to inhibit the formation and the proliferation of 3D tumorspheres as monotherapy and in combination with IR. Finally, SFX-01, when orally administered as single agent, displayed a pattern of efficacy at reducing the growth of tumour masses in RMS xenograft mouse models; when combined with a radiotherapy regime, it was observed to act synergistically, resulting in a more positive outcome than would be expected by adding each exposure alone. CONCLUSIONS In summary, our results provide evidence for the antitumour properties of SFX-01 in preclinical models of RMS tumours, both as a standalone treatment and in combination with irradiation. These forthcoming findings are crucial for deeper investigations of SFX-01 molecular mechanisms against RMS and for setting up clinical trials in RMS patients in order to use the SFX-01/IR co-treatment as a promising therapeutic approach, particularly in the clinical management of aggressive RMS disease.
Collapse
Affiliation(s)
- Simona Camero
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Luisa Milazzo
- Department of Oncology and Molecular Medicine, Italian National Institute of Health (ISS), Rome, Italy
| | - Francesca Vulcano
- Department of Oncology and Molecular Medicine, Italian National Institute of Health (ISS), Rome, Italy
| | - Federica Ceccarelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Paola Pontecorvi
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Francesca Pedini
- Department of Oncology and Molecular Medicine, Italian National Institute of Health (ISS), Rome, Italy
| | - Alessandra Rossetti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Elena Sofia Scialis
- Department of Innovative Technologies in Medicine and Dentistry, University "G. D'Annunzio" Chieti - Pescara, Chieti, Italy
| | - Giulia Gerini
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Fabrizio Cece
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Silvia Pomella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Matteo Cassandri
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Antonella Porrazzo
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Enrico Romano
- Department of Sense Organs, "Sapienza" University of Rome, Rome, Italy
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Simona Ceccarelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Fabio Midulla
- Department of Maternal Infantile and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy.
| | - Francesca Megiorni
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.
| |
Collapse
|
8
|
Salehiamin M, Ghoraishizadeh S, Habibpour A, Tafreshi S, Abolhasani MM, Shemiranykia Z, Sefat KK, Esmaeili J. Simultaneous usage of sulforaphane nanoemulsion and tannic acid in ternary chitosan/gelatin/PEG hydrogel for knee cartilage tissue engineering: In vitro and in vivo study. Int J Biol Macromol 2024; 271:132692. [PMID: 38806085 DOI: 10.1016/j.ijbiomac.2024.132692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
The therapeutic potential of tissue engineering in addressing articular cartilage defects has been a focal point of research for numerous years. Despite its promising outlook, a persistent challenge within this domain is the lack of sufficient functional integration between engineered and natural tissues. This study introduces a novel approach that employs a combination of sulforaphane (SFN) nanoemulsion and tannic acid to enhance cartilage tissue engineering and promote tissue integration in a rat knee cartilage defect model. To substantiate our hypothesis, we conducted a series of in vitro and in vivo experiments. The SFN nanoemulsion was characterized using DLS, zeta potential, and TEM analyses. Subsequently, it was incorporated into a ternary polymer hydrogel composed of chitosan, gelatin, and polyethylene glycol. We evaluated the hydrogel with (H-SFN) and without (H) the SFN nanoemulsion through a comprehensive set of physicochemical, mechanical, and biological analyses. For the in vivo study, nine male Wistar rats were divided into three groups: no implant (Ctrl), H, and H-SFN. After inducing a cartilage defect, the affected area was treated with tannic acid and subsequently implanted with the hydrogels. Four weeks post-implantation, the harvested cartilage underwent histological examination employing H&E, safranin O/fast green, alcian blue, and immunohistochemistry staining techniques. Our results revealed that the SFN nanodroplets had an average diameter of 75 nm and a surface charge of -11.58 mV. Moreover, degradation, swelling rates, hydrophilicity, and elasticity features of the hydrogel incorporating SFN were improved. Histopathological analysis indicated a higher production of GAGs and collagen in the H-SFN group. Furthermore, the H-SFN group exhibited superior cartilage regeneration and tissue integration compared to the Ctrl and H groups. In conclusion, the findings of this study suggest the importance of considering cell protective properties in the fabrication of scaffolds for knee cartilage defects, emphasizing the potential significance of the proposed SFN nanoemulsion and tannic acid approach in advancing the field of cartilage tissue engineering.
Collapse
Affiliation(s)
- Mehdi Salehiamin
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Tissue Engineering Center, TISSUEHUB CO., Tehran, Iran
| | | | - Ava Habibpour
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Sadaf Tafreshi
- Hygienics Department, Biomedical Engineering, Tehran Medical Sciences Islamic Azad University, Tehran, Iran; Materials Department, Biomedical Engineering, Materials and Energy Research Institute, Karaj, Iran
| | - Mohammad Mahdi Abolhasani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran; Biomaterials Group, Department of Nanotechnology & Advanced Materials, Materials & Energy Research Center (MERC), Karaj, Iran
| | | | - Karim Kaveh Sefat
- Department of Agronomy, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Javad Esmaeili
- Tissue Engineering Center, TISSUEHUB CO., Tehran, Iran; Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran.
| |
Collapse
|
9
|
Yao Q, He T, Liao JY, Liao R, Wu X, Lin L, Xiao G. Noncoding RNAs in skeletal development and disorders. Biol Res 2024; 57:16. [PMID: 38644509 PMCID: PMC11034114 DOI: 10.1186/s40659-024-00497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/09/2024] [Indexed: 04/23/2024] Open
Abstract
Protein-encoding genes only constitute less than 2% of total human genomic sequences, and 98% of genetic information was previously referred to as "junk DNA". Meanwhile, non-coding RNAs (ncRNAs) consist of approximately 60% of the transcriptional output of human cells. Thousands of ncRNAs have been identified in recent decades, and their essential roles in the regulation of gene expression in diverse cellular pathways associated with fundamental cell processes, including proliferation, differentiation, apoptosis, and metabolism, have been extensively investigated. Furthermore, the gene regulation networks they form modulate gene expression in normal development and under pathological conditions. In this review, we integrate current information about the classification, biogenesis, and function of ncRNAs and how these ncRNAs support skeletal development through their regulation of critical genes and signaling pathways in vivo. We also summarize the updated knowledge of ncRNAs involved in common skeletal diseases and disorders, including but not limited to osteoporosis, osteoarthritis, rheumatoid arthritis, scoliosis, and intervertebral disc degeneration, by highlighting their roles established from in vivo, in vitro, and ex vivo studies.
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Rongdong Liao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lijun Lin
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
10
|
Notarangelo MP, Penolazzi L, Lambertini E, Falzoni S, De Bonis P, Capanni C, Di Virgilio F, Piva R. The NFATc1/P2X7 receptor relationship in human intervertebral disc cells. Front Cell Dev Biol 2024; 12:1368318. [PMID: 38638530 PMCID: PMC11024252 DOI: 10.3389/fcell.2024.1368318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/13/2024] [Indexed: 04/20/2024] Open
Abstract
A comprehensive understanding of the molecules that play key roles in the physiological and pathological homeostasis of the human intervertebral disc (IVD) remains challenging, as does the development of new therapeutic treatments. We recently found a positive correlation between IVD degeneration (IDD) and P2X7 receptor (P2X7R) expression increases both in the cytoplasm and in the nucleus. Using immunocytochemistry, reverse transcription PCR (RT-PCR), overexpression, and chromatin immunoprecipitation, we found that NFATc1 and hypoxia-inducible factor-1α (HIF-1α) are critical regulators of P2X7R. Both transcription factors are recruited at the promoter of the P2RX7 gene and involved in its positive and negative regulation, respectively. Furthermore, using the proximity ligation assay, we revealed that P2X7R and NFATc1 form a molecular complex and that P2X7R is closely associated with lamin A/C, a major component of the nuclear lamina. Collectively, our study identifies, for the first time, P2X7R and NFATc1 as markers of IVD degeneration and demonstrates that both NFATc1 and lamin A/C are interaction partners of P2X7R.
Collapse
Affiliation(s)
| | - Letizia Penolazzi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Elisabetta Lambertini
- Department of Chemical, Pharmaceutical and Agricultural Sciences of the University of Ferrara, Ferrara, Italy
| | - Simonetta Falzoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Pasquale De Bonis
- Neurosurgery Department, Sant’Anna University Hospital, Ferrara, Italy
| | - Cristina Capanni
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, Bologna, Italy
- IRCCS Rizzoli Orthopedic Institute, Bologna, Italy
| | | | - Roberta Piva
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
11
|
Song Y, Liang H, Li G, Ma L, Zhu D, Zhang W, Tong B, Li S, Gao Y, Wu X, Zhang Y, Feng X, Wang K, Yang C. The NLRX1-SLC39A7 complex orchestrates mitochondrial dynamics and mitophagy to rejuvenate intervertebral disc by modulating mitochondrial Zn 2+ trafficking. Autophagy 2024; 20:809-829. [PMID: 37876250 PMCID: PMC11062375 DOI: 10.1080/15548627.2023.2274205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is the most critical pathological factor in the development of low back pain. The maintenance of nucleus pulposus (NP) cell and intervertebral disc integrity benefits largely from well-controlled mitochondrial quality, surveilled by mitochondrial dynamics (fission and fusion) and mitophagy, but the outcome is cellular context-dependent that remain to be clarified. Our studies revealed that the loss of NLRX1 is correlated with NP cell senescence and IDD progression, which involve disordered mitochondrial quality. Further using animal and in vitro tissue and cell models, we demonstrated that NLRX1 could facilitate mitochondrial quality by coupling mitochondrial dynamic factors (p-DNM1L, L-OPA1:S-OPA1, OMA1) and mitophagy activity. Conversely, mitochondrial collapse occurred in NLRX1-defective NP cells and switched on the compensatory PINK1-PRKN pathway that led to excessive mitophagy and aggressive NP cell senescence. Mechanistically, NLRX1 was originally shown to interact with zinc transporter SLC39A7 and modulate mitochondrial Zn2+ trafficking via the formation of an NLRX1-SLC39A7 complex on the mitochondrial membrane of NP cells, subsequently orchestrating mitochondrial dynamics and mitophagy. The restoration of NLRX1 function by gene overexpression or pharmacological agonist (NX-13) treatment showed great potential for regulating mitochondrial fission with synchronous fusion and mitophagy, thus sustaining mitochondrial homeostasis, ameliorating NP cell senescence and rejuvenating intervertebral discs. Collectively, our findings highlight a working model whereby the NLRX1-SLC39A7 complex coupled mitochondrial dynamics and mitophagy activity to surveil and target damaged mitochondria for degradation, which determines the beneficial function of the mitochondrial surveillance system and ultimately rejuvenates intervertebral discs.Abbreviations: 3-MA: 3-methyladenine; Baf-A1: bafilomycin A1; CDKN1A/p21: cyclin dependent kinase inhibitor 1A; CDKN2A/p16: cyclin dependent kinase inhibitor 2A; DNM1L/DRP1: dynamin 1 like; EdU: 5-Ethynyl-2'-deoxyuridine; HE: hematoxylin-eosin; IDD: intervertebral disc degeneration; IL1B/IL-1β: interleukin 1 beta; IL6: interleukin 6; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MKI67/Ki67: marker of proliferation Ki-67; LBP: low back pain; MMP: mitochondrial membrane potential; MFN1: mitofusin 1; MFN2: mitofusin 2; MFF: mitochondrial fission factor; NP: nucleus pulposus; NLRX1: NLR family member X1; OMA1: OMA1 zinc metallopeptidase; OPA1: OPA1 mitochondrial dynamin like GTPase; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxidative species; SASP: senescence-associated secretory phenotype; SA-GLB1/β-gal: senescence-associated galactosidase beta 1; SO: safranin o; TBHP: tert-butyl hydroperoxide; TP53/p53: tumor protein p53; SLC39A7/ZIP7: solute carrier family 39 member 7; TOMM20: translocase of outer mitochondrial membrane 20; TIMM23: translocase of inner mitochondrial membrane 23.
Collapse
Affiliation(s)
- Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huaizhen Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dingchao Zhu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weifeng Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bide Tong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yong Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
12
|
Yu C, Zhao J, Cheng F, Chen J, Chen J, Xu H, Shi K, Xia K, Ding S, Wang K, Wang R, Chen Y, Li Y, Li H, Chen Q, Yu X, Shao F, Liang C, Li F. Silencing circATXN1 in Aging Nucleus Pulposus Cell Alleviates Intervertebral Disc Degeneration via Correcting Progerin Mislocalization. RESEARCH (WASHINGTON, D.C.) 2024; 7:0336. [PMID: 38533181 PMCID: PMC10964222 DOI: 10.34133/research.0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/17/2024] [Indexed: 03/28/2024]
Abstract
Circular RNAs (circRNAs) play a critical regulatory role in degenerative diseases; however, their functions and therapeutic applications in intervertebral disc degeneration (IVDD) have not been explored. Here, we identified that a novel circATXN1 highly accumulates in aging nucleus pulposus cells (NPCs) accountable for IVDD. CircATXN1 accelerates cellular senescence, disrupts extracellular matrix organization, and inhibits mitochondrial respiration. Mechanistically, circATXN1, regulated by heterogeneous nuclear ribonucleoprotein A2B1-mediated splicing circularization, promotes progerin translocation from the cell nucleus to the cytoplasm and inhibits the expression of insulin-like growth factor 1 receptor (IGF-1R). To demonstrate the therapeutic potential of circATXN1, siRNA targeting the backsplice junction of circATNX1 was screened and delivered by tetrahedral framework nucleic acids (tFNAs) due to their unique compositional and tetrahedral structural features. Our siRNA delivery system demonstrates superior abilities to transfect aging cells, clear intracellular ROS, and enhanced biological safety. Using siRNA-tFNAs to silence circATXN1, aging NPCs exhibit reduced mislocalization of progerin in the cytoplasm and up-regulation of IGF-1R, thereby demonstrating a rejuvenated cellular phenotype and improved mitochondrial function. In vivo, administering an aging cell-adapted siRNA nucleic acid framework delivery system to progerin pathologically expressed premature aging mice (zmpste24-/-) can ameliorate the cellular matrix in the nucleus pulposus tissue, effectively delaying IVDD. This study not only identified circATXN1 functioning as a cell senescence promoter in IVDD for the first time, but also successfully demonstrated its therapeutic potential via a tFNA-based siRNA delivery strategy.
Collapse
Affiliation(s)
- Chao Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Jing Zhao
- Department of Chemistry,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
| | - Feng Cheng
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Jiangjie Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Jinyang Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Haibin Xu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Kesi Shi
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Siwen Ding
- Westlake Street Community Health Service Center, Hangzhou 310009, Zhejiang, PR China
| | - Kanbin Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Ronghao Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Yazhou Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Yi Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Hao Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Qixin Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Xiaohua Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Fangwei Shao
- Zhejiang University-University of Illinois at Urbana-Champaign Institute,
Zhejiang University, Haining 314400, Zhejiang, PR China
- Biomedical and Health Translational Research Centre,
Zhejiang University, Haining 314400, Zhejiang, PR China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Fangcai Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| |
Collapse
|
13
|
Shi Y, Bu W, Chu D, Lin W, Li K, Huang X, Wang X, Wu Y, Wu S, Li D, Xu Z, Cao Z, Chen H, Wang H. Rescuing Nucleus Pulposus Cells from ROS Toxic Microenvironment via Mitochondria-Targeted Carbon Dot-Supported Prussian Blue to Alleviate Intervertebral Disc Degeneration. Adv Healthc Mater 2024; 13:e2303206. [PMID: 38224563 DOI: 10.1002/adhm.202303206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/19/2023] [Indexed: 01/17/2024]
Abstract
Intervertebral disc degeneration (IVDD) is invariably accompanied by excessive accumulation of reactive oxygen species (ROS), resulting in progressive deterioration of mitochondrial function and senescence in nucleus pulposus cells (NPCs). Significantly, the main ROS production site in non-immune cells is mitochondria, suggesting mitochondria is a feasible therapeutic target to reverse IVDD. Triphenylphosphine (TPP), which is known as mitochondrial-tropic ligands, is utilized to modify carbon dot-supported Prussian blue (CD-PB) to scavenge superfluous intro-cellular ROS and maintain NPCs at normal redox levels. CD-PB-TPP can effectively escape from lysosomal phagocytosis, permitting efficient mitochondrial targeting. After strikingly lessening the ROS in mitochondria via exerting antioxidant enzyme-like activities, such as superoxide dismutase, and catalase, CD-PB-TPP rescues damaged mitochondrial function and NPCs from senescence, catabolism, and inflammatory reaction in vitro. Imaging evaluation and tissue morphology assessment in vivo suggest that disc height index, mean grey values of nucleus pulposus tissue, and histological morphology are significantly improved in the IVDD model after CD-PB-TPP is locally performed. In conclusion, this study demonstrates that ROS-induced mitochondrial dysfunction and senescence of NPCs leads to IVDD and the CD-PB-TPP possesses enormous potential to rescue this pathological process through efficient removal of ROS via targeting mitochondria, supplying a neoteric strategy for IVDD treatment.
Collapse
Affiliation(s)
- Yu Shi
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, 225012, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Wenzhen Bu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, 225012, P. R. China
| | - Dongchuan Chu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Wenzheng Lin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, 225012, P. R. China
| | - Ke Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, 225012, P. R. China
| | - Xueping Huang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Xinglong Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, 225012, P. R. China
| | - Yin Wu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, 225012, P. R. China
| | - Shang Wu
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, 225012, P. R. China
| | - Dandan Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Zhuobin Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Zhipeng Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
- Department of Orthopedics, Gushi Maternal and Child Health Hospital, Xinyang, 465200, P. R. China
| | - Hao Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, 225012, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Huihui Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, P. R. China
| |
Collapse
|
14
|
Chen X, Cai D, Li H, Wei Q, Li X, Han Z, Liang J, Xie J, Ruan J, Liu J, Xiang Z, Dong W, Guo W. Exosomal U2AF2 derived from human bone marrow mesenchymal stem cells attenuates the intervertebral disc degeneration through circ_0036763/miR-583/ACAN axis. Regen Ther 2024; 25:344-354. [PMID: 38362337 PMCID: PMC10867602 DOI: 10.1016/j.reth.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is one of the major leading causes of back pain affecting the patient's quality of life. However, the roles of circular RNA (circRNA) in IDD remains unclear. This study aimed to explore the function and underlying mechanism of circ_0036763 in IDD. In this study, expressions of circ_0036763, U2 small nuclear RNA auxiliary factor 2 (U2AF2), miR-583 and aggrecan (ACAN) in primary human nucleus pulposus cells (HNPCs) derived from IDD patients and healthy controls were detected by quantitative real-time reverse transcription-PCR (qRT-PCR) or Western blot (WB). The relationship between pre-circ_0036763 and U2AF2, circ_0036763 and miR-583, miR-583 and ACAN mRNA was determined by bioinformatic analysis, miRNA pull down or RNA immunoprecipitation (RIP) assay. The expressions of Collagen I and Collagen II were evaluated by WB. Co-culture of bone marrow mesenchymal stem cells (bMSCs) or bMSCs-derived exosomes and HNPCs were performed to identify the effect of U2AF2 on the mature of circ_0036763 and ACAN. Results indicated that circ_0036763, U2AF2 and ACAN were downregulated while miR-583 was upregulated in HNPCs derived from IDD patients compared with that in normal HNPCs. Besides, overexpression of circ_0036763 elevated the expressions of ACAN and Collagen II whereas reduced Collagen I expression in HNPCs. Moreover, U2AF2 promoted the mature of circ_0036763, and circ_0036763 positively regulated ACAN by directly sponging miR-583. Furthermore, exosomal U2AF2 derived from bMSCs could increase U2AF2 levels in HNPCs and subsequently regulate the expression of ACAN by circ_0036763/miR-583 axis. In summary, circ_0036763 modified by exosomal U2AF2 derived from bMSCs alleviated IDD through regulating miR-583/ACAN axis in HNPCs. Thus, this study might provide novel therapeutic targets for IDD.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| | - Dongling Cai
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| | - Hao Li
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| | - Qipeng Wei
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| | - Xi Li
- Department of Dermatology, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
- Guangzhou University of Chinese Medicine, No.12 Jichang Road, Baiyun Disitrct, Guangzhou 510405, China
| | - Zhuangxun Han
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| | - Jinjun Liang
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| | - Junxian Xie
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| | - Jiajian Ruan
- Guangzhou University of Chinese Medicine, No.12 Jichang Road, Baiyun Disitrct, Guangzhou 510405, China
| | - Jincheng Liu
- Guangzhou University of Chinese Medicine, No.12 Jichang Road, Baiyun Disitrct, Guangzhou 510405, China
| | - Zhen Xiang
- Guangzhou University of Chinese Medicine, No.12 Jichang Road, Baiyun Disitrct, Guangzhou 510405, China
| | - Wenxuan Dong
- Guangzhou University of Chinese Medicine, No.12 Jichang Road, Baiyun Disitrct, Guangzhou 510405, China
| | - Weijun Guo
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| |
Collapse
|
15
|
Lin J, Wang L, Wu Y, Xiang Q, Zhao Y, Zheng X, Jiang S, Sun Z, Fan D, Li W. Involvement of DJ-1 in the pathogenesis of intervertebral disc degeneration via hexokinase 2-mediated mitophagy. Exp Mol Med 2024; 56:747-759. [PMID: 38531963 PMCID: PMC10984922 DOI: 10.1038/s12276-024-01196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 03/28/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is an important pathological basis for degenerative spinal diseases and is involved in mitophagy dysfunction. However, the molecular mechanisms underlying mitophagy regulation in IDD remain unclear. This study aimed to clarify the role of DJ-1 in regulating mitophagy during IDD pathogenesis. Here, we showed that the mitochondrial localization of DJ-1 in nucleus pulposus cells (NPCs) first increased and then decreased in response to oxidative stress. Subsequently, loss- and gain-of-function experiments revealed that overexpression of DJ-1 in NPCs inhibited oxidative stress-induced mitochondrial dysfunction and mitochondria-dependent apoptosis, whereas knockdown of DJ-1 had the opposite effect. Mechanistically, mitochondrial translocation of DJ-1 promoted the recruitment of hexokinase 2 (HK2) to damaged mitochondria by activating Akt and subsequently Parkin-dependent mitophagy to inhibit oxidative stress-induced apoptosis in NPCs. However, silencing Parkin, reducing mitochondrial recruitment of HK2, or inhibiting Akt activation suppressed DJ-1-mediated mitophagy. Furthermore, overexpression of DJ-1 ameliorated IDD in rats through HK2-mediated mitophagy. Taken together, these findings indicate that DJ-1 promotes HK2-mediated mitophagy under oxidative stress conditions to inhibit mitochondria-dependent apoptosis in NPCs and could be a therapeutic target for IDD.
Collapse
Affiliation(s)
- Jialiang Lin
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Longjie Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Yuhao Wu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Qian Xiang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Yongzhao Zhao
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Xuanqi Zheng
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Shuai Jiang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Zhuoran Sun
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Dongwei Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Weishi Li
- Department of Orthopedics, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.
| |
Collapse
|
16
|
Song Y, Geng W, Zhu D, Liang H, Du Z, Tong B, Wang K, Li S, Gao Y, Feng X, Liao Z, Mei R, Yang C. SYNJ2BP ameliorates intervertebral disc degeneration by facilitating mitochondria-associated endoplasmic reticulum membrane formation and mitochondrial Zn 2+ homeostasis. Free Radic Biol Med 2024; 212:220-233. [PMID: 38158052 DOI: 10.1016/j.freeradbiomed.2023.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Nucleus pulposus (NP) cell function-loss is one main contributor during intervertebral disc degeneration (IDD) progression. Both mitochondria and endoplasmic reticulum (ER) play vital roles in sustaining NP cell homeostasis, while the precise function of ER-mitochondria tethering and cross talk in IDD remain to be clarified. Here, we demonstrated that a notable disruption of mitochondria-associated ER membrane (MAM) was identified in degenerated discs and TBHP-induced NP cells, accompanied by mitochondrial Zn2+ overload and NP cell senescence. Importantly, experimental coupling of MAM contacts by MFN2, a critical regulator of MAM formation, could enhance NLRX1-SLC39A7 complex formation and mitochondrial Zn2+ homeostasis. Further using the sequencing data from TBHP-induced degenerative model of NP cells, combining the reported MAM proteomes, we demonstrated that SYNJ2BP loss was one critical pathological characteristic of NP cell senescence and IDD progression, which showed close relationship with MAM disruption. Overexpression of SYNJ2BP could facilitate MAM contact organization and NLRX1-SLC39A7 complex formation, thus promoted mitochondrial Zn2+ homeostasis, NP cell proliferation and intervertebral disc rejuvenation. Collectively, our present study revealed a critical role of SYNJ2BP in maintaining mitochondrial Zn2+ homeostasis in NP cells during IDD progression, partially via sustaining MAM contact and NLRX1-SLC39A7 complex formation.
Collapse
Affiliation(s)
- Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wen Geng
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dingchao Zhu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huaizhen Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhi Du
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bide Tong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yong Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Rongcheng Mei
- Department of Orthopaedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, China.
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
17
|
Ao X, Jiang T, Li Y, Lai W, Lian Z, Wang L, Huang M, Zhang Z. n-3 polyunsaturated fatty acids delay intervertebral disc degeneration by inhibiting nuclear receptor coactivator 4-mediated iron overload. iScience 2024; 27:108721. [PMID: 38303704 PMCID: PMC10830877 DOI: 10.1016/j.isci.2023.108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/24/2023] [Accepted: 12/11/2023] [Indexed: 02/03/2024] Open
Abstract
n-3 polyunsaturated fatty acids (PUFAs) are closely related to the progression of numerous chronic inflammatory diseases, but the role of n-3 PUFAs in the intervertebral disc degeneration (IVDD) remains unclear. In this study, male C57BL/6 wildtype mice (WT group, n = 30) and fat-1 transgenic mice (TG group, n = 30) were randomly selected to construct the IVDD model. The results demonstrated that the optimized composition of PUFAs in the TG mice had a significant impact on delaying IVDD and cellular senescence of intervertebral disc (IVD). Mechanismly, n-3 PUFAs inhibited IVD senescence by alleviating NCOA4-mediated iron overload. NCOA4 overexpression promoted iron overload and weakened the pro-proliferation and anti-senescence effect of DHA on the IVD cells. Furthermore, this study futher revealed n-3 PUFAs downregulated NCOA4 expression by inactiviting the LGR5/β-catenin signaling pathway. This study provides an important theoretical basis for preventing and treating IVDD and low back pain.
Collapse
Affiliation(s)
- Xiang Ao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Tao Jiang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yuan Li
- Department of Spine Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
- Academy of Orthopaedics·Guangdong Province, Guangzhou, Guangdong, P.R. China
| | - Weiyi Lai
- Department of Spine Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
- Academy of Orthopaedics·Guangdong Province, Guangzhou, Guangdong, P.R. China
| | - Zhengnan Lian
- Department of Spine Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
- Academy of Orthopaedics·Guangdong Province, Guangzhou, Guangdong, P.R. China
| | - Liang Wang
- Department of Spine Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
- Academy of Orthopaedics·Guangdong Province, Guangzhou, Guangdong, P.R. China
| | - Minjun Huang
- Department of Spine Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
- Academy of Orthopaedics·Guangdong Province, Guangzhou, Guangdong, P.R. China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
18
|
Yao D, Chen E, Li Y, Wang K, Liao Z, Li M, Huang L. The role of endoplasmic reticulum stress, mitochondrial dysfunction and their crosstalk in intervertebral disc degeneration. Cell Signal 2024; 114:110986. [PMID: 38007189 DOI: 10.1016/j.cellsig.2023.110986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Low back pain (LBP) is a pervasive global health issue. Roughly 40% of LBP cases are attributed to intervertebral disc degeneration (IVDD). While the underlying mechanisms of IVDD remain incompletely understood, it has been confirmed that apoptosis and extracellular matrix (ECM) degradation caused by many factors such as inflammation, oxidative stress, calcium (Ca2+) homeostasis imbalance leads to IVDD. Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are involved in these processes. The initiation of ER stress precipitates cell apoptosis, and is also related to inflammation, levels of oxidative stress, and Ca2+ homeostasis. Additionally, mitochondrial dynamics, antioxidative systems, disruption of Ca2+ homeostasis are closely associated with Reactive Oxygen Species (ROS) and inflammation, promoting cell apoptosis. However, numerous crosstalk exists between the ER and mitochondria, where they interact through inflammatory cytokines, signaling pathways, ROS, or key molecules such as CHOP, forming positive and negative feedback loops. Furthermore, the contact sites between the ER and mitochondria, known as mitochondria-associated membranes (MAM), facilitate direct signal transduction such as Ca2+ transfer. However, the current attention towards this issue is insufficient. Therefore, this review summarizes the impacts of ER stress and mitochondrial dysfunction on IVDD, along with the possibly potential crosstalk between them, aiming to unveil novel avenues for IVDD intervention.
Collapse
Affiliation(s)
- Dengbo Yao
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.; Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Enming Chen
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yuxi Li
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Kun Wang
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.; Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Zhuangyao Liao
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ming Li
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Lin Huang
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China..
| |
Collapse
|
19
|
Zhang Y, Liu L, Qi Y, Lou J, Chen Y, Liu C, Li H, Chang X, Hu Z, Li Y, Zhang Y, Feng C, Zhou Y, Zhai Y, Li C. Lactic acid promotes nucleus pulposus cell senescence and corresponding intervertebral disc degeneration via interacting with Akt. Cell Mol Life Sci 2024; 81:24. [PMID: 38212432 PMCID: PMC11071984 DOI: 10.1007/s00018-023-05094-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024]
Abstract
The accumulation of metabolites in the intervertebral disc is considered an important cause of intervertebral disc degeneration (IVDD). Lactic acid, which is a metabolite that is produced by cellular anaerobic glycolysis, has been proven to be closely associated with IVDD. However, little is known about the role of lactic acid in nucleus pulposus cells (NPCs) senescence and oxidative stress. The aim of this study was to investigate the effect of lactic acid on NPCs senescence and oxidative stress as well as the underlying mechanism. A puncture-induced disc degeneration (PIDD) model was established in rats. Metabolomics analysis revealed that lactic acid levels were significantly increased in degenerated intervertebral discs. Elimination of excessive lactic acid using a lactate oxidase (LOx)-overexpressing lentivirus alleviated the progression of IVDD. In vitro experiments showed that high concentrations of lactic acid could induce senescence and oxidative stress in NPCs. High-throughput RNA sequencing results and bioinformatic analysis demonstrated that the induction of NPCs senescence and oxidative stress by lactic acid may be related to the PI3K/Akt signaling pathway. Further study verified that high concentrations of lactic acid could induce NPCs senescence and oxidative stress by interacting with Akt and regulating its downstream Akt/p21/p27/cyclin D1 and Akt/Nrf2/HO-1 pathways. Utilizing molecular docking, site-directed mutation and microscale thermophoresis assays, we found that lactic acid could regulate Akt kinase activity by binding to the Lys39 and Leu52 residues in the PH domain of Akt. These results highlight the involvement of lactic acid in NPCs senescence and oxidative stress, and lactic acid may become a novel potential therapeutic target for the treatment of IVDD.
Collapse
Affiliation(s)
- Yuyao Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Libangxi Liu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
- Department of Orthopedics, General Hospital of Central Theater Command of PLA, Wuhan, 430000, China
| | - Yuhan Qi
- Institute of Basic Theory of Traditional Chinese Medicine, China Academy of Chinese Medical Science, Beijing, 100000, China
| | - Jinhui Lou
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Yuxuan Chen
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Chao Liu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Haiyin Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Xian Chang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Zhilei Hu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Yueyang Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Yang Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Chencheng Feng
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Yu Zhai
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China.
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China.
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China.
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
20
|
Liu J, Du C, Huang W, Lei Y. Injectable smart stimuli-responsive hydrogels: pioneering advancements in biomedical applications. Biomater Sci 2023; 12:8-56. [PMID: 37969066 DOI: 10.1039/d3bm01352a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Hydrogels have established their significance as prominent biomaterials within the realm of biomedical research. However, injectable hydrogels have garnered greater attention compared with their conventional counterparts due to their excellent minimally invasive nature and adaptive behavior post-injection. With the rapid advancement of emerging chemistry and deepened understanding of biological processes, contemporary injectable hydrogels have been endowed with an "intelligent" capacity to respond to various endogenous/exogenous stimuli (such as temperature, pH, light and magnetic field). This innovation has spearheaded revolutionary transformations across fields such as tissue engineering repair, controlled drug delivery, disease-responsive therapies, and beyond. In this review, we comprehensively expound upon the raw materials (including natural and synthetic materials) and injectable principles of these advanced hydrogels, concurrently providing a detailed discussion of the prevalent strategies for conferring stimulus responsiveness. Finally, we elucidate the latest applications of these injectable "smart" stimuli-responsive hydrogels in the biomedical domain, offering insights into their prospects.
Collapse
Affiliation(s)
- Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
21
|
Lei M, Lin H, Shi D, Hong P, Song H, Herman B, Liao Z, Yang C. Molecular mechanism and therapeutic potential of HDAC9 in intervertebral disc degeneration. Cell Mol Biol Lett 2023; 28:104. [PMID: 38093179 PMCID: PMC10717711 DOI: 10.1186/s11658-023-00517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is the major cause of low-back pain. Histone deacetylase 9 (HDAC9) was dramatically decreased in the degenerative nucleus pulposus (NP) samples of patients with intervertebral disc degeneration (IVDD) according to bioinformatics analysis of Gene Expression Omnibus (GEO) GSE56081 dataset. This study aims to investigate the role of HDAC9 in IVDD progression. METHODS The contribution of HDAC9 to the progression of IVDD was assessed using HDAC9 knockout (HDAC9KO) mice and NP-targeted HDAC9-overexpressing mice by IVD injection of adenovirus-mediated HDAC9 under a Col2a1 promoter. Magnetic resonance imaging (MRI) and histological analysis were used to examine the degeneration of IVD. NP cells were isolated from mice to investigate the effects of HDAC9 on apoptosis and viability. mRNA-seq and coimmunoprecipitation/mass spectrometry (co-IP/MS) analysis were used to analyze the HDAC9-regulated factors in the primary cultured NP cells. RESULTS HDAC9 was statistically decreased in the NP tissues in aged mice. HDAC9KO mice spontaneously developed age-related IVDD compared with wild-type (HDAC9WT) mice. In addition, overexpression of HDAC9 in NP cells alleviated IVDD symptoms in a surgically-induced IVDD mouse model. In an in vitro assay, knockdown of HDAC9 inhibited cell viability and promoted cell apoptosis of NP cells, and HDAC9 overexpression had the opposite effects in NP cells isolated from HDAC9KO mice. Results of mRNA-seq and co-IP/MS analysis revealed the possible proteins and signaling pathways regulated by HDAC9 in NP cells. RUNX family transcription factor 3 (RUNX3) was screened out for further study, and RUNX3 was found to be deacetylated and stabilized by HDAC9. Knockdown of RUNX3 restored the effects of HDAC9 silencing on NP cells by inhibiting apoptosis and increasing viability. CONCLUSION Our results suggest that HDAC9 plays an important role in the development and progression of IVDD. It might be required to protect NP cells against the loss of cell viability and apoptosis by inhibiting RUNX3 acetylation and expression during IVDD. Together, our findings suggest that HDAC9 may be a potential therapeutic target in IVDD.
Collapse
Affiliation(s)
- Ming Lei
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Hui Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Deyao Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Pan Hong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Hui Song
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Bomansaan Herman
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zhiwei Liao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Cao Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
22
|
Zhao Y, Mu Y, Zou Y, He Z, Lu T, Wang X, Li W, Gao B. Conjoint research of WGCNA, single-cell transcriptome and structural biology reveals the potential targets of IDD development and treatment and JAK3 involvement. Aging (Albany NY) 2023; 15:14764-14790. [PMID: 38095643 PMCID: PMC10781489 DOI: 10.18632/aging.205289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/02/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVES This study conducted integrated analysis of bulk RNA sequencing, single-cell RNA sequencing and Weighted Gene Co-expression Network Analysis (WGCNA), to comprehensively decode the most essential genes of intervertebral disc degeneration (IDD); then mainly focused on the JAK3 macromolecule to identify natural compounds to provide more candidate drug options in alleviating IDD. METHODS In the first part, we performed single-cell transcriptome analysis and WGCNA workflow to delineate the most pivotal genes of IDD. Then series of structural biology approaches and high-throughput virtual screening techniques were performed to discover potential compounds targeting JAK-STAT signaling pathway, such as Libdock, ADMET, precise molecular docking algorithm and in-vivo drug stability assessment. RESULTS Totally 4 hub genes were determined in the development of IDD, namely VEGFA, MMP3, TNFSF11, and TIMP3, respectively. Then, 3 novel natural materials, ZINC000014952116, ZINC000003938642 and ZINC000072131515, were determined as potential compounds, with less toxicities and moderate ADME characteristics. In-vivo drug stability assessment suggested that these drugs could interact with JAK3, and their ligand-JAK3 complexes maintained the homeostasis in-vivo, which acted as regulatory role to JAK3 protein. Among them, ZINC000072131515, also known as Menaquinone, demonstrated significant protective roles to alleviate the progression of IDD in vitro, which proved the nutritional therapy in alleviating IDD. CONCLUSIONS This study reported the essential genes in the development of IDD, and also the roles of Menaquinone to ameliorate IDD through inhibiting JAK3 protein. This study also provided more options and resources on JAK3 targeted screening, which may further expand the drug resources in the pharmaceutical market.
Collapse
Affiliation(s)
- Yingjing Zhao
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu Province, China
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yuxue Mu
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi’an, China
| | - Yujia Zou
- Department of Cardiology, Xinhua Hospital affiliated to School of Medicine, Shanghai Jiaotong University, China
| | - Zhijian He
- Department of Sports Teaching and Research, Lanzhou University, Lanzhou, China
| | - Tianxing Lu
- Zonglian College, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xinhui Wang
- Department of Oncology, The Fifth Affiliated Hospital of Xinxiang Medical College, Xin Xiang 453100, China
| | - Weihang Li
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
23
|
Lee GE, Byun J, Lee CJ, Cho YY. Molecular Mechanisms for the Regulation of Nuclear Membrane Integrity. Int J Mol Sci 2023; 24:15497. [PMID: 37895175 PMCID: PMC10607757 DOI: 10.3390/ijms242015497] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023] Open
Abstract
The nuclear membrane serves a critical role in protecting the contents of the nucleus and facilitating material and signal exchange between the nucleus and cytoplasm. While extensive research has been dedicated to topics such as nuclear membrane assembly and disassembly during cell division, as well as interactions between nuclear transmembrane proteins and both nucleoskeletal and cytoskeletal components, there has been comparatively less emphasis on exploring the regulation of nuclear morphology through nuclear membrane integrity. In particular, the role of type II integral proteins, which also function as transcription factors, within the nuclear membrane remains an area of research that is yet to be fully explored. The integrity of the nuclear membrane is pivotal not only during cell division but also in the regulation of gene expression and the communication between the nucleus and cytoplasm. Importantly, it plays a significant role in the development of various diseases. This review paper seeks to illuminate the biomolecules responsible for maintaining the integrity of the nuclear membrane. It will delve into the mechanisms that influence nuclear membrane integrity and provide insights into the role of type II membrane protein transcription factors in this context. Understanding these aspects is of utmost importance, as it can offer valuable insights into the intricate processes governing nuclear membrane integrity. Such insights have broad-reaching implications for cellular function and our understanding of disease pathogenesis.
Collapse
Affiliation(s)
- Ga-Eun Lee
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
| | - Jiin Byun
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
| | - Cheol-Jung Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-ro, Yuseong-gu, Daejeon 34133, Chungcheongnam-do, Republic of Korea
| | - Yong-Yeon Cho
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
- RCD Control and Material Research Institute, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| |
Collapse
|
24
|
Zhang P, He J, Gan Y, Shang Q, Chen H, Zhao W, Shen G, Jiang X, Ren H. Plastrum testudinis Ameliorates Oxidative Stress in Nucleus Pulposus Cells via Downregulating the TNF-α Signaling Pathway. Pharmaceuticals (Basel) 2023; 16:1482. [PMID: 37895953 PMCID: PMC10610230 DOI: 10.3390/ph16101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
BackgroundPlastrum testudinis (PT), a widely used traditional Chinese medicine, exerts protective effects against bone diseases such as intervertebral disc degeneration (IDD). Despite its effectiveness, the molecular mechanisms underlying the effects of PT on IDD remain unclear. Methods In this study, we used a comprehensive strategy combining bioinformatic analysis with experimental verification to investigate the possible molecular mechanisms of PT against IDD. We retrieved targets for PT and IDD, and then used their overlapped targets for protein-protein interaction (PPI) analysis. In addition, we used Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses to investigate the anti-IDD mechanisms of PT. Moreover, in vivo and in vitro experiment validations including hematoxylin-eosin (HE) and safranine O-green staining, senescence-associated β-galactosidase (SA-β-gal) assay, cell immunofluorescence staining, intracellular ROS measurement and Western blot analysis were performed to verify bioinformatics findings. Results We identified 342 and 872 PT- and IDD-related targets (32 overlapping targets). GO enrichment analysis yielded 450 terms related to oxidative stress and inflammatory response regulation. KEGG analysis identified 48 signaling pathways, 10 of which were significant; the TNF-α signaling pathway had the highest p-value, and prostaglandin G/H synthase 2 (PTGS2), endothelin-1 (EDN1), TNF-α, JUN and FOS were enriched in this pathway. Histopathological results and safranin O/green staining demonstrated that PT attenuated IDD, and SA-β-gal assay showed that PT ameliorated nucleus pulposus cell (NPC) senescence. An ROS probe was adopted to confirm the protective effect of PT against oxidative stress. Western blot analyses confirmed that PT downregulated the protein expression of PTGS2, EDN1, TNF-α, JUN and FOS in the TNF-α signaling pathway as well as cellular senescence marker p16, proinflammatory cytokine interleukin-6 (IL6), while PT upregulated the expression of NPC-specific markers including COL2A1 and ACAN in a concentration-dependent manner. Conclusions To the best of our knowledge, this study is the first to report that PT alleviates IDD by downregulating the protein expression of PTGS2, EDN1, TNF-α, JUN and FOS in the TNF-α signaling pathway and upregulating that of COL2A1 and ACAN, thus suppressing inflammatory responses and oxidative stress in NPCs.
Collapse
Affiliation(s)
- Peng Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (P.Z.); (Y.G.); (Q.S.); (H.C.)
| | - Jiahui He
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510130, China;
| | - Yanchi Gan
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (P.Z.); (Y.G.); (Q.S.); (H.C.)
| | - Qi Shang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (P.Z.); (Y.G.); (Q.S.); (H.C.)
| | - Honglin Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (P.Z.); (Y.G.); (Q.S.); (H.C.)
| | - Wenhua Zhao
- Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; (W.Z.); (G.S.)
| | - Gengyang Shen
- Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; (W.Z.); (G.S.)
| | - Xiaobing Jiang
- Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; (W.Z.); (G.S.)
| | - Hui Ren
- Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; (W.Z.); (G.S.)
| |
Collapse
|
25
|
Xu HW, Fang XY, Liu XW, Zhang SB, Yi YY, Chang SJ, Chen H, Wang SJ. α-Ketoglutaric acid ameliorates intervertebral disk degeneration by blocking the IL-6/JAK2/STAT3 pathway. Am J Physiol Cell Physiol 2023; 325:C1119-C1130. [PMID: 37661920 DOI: 10.1152/ajpcell.00280.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Intervertebral disk degeneration (IVDD) is the major cause of low back pain. Alpha-ketoglutaric acid (α-KG), an important intermediate in energy metabolism, has various functions, including epigenetic regulation, maintenance of redox homeostasis, and antiaging, but whether it can ameliorate IVDD has not been reported. Here, we examined the impacts of long-term administration of α-KG on aging-associated IVDD in adult rats. In vivo and in vitro experiments showed that α-KG supplementation effectively ameliorated IVDD in rats and the senescence of nucleus pulposus cells (NPCs). α-KG supplementation significantly attenuated senescence, apoptosis, and matrix metalloproteinase-13 (MMP-13) protein expression, and it increased the synthesis of aggrecan and collagen II in IL-1β-treated NPCs. In addition, α-KG supplementation reduced the levels of IL-6, phosphorylated JAK2 and STAT3, and the nuclear translocation of p-STAT3 in IL-1β-induced degenerating NPCs. The effects of α-KG were enhanced by AG490 in NPCs. The underlying mechanism may involve the inhibition of JAK2/STAT3 phosphorylation and the reduction of IL-6 expression. Our findings may help in the development of new therapeutic strategies for IVDD.NEW & NOTEWORTHY Alpha-ketoglutaric acid (α-KG) exerted its protective effect on nucleus pulposus cells' (NPCs) degeneration by inhibiting the senescence-associated secretory phenotype and extracellular matrix degradation. The possible mechanism may be associated with negatively regulating the JAK2/STAT3 phosphorylation and the decreased IL-6 expression, which could be explained by a blockage of the positive feedback control loop between IL-6 and JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Hao-Wei Xu
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin-Yue Fang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiao-Wei Liu
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shu-Bao Zhang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu-Yang Yi
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Sheng-Jie Chang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Chen
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shan-Jin Wang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Spinal Diseases, Jinggangshan University, Ji'an, China
- Department of Orthopedic, Shanghai East Hospital, Ji'an Hospital, Ji'an, China
| |
Collapse
|
26
|
Kim BH, Chung YH, Woo TG, Kang SM, Park S, Park BJ. Progerin, an Aberrant Spliced Form of Lamin A, Is a Potential Therapeutic Target for HGPS. Cells 2023; 12:2299. [PMID: 37759521 PMCID: PMC10527460 DOI: 10.3390/cells12182299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disorder caused by the mutant protein progerin, which is expressed by the abnormal splicing of the LMNA gene. HGPS affects systemic levels, with the exception of cognition or brain development, in children, showing that cellular aging can occur in the short term. Studying progeria could be useful in unraveling the causes of human aging (as well as fatal age-related disorders). Elucidating the clear cause of HGPS or the development of a therapeutic medicine could improve the quality of life and extend the survival of patients. This review aimed to (i) briefly describe how progerin was discovered as the causative agent of HGPS, (ii) elucidate the puzzling observation of the absence of primary neurological disease in HGPS, (iii) present several studies showing the deleterious effects of progerin and the beneficial effects of its inhibition, and (iv) summarize research to develop a therapy for HGPS and introduce clinical trials for its treatment.
Collapse
Affiliation(s)
- Bae-Hoon Kim
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
| | - Yeon-Ho Chung
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
| | - Tae-Gyun Woo
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
| | - So-Mi Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46231, Republic of Korea; (S.-M.K.); (S.P.)
| | - Soyoung Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46231, Republic of Korea; (S.-M.K.); (S.P.)
| | - Bum-Joon Park
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46231, Republic of Korea; (S.-M.K.); (S.P.)
| |
Collapse
|
27
|
Wu S, Shi Y, Jiang L, Bu W, Zhang K, Lin W, Pan C, Xu Z, Du J, Chen H, Wang H. N-Acetylcysteine-Derived Carbon Dots for Free Radical Scavenging in Intervertebral Disc Degeneration. Adv Healthc Mater 2023; 12:e2300533. [PMID: 37256605 DOI: 10.1002/adhm.202300533] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/16/2023] [Indexed: 06/01/2023]
Abstract
Intervertebral disc degeneration (IVDD) is associated with oxidative stress induced reactive oxygen species (ROS) dynamic equilibrium disturbance. Nanozymes, as nanomaterials with enzyme-like activity, can regulate intro-cellular ROS levels. In this study, a new carbon dots nanozyme, N-acetylcysteine-derived carbon dots (NAC-CDs), is developed and proved to be an ideal antioxidant and anti-senescent agent in IVDD management. The results confirmed the NAC-CDs have satisfactory biocompatibility and strong superoxide dismutase (250 U mg-1 ), catalase, glutathioneperoxidase-like activity, and total antioxidant capacity. Then, the powerful free radical scavenging and antioxidant ability of NAC-CDs are demonstrated in vitro as observing the reduced ROS in H2 O2 induced senescent nucleus pulposus cells (NPCs), in which the elimination efficiency of toxic ROS is more than 90%. NAC-CDs also maintained mitochondrial homeostasis and suppressed cellular senescence, subsequently inhibited the expression of inflammatory factors in NPCs. In vivo, evaluations of imaging and tissue morphology assessments suggested that disc height index, magnetic resonance imaging grade and histological score are significantly improved from the degenerative models when NAC-CDs is applied. In conclusion, the study developed a novel carbon dots nanozyme, which efficiently rescues IVDD from ROS induced NPCs senescence and provides a potential strategy in management of IVDD in clinic.
Collapse
Affiliation(s)
- Shang Wu
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, 225000, P. R. China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200065, P. R. China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yu Shi
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, 225000, P. R. China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200065, P. R. China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Letao Jiang
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, 225000, P. R. China
| | - Wenzhen Bu
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, 225000, P. R. China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Kai Zhang
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Wenzheng Lin
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, 225000, P. R. China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Chun Pan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Zhuobin Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Jianwei Du
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, 225000, P. R. China
| | - Hao Chen
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, 225000, P. R. China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Huihui Wang
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, 225000, P. R. China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200065, P. R. China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
| |
Collapse
|
28
|
Ohnishi T, Homan K, Fukushima A, Ukeba D, Iwasaki N, Sudo H. A Review: Methodologies to Promote the Differentiation of Mesenchymal Stem Cells for the Regeneration of Intervertebral Disc Cells Following Intervertebral Disc Degeneration. Cells 2023; 12:2161. [PMID: 37681893 PMCID: PMC10486900 DOI: 10.3390/cells12172161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD), a highly prevalent pathological condition worldwide, is widely associated with back pain. Treatments available compensate for the impaired function of the degenerated IVD but typically have incomplete resolutions because of their adverse complications. Therefore, fundamental regenerative treatments need exploration. Mesenchymal stem cell (MSC) therapy has been recognized as a mainstream research objective by the World Health Organization and was consequently studied by various research groups. Implanted MSCs exert anti-inflammatory, anti-apoptotic, and anti-pyroptotic effects and promote extracellular component production, as well as differentiation into IVD cells themselves. Hence, the ultimate goal of MSC therapy is to recover IVD cells and consequently regenerate the extracellular matrix of degenerated IVDs. Notably, in addition to MSC implantation, healthy nucleus pulposus (NP) cells (NPCs) have been implanted to regenerate NP, which is currently undergoing clinical trials. NPC-derived exosomes have been investigated for their ability to differentiate MSCs from NPC-like phenotypes. A stable and economical source of IVD cells may include allogeneic MSCs from the cell bank for differentiation into IVD cells. Therefore, multiple alternative therapeutic options should be considered if a refined protocol for the differentiation of MSCs into IVD cells is established. In this study, we comprehensively reviewed the molecules, scaffolds, and environmental factors that facilitate the differentiation of MSCs into IVD cells for regenerative therapies for IDD.
Collapse
Affiliation(s)
- Takashi Ohnishi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Kentaro Homan
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Akira Fukushima
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Daisuke Ukeba
- Department of Orthopedic Surgery, Hokkaido University Hospital, Sapporo 060-8648, Japan;
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
29
|
Cisneros B, García-Aguirre I, De Ita M, Arrieta-Cruz I, Rosas-Vargas H. Hutchinson-Gilford Progeria Syndrome: Cellular Mechanisms and Therapeutic Perspectives. Arch Med Res 2023; 54:102837. [PMID: 37390702 DOI: 10.1016/j.arcmed.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023]
Abstract
In humans, aging is characterized by a gradual decline of physical and psychological functions, with the concomitant onset of chronic-degenerative diseases, which ultimately lead to death. The study of Hutchinson-Gilford progeria syndrome (HGPS), a premature aging disorder that recapitulates several features of natural aging, has provided important insights into deciphering the aging process. The genetic origin of HGPS is a de novo point mutation in the LMNA gene that drives the synthesis of progerin, mutant version of lamin A. Progerin is aberrantly anchored to the nuclear envelope disrupting a plethora of molecular processes; nonetheless, how progerin exerts a cascade of deleterious alterations at the cellular and systemic levels is not fully understood. Over the past decade, the use of different cellular and animal models for HGPS has allowed the identification of the molecular mechanisms underlying HGPS, paving the way towards the development of therapeutic treatments against the disease. In this review, we present an updated overview of the biology of HGPS, including its clinical features, description of key cellular processes affected by progerin (nuclear morphology and function, nucleolar activity, mitochondrial function, protein nucleocytoplasmic trafficking and telomere homeostasis), as well as discussion of the therapeutic strategies under development.
Collapse
Affiliation(s)
- Bulmaro Cisneros
- Genetics and Molecular Biology Department, Research and Advanced Studies Center, National Polytechnical Institute, Mexico City, Mexico
| | - Ian García-Aguirre
- Genetics and Molecular Biology Department, Research and Advanced Studies Center, National Polytechnical Institute, Mexico City, Mexico; Bioengineering Department, School of Engineering and Sciences, Tecnológico de Monterrey, Mexico City, Mexico
| | - Marlon De Ita
- Genetics and Molecular Biology Department, Research and Advanced Studies Center, National Polytechnical Institute, Mexico City, Mexico; Medical Research Unit in Human Genetics, Pediatrics Hospital, 21st Century National Medical Center, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Isabel Arrieta-Cruz
- Basic Research Department, Research Direction, National Institute of Geriatrics, Ministry of Health, Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Medical Research Unit in Human Genetics, Pediatrics Hospital, 21st Century National Medical Center, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| |
Collapse
|
30
|
Wilkie SE, Marcu DE, Carter RN, Morton NM, Gonzalo S, Selman C. Hepatic hydrogen sulfide levels are reduced in mouse model of Hutchinson-Gilford progeria syndrome. Aging (Albany NY) 2023; 15:5266-5278. [PMID: 37354210 PMCID: PMC10333079 DOI: 10.18632/aging.204835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/09/2023] [Indexed: 06/26/2023]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare human disease characterised by accelerated biological ageing. Current treatments are limited, and most patients die before 15 years of age. Hydrogen sulfide (H2S) is an important gaseous signalling molecule that it central to multiple cellular homeostasis mechanisms. Dysregulation of tissue H2S levels is thought to contribute to an ageing phenotype in many tissues across animal models. Whether H2S is altered in HGPS is unknown. We investigated hepatic H2S production capacity and transcript, protein and enzymatic activity of proteins that regulate hepatic H2S production and disposal in a mouse model of HGPS (G609G mice, mutated Lmna gene equivalent to a causative mutation in HGPS patients). G609G mice were maintained on either regular chow (RC) or high fat diet (HFD), as HFD has been previously shown to significantly extend lifespan of G609G mice, and compared to wild type (WT) mice maintained on RC. RC fed G609G mice had significantly reduced hepatic H2S production capacity relative to WT mice, with a compensatory elevation in mRNA transcripts associated with several H2S production enzymes, including cystathionine-γ-lyase (CSE). H2S levels and CSE protein were partially rescued in HFD fed G609G mice. As current treatments for patients with HGPS have failed to confer significant improvements to symptoms or longevity, the need for novel therapeutic targets is acute and the regulation of H2S through dietary or pharmacological means may be a promising new avenue for research.
Collapse
Affiliation(s)
- Stephen E. Wilkie
- Glasgow Ageing Research Network (GARNER), School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna 171 65, Sweden
| | - Diana E. Marcu
- Glasgow Ageing Research Network (GARNER), School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Roderick N. Carter
- Molecular Metabolism Group, University/BHF Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Nicholas M. Morton
- Molecular Metabolism Group, University/BHF Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Susana Gonzalo
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, MO 63104, USA
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER), School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
31
|
Hu B, Lin S, Lin S, Rui G. Ginkgetin Alleviates Intervertebral Disc Degeneration by Inhibiting Apoptosis, Inflammation, and Disturbance of Extracellular Matrix Synthesis and Catabolism via Inactivation of NLRP3 Inflammasome. Immunol Invest 2023:1-15. [PMID: 37154418 DOI: 10.1080/08820139.2023.2205884] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Apoptosis, inflammation, and the extracellular matrix (ECM) synthesis and catabolism are compromised with intervertebral disc degeneration (IDD). Ginkgetin (GK) has been demonstrated to alleviate several diseases; however, its effect on IDD remains unknown. METHODS The nucleus pulposus cells (NPCs) were stimulated with interleukin (IL)-1β to construct the IDD models in vitro. Rats were used for the construction of the IDD models in vivo via the fibrous ring puncture method. The effect and mechanism of GK on IDD were determined by cell counting kit-8 (CCK-8), flow cytometry, western blot, real-time quantitative polymerase chain reaction (RT-qPCR), enzyme‑linked immunosorbent assay (ELISA), hematoxylin and eosin (HE) and safranine O staining, and immunohistochemistry (IHC) assays, respectively. RESULTS GK increased the cell viability and upregulated the expressions of anti-apoptosis and ECM synthesis markers in NPCs treated with IL-1β. GK also decreased apoptosis rate, and downregulated the expressions of proteins related to pro-apoptosis, ECM catabolism, and inflammation in vitro. Mechanically, GK reduced the expression of nucleotide binding oligomeric domain like receptor protein 3 (NLRP3) inflammasome-related proteins. Overexpression of NLRP3 reversed the effect of GK on the proliferation, apoptosis, inflammation, and ECM degradation in IL-1β-induced NPCs. Moreover, GK attenuated the pathological manifestations, inflammation, ECM degradation, and NLRP3 inflammasome expression in IDD rats. CONCLUSION GK suppressed apoptosis, inflammation, and ECM degradation to alleviate IDD via the inactivation of NLRP3 inflammasome.
Collapse
Affiliation(s)
| | | | - Shengrong Lin
- Department of Orthopaedics, The Third Clinical Medical College, Fujian Medical University, Xiamen, China
| | - Gang Rui
- Department of Orthopaedics, The Third Clinical Medical College, Fujian Medical University, Xiamen, China
| |
Collapse
|
32
|
Xu J, Shao T, Lou J, Zhang J, Xia C. Aging, cell senescence, the pathogenesis and targeted therapies of intervertebral disc degeneration. Front Pharmacol 2023; 14:1172920. [PMID: 37214476 PMCID: PMC10196014 DOI: 10.3389/fphar.2023.1172920] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) refers to the aging and degenerative diseases of intervertebral disc components such as nucleus pulposus, annulus fibrosus, and cartilage endplate, and is the main cause of chronic low back pain. Over the past few years, many researchers around the world concerned that the degeneration of nucleus pulposus (NP) cells plays the main role in IVDD. The degeneration of NP cells is caused by a series of pathological processes, including oxidative stress, inflammatory response, apoptosis, abnormal proliferation, and autophagy. Interestingly, many studies have found a close relationship between the senescence of NP cells and the progression of NP degeneration. The classical aging pathways also have been confirmed to be involved in the pathological process of IVDD. Moreover, several anti-aging drugs have been used to treat IVDD by inhibiting NP cells senescence, such as proanthocyanidins, resveratrol and bone morphogenetic protein 2. Therefore, this article will systematically list and discuss aging, cell senescence, the pathogenesis and targeted therapies of IVDD, in order to provide new ideas for the treatment of IVDD in the future.
Collapse
Affiliation(s)
- Jiongnan Xu
- Center for Plastic and Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital Hangzhou Medical College, Hangzhou, China
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Shao
- Center for Plastic and Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital Hangzhou Medical College, Hangzhou, China
| | - Jianfen Lou
- Center for Plastic and Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital Hangzhou Medical College, Hangzhou, China
| | - Jun Zhang
- Department of Orthopedics, Zhejiang Provincial People’s Hospital Bijie Hospital, Bijie, Guizhou, China
| | - Chen Xia
- Center for Plastic and Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
33
|
Yu H, Teng Y, Ge J, Yang M, Xie H, Wu T, Yan Q, Jia M, Zhu Q, Shen Y, Zhang L, Zou J. Isoginkgetin-loaded reactive oxygen species scavenging nanoparticles ameliorate intervertebral disc degeneration via enhancing autophagy in nucleus pulposus cells. J Nanobiotechnology 2023; 21:99. [PMID: 36941611 PMCID: PMC10029295 DOI: 10.1186/s12951-023-01856-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
Excessive reactive oxygen species (ROS) in nucleus pulposus cells (NPCs) promote extracellular matrix (ECM) degradation and cellular inflammatory responses by activating a variety of cellular pathways, ultimately inducing cell apoptosis and leading to the development of low back pain. Here, we designed and fabricated an isoginkgetin-loaded ROS-responsive delivery system (IGK@SeNP) based on diselenide block copolymers. Successfully encapsulated IGK was released intelligently and rapidly in a microenvironment with high ROS levels in degenerative disc. Controlled-release IGK not only efficiently scavenged ROS from the intervertebral disc together with diselenide block copolymers but also effectively enhanced autophagy in NPCs to inhibit ECM degradation and cell apoptosis, and showed significant therapeutic effects in the rat intervertebral disc degeneration (IDD) model. Overall, the synergistic effects of IGK@SeNP in ROS scavenging and autophagy enhancement endowed it with an attractive therapeutic strategy for IDD treatment.
Collapse
Affiliation(s)
- Hao Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi St., Suzhou, 215006, Jiangsu, China
| | - Yun Teng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi St., Suzhou, 215006, Jiangsu, China
| | - Jun Ge
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi St., Suzhou, 215006, Jiangsu, China
| | - Ming Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi St., Suzhou, 215006, Jiangsu, China
| | - Haifeng Xie
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi St., Suzhou, 215006, Jiangsu, China
| | - Tianyi Wu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi St., Suzhou, 215006, Jiangsu, China
| | - Qi Yan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi St., Suzhou, 215006, Jiangsu, China
| | - Mengting Jia
- Department of Nephrology, The First Affiliated Hospital of Soochow University, 188 Shizi St., Suzhou, 215006, Jiangsu, China
| | - Qing Zhu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, 188 Shizi St., Suzhou, 215006, Jiangsu, China
| | - Yanping Shen
- Department of Nephrology, The First Affiliated Hospital of Soochow University, 188 Shizi St., Suzhou, 215006, Jiangsu, China.
| | - Lianxue Zhang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310027, Zhejiang, China.
| | - Jun Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi St., Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
34
|
Ma Z, Yu P, Li X, Dai F, Jiang H, Liu J. Anemonin reduces hydrogen peroxide-induced oxidative stress, inflammation and extracellular matrix degradation in nucleus pulposus cells by regulating NOX4/NF-κB signaling pathway. J Orthop Surg Res 2023; 18:189. [PMID: 36899420 PMCID: PMC10007850 DOI: 10.1186/s13018-023-03679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Excessive oxidative stress plays a critical role in the progression of various diseases, including intervertebral disk degeneration (IVDD). Recent studies have found that anemonin (ANE) possesses antioxidant and anti-inflammatory effects. However, the role of ANE in IVDD is still unclear. Therefore, this study investigated the effect and mechanism of ANE on H2O2 induced degeneration of nucleus pulposus cells (NPCs). METHODS NPCs were pretreated with ANE, and then treated with H2O2. NOX4 was upregulated by transfection of pcDNA-NOX4 into NPCs. Cytotoxicity was detected by MTT, oxidative stress-related indicators and inflammatory factors were measured by ELISA, mRNA expression was assessed by RT-PCR, and protein expression was tested by western blot. RESULTS ANE attenuated H2O2-induced inhibition of NPCs activity. H2O2 enhanced oxidative stress, namely, increased ROS and MDA levels and decreased SOD level. However, these were suppressed and pretreated by ANE. ANE treatment repressed the expression of inflammatory factors (IL-6, IL-1β and TNF-α) in H2O2-induced NPCs. ANE treatment also prevented the degradation of extracellular matrix induced by H2O2, showing the downregulation of MMP-3, 13 and ADAMTS-4, 5 and the upregulation of collagen II. NOX4 is a key factor regulating oxidative stress. Our study confirmed that ANE could restrain NOX4 and p-NF-κB. In addition, overexpression of NOX4 counteracted the antioxidant and anti-inflammatory activities of ANE in H2O2-induced NPCs, and the inhibition of the degradation of extracellular matrix induced by ANE was also reversed by overexpression of NOX4. CONCLUSION ANE repressed oxidative stress, inflammation and extracellular matrix degradation in H2O2-induced NPCs by inhibiting NOX4/NF-κB pathway. Our study indicated that ANE might be a candidate drug for the treatment of IVDD.
Collapse
Affiliation(s)
- Zhijia Ma
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 889, Wuzhong West Road, Gusu District, Suzhou, 215009, Jiangsu, China
| | - Pengfei Yu
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 889, Wuzhong West Road, Gusu District, Suzhou, 215009, Jiangsu, China
| | - Xiaochun Li
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 889, Wuzhong West Road, Gusu District, Suzhou, 215009, Jiangsu, China
| | - Feng Dai
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 889, Wuzhong West Road, Gusu District, Suzhou, 215009, Jiangsu, China
| | - Hong Jiang
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 889, Wuzhong West Road, Gusu District, Suzhou, 215009, Jiangsu, China.
| | - Jintao Liu
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 889, Wuzhong West Road, Gusu District, Suzhou, 215009, Jiangsu, China.
| |
Collapse
|
35
|
Poletto DL, Crowley JD, Tanglay O, Walsh WR, Pelletier MH. Preclinical in vivo animal models of intervertebral disc degeneration. Part 1: A systematic review. JOR Spine 2023; 6:e1234. [PMID: 36994459 PMCID: PMC10041387 DOI: 10.1002/jsp2.1234] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 10/10/2022] [Accepted: 10/23/2022] [Indexed: 12/24/2022] Open
Abstract
Intervertebral disc degeneration (IVDD), a widely recognized cause of lower back pain, is the leading cause of disability worldwide. A myriad of preclinical in vivo animal models of IVDD have been described in the literature. There is a need for critical evaluation of these models to better inform researchers and clinicians to optimize study design and ultimately, enhance experimental outcomes. The purpose of this study was to conduct an extensive systematic literature review to report the variability of animal species, IVDD induction method, and experimental timepoints and endpoints used in in vivo IVDD preclinical research. A systematic literature review of peer-reviewed manuscripts featured on PubMed and EMBASE databases was conducted in accordance with PRISMA guidelines. Studies were included if they reported an in vivo animal model of IVDD and included details of the species used, how disc degeneration was induced, and the experimental endpoints used for analysis. Two-hundred and fifty-nine (259) studies were reviewed. The most common species, IVDD induction method and experimental endpoint used was rodents(140/259, 54.05%), surgery (168/259, 64.86%) and histology (217/259, 83.78%), respectively. Experimental timepoint varied greatly between studies, ranging from 1 week (dog and rodent models), to >104 weeks in dog, horse, monkey, rabbit, and sheep models. The two most common timepoints used across all species were 4 weeks (49 manuscripts) and 12 weeks (44 manuscripts). A comprehensive discussion of the species, methods of IVDD induction and experimental endpoints is presented. There was great variability across all categories: animal species, method of IVDD induction, timepoints and experimental endpoints. While no animal model can replicate the human scenario, the most appropriate model should be selected in line with the study objectives to optimize experimental design, outcomes and improve comparisons between studies.
Collapse
Affiliation(s)
- Daniel L. Poletto
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Faculty of MedicineUniversity of New South Wales (UNSW) Sydney, Prince of Wales HospitalSydneyAustralia
| | - James D. Crowley
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Faculty of MedicineUniversity of New South Wales (UNSW) Sydney, Prince of Wales HospitalSydneyAustralia
| | - Onur Tanglay
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Faculty of MedicineUniversity of New South Wales (UNSW) Sydney, Prince of Wales HospitalSydneyAustralia
| | - William R. Walsh
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Faculty of MedicineUniversity of New South Wales (UNSW) Sydney, Prince of Wales HospitalSydneyAustralia
| | - Matthew H. Pelletier
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Faculty of MedicineUniversity of New South Wales (UNSW) Sydney, Prince of Wales HospitalSydneyAustralia
| |
Collapse
|
36
|
Wang X, Tan Y, Liu F, Wang J, Liu F, Zhang Q, Li J. Pharmacological network analysis of the functions and mechanism of kaempferol from Du Zhong in intervertebral disc degeneration (IDD). J Orthop Translat 2023; 39:135-146. [PMID: 36909862 PMCID: PMC9999173 DOI: 10.1016/j.jot.2023.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 03/14/2023] Open
Abstract
Background Senescence and apoptosis of the nucleus pulposus cells (NPCs) are essential components of the intervertebral disc degeneration (IDD) process. Senescence and anti-apoptosis treatments could be effective ways to delay or even stop disc degeneration. IDD has been treated with Eucommia ulmoides Oliver (Du Zhong, DZ) and its active ingredients. However, the roles and mechanisms of DZ in NPC apoptosis and senescence remain unclear. Methods Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was used to select the main active ingredients of DZ with the threshold of oral bioavailability (OB) ≥ 30% and drug-likeness (DL) ≥ 0.2. GSE34095 contained expression profile of degenerative intervertebral disc tissues and non-degenerative intervertebral disc tissues were downloaded for different expression genes analysis. The disease targets genes of IDD were retrieved from GeneCards. The online tool Metascape was used for functional enrichment annotation analysis. The specific effects of the ingredient on IL-1β treated NPC cell proliferation, cell senescence, reactive oxygen species (ROS) accumulation and cell apoptosis were determined by CCK-8, SA-β-gal staining, flowcytometry and western blot assays. Results A total of 8 active compounds of DZ were found to meet the threshold of OB ≥ 30% and DL ≥ 0.2 with 4151 drug targets. After the intersection of 879 IDD disease targets obtained from GeneCards and 230 DEGs obtained from the IDD-related GSE dataset, a total of 13 hub genes overlapped. According to functional enrichment annotation analysis by Metascape, these genes showed to be dramatically enriched in AGE-RAGE signaling, proteoglycans in cancer, wound healing, transmembrane receptor protein tyrosine kinase signaling, MAPK cascades, ERK1/2 cascades, PI3K/Akt signaling pathway, skeletal system, etc. Disease association analysis by DisGeNET indicated that these genes were significantly associated with IDD, intervertebral disc disease, skeletal dysplasia, and other diseases. Active ingredients-targets-signaling pathway networks were constructed by Cytoscape, and kaempferol was identified as the hub active compound of DZ. In the IL-1β-induced IDD in vitro model, kaempferol treatment significantly improved IL-1β-induced NPC cell viability suppression and senescence. In addition, kaempferol treatment significantly attenuated IL-1β-induced ROS accumulation and apoptosis. Furthermore, kaempferol treatment partially eliminated IL-1β-induced decreases in aggrecan, collagen II, SOX9, and FN1 levels and increases in MMP3, MMP13, ADAMTS-4, and ADAMTS-5. Moreover, kaempferol treatment significantly relieved the promotive effects of IL-1β stimulation upon p38, JNK, and ERK1/2 phosphorylation. ERK1/2 inhibitor PD0325901 further enhanced the effect of kaempferol on the inhibition of ERK1/2 phosphorylation, downregulation of MMP3 and ADAMTS-4 expression, and upregulation of aggrecan and collagen II expressions. Conclusion Kaempferol has been regarded as the major active compound of DZ, protecting NPCs from IL-1β-induced damages through promoting cell viability, inhibiting cell senescence and apoptosis, increasing ECM production, and decreasing ECM degradation. MAPK signaling pathway may be involved. The translational poteintial of this article This study provides in vitro experimental data support for the pharmacological effects of kaempferol in treating IDD, and lays a solid experimental foundation for its future clinical application in IDD treatment.
Collapse
Affiliation(s)
- Xiaobin Wang
- Department of Spine Surgery, Spinal Deformity Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yanlin Tan
- PET/CT Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Fusheng Liu
- Department of Spine Surgery, Spinal Deformity Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jingyu Wang
- Department of Spine Surgery, Spinal Deformity Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Fubin Liu
- Department of Spine Surgery, Spinal Deformity Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Qianshi Zhang
- Department of Spine Surgery, Spinal Deformity Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jing Li
- Department of Spine Surgery, Spinal Deformity Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
37
|
Lin Z, Wang H, Song J, Xu G, Lu F, Ma X, Xia X, Jiang J, Zou F. The role of mitochondrial fission in intervertebral disc degeneration. Osteoarthritis Cartilage 2023; 31:158-166. [PMID: 36375758 DOI: 10.1016/j.joca.2022.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
Low back pain (LBP) is an extremely common disorder and is a major cause of disability globally. Intervertebral disc degeneration (IVDD) is the main contributor to LBP. Nevertheless, the specific mechanisms underlying the pathogenesis of IVDD remain unclear. Mitochondria are highly dynamic organelles that continuously undergo fusion and fission, known as mitochondrial dynamics. Accumulating evidence has revealed that aberrantly activated mitochondrial fission leads to mitochondrial fragmentation and dysfunction, which are involved in the development and progression of IVDD. To date, research into mitochondrial dynamics in IVDD is at an early stage. The present narrative review aims to summarize the most recent findings about the role of mitochondrial fission in the pathogenesis of IVDD.
Collapse
Affiliation(s)
- Z Lin
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - H Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - J Song
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - G Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - F Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - X Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - X Xia
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - J Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - F Zou
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
38
|
Chen JJ, Yan QL, Bai M, Liu Q, Song SJ, Yao GD. Deoxyelephantopin, a germacrane-type sesquiterpene lactone from Elephantopus scaber, induces mitochondrial apoptosis of hepatocarcinoma cells by targeting Hsp90α in vitro and in vivo. Phytother Res 2023; 37:702-716. [PMID: 36420857 DOI: 10.1002/ptr.7654] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/25/2022]
Abstract
Hepatocellular carcinoma has been known as the most frequent subtype of liver cancer with a high rate of spread, metastases, and recurrence, also dismal treatment effects. However, effective therapies for HCC are still required. Nowadays, natural products have been known as a valuable source for drug discovery. In this research, 44 sesquiterpene lactones isolated from the Elephantopus scaber Linn. (Asteraceae) were tested by MTT assay for the antitumor activities. Deoxyelephantopin (DET) was found to exert significant cytotoxicity on HepG2 and Hep3B cells. Moreover, we found that DET treatment markedly reduced the growth of HCC cells in a concentration-dependent manner, which was better than sorafenib. Furthermore, DET induced mitochondrial dysfunction, oxidative stress, and cellular apoptosis. Additionally, we found that DET and sorafenib synergistically induced apoptosis and mitochondrial dysfunction in HCC cells. DET combined with sorafenib was also efficacious in tumor xenograft model. Molecular docking experiments revealed that DET had a potentially high binding affinity with Hsp90α. Moreover, Drug Affinity Responsive Target Stability assay suggested that DET could directly target Hsp90α. Additionally, the expression of Hsp90α was both decreased in vitro and in vivo. Altogether, this study revealed that DET might be a promising agent for HCC therapy by targeting Hsp90α.
Collapse
Affiliation(s)
- Jing-Jie Chen
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Qiu-Lin Yan
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Ming Bai
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
39
|
Monterrubio-Ledezma F, Navarro-García F, Massieu L, Mondragón-Flores R, Soto-Ponce LA, Magaña JJ, Cisneros B. Rescue of Mitochondrial Function in Hutchinson-Gilford Progeria Syndrome by the Pharmacological Modulation of Exportin CRM1. Cells 2023; 12:275. [PMID: 36672210 PMCID: PMC9856861 DOI: 10.3390/cells12020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disorder caused by the expression of progerin, a mutant variant of Lamin A. Recently, HGPS studies have gained relevance because unraveling its underlying mechanism would help to understand physiological aging. We previously reported that the CRM1-mediated nuclear protein export pathway is exacerbated in HGPS cells, provoking the mislocalization of numerous protein targets of CRM1. We showed that normalization of this mechanism by pharmacologically inhibiting CRM1 with LMB (specific CRM1 inhibitor), mitigates the senescent phenotype of HGPS cells. Since mitochondrial dysfunction is a hallmark of HGPS, in this study we analyze the effect of LMB on mitochondrial function. Remarkably, LMB treatment induced the recovery of mitochondrial function in HGPS cells, as shown by the improvement in mitochondrial morphology, mitochondrial membrane potential, and ATP levels, which consequently impeded the accumulation of ROS but not mitochondrial superoxide. We provide evidence that the beneficial effect of LMB is mechanistically based on a combinatory effect on mitochondrial biogenesis via upregulation of PGC-1α expression (master transcription cofactor of mitochondrial genes), and mitophagy through the recovery of lysosomal content. The use of exportin CRM1 inhibitors constitutes a promising strategy to treat HGPS and other diseases characterized by mitochondrial impairment.
Collapse
Affiliation(s)
- Feliciano Monterrubio-Ledezma
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City 07360, Mexico
| | - Fernando Navarro-García
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City 07360, Mexico
| | - Lourdes Massieu
- Department of Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Ricardo Mondragón-Flores
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City 07360, Mexico
| | - Luz Adriana Soto-Ponce
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City 07360, Mexico
| | - Jonathan J. Magaña
- Departament of Bioengineering, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey-Campus Ciudad de México, Ciudad de Mexico 14380, Mexico
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute-Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Bulmaro Cisneros
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City 07360, Mexico
| |
Collapse
|
40
|
Sulforaphane Delays Intervertebral Disc Degeneration by Alleviating Endoplasmic Reticulum Stress in Nucleus Pulposus Cells via Activating Nrf-2/HO-1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3626091. [PMID: 36647429 PMCID: PMC9840554 DOI: 10.1155/2023/3626091] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023]
Abstract
Intervertebral disc degeneration (IVDD) is one of the main causes of low back pain, which brings heavy burdens to individuals and society. The mechanism of IVDD is complex and diverse. One of the important reasons is that the abnormal accumulation of reactive oxygen species (ROS) in nucleus pulposus cells (NPCs) leads to endoplasmic reticulum stress (ERS), which causes increased apoptosis of NPCs. Nuclear factor E2-related factor 2 (Nrf-2) and its downstream antioxidant proteins are key molecular switches for sensing oxidative stress and regulating antioxidant responses in cells. Sulforaphane (SFN), a natural compound derived from Brassicaceae plants, is a Nrf-2 agonist that displays potent antioxidant potential in vitro and in vivo. Here, we used advanced glycation end products (AGEs) to construct an in vitro degeneration model of NPCs, and we found that AGEs elevated ROS level in NPCs and caused severe ERS and apoptosis. While SFN can promote the entry of Nrf-2 into the nucleus and increase the expression level of heme oxygenase 1 (HO-1) in vitro, thus clearing the accumulated ROS in cells and alleviating ERS and cell apoptosis. Moreover, the protection of SFN on NPCs was greatly attenuated after HO-1 was inhibited. We also used AGEs to construct a rat IVDD model. Consistent with the in vitro experiments, SFN could attenuate ERS in NPCs in vivo and delay disc degeneration in rats. This study found that SFN can be used as a new and promising agent for the treatment of IVDD.
Collapse
|
41
|
Mao J, Wang D, Wang D, Wu Q, Shang Q, Gao C, Wang H, Wang H, Du M, Peng P, Jia H, Xu X, Wang J, Yang L, Luo Z. SIRT5-related desuccinylation modification of AIFM1 protects against compression-induced intervertebral disc degeneration by regulating mitochondrial homeostasis. Exp Mol Med 2023; 55:253-268. [PMID: 36653443 PMCID: PMC9898264 DOI: 10.1038/s12276-023-00928-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial dysfunction plays a major role in the development of intervertebral disc degeneration (IDD). Sirtuin 5 (SIRT5) participates in the maintenance of mitochondrial homeostasis through its desuccinylase activity. However, it is still unclear whether succinylation or SIRT5 is involved in the impairment of mitochondria and development of IDD induced by excessive mechanical stress. Our 4D label-free quantitative proteomic results showed decreased expression of the desuccinylase SIRT5 in rat nucleus pulposus (NP) tissues under mechanical loading. Overexpression of Sirt5 effectively alleviated, whereas knockdown of Sirt5 aggravated, the apoptosis and dysfunction of NP cells under mechanical stress, consistent with the more severe IDD phenotype of Sirt5 KO mice than wild-type mice that underwent lumbar spine instability (LSI) surgery. Moreover, immunoprecipitation-coupled mass spectrometry (IP-MS) results suggested that AIFM1 was a downstream target of SIRT5, which was verified by a Co-IP assay. We further demonstrated that reduced SIRT5 expression resulted in the increased succinylation of AIFM1, which in turn abolished the interaction between AIFM1 and CHCHD4 and thus led to the reduced electron transfer chain (ETC) complex subunits in NP cells. Reduced ETC complex subunits resulted in mitochondrial dysfunction and the subsequent occurrence of IDD under mechanical stress. Finally, we validated the efficacy of treatments targeting disrupted mitochondrial protein importation by upregulating SIRT5 expression or methylene blue (MB) administration in the compression-induced rat IDD model. In conclusion, our study provides new insights into the occurrence and development of IDD and offers promising therapeutic approaches for IDD.
Collapse
Affiliation(s)
- Jianxin Mao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Di Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Dong Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Qi Wu
- Intensive Care Unit, Heze Municipal Hospital, Heze, 274031, People's Republic of China
| | - Qiliang Shang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Chu Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Huanbo Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Han Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Mu Du
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Pandi Peng
- Medical Research Institute, Northwestern Polytechnical University, Xi'an, 710068, People's Republic of China
| | - Haoruo Jia
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xiaolong Xu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jie Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
- Medical Research Institute, Northwestern Polytechnical University, Xi'an, 710068, People's Republic of China.
| | - Zhuojing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
- Medical Research Institute, Northwestern Polytechnical University, Xi'an, 710068, People's Republic of China.
| |
Collapse
|
42
|
Li W, Zhao Y, Wang Y, He Z, Zhang L, Yuan B, Li C, Luo Z, Gao B, Yan M. Deciphering the sequential changes of monocytes/macrophages in the progression of IDD with longitudinal approach using single-cell transcriptome. Front Immunol 2023; 14:1090637. [PMID: 36817437 PMCID: PMC9929188 DOI: 10.3389/fimmu.2023.1090637] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Intervertebral disk degeneration (IDD) is a chronic inflammatory disease with intricate connections between immune infiltration and oxidative stress (OS). Complex cell niches exist in degenerative intervertebral disk (IVD) and interact with each other and regulate the disk homeostasis together. However, few studies have used longitudinal approach to describe the immune response of IDD progression. Here, we conducted conjoint analysis of bulk-RNA sequencing and single-cell sequencing, together with a series of techniques like weighted gene co-expression network analysis (WGCNA), immune infiltration analysis, and differential analysis, to systematically decipher the difference in OS-related functions of different cell populations within degenerative IVD tissues, and further depicted the longitudinal alterations of immune cells, especially monocytes/macrophages in the progression of IDD. The OS-related genes CYP1A1, MMP1, CCND1, and NQO1 are highly expressed and might be diagnostic biomarkers for the progression of IDD. Further landscape of IVD microenvironment showed distinct changes in cell proportions and characteristics at late degeneration compared to early degeneration of IDD. Monocytes/macrophages were classified into five distinct subpopulations with different roles. The trajectory lineage analysis revealed transcriptome alterations from effector monocytes/macrophages and regulatory macrophages to other subtypes during the evolution process and identified monocytes/macrophage subpopulations that had rapidly experienced the activation of inflammatory or anti-inflammatory responses. This study further proposed that personalized therapeutic strategies are needed to be formulated based on specific monocyte/macrophage subtypes and degenerative stages of IDD.
Collapse
Affiliation(s)
- Weihang Li
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yingjing Zhao
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongchun Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Zhijian He
- Department of Sports Teaching and Research, Lanzhou University, Lanzhou, China
| | - Linyuan Zhang
- Department of Nursing, Air Force Medical University, Xi'an, China
| | - Bin Yuan
- Department of Spine Surgery, Daxing Hospital, Xi'an, Shaanxi, China
| | - Chengfei Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Zhuojing Luo
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Ming Yan
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
43
|
Guo W, Mu K, Li WS, Gao SX, Wang LF, Li XM, Zhao JY. Identification of mitochondria-related key gene and association with immune cells infiltration in intervertebral disc degeneration. Front Genet 2023; 14:1135767. [PMID: 36968589 PMCID: PMC10030706 DOI: 10.3389/fgene.2023.1135767] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Intervertebral disc (IVD) degeneration and its inflammatory microenvironment can result in discogenic pain, which has been shown to stem from the nucleus pulposus (NP). Increasing evidence suggests that mitochondrial related genes are strictly connected to cell functionality and, importantly, it can regulate cell immune activity in response to damaged associated signals. Therefore, identification of mitochondria related genes might offer new diagnostic markers and therapeutic targets for IVD degeneration. In this study, we identified key genes involved in NP tissue immune cell infiltration during IVD degeneration by bioinformatic analysis. The key modules were screened by weighted gene co-expression network analysis (WCGNA). Characteristic genes were identified by random forest analysis. Then gene set enrichment analysis (GSEA) was used to explore the signaling pathways associated with the signature genes. Subsequently, CIBERSORT was used to classify the infiltration of immune cells. Function of the hub gene was confirmed by PCR, Western blotting and ELISA. Finally, we identified MFN2 as a crucial molecule in the process of NP cell pyroptosis and NLRP3 inflammasome activation. We speculate that the increased MFN2 expression in NP tissue along with the infiltration of CD8+ T cells, NK cell and neutrophils play important roles in the pathogenesis of IVD degeneration.
Collapse
Affiliation(s)
- Wei Guo
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional Chinese Medicine-Western Medicine, Cangzhou, China
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research, Cangzhou, China
| | - Kun Mu
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research, Cangzhou, China
- Department of Breast Surgery, Hebei Province Cangzhou Hospital of Integrated Traditional Chinese Medicine-Western Medicine, Cangzhou, China
| | - Wen-Shuai Li
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shun-Xing Gao
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional Chinese Medicine-Western Medicine, Cangzhou, China
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research, Cangzhou, China
| | - Lin-Feng Wang
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Lin-Feng Wang, ; Xiao-Ming Li,
| | - Xiao-Ming Li
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional Chinese Medicine-Western Medicine, Cangzhou, China
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research, Cangzhou, China
- *Correspondence: Lin-Feng Wang, ; Xiao-Ming Li,
| | - Jian-Yong Zhao
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional Chinese Medicine-Western Medicine, Cangzhou, China
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research, Cangzhou, China
| |
Collapse
|
44
|
Hypoxia-Inducible Factor-1α Protects Against Intervertebral Disc Degeneration Through Antagonizing Mitochondrial Oxidative Stress. Inflammation 2023; 46:270-284. [PMID: 36064808 PMCID: PMC9971142 DOI: 10.1007/s10753-022-01732-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/07/2022] [Accepted: 08/22/2022] [Indexed: 11/05/2022]
Abstract
Intervertebral disc degeneration (IVDD) demonstrates a gradually increased incidence and has developed into a major health problem worldwide. The nucleus pulposus is characterized by the hypoxic and avascular environment, in which hypoxia-inducible factor-1α (HIF-1α) has an important role through its participation in extracellular matrix synthesis, energy metabolism, cellular adaptation to stresses and genesis. In this study, the effects of HIF-1α on mouse primary nucleus pulposus cells (MNPCs) exposed to TNF-α were observed, the potential mechanism was explored and a rabbit IVDD model was established to verify the protective role of HIF-1α on IVDD. In vitro results demonstrated that HIF-1α could attenuate the inflammation, apoptosis and mitochondrial dysfunction induced by TNF-α in MNPCs; promote cellular anabolism; and inhibit cellular catabolism. In vivo results demonstrated that after establishment of IVDD model in rabbit, disc height and IVD extracellular matrix were decreased in a time-dependent manner, MRI analysis showed a tendency for decreased T2 values in a time-dependent manner and supplementation of HIF-1α improved histological and imaginative IVDD while downregulation of HIF-1α exacerbated this degeneration. In summary, HIF-1α protected against IVDD, possibly through reducing ROS production in the mitochondria and consequent inhibition of inflammation, metabolism disorders and apoptosis of MNPCs, which provided a potential therapeutic instrument for the treatment of IVDD diseases.
Collapse
|
45
|
Bai X, Jiang M, Wang J, Yang S, Liu Z, Zhang H, Zhu X. Cyanidin attenuates the apoptosis of rat nucleus pulposus cells and the degeneration of intervertebral disc via the JAK2/STAT3 signal pathway in vitro and in vivo. PHARMACEUTICAL BIOLOGY 2022; 60:427-436. [PMID: 35175176 PMCID: PMC8856032 DOI: 10.1080/13880209.2022.2035773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
CONTEXT Cyanidin has been shown to have therapeutic potential in osteoarthritis. However, it is unclear whether cyanidin prevents the progression of intervertebral disc degeneration (IVDD). OBJECTIVE This study evaluates the effects of cyanidin on IVDD in vitro and in vivo. MATERIALS AND METHODS Nucleus pulposus cells (NPCs) isolated from lumbar IVD of 4-week-old male Sprague-Dawley (SD) rats were exposed to 20 ng/mL IL-1β, and then treated with different doses (0-120 µM) of cyanidin for 24 h. SD rats were classified into three groups (n = 8) and treated as follows: control (normal saline), IVDD (vehicle), IVDD + cyanidin (50 mg/kg). Cyanidin was administered intraperitoneally for 8 weeks. RESULTS The IC50 of cyanidin for NPCs was 94.78 µM, and cyanidin had no toxicity at concentrations up to 500 mg/kg in SD rats. Cyanidin inhibited the apoptosis of NPCs induced by IL-1β (12.73 ± 0.61% vs. 18.54 ± 0.60%), promoted collagen II (0.82-fold) and aggrecan (0.81-fold) expression, while reducing MMP-13 (1.02-fold) and ADAMTS-5 (1.40-fold) expression. Cyanidin increased the formation of autophagosomes in IL-1β-induced NPCs, and promoted LC3II/LC3I (0.83-fold) and beclin-1 (0.85-fold) expression, which could be reversed by chloroquine. Cyanidin inhibited the phosphorylation of JAK2 (0.47-fold) and STAT3 (0.53-fold) in IL-1β-induced NPCs. The effects of cyanidin could be enhanced by AG490. Furthermore, cyanidin mitigated disc degeneration in IVDD rats in vivo. DISCUSSION AND CONCLUSIONS Cyanidin improved the function of NPCs in IVDD by regulating the JAK2/STAT3 pathway, which may provide a novel alternative strategy for IVDD. The mechanism of cyanidin improving IVDD still needs further work for in-depth investigation.
Collapse
Affiliation(s)
- Xiaoliang Bai
- Department of Orthopaedics, Baoding NO.1 Central Hospital, Baoding, China
- Department of Spine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meichao Jiang
- Department of Orthopaedics, Baoding NO.1 Central Hospital, Baoding, China
| | - Jie Wang
- Department of Orthopaedics, Baoding NO.1 Central Hospital, Baoding, China
| | - Shuai Yang
- Department of Orthopaedics, Baoding NO.1 Central Hospital, Baoding, China
- Department of Spine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiwei Liu
- Department of Orthopaedics, Baoding NO.1 Central Hospital, Baoding, China
| | - Hongxin Zhang
- Department of Orthopaedics, Baoding NO.1 Central Hospital, Baoding, China
| | - Xiaojuan Zhu
- Department of Geratology, Baoding NO.1 Central Hospital, Baoding, China
- CONTACT Xiaojuan Zhu Department of Geratology, Baoding NO.1 Central Hospital, No.320 Great Wall North Street, Baoding, 071000, China
| |
Collapse
|
46
|
Yang F, Liu W, Huang Y, Yang S, Shao Z, Cai X, Xiong L. Regulated cell death: Implications for intervertebral disc degeneration and therapy. J Orthop Translat 2022; 37:163-172. [DOI: 10.1016/j.jot.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/06/2022] [Accepted: 10/13/2022] [Indexed: 11/08/2022] Open
|
47
|
Zhu Z, He Z, Tang T, Wang F, Chen H, Li B, Chen G, Wang J, Tian W, Chen D, Wu X, Liu X, Zhou Z, Liu S. Integrative Bioinformatics Analysis Revealed Mitochondrial Dysfunction-Related Genes Underlying Intervertebral Disc Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1372483. [PMID: 36267810 PMCID: PMC9578809 DOI: 10.1155/2022/1372483] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
Objective Mitochondrial dysfunction plays an important role in intervertebral disc degeneration (IDD). We aim to explore the pathways and key genes that cause mitochondrial dysfunction during IDD and to further reveal the pathogenesis of IDD based on bioinformatic analyses. Methods Datasets GSE70362 and GSE124272 were downloaded from the Gene Expression Omnibus. Differentially expressed genes (DEGs) of mitochondrial dysfunction between IDD patients and healthy controls were screened by package limma package. Critical genes were identified by adopting gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) pathways, and protein-protein interaction (PPI) networks. We collected both degenerated and normal disc tissues obtained surgically, and we performed western blot and qPCR to verify the key DEGs identified in intervertebral disc tissues. Results In total, 40 cases of IDD and 24 healthy controls were included. We identified 152 DEGs, including 67 upregulated genes and 85 downregulated genes. Four genes related to mitochondrial dysfunction (SOX9, FLVCR1, NR5A1 and UCHL1) were screened out. Of them, SOX9, FLVCR1, and UCHL1 were down-regulated in peripheral blood and intervertebral disc tissues of IDD patients, while NR5A1 was up-regulated. The analysis of immune infiltration showed the concentrations of mast cells activated were significantly the highest in IDD patients. Compared with the control group, the level of T cells CD4 memory resting was the lowest in the patients. In addition, 24 cases of IDD tissues and 12 cases of normal disc tissues were obtained to verify the results of bioinformatics analysis. Both western blot and qPCR results were consistent with the results of bioinformatics analysis. Conclusion We identified four genes (SOX9, FLVCR1, NR5A1 and UCHL1) associated with mitochondrial dysfunction that play an important role in the progress of disc degeneration. The identification of these differential genes may provide new insights for the diagnosis and treatment of IDD.
Collapse
Affiliation(s)
- Zhengya Zhu
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zhongyuan He
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| | - Tao Tang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| | - Fuan Wang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| | - Hongkun Chen
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Baoliang Li
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| | - Guoliang Chen
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| | - Jianmin Wang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Wei Tian
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Xinbao Wu
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Xizhe Liu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| | - Zhiyu Zhou
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| | - Shaoyu Liu
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
48
|
Cheng Y, Yang H, Hai Y, Zhou L. Scientific literature landscape analysis of researches on oxidative stress in intervertebral disc degeneration in web of science. Front Mol Biosci 2022; 9:989627. [PMID: 36032668 PMCID: PMC9403418 DOI: 10.3389/fmolb.2022.989627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 01/03/2023] Open
Abstract
Oxidative stress plays a significant role in the development of disc degeneration and has attracted widespread attention since it was first researched in 2007. Our study aims to analyze the scientific output of oxidative stress in intervertebral disc degeneration (IDD) and drive future research into new publications. Publications focused on this topic were retrieved from the SCI-EXPANDED (SCI-E) of the Web of Science (WOS) core collection database and were screened according to the inclusion criteria. Bibliometric website, VOSviewer, and Citespace software were used to evaluate and visualize the results, including annual publications, citations, authors, organizations, countries, research directions, funds, and journals. As of 16 February 2022, a total of 289 original articles and reviews were included, and the overall trend of the number of publications rapidly increased. China and the United States were the leading countries for research production in worldwide. The retrieved 289 publications received 5,979 citations, with an average of 20.67 citations and an H-index of 40. The most high-yield author, organization, country, research direction, fund, and journal were Wang K from Tongji Medical College, Huazhong University of Science Technology, China, Cell Biology, National Natural Science Foundation of China, Oxidative Medicine and Cellular Longevity, respectively. The majority of most common keywords were related to the mechanisms and regulatory networks of oxidative stress. Furthermore, with accumulating evidence that demonstrates the role of oxidative stress in IDD, “mitochondria” and “senescence” are becoming the new research focus that should be paid more attention to.
Collapse
Affiliation(s)
| | | | - Yong Hai
- *Correspondence: Yong Hai, ; Lijin Zhou,
| | - Lijin Zhou
- *Correspondence: Yong Hai, ; Lijin Zhou,
| |
Collapse
|
49
|
Wang Z, Zhang P, Zhao Y, Yu F, Wang S, Liu K, Cheng X, Shi J, He Q, Xia Y, Cheng L. Scutellarin Protects Against Mitochondrial Reactive Oxygen Species-Dependent NLRP3 Inflammasome Activation to Attenuate Intervertebral Disc Degeneration. Front Bioeng Biotechnol 2022; 10:883118. [PMID: 36032701 PMCID: PMC9403485 DOI: 10.3389/fbioe.2022.883118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a predominant cause of disc herniation and is widespread worldwide. Inflammatory responses, mitochondrial dysfunction, and extracellular matrix degradation are known to be involved in IVDD. Scutellarin, an active ingredient extracted from Erigeron breviscapus (Vaniot) Ha, Hand-Mazz, is reported to exhibit therapeutic potential in several degenerative diseases by suppressing inflammation and regulating metabolism. However, whether scutellarin can improve IVDD remains unknown. Human primary nucleus pulposus cells (HNPCs) were cultured and stimulated with TNF-α in the presence or absence of scutellarin. Furthermore, a rat needle puncture model was established, and scutellarin was injected into the IVD to verify its protective function against IVDD. Scutellarin attenuated the inflammatory reaction and retained the production of major IVD components both in vitro and in vivo. Mechanistically, scutellarin reduced the amount of reactive oxygen species (ROS), alleviated mitochondrial damage, and decreased the expression levels of apoptosis-related biomarkers upon stimulation with TNF-α. In addition, scutellarin antagonized the activation of the nuclear factor κ-light-chain-enhancer of activated B (NF-κB) signaling pathway and the mitogen-activated protein kinase (MAPK) signaling pathway and suppressed the activity of the NLRP3 inflammasome mediated by TNF-α. This study reveals that scutellarin protects against degeneration of nucleus pulposus cells, which might shed light on treatment of IVDD in the future.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Pengfei Zhang
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunpeng Zhao
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feiran Yu
- School of Medical Imaging, Weifang Medical University, Weifang, China
| | - Shaoyi Wang
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kaiwen Liu
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiang Cheng
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Shi
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiting He
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanni Xia
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Yanni Xia, ; Lei Cheng,
| | - Lei Cheng
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Yanni Xia, ; Lei Cheng,
| |
Collapse
|
50
|
Ebert T, Tran N, Schurgers L, Stenvinkel P, Shiels PG. Ageing - Oxidative stress, PTMs and disease. Mol Aspects Med 2022; 86:101099. [PMID: 35689974 DOI: 10.1016/j.mam.2022.101099] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022]
Abstract
Post-translational modifications (PTMs) have been proposed as a link between the oxidative stress-inflammation-ageing trinity, thereby affecting several hallmarks of ageing. Phosphorylation, acetylation, and ubiquitination cover >90% of all the reported PTMs. Several of the main PTMs are involved in normal "healthy" ageing and in different age-related diseases, for instance neurodegenerative, metabolic, cardiovascular, and bone diseases, as well as cancer and chronic kidney disease. Ultimately, data from human rare progeroid syndromes, but also from long-living animal species, imply that PTMs are critical regulators of the ageing process. Mechanistically, PTMs target epigenetic and non-epigenetic pathways during ageing. In particular, epigenetic histone modification has critical implications for the ageing process and can modulate lifespan. Therefore, PTM-based therapeutics appear to be attractive pharmaceutical candidates to reduce the burden of ageing-related diseases. Several phosphorylation and acetylation inhibitors have already been FDA-approved for the treatment of other diseases and offer a unique potential to investigate both beneficial effects and possible side-effects. As an example, the most well-studied senolytic compounds dasatinib and quercetin, which have already been tested in Phase 1 pilot studies, also act as kinase inhibitors, targeting cellular senescence and increasing lifespan. Future studies need to carefully determine the best PTM-based candidates for the treatment of the "diseasome of ageing".
Collapse
Affiliation(s)
- Thomas Ebert
- Karolinska Institute, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Stockholm, Sweden; University of Leipzig Medical Center, Medical Department III - Endocrinology, Nephrology, Rheumatology, Leipzig, Germany.
| | - Ngoc Tran
- University of Glasgow, Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, Glasgow, UK
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research School Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Peter Stenvinkel
- Karolinska Institute, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Stockholm, Sweden
| | - Paul G Shiels
- University of Glasgow, Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, Glasgow, UK
| |
Collapse
|