1
|
Li SR, Tao SY, Li Q, Hu CY, Sun ZJ. Harnessing nanomaterials for copper-induced cell death. Biomaterials 2025; 313:122805. [PMID: 39250865 DOI: 10.1016/j.biomaterials.2024.122805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
Copper (Cu), an essential micronutrient with redox properties, plays a pivotal role in a wide array of pathological and physiological processes across virtually all cell types. Maintaining an optimal copper concentration is critical for cellular survival: insufficient copper levels disrupt respiration and metabolism, while excess copper compromises cell viability, potentially leading to cell death. Similarly, in the context of cancer, copper exhibits a dual role: appropriate amount of copper can promote tumor progression and be an accomplice, yet beyond befitting level, copper can bring about multiple types of cell death, including autophagy, apoptosis, ferroptosis, immunogenic cell death, pyroptosis, and cuproptosis. These forms of cell death are beneficial against cancer progression; however, achieving precise copper regulation within tumors remains a significant challenge in the pursuit of effective cancer therapies. The emergence of nanodrug delivery systems, distinguished by their precise targeting, controlled release, high payload capacity, and the ability to co-deliver multiple agents, has revitalized interest in exploiting copper's precise regulatory capabilities. Nevertheless, there remains a dearth of comprehensive review of copper's bidirectional effects on tumorigenesis and the role of copper-based nanomaterials in modulating tumor progression. This paper aims to address this gap by elucidating the complex role in cancer biology and highlighting its potential as a therapeutic target. Through an exploration of copper's dualistic nature and the application of nanotechnology, this review seeks to offer novel insights and guide future research in advancing cancer treatment.
Collapse
Affiliation(s)
- Su-Ran Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, Hubei, PR China
| | - Shi-Yue Tao
- Bathune School of Stomatology, Jilin University, Changchun, 130021, Jilin, PR China
| | - Qian Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, Hubei, PR China
| | - Chuan-Yu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, Hubei, PR China.
| |
Collapse
|
2
|
Chen Y, Xu W, Pan Z, Li B, Mo X, Li Y, Wang J, Wang Y, Wei Z, Chen Y, Han Z, Lin C, Liu Y, Ye X, Yu J. Three-dimensional gas-foamed scaffolds decorated with metal phenolic networks for cartilage regeneration. Mater Today Bio 2024; 29:101249. [PMID: 39351488 PMCID: PMC11440796 DOI: 10.1016/j.mtbio.2024.101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
Inflammation is a major impediment to the healing of cartilage injuries, yet bioactive scaffolds suitable for cartilage repair in inflammatory environments are extremely rare. Herein, we utilized electrospinning to fabricate a two-dimensional nanofiber scaffold (2DS), which was then subjected to gas foaming to obtain a three-dimensional scaffold (3DS). 3DS was modified with metal phenolic networks (MPNs) composed of epigallocatechin gallate (EGCG) and strontium ions (Sr2+) to afford a MPNs-modified 3D scaffold (3DS-E). Gas-foamed scaffold exhibited multilayered structure conducive to cellular infiltration and proliferation. Compared to other groups, 3DS-E better preserved chondrocytes under interleukin (IL)-1β induced inflammatory environment, showing less apoptosis of chondrocytes and higher expression of cartilage matrix. Additionally, 3DS-E facilitated the regeneration of more mature cartilage in vivo, reduced cell apoptosis, and decreased the expression of pro-inflammatory cytokines. Taken together, 3DS-E may offer an ideal candidate for cartilage regeneration.
Collapse
Affiliation(s)
- Yujie Chen
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, 200336, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Wei Xu
- Department of Plastic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China
| | - Zhen Pan
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, 200336, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Bohui Li
- Plastic Surgery Institute, Shandong Second Medical University, Weifang, Shandong, 261053, China
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Huangpu, Shanghai, 200001, China
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai, 201600, China
| | - Yucai Li
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, 200336, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Jielin Wang
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, 200336, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yuan Wang
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Zhenyuan Wei
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, 200336, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yicheng Chen
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, 200336, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Zhaopu Han
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, 200336, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Chen Lin
- Department of General Surgery, Shanghai East Hospital, Tongji University School of Medicine, Pudong New Area, Shanghai, 200120, China
| | - Yu Liu
- Plastic Surgery Institute, Shandong Second Medical University, Weifang, Shandong, 261053, China
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Huangpu, Shanghai, 200001, China
| | - Xiaojian Ye
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, 200336, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Jiangming Yu
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, 200336, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| |
Collapse
|
3
|
Li B, Jiang T, Wang J, Ge H, Zhang Y, Li T, Wang C, Wang W. Cuprorivaite microspheres inhibit cuproptosis and oxidative stress in osteoarthritis via Wnt/β-catenin pathway. Mater Today Bio 2024; 29:101300. [PMID: 39469313 PMCID: PMC11513804 DOI: 10.1016/j.mtbio.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
This study aims to evaluate the therapeutic potential of cuprorivaite microspheres for osteoarthritis (OA), in particular, potential molecular mechanisms were investigated. The microspheres were developed from Ca(NO3)2•4H2O, Cu(NO3)2•3H2O, and silica gel, and further therapeutic effects were tested in vitro on mouse primary chondrocytes treated with interleukin-1β (IL-1β) to mimic OA, and in vivo on OA mice induced via anterior cruciate ligament transection (ACLT) surgery. The microspheres were shown to mitigate IL-1β-induced apoptotic, inflammatory, oxidative stress and cuproptosis markers while enhancing cell viability and extracellular matrix (ECM) components in chondrocytes. Moreover, the microspheres ameliorated histopathological damage, reduced inflammatory, oxidative stress and cuproptosis markers, and enhanced ECM biomarker levels in OA mice, implicating their role in suppressing cuproptosis and oxidative stress. The aforementioned effects of the cuprorivaite microspheres were demonstrated by using SKL2001, an agonist of the Wnt/β-catenin pathway. The results suggest cuprorivaite microspheres as a promising intervention for OA and cartilage regeneration, highlighting their therapeutic effects on cellular and molecular levels.
Collapse
Affiliation(s)
- Bo Li
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing 100029, China
| | - Tongmeng Jiang
- Key Laboratory of Emergency and Trauma of Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China
| | - Juan Wang
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Provincial Stem Cell Research Institute, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
| | - Hongping Ge
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- Department of Dermatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yaqi Zhang
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing 100029, China
| | - Tong Li
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing 100029, China
| | - Chen Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Weiguo Wang
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
4
|
Wang D, Liu W, Venkatesan JK, Madry H, Cucchiarini M. Therapeutic Controlled Release Strategies for Human Osteoarthritis. Adv Healthc Mater 2024:e2402737. [PMID: 39506433 DOI: 10.1002/adhm.202402737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Osteoarthritis is a progressive, irreversible debilitating whole joint disease that affects millions of people worldwide. Despite the availability of various options (non-pharmacological and pharmacological treatments and therapy, orthobiologics, and surgical interventions), none of them can definitively cure osteoarthritis in patients. Strategies based on the controlled release of therapeutic compounds via biocompatible materials may provide powerful tools to enhance the spatiotemporal delivery, expression, and activities of the candidate agents as a means to durably manage the pathological progression of osteoarthritis in the affected joints upon convenient intra-articular (injectable) delivery while reducing their clearance, dissemination, or side effects. The goal of this review is to describe the current knowledge and advancements of controlled release to treat osteoarthritis, from basic principles to applications in vivo using therapeutic recombinant molecules and drugs and more innovatively gene sequences, providing a degree of confidence to manage the disease in patients in a close future.
Collapse
Affiliation(s)
- Dan Wang
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| |
Collapse
|
5
|
Koh RH, Kim J, Kim JU, Kim SL, Rajendran AK, Lee SS, Lee H, Kim JH, Jeong JH, Hwang Y, Bae JW, Hwang NS. Bioceramic-mediated chondrocyte hypertrophy promotes calcified cartilage formation for rabbit osteochondral defect repair. Bioact Mater 2024; 40:306-317. [PMID: 38978806 PMCID: PMC11228467 DOI: 10.1016/j.bioactmat.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
Osteochondral tissue is a highly specialized and complex tissue composed of articular cartilage and subchondral bone that are separated by a calcified cartilage interface. Multilayered or gradient scaffolds, often in conjunction with stem cells and growth factors, have been developed to mimic the respective layers for osteochondral defect repair. In this study, we designed a hyaline cartilage-hypertrophic cartilage bilayer graft (RGD/RGDW) with chondrocytes. Previously, we demonstrated that RGD peptide-modified chondroitin sulfate cryogel (RGD group) is chondro-conductive and capable of hyaline cartilage formation. Here, we incorporated whitlockite (WH), a Mg2+-containing calcium phosphate, into RGD cryogel (RGDW group) to induce chondrocyte hypertrophy and form collagen X-rich hypertrophic cartilage. This is the first study to use WH to produce hypertrophic cartilage. Chondrocytes-laden RGDW cryogel exhibited significantly upregulated expression of hypertrophy markers in vitro and formed ectopic hypertrophic cartilage in vivo, which mineralized into calcified cartilage in bone microenvironment. Subsequently, RGD cryogel and RGDW cryogel were combined into bilayer (RGD/RGDW group) and implanted into rabbit osteochondral defect, where RGD layer supports hyaline cartilage regeneration and bioceramic-containing RGDW layer promotes calcified cartilage formation. While the RGD group (monolayer) formed hyaline-like neotissue that extends into the subchondral bone, the RGD/RGDW group (bilayer) regenerated hyaline cartilage tissue confined to its respective layer and promoted osseointegration for integrative defect repair.
Collapse
Affiliation(s)
- Rachel H Koh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
| | - Junhee Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
| | - Jeong-Uk Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
| | - Seunghyun L Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, South Korea
| | - Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
| | - Seunghun S Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 10326, South Korea
| | - Heesoo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
| | - Joo Hyun Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, South Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, 31538, South Korea
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, South Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, 31538, South Korea
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, South Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, 31538, South Korea
| | - Jong Woo Bae
- Department of Orthopaedic Surgery, Konkuk University Chungju Hospital, Konkuk University School of Medicine, Chungju, 27376, South Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, South Korea
- BioMAX Institute, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
6
|
Chen Z, Cui W, Ren S, Yang J, Tian J, Xia H, Shen J, Ren G. Investigating the Mechanism of Rare-Earth Ion Incorporation into Glass-Ceramic Crystal Phases through Er 3+ Ion Probe Characteristics. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1479. [PMID: 39330637 PMCID: PMC11434672 DOI: 10.3390/nano14181479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Exploring the intrinsic mechanisms of rare-earth ions entering the crystal phase has great significance for finely tuning the luminescent properties of glass-ceramics. Using Er3+ ions as a probe, X-ray diffraction was employed to precisely measure the crystallinity of SiO2-PbF2-Er2O3 glass-ceramics synthesized under various heat treatment conditions, confirming the occurrence of a rapid crystallization process. Additionally, by combining Judd-Ofelt theory with comprehensive analyses of absorption and fluorescence spectra, we calculated the relative proportions of Er3+ ions present in the crystal phase. We found that the crystallization process in the glass-ceramics and the incorporation of Er3+ ions into the crystal phase did not occur synchronously. This discovery provides new theoretical foundations and practical guidance for understanding the mechanism of rare-earth ion incorporation into crystal phases, which is significant for the development of functional materials with specific luminescent properties.
Collapse
Affiliation(s)
- Zhixin Chen
- School of Physics, Changchun Normal University, Changchun 130032, China
| | - Wenzhe Cui
- School of Physics, Changchun Normal University, Changchun 130032, China
| | - Sijun Ren
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Ju Yang
- School of Physics, Changchun Normal University, Changchun 130032, China
| | - Jiayu Tian
- School of Physics, Changchun Normal University, Changchun 130032, China
| | - Haitao Xia
- School of Physics, Changchun Normal University, Changchun 130032, China
| | - Jiajing Shen
- School of Physics, Changchun Normal University, Changchun 130032, China
| | - Guozhong Ren
- School of Physics, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
7
|
Yu Q, Xiao Y, Guan M, Zhang X, Yu J, Han M, Li Z. Copper metabolism in osteoarthritis and its relation to oxidative stress and ferroptosis in chondrocytes. Front Mol Biosci 2024; 11:1472492. [PMID: 39329090 PMCID: PMC11425083 DOI: 10.3389/fmolb.2024.1472492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Ferroptosis, an iron-ion-dependent process of lipid peroxidation, damages the plasma membrane, leading to non-programmed cell death. Osteoarthritis (OA), a prevalent chronic degenerative joint disease among middle-aged and older adults, is characterized by chondrocyte damage or loss. Emerging evidence indicates that chondrocyte ferroptosis plays a role in OA development. However, most research has concentrated on ferroptosis regulation involving typical iron ions, potentially neglecting the significance of elevated copper ions in both serum and joint fluid of patients with OA. This review aims to fill this gap by systematically examining the interplay between copper metabolism, oxidative stress, ferroptosis, and copper-associated cell death in OA. It will provide a comprehensive overview of copper ions' role in regulating ferroptosis and their dual role in OA. This approach seeks to offer new insights for further research, prevention, and treatment of OA.
Collapse
Affiliation(s)
- Qingyuan Yu
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Yanan Xiao
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Mengqi Guan
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xianshuai Zhang
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Jianan Yu
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Mingze Han
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Zhenhua Li
- Orthopedic Center, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
8
|
Krishna DV, Sankar MR, Sarma PVGK, Samundeshwari EL. Copper nanoparticles loaded gelatin/ polyvinyl alcohol/ guar gum-based 3D printable multimaterial hydrogel for tissue engineering applications. Int J Biol Macromol 2024; 276:133866. [PMID: 39009268 DOI: 10.1016/j.ijbiomac.2024.133866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Hydrogels are becoming increasingly significant in tissue engineering because of their numerous benefits, including biocompatibility, biodegradability, and their ability to provide a supportive structure for cell proliferation. This study presents the synthesis and characterization of a new multimaterial hydrogel with 3D-printing capabilities composed of copper nanoparticle-reinforced gelatin, polyvinyl alcohol (PVA), and guar gum-based biomaterials intended for tissue engineering applications. Combining CuNPs aims to enhance the hydrogel's antibacterial properties, mechanical strength, and bioactivity, which are essential for successful tissue regeneration. Hydrogels are chemically cross-linked with glyoxal and analyzed through different assessments to examine the compressive behavior, surface morphology, sorbing capacity, biocompatibility, thermal stability, and degradation properties. The results demonstrated that including CuNPs significantly improved the hydrogel's compressive modulus (4.18 MPa) for the hydrogel with the CuNPs and provided better antibacterial activity against common pathogens with controlled degradation. All the hydrogels exhibited a lower coefficient of friction, which was below 0.1. In vitro cell culture studies using chondrocytes indicated that the CuNPs-loaded hydrogel supported cell proliferation and growth of chondrogenic genes such as collagen type II (COL2) and aggrecan (ACAN). The biocompatibility and enhanced mechanical properties of the multimaterial hydrogel make it a promising candidate for developing customized, patient-specific tissue engineering scaffolds.
Collapse
Affiliation(s)
- D V Krishna
- Department of Mechanical Engineering, Indian Institute of Technology Tirupati, Andhra Pradesh 517619, India
| | - M R Sankar
- Department of Mechanical Engineering, Indian Institute of Technology Tirupati, Andhra Pradesh 517619, India.
| | - P V G K Sarma
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh 517502, India
| | - E L Samundeshwari
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh 517502, India
| |
Collapse
|
9
|
Zhang D, Li Y, Pan J, Zheng Y, Xu X. Copper homeostasis and cuproptosis in radiation-induced injury. Biomed Pharmacother 2024; 178:117150. [PMID: 39047417 DOI: 10.1016/j.biopha.2024.117150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Radiation therapy for cancer treatment brings about a series of radiation injuries to normal tissues. In recent years, the discovery of copper-regulated cell death, cuproptosis, a novel form of programmed cell death, has attracted widespread attention and exploration in various biological functions and pathological mechanisms of copper metabolism and cuproptosis. Understanding its role in the process of radiation injury may open up new avenues and directions for exploration in radiation biology and radiation oncology, thereby improving tumor response and mitigating adverse reactions to radiotherapy. This review provides an overview of copper metabolism, the characteristics of cuproptosis, and their potential regulatory mechanisms in radiation injury.
Collapse
Affiliation(s)
- Daoming Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jinghui Pan
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yongfa Zheng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
10
|
Tong Y, Yuan J, Li Z, Deng C, Cheng Y. Drug-Loaded Bioscaffolds for Osteochondral Regeneration. Pharmaceutics 2024; 16:1095. [PMID: 39204440 PMCID: PMC11360256 DOI: 10.3390/pharmaceutics16081095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Osteochondral defect is a complex tissue loss disease caused by arthritis, high-energy trauma, and many other reasons. Due to the unique structural characteristics of osteochondral tissue, the repair process is sophisticated and involves the regeneration of both hyaline cartilage and subchondral bone. However, the current clinical treatments often fall short of achieving the desired outcomes. Tissue engineering bioscaffolds, especially those created via three-dimensional (3D) printing, offer promising solutions for osteochondral defects due to their precisely controllable 3D structures. The microstructure of 3D-printed bioscaffolds provides an excellent physical environment for cell adhesion and proliferation, as well as nutrient transport. Traditional 3D-printed bioscaffolds offer mere physical stimulation, while drug-loaded 3D bioscaffolds accelerate the tissue repair process by synergistically combining drug therapy with physical stimulation. In this review, the physiological characteristics of osteochondral tissue and current treatments of osteochondral defect were reviewed. Subsequently, the latest progress in drug-loaded bioscaffolds was discussed and highlighted in terms of classification, characteristics, and applications. The perspectives of scaffold design, drug control release, and biosafety were also discussed. We hope this article will serve as a valuable reference for the design and development of osteochondral regenerative bioscaffolds and pave the way for the use of drug-loaded bioscaffolds in clinical therapy.
Collapse
Affiliation(s)
| | | | | | - Cuijun Deng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China; (Y.T.); (J.Y.); (Z.L.)
| | - Yu Cheng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China; (Y.T.); (J.Y.); (Z.L.)
| |
Collapse
|
11
|
Wang S, Lei H, Mi Y, Ma P, Fan D. Chitosan and hyaluronic acid based injectable dual network hydrogels - Mediating antimicrobial and inflammatory modulation to promote healing of infected bone defects. Int J Biol Macromol 2024; 274:133124. [PMID: 38897505 DOI: 10.1016/j.ijbiomac.2024.133124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
In bone defects, infections lead to excessive inflammation, increased bacterial, and bone lysis, resulting in irregular wounds that hinder new bone regeneration. Injectable bioactive materials with adequate antimicrobial activity and strong osteogenic potential are urgently required to remedy irregular defects, eradicate bacteria, and facilitate the generation of new bone tissue. In this research, injectable dual-network composite hydrogels consisting of sulfated chitosan, oxidized hyaluronic acid, β-sodium glycerophosphate, and CuSr doped mesoporous bioactive glass loaded with bone morphogenetic protein (CuSrMBGBMP-2) were utilized for the first time to treat infectious bone defects. Initially, the hydrogel was injected into the wound at 37 °C with minimal invasion to establish a stable state and prevent hydrogel loss. Subsequently, sulfated chitosan eliminated bacteria at the wound site and facilitated cell proliferation with oxidized hyaluronic acid. Additionally, CuSrMBGBMP-2 strengthened antibacterial properties, regulated inflammatory reactions, promoted angiogenesis and osteogenic differentiation, addressing the deficiency in late-stage osteogenesis. Specifically, the injectable dual-network hydrogel based on chitosan and hyaluronic acid is minimally invasive, offering antibacterial, anti-inflammatory, pro-angiogenic, and bone regeneration properties. Therefore, this hydrogel with injectable dual network properties holds great promise for the treatment of bone infections in the future.
Collapse
Affiliation(s)
- Shang Wang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| | - Huan Lei
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| | - Yu Mi
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| | - Pei Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| |
Collapse
|
12
|
Li CJ, Park JH, Jin GS, Mandakhbayar N, Yeo D, Lee JH, Lee JH, Kim HS, Kim HW. Strontium/Silicon/Calcium-Releasing Hierarchically Structured 3D-Printed Scaffolds Accelerate Osteochondral Defect Repair. Adv Healthc Mater 2024; 13:e2400154. [PMID: 38647029 DOI: 10.1002/adhm.202400154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/24/2024] [Indexed: 04/25/2024]
Abstract
Articular cartilage defects are a global challenge, causing substantial disability. Repairing large defects is problematic, often exceeding cartilage's self-healing capacity and damaging bone structures. To tackle this problem, a scaffold-mediated therapeutic ion delivery system is developed. These scaffolds are constructed from poly(ε-caprolactone) and strontium (Sr)-doped bioactive nanoglasses (SrBGn), creating a unique hierarchical structure featuring macropores from 3D printing, micropores, and nanotopologies due to SrBGn integration. The SrBGn-embedded scaffolds (SrBGn-µCh) release Sr, silicon (Si), and calcium (Ca) ions, which improve chondrocyte activation, adhesion, proliferation, and maturation-related gene expression. This multiple ion delivery significantly affects metabolic activity and maturation of chondrocytes. Importantly, Sr ions may play a role in chondrocyte regulation through the Notch signaling pathway. Notably, the scaffold's structure and topological cues expedite the recruitment, adhesion, spreading, and proliferation of chondrocytes and bone marrow-derived mesenchymal stem cells. Si and Ca ions accelerate osteogenic differentiation and blood vessel formation, while Sr ions enhance the polarization of M2 macrophages. The findings show that SrBGn-µCh scaffolds accelerate osteochondral defect repair by delivering multiple ions and providing structural/topological cues, ultimately supporting host cell functions and defect healing. This scaffold holds great promise for osteochondral repair applications.
Collapse
Affiliation(s)
- Cheng Ji Li
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Gang Shi Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Donghyeon Yeo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
13
|
Che J, Yang X, Zhao X, Li Y, Jin Z, Xu C. Risk factor prediction and immune correlation analysis of cuproptosis-related gene in osteoarthritis. J Cell Mol Med 2024; 28:e18574. [PMID: 39087591 PMCID: PMC11292577 DOI: 10.1111/jcmm.18574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
Osteoarthritis (OA) is a widespread inflammatory joint disease with significant global disability burden. Cuproptosis, a newly identified mode of cell death, has emerged as a crucial factor in various pathological conditions, including OA. In this context, our study aims to investigate the intrinsic relationship between cuproptosis-related genes (CRGs) and OA, and assess their potential as biomarkers for OA diagnosis and treatment. Datasets from the GEO databases were analysed the differential expression of CRGs, leading to the identification of 10 key CRGs (CDKN2A, DLD, FDX1, GLS, LIAS, LIPT1, MTF1, PDHA1, DLAT and PDHB). A logistic regression analysis and calibration curves were used to show excellent diagnostic accuracy. Consensus clustering revealed two CRG patterns, with Cluster 1 indicating a closer association with OA progression. RT-PCR confirmed a significant increase in the expression levels of these nine key genes in IL-1β-induced C28/i2 cells, and the expression of CDKN2A and FDX1 were also elevated in conditioned monocytes, while the expression of GLS and MTF1 were significantly decreased. In vitro experiments demonstrated that the expression levels of these 7/10 CRGs were significantly increased in chondrocytes induced by IL-1β, and upon stimulation with cuproptosis inducers, chondrocyte apoptosis was exacerbated, accompanied by an increase in the expression of cuproptosis-related proteins. These further substantiated our research findings and indicated that the nine selected cuproptosis genes have high potential for application in the diagnosis of OA.
Collapse
Affiliation(s)
- Jingmin Che
- Shaanxi Provincial Key Laboratory of Infection and Immune DiseasesShaanxi Provincial People's HospitalXi'anShaanxiChina
- Shaanxi Engineering Research Center of Cell ImmunologyShaanxi Provincial People's HospitalXi'anShaanxiChina
| | - Xiaoli Yang
- Shaanxi Provincial Key Laboratory of Infection and Immune DiseasesShaanxi Provincial People's HospitalXi'anShaanxiChina
- Shaanxi Engineering Research Center of Cell ImmunologyShaanxi Provincial People's HospitalXi'anShaanxiChina
| | - Xiangrong Zhao
- Shaanxi Provincial Key Laboratory of Infection and Immune DiseasesShaanxi Provincial People's HospitalXi'anShaanxiChina
- Shaanxi Engineering Research Center of Cell ImmunologyShaanxi Provincial People's HospitalXi'anShaanxiChina
| | - Yan Li
- Shaanxi Provincial Key Laboratory of Infection and Immune DiseasesShaanxi Provincial People's HospitalXi'anShaanxiChina
- Shaanxi Engineering Research Center of Cell ImmunologyShaanxi Provincial People's HospitalXi'anShaanxiChina
| | - Zhankui Jin
- Department of OrthopedicsShaanxi Provincial People's HospitalXi'anShaanxiChina
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune DiseasesShaanxi Provincial People's HospitalXi'anShaanxiChina
- Shaanxi Engineering Research Center of Cell ImmunologyShaanxi Provincial People's HospitalXi'anShaanxiChina
| |
Collapse
|
14
|
Song J, Xie D, Wei X, Liu B, Yao F, Ye W. A cuproptosis-related lncRNAs signature predicts prognosis and reveals pivotal interactions between immune cells in colon cancer. Heliyon 2024; 10:e34586. [PMID: 39114018 PMCID: PMC11305305 DOI: 10.1016/j.heliyon.2024.e34586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Copper-mediated cell death presents distinct pathways from established apoptosis processes, suggesting alternative therapeutic approaches for colon cancer. Our research aims to develop a predictive framework utilizing long-noncoding RNAs (lncRNAs) related to cuproptosis to predict colon cancer outcomes while examining immune interactions and intercellular signaling. We obtained colon cancer-related human mRNA expression profiles and clinical information from the Cancer Genome Atlas repository. To isolate lncRNAs involved in cuproptosis, we applied Cox proportional hazards modeling alongside the least absolute shrinkage and selection operator technique. We elucidated the underlying mechanisms by examining the tumor mutational burden, the extent of immune cell penetration, and intercellular communication dynamics. Based on the model, drugs were predicted and validated with cytological experiments. A 13 lncRNA-cuproptosis-associated risk model was constructed. Two colon cancer cell lines were used to validate the predicted representative mRNAs with high correlation coefficients with copper-induced cell death. Survival enhancement in the low-risk cohort was evidenced by the trends in Kaplan-Meier survival estimates. Analysis of immune cell infiltration suggested that survival was induced by the increased infiltration of naïve CD4+ T cells and a reduction of M2 macrophages within the low-risk faction. Decreased infiltration of naïve B cells, resting NK cells, and M0 macrophages was significantly associated with better overall survival. Combined single-cell analysis suggested that CCL5-ACKR1, CCL2-ACKR1, and CCL5-CCR1 pathways play key roles in mediating intercellular dialogues among immune constituents within the neoplastic microhabitat. We identified three drugs with a high sensitivity in the high-risk group. In summary, this discovery establishes the possibility of using 13 cuproptosis-associated lncRNAs as a risk model to assess the prognosis, unravel the immune mechanisms and cell communication, and improve treatment options, which may provide a new idea for treating colon cancer.
Collapse
Affiliation(s)
- Jingru Song
- Department of Gastroenterology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, Zhejiang, China
| | - Dong Xie
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xia Wei
- Department of Gastroenterology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, Zhejiang, China
| | - Binbin Liu
- Department of Gastroenterology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, Zhejiang, China
| | - Fang Yao
- Department of Gastroenterology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, Zhejiang, China
| | - Wei Ye
- Department of Gastroenterology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, Zhejiang, China
| |
Collapse
|
15
|
Zhu Y, Zhang X, Chang G, Deng S, Chan HF. Bioactive Glass in Tissue Regeneration: Unveiling Recent Advances in Regenerative Strategies and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312964. [PMID: 39014919 DOI: 10.1002/adma.202312964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/18/2024] [Indexed: 07/18/2024]
Abstract
Bioactive glass (BG) is a class of biocompatible, biodegradable, multifunctional inorganic glass materials, which is successfully used for orthopedic and dental applications, with several products already approved for clinical use. Apart from exhibiting osteogenic properties, BG is also known to be angiogenic and antibacterial. Recently, BG's role in immunomodulation has been gradually revealed. While the therapeutic effect of BG is mostly reported in the context of bone and skin-related regeneration, its application in regenerating other tissues/organs, such as muscle, cartilage, and gastrointestinal tissue, has also been explored recently. The strategies of applying BG have also expanded from powder or cement form to more advanced strategies such as fabrication of composite polymer-BG scaffold, 3D printing of BG-loaded scaffold, and BG-induced extracellular vesicle production. This review presents a concise overview of the recent applications of BG in regenerative medicine. Various regenerative strategies of BG will be first introduced. Next, the applications of BG in regenerating various tissues/organs, such as bone, cartilage, muscle, tendon, skin, and gastrointestinal tissue, will be discussed. Finally, summarizing clinical applications of BG for tissue regeneration will conclude, and outline future challenges and directions for the clinical translation of BG.
Collapse
Affiliation(s)
- Yanlun Zhu
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong SAR, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Xuerao Zhang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
| | - Guozhu Chang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong SAR, P. R. China
| | - Shuai Deng
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P. R. China
| | - Hon Fai Chan
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong SAR, P. R. China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, Hong Kong SAR, P. R. China
| |
Collapse
|
16
|
Chen R, Chen F, Chen K, Xu J. Advances in the application of hydrogel-based scaffolds for tendon repair. Genes Dis 2024; 11:101019. [PMID: 38560496 PMCID: PMC10978548 DOI: 10.1016/j.gendis.2023.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 04/04/2024] Open
Abstract
Tendon injuries often lead to joint dysfunction due to the limited self-regeneration capacity of tendons. Repairing tendons is a major challenge for surgeons and imposes a significant financial burden on society. Therefore, there is an urgent need to develop effective strategies for repairing injured tendons. Tendon tissue engineering using hydrogels has emerged as a promising approach that has attracted considerable interest. Hydrogels possess excellent biocompatibility and biodegradability, enabling them to create an extracellular matrix-like growth environment for cells. They can also serve as a carrier for cells or other substances to accelerate tendon repair. In the past decade, numerous studies have made significant progress in the preparation of hydrogel scaffolds for tendon healing. This review aims to provide an overview of recent research on the materials of hydrogel-based scaffolds used for tendon tissue engineering and discusses the delivery systems based on them.
Collapse
Affiliation(s)
- Renqiang Chen
- Department of Orthopedics, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Fanglin Chen
- Department of Orthopedics, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Kenian Chen
- Department of Orthopedics, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Jian Xu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
17
|
Wei X, Wan C, Peng X, Luo Y, Hu M, Cheng C, Feng S, Yu X. Copper-based carbon dots modified hydrogel with osteoimmunomodulatory and osteogenesis for bone regeneration. J Mater Chem B 2024; 12:5734-5748. [PMID: 38771222 DOI: 10.1039/d4tb00526k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Biomaterials with dual functions of osteoimmunomodulation and bone repair are very promising in the field of orthopedic materials. For this purpose, we prepared copper-based carbon dots (CuCDs) and doped them into oxychondroitin sulfate/poly-acrylamide hydrogel (OPAM) to obtain a hybrid hydrogel (CuCDs/OPAM). We evaluated its osteoimmunomodulatory and bone repair properties in vitro and in vivo. The obtained CuCDs/OPAM exhibited good rBMSCs-cytocompatibility and anti-inflammatory properties in vitro. It also could effectively promote rBMSCs differentiation and the expression of osteogenic differentiation factors from rBMSCs under an inflammatory environment. Moreover, CuCDs/OPAM could induce macrophage phenotype switching (from M1-type macrophages to M2-type macrophages) in vivo, which is beneficial for anti-inflammatory action and presents good osteoimmunomodulation capability to induce a bone immune microenvironment to promote the differentiation of rBMSCs. In conclusion, CuCDs/OPAM hydrogel has dual functions of osteoimmunomodulatory and bone repair and is a promising bone filling and repair material.
Collapse
Affiliation(s)
- Xu Wei
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Chang Wan
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Yihao Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Mengyue Hu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Can Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Shaoxiong Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
18
|
Xiao B, Liang Y, Liu G, Wang L, Zhang Z, Qiu L, Xu H, Carr S, Shi X, Reis RL, Kundu SC, Zhu Z. Gas-propelled nanomotors alleviate colitis through the regulation of intestinal immunoenvironment-hematopexis-microbiota circuits. Acta Pharm Sin B 2024; 14:2732-2747. [PMID: 38828144 PMCID: PMC11143748 DOI: 10.1016/j.apsb.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 06/05/2024] Open
Abstract
The progression of ulcerative colitis (UC) is associated with immunologic derangement, intestinal hemorrhage, and microbiota imbalance. While traditional medications mainly focus on mitigating inflammation, it remains challenging to address multiple symptoms. Here, a versatile gas-propelled nanomotor was constructed by mild fusion of post-ultrasonic CaO2 nanospheres with Cu2O nanoblocks. The resulting CaO2-Cu2O possessed a desirable diameter (291.3 nm) and a uniform size distribution. It could be efficiently internalized by colonic epithelial cells and macrophages, scavenge intracellular reactive oxygen/nitrogen species, and alleviate immune reactions by pro-polarizing macrophages to the anti-inflammatory M2 phenotype. This nanomotor was found to penetrate through the mucus barrier and accumulate in the colitis mucosa due to the driving force of the generated oxygen bubbles. Rectal administration of CaO2-Cu2O could stanch the bleeding, repair the disrupted colonic epithelial layer, and reduce the inflammatory responses through its interaction with the genes relevant to blood coagulation, anti-oxidation, wound healing, and anti-inflammation. Impressively, it restored intestinal microbiota balance by elevating the proportions of beneficial bacteria (e.g., Odoribacter and Bifidobacterium) and decreasing the abundances of harmful bacteria (e.g., Prevotellaceae and Helicobacter). Our gas-driven CaO2-Cu2O offers a promising therapeutic platform for robust treatment of UC via the rectal route.
Collapse
Affiliation(s)
- Bo Xiao
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yuqi Liang
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Ga Liu
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Lingshuang Wang
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Zhan Zhang
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Libin Qiu
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Haiting Xu
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Sean Carr
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Surgery, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Xiaoxiao Shi
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Rui L. Reis
- 3Bs Research Group, I3Bs — Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimaraes 4805-017, Portugal
| | - Subhas C. Kundu
- 3Bs Research Group, I3Bs — Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimaraes 4805-017, Portugal
| | - Zhenghua Zhu
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
19
|
Que Y, Shi J, Zhang Z, Sun L, Li H, Qin X, Zeng Z, Yang X, Chen Y, Liu C, Liu C, Sun S, Jin Q, Zhang Y, Li X, Lei M, Yang C, Tian H, Tian J, Chang J. Ion cocktail therapy for myocardial infarction by synergistic regulation of both structural and electrical remodeling. EXPLORATION (BEIJING, CHINA) 2024; 4:20230067. [PMID: 38939858 PMCID: PMC11189571 DOI: 10.1002/exp.20230067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/27/2023] [Indexed: 06/29/2024]
Abstract
Myocardial infarction (MI) is a leading cause of death worldwide. Few drugs hold the ability to depress cardiac electrical and structural remodeling simultaneously after MI, which is crucial for the treatment of MI. The aim of this study is to investigate an effective therapy to improve both electrical and structural remodeling of the heart caused by MI. Here, an "ion cocktail therapy" is proposed to simultaneously reverse cardiac structural and electrical remodeling post-MI in rats and minipigs by applying a unique combination of silicate, strontium (Sr) and copper (Cu) ions due to their specific regulatory effects on the behavior of the key cells involved in MI including angiogenesis of endothelial cells, M2 polarization of macrophages and apoptosis of cardiomyocyte. The results demonstrate that ion cocktail treatment attenuates structural remodeling post-MI by ameliorating infarct size, promoting angiogenesis in both peri-infarct and infarct areas. Meantime, to some extent, ion cocktail treatment reverses the deteriorative electrical remodeling by reducing the incidence rate of early/delayed afterdepolarizations and minimizing the heterogeneity of cardiac electrophysiology. This ion cocktail therapy reveals a new strategy to effectively treat MI with great clinical translation potential due to the high effectiveness and safety of the ion cocktail combination.
Collapse
Affiliation(s)
- Yumei Que
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Jiaxin Shi
- Department of UltrasoundThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zhaowenbin Zhang
- Shanghai Institute of CeramicsChinese Academy of Sciences (CAS)ShanghaiChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of CASBeijingChina
| | - Lu Sun
- Department of Cardiovascular SurgeryPeking University Shenzhen HospitalShenzhenChina
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Hairu Li
- Department of UltrasoundThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Xionghai Qin
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Department of Cardiovascular SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zhen Zeng
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Xiao Yang
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Yanxin Chen
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Chong Liu
- Department of UltrasoundThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Chang Liu
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Shijie Sun
- Department of UltrasoundThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Qishu Jin
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Yanxin Zhang
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Xin Li
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Ming Lei
- Department of PharmacologyUniversity of OxfordOxfordUK
| | - Chen Yang
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
| | - Hai Tian
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Department of Cardiovascular SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Jiawei Tian
- Department of UltrasoundThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Jiang Chang
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of CASWenzhouChina
- Shanghai Institute of CeramicsChinese Academy of Sciences (CAS)ShanghaiChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of CASBeijingChina
| |
Collapse
|
20
|
Shearer A, Molinaro M, Montazerian M, Sly JJ, Miola M, Baino F, Mauro JC. The unexplored role of alkali and alkaline earth elements (ALAEs) on the structure, processing, and biological effects of bioactive glasses. Biomater Sci 2024; 12:2521-2560. [PMID: 38530228 DOI: 10.1039/d3bm01338c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Bioactive glass has been employed in several medical applications since its inception in 1969. The compositions of these materials have been investigated extensively with emphasis on glass network formers, therapeutic transition metals, and glass network modifiers. Through these experiments, several commercial and experimental compositions have been developed with varying chemical durability, induced physiological responses, and hydroxyapatite forming abilities. In many of these studies, the concentrations of each alkali and alkaline earth element have been altered to monitor changes in structure and biological response. This review aims to discuss the impact of each alkali and alkaline earth element on the structure, processing, and biological effects of bioactive glass. We explore critical questions regarding these elements from both a glass science and biological perspective. Should elements with little biological impact be included? Are alkali free bioactive glasses more promising for greater biological responses? Does this mixed alkali effect show increased degradation rates and should it be employed for optimized dissolution? Each of these questions along with others are evaluated comprehensively and discussed in the final section where guidance for compositional design is provided.
Collapse
Affiliation(s)
- Adam Shearer
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Matthew Molinaro
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Maziar Montazerian
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Jessica J Sly
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Marta Miola
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Torino, Italy.
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Torino, Italy.
| | - John C Mauro
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
21
|
He B, Liao Y, Tian M, Tang C, Tang Q, Ma F, Zhou W, Leng Y, Zhong D. Identification and verification of a novel signature that combines cuproptosis-related genes with ferroptosis-related genes in osteoarthritis using bioinformatics analysis and experimental validation. Arthritis Res Ther 2024; 26:100. [PMID: 38741149 DOI: 10.1186/s13075-024-03328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Exploring the pathogenesis of osteoarthritis (OA) is important for its prevention, diagnosis, and treatment. Therefore, we aimed to construct novel signature genes (c-FRGs) combining cuproptosis-related genes (CRGs) with ferroptosis-related genes (FRGs) to explore the pathogenesis of OA and aid in its treatment. MATERIALS AND METHODS Differentially expressed c-FRGs (c-FDEGs) were obtained using R software. Enrichment analysis was performed and a protein-protein interaction (PPI) network was constructed based on these c-FDEGs. Then, seven hub genes were screened. Three machine learning methods and verification experiments were used to identify four signature biomarkers from c-FDEGs, after which gene set enrichment analysis, gene set variation analysis, single-sample gene set enrichment analysis, immune function analysis, drug prediction, and ceRNA network analysis were performed based on these signature biomarkers. Subsequently, a disease model of OA was constructed using these biomarkers and validated on the GSE82107 dataset. Finally, we analyzed the distribution of the expression of these c-FDEGs in various cell populations. RESULTS A total of 63 FRGs were found to be closely associated with 11 CRGs, and 40 c-FDEGs were identified. Bioenrichment analysis showed that they were mainly associated with inflammation, external cellular stimulation, and autophagy. CDKN1A, FZD7, GABARAPL2, and SLC39A14 were identified as OA signature biomarkers, and their corresponding miRNAs and lncRNAs were predicted. Finally, scRNA-seq data analysis showed that the differentially expressed c-FRGs had significantly different expression distributions across the cell populations. CONCLUSION Four genes, namely CDKN1A, FZD7, GABARAPL2, and SLC39A14, are excellent biomarkers and prospective therapeutic targets for OA.
Collapse
Affiliation(s)
- Baoqiang He
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taping Street, Lu Zhou City, China
- Southwest Medical University, Lu Zhou City, China
| | - Yehui Liao
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taping Street, Lu Zhou City, China
| | - Minghao Tian
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taping Street, Lu Zhou City, China
| | - Chao Tang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taping Street, Lu Zhou City, China
| | - Qiang Tang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taping Street, Lu Zhou City, China
| | - Fei Ma
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taping Street, Lu Zhou City, China
| | - Wenyang Zhou
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taping Street, Lu Zhou City, China
| | - Yebo Leng
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taping Street, Lu Zhou City, China.
- Meishan Tianfu New Area People's Hospital, Meishan City, China.
| | - Dejun Zhong
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taping Street, Lu Zhou City, China.
- Southwest Medical University, Lu Zhou City, China.
| |
Collapse
|
22
|
Yang Y, Xu C, Xu S, Li Y, Chen K, Yang T, Bao J, Xu Y, Chen J, Mao C, Chen L, Sun W. Injectable hydrogels activated with copper sulfide nanoparticles for enhancing spatiotemporal sterilization and osteogenesis in periodontal therapy. Biomater Sci 2024. [PMID: 38711336 DOI: 10.1039/d3bm02134c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Developing biomaterials capable of promoting bone regeneration in bacteria-infected sites is of utmost urgency for periodontal disease therapies. Here we produce a hybrid hydrogel by integrating CuS nanoparticles (CuSNPs), which could kill bacteria through photothermal therapy (PTT) triggered by a near infrared (NIR) light, and a gelatin methacryloyl (GelMA) hydrogel, which is injectable and biocompatible. Specifically, CuSNPs were precipitated by chitosan (CS) firstly, then grafted with methacrylic anhydride (MA) to form CuSNP@CS-MA, which was photo-crosslinked with GelMA to synthesize hybrid hydrogels (GelMA/CuSNP). The hybrid hydrogels exhibited a broad-spectrum antibacterial property that could be spatiotemprorally manipulated through applying a NIR light. Their mechanical properties were adjustable by controlling the concentration of CuSNPs, enabling the hydrogels to become more adapted to the oral diseases. Meanwhile, the hybrid hydrogels showed good cytocompatibility in vitro and improved hemostasis in vivo. Moreover, they accelerated alveolar osteogenesis and vascular genesis, successfully treating periodontis in four weeks in a rat model. GelMA/CuSNP hydrogels showed a broad-spectrum sterilization ability via PTT in vitro and outstanding antibacterial property in vivo, suggesting that the hybrid hydrogels could function in the challenging, bacteria-rich, oral environment. Such injectable hybrid hydrogels, capable of achieving both facilitated osteogenesis and NIR-inducible sterilization, represent a new biomaterial for treating periodontitis.
Collapse
Affiliation(s)
- Yuting Yang
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, P.R. China.
| | - Chunbin Xu
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, P.R. China.
| | - Shengqian Xu
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, P.R. China.
| | - Yan Li
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, P.R. China.
| | - Ke'er Chen
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, P.R. China.
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jiaqi Bao
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, P.R. China.
| | - Yajing Xu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jingyao Chen
- Facility for Histomorphology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310027, China
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Lili Chen
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, P.R. China.
| | - Weilian Sun
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, P.R. China.
| |
Collapse
|
23
|
Han J, Luo J, Wang C, Kapilevich L, Zhang XA. Roles and mechanisms of copper homeostasis and cuproptosis in osteoarticular diseases. Biomed Pharmacother 2024; 174:116570. [PMID: 38599063 DOI: 10.1016/j.biopha.2024.116570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Copper is an essential trace element in the human body that is extensively distributed throughout various tissues. The appropriate level of copper is crucial to maintaining the life activities of the human body, and the excess and deficiency of copper can lead to various diseases. The copper levels in the human body are regulated by copper homeostasis, which maintains appropriate levels of copper in tissues and cells by controlling its absorption, transport, and storage. Cuproptosis is a distinct form of cell death induced by the excessive accumulation of intracellular copper. Copper homeostasis and cuproptosis has recently elicited increased attention in the realm of human health. Cuproptosis has emerged as a promising avenue for cancer therapy. Studies concerning osteoarticular diseases have elucidated the intricate interplay among copper homeostasis, cuproptosis, and the onset of osteoarticular diseases. Copper dysregulation and cuproptosis cause abnormal bone and cartilage metabolism, affecting related cells. This phenomenon assumes a critical role in the pathophysiological processes underpinning various osteoarticular diseases, with implications for inflammatory and immune responses. While early Cu-modulating agents have shown promise in clinical settings, additional research and advancements are warranted to enhance their efficacy. In this review, we summarize the effects and potential mechanisms of copper homeostasis and cuproptosis on bone and cartilage, as well as their regulatory roles in the pathological mechanism of osteoarticular diseases (e.g., osteosarcoma (OS), osteoarthritis (OA), and rheumatoid arthritis (RA)). We also discuss the clinical-application prospects of copper-targeting strategy, which may provide new ideas for the diagnosis and treatment of osteoarticular diseases.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China
| | - Jiayi Luo
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China
| | - Cuijing Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Tomsk State University, Tomsk 634050, Russia
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China.
| |
Collapse
|
24
|
Zhou H, Zhang Y, Tian T, Wang B, Pan Y. Meta-analysis of the Relationship Between Zinc and Copper in Patients with Osteoarthritis. Biol Trace Elem Res 2024:10.1007/s12011-024-04197-2. [PMID: 38676877 DOI: 10.1007/s12011-024-04197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
This study aims to explore the relationship between osteoarthritis and the trace elements zinc and copper and to provide a theoretical basis for research on the related mechanisms for the prevention, diagnosis, and treatment of osteoarthritis. We searched all the literature indexed in Web Of Science, Embase, and PubMed as of January 10, 2024, summarized the zinc and copper detection indexes in patients with osteoarthritis, obtained clinical data through literature screening, quality assessment, and data extraction, and analyzed the data using Revman 5.4. A total of 13 papers were included in this study, totaling 7983 study subjects. These were divided into osteoarthritis and healthy control groups. The results from the meta-analysis showed that in patients with osteoarthritis, circulating copper levels, but not zinc levels, were significantly higher compared to healthy individuals. The level of copper in the blood of patients with osteoarthritis is significantly higher than that of healthy people.
Collapse
Affiliation(s)
- Haowei Zhou
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yuchen Zhang
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Tian Tian
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Bingqian Wang
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yalei Pan
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
- Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization By Shaanxi & Education Ministry State, Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Xianyang, 712083, China.
| |
Collapse
|
25
|
Abreu H, Lallukka M, Miola M, Spriano S, Vernè E, Raineri D, Leigheb M, Ronga M, Cappellano G, Chiocchetti A. Human T-Cell Responses to Metallic Ion-Doped Bioactive Glasses. Int J Mol Sci 2024; 25:4501. [PMID: 38674086 PMCID: PMC11050560 DOI: 10.3390/ijms25084501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Biomaterials are extensively used as replacements for damaged tissue with bioactive glasses standing out as bone substitutes for their intrinsic osteogenic properties. However, biomaterial implantation has the following risks: the development of implant-associated infections and adverse immune responses. Thus, incorporating metallic ions with known antimicrobial properties can prevent infection, but should also modulate the immune response. Therefore, we selected silver, copper and tellurium as doping for bioactive glasses and evaluated the immunophenotype and cytokine profile of human T-cells cultured on top of these discs. Results showed that silver significantly decreased cell viability, copper increased the T helper (Th)-1 cell percentage while decreasing that of Th17, while tellurium did not affect either cell viability or immune response, as evaluated via multiparametric flow cytometry. Multiplex cytokines assay showed that IL-5 levels were decreased in the copper-doped discs, compared with its undoped control, while IL-10 tended to be lower in the doped glass, compared with the control (plastic) while undoped condition showed lower expression of IL-13 and increased MCP-1 and MIP-1β secretion. Overall, we hypothesized that the Th1/Th17 shift, and specific cytokine expression indicated that T-cells might cross-activate other cell types, potentially macrophages and eosinophils, in response to the scaffolds.
Collapse
Affiliation(s)
- Hugo Abreu
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (H.A.); (D.R.); (M.L.); (M.R.); (A.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Mari Lallukka
- Applied Science and Technology Department, Politecnico di Torino, 10129 Torino, Italy; (M.L.); (M.M.); (S.S.); (E.V.)
| | - Marta Miola
- Applied Science and Technology Department, Politecnico di Torino, 10129 Torino, Italy; (M.L.); (M.M.); (S.S.); (E.V.)
| | - Silvia Spriano
- Applied Science and Technology Department, Politecnico di Torino, 10129 Torino, Italy; (M.L.); (M.M.); (S.S.); (E.V.)
| | - Enrica Vernè
- Applied Science and Technology Department, Politecnico di Torino, 10129 Torino, Italy; (M.L.); (M.M.); (S.S.); (E.V.)
| | - Davide Raineri
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (H.A.); (D.R.); (M.L.); (M.R.); (A.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Massimiliano Leigheb
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (H.A.); (D.R.); (M.L.); (M.R.); (A.C.)
- Orthopaedics and Traumatology Unit, “Maggiore della Carità” Hospital, 28100 Novara, Italy
| | - Mario Ronga
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (H.A.); (D.R.); (M.L.); (M.R.); (A.C.)
- Orthopaedics and Traumatology Unit, “Maggiore della Carità” Hospital, 28100 Novara, Italy
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (H.A.); (D.R.); (M.L.); (M.R.); (A.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (H.A.); (D.R.); (M.L.); (M.R.); (A.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
26
|
Hia EM, Jang SR, Maharjan B, Park J, Park CH. Cu-MSNs and ZnO nanoparticles incorporated poly(ethylene glycol) diacrylate/sodium alginate double network hydrogel for simultaneous enhancement of osteogenic differentiation. Colloids Surf B Biointerfaces 2024; 236:113804. [PMID: 38428209 DOI: 10.1016/j.colsurfb.2024.113804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/19/2024] [Accepted: 02/15/2024] [Indexed: 03/03/2024]
Abstract
In this study, a double network (DN) hydrogel was synthesized using poly(ethylene glycol) diacrylate (PEGDA) and sodium alginate (SA), incorporating copper-doped mesoporous silica nanospheres (Cu-MSNs) and zinc oxide nanoparticles (ZnO NPs). The blending of PEGDA and SA (PS) facilitates the double network and improves the less porous microstructure of pure PEGDA hydrogel. Furthermore, the incorporation of ZnO NPs and Cu-MSNs into the hydrogel network (PS@ZnO/Cu-MSNs) improved the mechanical properties of the hydrogel (Compressive strength = ⁓153 kPa and Young's modulus = ⁓ 1.66 kPa) when compared to PS hydrogel alone (Compressive strength = ⁓ 103 kPa and Young's modulus = ⁓ 0.95 kPa). In addition, the PS@ZnO/Cu-MSNs composite hydrogel showed antibacterial activities against Staphylococcus aureus and Escherichia coli. Importantly, the PS@ZnO/Cu-MSNs hydrogel demonstrated excellent biocompatibility, enhanced MC3T3-E1 cell adhesion, proliferation, and significant early-stage osteoblastic differentiation, as evidenced by increased alkaline phosphatase (ALP), and improved calcium mineralization, as evidenced by increased alizarin red staining (ARS) activities. These findings point to the possible use of the PS@ZnO/Cu-MSNs composite hydrogel in bone tissue regeneration.
Collapse
Affiliation(s)
- Esensil Man Hia
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea
| | - Se Rim Jang
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, the Republic of Korea
| | - Bikendra Maharjan
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea
| | - Jeesoo Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, the Republic of Korea.
| |
Collapse
|
27
|
Pan Q, Zhang P, Xue F, Zhang J, Fan Z, Chang Z, Liang Z, Zhou G, Ren W. Subcutaneously Engineered Decalcified Bone Matrix Xenografts Promote Bone Repair by Regulating the Immune Microenvironment, Prevascularization, and Stem Cell Homing. ACS Biomater Sci Eng 2024; 10:515-524. [PMID: 38150512 DOI: 10.1021/acsbiomaterials.3c01331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Immunoregulatory and vascularized microenvironments play an important role in bone regeneration; however, the precise regulation for vascularization and inflammatory reactions remains elusive during bone repair. In this study, by means of subcutaneous preimplantation, we successfully constructed demineralized bone matrix (DBM) grafts with immunoregulatory and vascularized microenvironments. According to the current results, at the early time points (days 1 and 3), subcutaneously implanted DBM grafts recruited a large number of pro-inflammatory M1 macrophages with positive expression of CD68 and iNOS, while at the later time points (days 7 and 14), these inflammatory cells gradually subsided, accompanying increased presence of anti-inflammatory M2 macrophages with positive expression of CD206 and Arg-1, indicating a gradually enhanced anti-inflammatory microenvironment. At the same time, the gradually increased angiogenesis was observed in the DBM grafts with implantation time. In addition, the positive cells of CD105, CD73, and CD90 were observed in the inner region of the DBM grafts, implying the homing of mesenchymal stem cells. The repair results of cranial bone defects in a rat model further confirmed that the subcutaneous DBM xenografts at 7 days significantly improved bone regeneration. In summary, we developed a simple and novel strategy for bone regeneration mediated by anti-inflammatory microenvironment, prevascularization, and endogenous stem cell homing.
Collapse
Affiliation(s)
- Qingqing Pan
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, China
| | - Pei Zhang
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, China
| | - Fei Xue
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, China
| | - Jingxuan Zhang
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhenlin Fan
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhanyu Chang
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhuo Liang
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wenjie Ren
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
28
|
Huang H, Qiang L, Fan M, Liu Y, Yang A, Chang D, Li J, Sun T, Wang Y, Guo R, Zhuang H, Li X, Guo T, Wang J, Tan H, Zheng P, Weng J. 3D-printed tri-element-doped hydroxyapatite/ polycaprolactone composite scaffolds with antibacterial potential for osteosarcoma therapy and bone regeneration. Bioact Mater 2024; 31:18-37. [PMID: 37593495 PMCID: PMC10432151 DOI: 10.1016/j.bioactmat.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 08/19/2023] Open
Abstract
The resection of malignant osteosarcoma often results in large segmental bone defects, and the residual cells can facilitate recurrence. Consequently, the treatment of osteosarcoma is a major challenge in clinical practice. The ideal goal of treatment for osteosarcoma is to eliminate it thoroughly, and repair the resultant bone defects as well as avoid bacterial infections. Herein, we fabricated a selenium/strontium/zinc-doped hydroxyapatite (Se/Sr/Zn-HA) powder by hydrothermal method, and then employed it with polycaprolactone (PCL) as ink to construct composite scaffolds through 3D printing, and finally introduced them in bone defect repair induced by malignant osteosarcoma. The resultant composite scaffolds integrated multiple functions involving anti-tumor, osteogenic, and antibacterial potentials, mainly attributed to the anti-tumor effects of SeO32-, osteogenic effects of Sr2+ and Zn2+, and antibacterial effects of SeO32- and Zn2+. In vitro studies confirmed that Se/Sr/Zn-HA leaching solution could induce apoptosis of osteosarcoma cells, differentiation of MSCs, and proliferation of MC3T3-E1 while showing excellent antibacterial properties. In vivo tests demonstrated that Se/Sr/Zn-HA could significantly suppress tumors after 8 days of injection, and the Se/Sr/Zn-HA-PCLs scaffold repaired femoral defects effectively after 3 months of implantation. Summarily, the Se/Sr/Zn-HA-PCLs composite scaffolds developed in this study were effective for tumor treatment, bone defect repair, and post-operative anti-infection, which provided a great potential to be a facile therapeutic material for osteosarcoma resection.
Collapse
Affiliation(s)
- Hao Huang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Lei Qiang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200011, PR China
| | - Minjie Fan
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Yihao Liu
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200011, PR China
| | - Anchun Yang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Dongbiao Chang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Jinsheng Li
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Tong Sun
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yiwei Wang
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Ruoyi Guo
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Hanjie Zhuang
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Xiangyu Li
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200011, PR China
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Tailin Guo
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200011, PR China
| | - Huan Tan
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Pengfei Zheng
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| |
Collapse
|
29
|
Qi L, Huang Y, Sun D, Liu Z, Jiang Y, Liu J, Wang J, Liu L, Feng G, Li Y, Zhang L. Guiding the Path to Healing: CuO 2 -Laden Nanocomposite Membrane for Diabetic Wound Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305100. [PMID: 37688343 DOI: 10.1002/smll.202305100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/11/2023] [Indexed: 09/10/2023]
Abstract
Diabetic chronic wounds pose significant clinical challenges due to their characteristic features of impaired extracellular matrix (ECM) function, diminished angiogenesis, chronic inflammation, and increased susceptibility to infection. To tackle these challenges and provide a comprehensive therapeutic approach for diabetic wounds, the first coaxial electrospun nanocomposite membrane is developed that incorporates multifunctional copper peroxide nanoparticles (n-CuO2 ). The membrane's nanofiber possesses a unique "core/sheath" structure consisting of n-CuO2 +PVP (Polyvinylpyrrolidone)/PCL (Polycaprolactone) composite sheath and a PCL core. When exposed to the wound's moist environment, PVP within the sheath gradually disintegrates, releasing the embedded n-CuO2 . Under a weakly acidic microenvironment (typically diabetic and infected wounds), n-CuO2 decomposes to release H2 O2 and Cu2+ ions and subsequently produce ·OH through chemodynamic reactions. This enables the anti-bacterial activity mediated by reactive oxygen species (ROS), suppressing the inflammation while enhancing angiogenesis. At the same time, the dissolution of PVP unveils unique nano-grooved surface patterns on the nanofibers, providing desirable cell-guiding function required for accelerated skin regeneration. Through meticulous material selection and design, this study pioneers the development of functional nanocomposites for multi-modal wound therapy, which holds great promise in guiding the path to healing for diabetic wounds.
Collapse
Affiliation(s)
- Lin Qi
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yong Huang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Dan Sun
- Advanced Composite Research Group (ACRG), School of Mechanical and Aerospace Engineering, Queens University Belfast, Belfast, BT9 5AH, UK
| | - Zheng Liu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yulin Jiang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Jiangshan Liu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Jing Wang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Limin Liu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Ganjun Feng
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yubao Li
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Li Zhang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
30
|
Jha SK, Kumar B, Paudel KR, Bandyopadhyay A. The application of bioglass to treat osteoarthritis. EXCLI JOURNAL 2023; 22:1232-1234. [PMID: 38234972 PMCID: PMC10792177 DOI: 10.17179/excli2023-6613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024]
Affiliation(s)
- Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India
| | - Bhupendra Kumar
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute and University of Technology Sydney, Sydney, 2007, Australia
| | - Amitabha Bandyopadhyay
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India
| |
Collapse
|
31
|
Cheng P, Gong S, Guo C, Kong P, Li C, Yang C, Zhang T, Peng J. Exploration of effective biomarkers and infiltrating Immune cells in Osteoarthritis based on bioinformatics analysis. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:242-254. [PMID: 37140355 DOI: 10.1080/21691401.2023.2185627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Osteoarthritis (OA) is a multi-factorial chronic joint disease mainly identified by synovial inflammation, cartilage damage, and degeneration. Our study applied bioinformatics analysis to uncover the immunity in OA and tried to explore the underlying immune-related molecular mechanism. First, OA-related gene-expression profiling data were retrieved from GEO database. Then, we analysed a series of datadata with using the xCell algorithm, GEO2R, enrichment analysis of SangerBox website, CytoHubba, ROC logistic regression and correlation analysis. Finally, Nine infiltrating immune cells with differential abundance between OA and normal samples were obtained. There were 42 IODEGs in OA, and their functions were associated with immune cells and corresponding biological processes. Moreover, 5 hub genes, including GREM1, NRP1, VEGFA, FYN and IL6R, were identified. Correlation analysis demonstrated that NRP1 was negatively associated with NKT cells, NRP1 and GREM1 were positively associated with aDC, VEGFA was positively associated with CD8+ naïve T cells, while VEGFA, FYN and IL6R were negatively associated with Macrophages M1. The 5 hub genes could be employed as effective diagnostic biomarkers for OA. In addition, they may participate in OA pathogenesis via interactions with infiltrating immune cells.
Collapse
Affiliation(s)
- Piaotao Cheng
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shouhang Gong
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Caopei Guo
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Kong
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chencheng Li
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chengbing Yang
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiachen Peng
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center, Zunyi Medical University & University of Rochester Medical Center, Zunyi, China
| |
Collapse
|
32
|
Ciaffaglione V, Rizzarelli E. Carnosine, Zinc and Copper: A Menage a Trois in Bone and Cartilage Protection. Int J Mol Sci 2023; 24:16209. [PMID: 38003398 PMCID: PMC10671046 DOI: 10.3390/ijms242216209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Dysregulated metal homeostasis is associated with many pathological conditions, including arthritic diseases. Osteoarthritis and rheumatoid arthritis are the two most prevalent disorders that damage the joints and lead to cartilage and bone destruction. Recent studies show that the levels of zinc (Zn) and copper (Cu) are generally altered in the serum of arthritis patients. Therefore, metal dyshomeostasis may reflect the contribution of these trace elements to the disease's pathogenesis and manifestations, suggesting their potential for prognosis and treatment. Carnosine (Car) also emerged as a biomarker in arthritis and exerts protective and osteogenic effects in arthritic joints. Notably, its zinc(II) complex, polaprezinc, has been recently proposed as a drug-repurposing candidate for bone fracture healing. On these bases, this review article aims to provide an overview of the beneficial roles of Cu and Zn in bone and cartilage health and their potential application in tissue engineering. The effects of Car and polaprezinc in promoting cartilage and bone regeneration are also discussed. We hypothesize that polaprezinc could exchange Zn for Cu, present in the culture media, due to its higher sequestering ability towards Cu. However, future studies should unveil the potential contribution of Cu in the beneficial effects of polaprezinc.
Collapse
Affiliation(s)
- Valeria Ciaffaglione
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
33
|
Li Q, Song H, Li S, Hu P, Zhang C, Zhang J, Feng Z, Kong D, Wang W, Huang P. Macrophage metabolism reprogramming EGCG-Cu coordination capsules delivered in polyzwitterionic hydrogel for burn wound healing and regeneration. Bioact Mater 2023; 29:251-264. [PMID: 37533477 PMCID: PMC10391721 DOI: 10.1016/j.bioactmat.2023.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023] Open
Abstract
Excessive reactive oxygen species (ROS) at severe burn injury sites may promote metabolic reprogramming of macrophages to induce a deteriorative and uncontrolled inflammation cycle, leading to delayed wound healing and regeneration. Here, a novel bioactive, anti-fouling, flexible polyzwitterionic hydrogel encapsulated with epigallocatechin gallate (EGCG)-copper (Cu) capsules (termed as EGCG-Cu@CBgel) is engineered for burn wound management, which is dedicated to synergistically exerting ROS-scavenging, immune metabolic regulation and pro-angiogenic effects. EGCG-Cu@CBgel can scavenge ROS to normalize intracellular redox homeostasis, effectively relieving oxidative damages and blocking proinflammatory signal transduction. Importantly, EGCG-Cu can inhibit the activity of hexokinase and phosphofructokinase, alleviate accumulation of pyruvate and convert it to acetyl coenzyme A (CoA), whereby inhibits glycolysis and normalizes tricarboxylic acid (TCA) cycle. Additionally, metabolic reprogramming of macrophages by EGCG-Cu downregulates M1-type polarization and the expression of proinflammatory cytokines both in vitro and in vivo. Meanwhile, copper ions (Cu2+) released from the hydrogel facilitate angiogenesis. EGCG-Cu@CBgel significantly accelerates the healing of severe burn wound via promoting wound closure, weakening tissue-damaging inflammatory responses and enhancing the remodeling of pathological structure. Overall, this study demonstrates the great potential of bioactive hydrogel dressing in treating burn wounds without unnecessary secondary damage to newly formed skin, and highlights the importance of immunometabolism modulation in tissue repair and regeneration.
Collapse
Affiliation(s)
- Qinghua Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Huijuan Song
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Shuangyang Li
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Pengbo Hu
- Emergency Department of Binzhou Medical University Hospital, Binzhou, Shandong Province, 256600, China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Ju Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
34
|
Zhao X, Hu J, Nie J, Chen D, Qin G, Zhang E. Immunomodulatory effect of Ti-Cu alloy by surface nanostructure synergistic with Cu 2+ release. Colloids Surf B Biointerfaces 2023; 231:113586. [PMID: 37837688 DOI: 10.1016/j.colsurfb.2023.113586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/26/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
The inflammatory response induced by implant/macrophage interaction has been considered to be one of the vital factors in determining the success of implantation. In this study, TiCuNxOy coating with an immunomodulatory strategy was proposed for the first time, using nanostructured TiCuNxOy coating synthesized on Ti-Cu alloy by oxygen and nitrogen plasma-based surface modification. It was found that TiCuNxOy coating inhibited macrophage proliferation but stimulated macrophage preferential activation and presented an elongated morphology due to the surface nanostructure. The most encouraging discovery was that TiCuNxOy coating promoted the initial pro-inflammatory response of macrophages and then accelerated the M1-to-M2 transition of macrophages via a synergistic effect of fast-to-slow Cu2+ release and surface nanostructure, which was considered to contribute to initial infection elimination and tissue healing. As expected, TiCuNxOy coating released desirable Cu2+ and generated a favorable immune response that facilitated HUVEC recruitment to the coating, and accelerated proliferation, VEGF secretion and NO production of HUVECs. On the other hand, it is satisfying that TiCuNxOy coating maintained perfect long-term antibacterial activity (≥99.9%), mainly relying on Cu2O/CuO contact sterilization. These results indicated that TiCuNxOy coating might offer novel insights into the creation of a surface with immunomodulatory effects and long-term bactericidal potential for cardiovascular applications.
Collapse
Affiliation(s)
- Xiaotong Zhao
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Jiali Hu
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Jingjun Nie
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China.
| | - Gaowu Qin
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; Research Center for Metallic Wires, Northeastern University, Shenyang 110819, China
| | - Erlin Zhang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; Research Center for Metallic Wires, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
35
|
Gao S, Li J, Lei Q, Chen Y, Huang H, Yan F, Xiao L, Zhang T, Wang L, Wei R, Hu C. Calcium sulfate-Cu 2+ delivery system improves 3D-Printed calcium silicate artificial bone to repair large bone defects. Front Bioeng Biotechnol 2023; 11:1224557. [PMID: 37954016 PMCID: PMC10634439 DOI: 10.3389/fbioe.2023.1224557] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/25/2023] [Indexed: 11/14/2023] Open
Abstract
There are still limitations in artificial bone materials used in clinical practice, such as difficulty in repairing large bone defects, the mismatch between the degradation rate and tissue growth, difficulty in vascularization, an inability to address bone defects of various shapes, and risk of infection. To solve these problems, our group designed stereolithography (SLA) 3D-printed calcium silicate artificial bone improved by a calcium sulfate-Cu2+ delivery system. SLA technology endows the scaffold with a three-dimensional tunnel structure to induce cell migration to the center of the bone defect. The calcium sulfate-Cu2+ delivery system was introduced to enhance the osteogenic activity of calcium silicate. Rapid degradation of calcium sulfate (CS) induces early osteogenesis in the three-dimensional tunnel structure. Calcium silicate (CSi) which degrades slowly provides mechanical support and promotes bone formation in bone defect sites for a long time. The gradient degradation of these two components is perfectly matched to the rate of repair in large bone defects. On the other hand, the calcium sulfate delivery system can regularly release Cu2+ in the temporal and spatial dimensions, exerting a long-lasting antimicrobial effect and promoting vascular growth. This powerful 3D-printed calcium silicate artificial bone which has rich osteogenic activity is a promising material for treating large bone defects and has excellent potential for clinical application.
Collapse
Affiliation(s)
- Shijie Gao
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiawen Li
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qingjian Lei
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Chen
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huayi Huang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Feifei Yan
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lingfei Xiao
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tie Zhang
- Wuhan QISIDA Technology Development Co., Ltd., Wuhan, Hubei, China
| | - Linlong Wang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Renxiong Wei
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chao Hu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
36
|
Xu N, Lu D, Qiang L, Liu Y, Yin D, Wang Z, Luo Y, Yang C, Ma Z, Ma H, Wang J. 3D-Printed Composite Bioceramic Scaffolds for Bone and Cartilage Integrated Regeneration. ACS OMEGA 2023; 8:37918-37926. [PMID: 37867636 PMCID: PMC10586016 DOI: 10.1021/acsomega.3c03284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/04/2023] [Indexed: 10/24/2023]
Abstract
Osteoarthritis may result in both cartilage and subchondral bone damage. It is a significant challenge to simultaneously repair cartilage due to the distinct biological properties between cartilage and bone. Here, strontium copper tetrasilicate/β-tricalcium phosphate (Wesselsite[SrCuSi4O10]/Ca3(PO4)2, WES-TCP) composite scaffolds with different WES contents (1, 2, and 4 wt %) were fabricated via a three-dimensional (3D) printing method for the osteochondral regeneration. The physicochemical properties and biological activities of the scaffolds were systematically investigated. 2WES-TCP (WES-TCP with 2 wt % WES) composite scaffolds not only improved the compressive strength but also enhanced the proliferation of both rabbit bone mesenchymal stem cells (rBMSCs) and chondrocytes, as well as their differentiation. The in vivo study further confirmed that WES-TCP scaffolds significantly promoted the regeneration of both bone and cartilage tissue in rabbit osteochondral defects compared with pure TCP scaffolds owing to the sustained and controlled release of bioactive ions (Si, Cu, and Sr) from bioactive scaffolds. These results show that 3D-printed WES-TCP scaffolds with bilineage bioactivities take full advantage of the bifunctional properties of bioceramics to reconstruct the complex osteochondral interface, which broadens the approach to engineering therapeutic platforms for biomedical applications.
Collapse
Affiliation(s)
- Nanjian Xu
- Department
of Spine Surgery, Ningbo Sixth Hospital, Ningbo, Zhejiang 32500, China
| | - Dezhi Lu
- Shanghai
Key Laboratory of Orthopaedic Implants, Department of Orthopaedic
Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- School of
Medicine, Shanghai University, Shanghai 200444, China
| | - Lei Qiang
- Shanghai
Key Laboratory of Orthopaedic Implants, Department of Orthopaedic
Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- School
of Materials Science and Engineering, Southwest
Jiaotong University, Chengdu 610031, China
| | - Yihao Liu
- Shanghai
Key Laboratory of Orthopaedic Implants, Department of Orthopaedic
Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Dalin Yin
- Zhejiang
University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Zhiyong Wang
- School
of Biomedical Engineering, Shenzhen University
Health Science Center, Shenzhen 518060, China
| | - Yongxiang Luo
- School
of Biomedical Engineering, Shenzhen University
Health Science Center, Shenzhen 518060, China
| | - Chen Yang
- Zhejiang
Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of
Sciences, Wenzhou 325000, China
| | - Zhenjiang Ma
- Shanghai
Key Laboratory of Orthopaedic Implants, Department of Orthopaedic
Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Hui Ma
- Shanghai
Key Laboratory of Orthopaedic Implants, Department of Orthopaedic
Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Renhe
Hospital, Baoshan District, Shanghai 201900, China
| | - Jinwu Wang
- Shanghai
Key Laboratory of Orthopaedic Implants, Department of Orthopaedic
Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
37
|
Bellia F, Lanza V, Naletova I, Tomasello B, Ciaffaglione V, Greco V, Sciuto S, Amico P, Inturri R, Vaccaro S, Campagna T, Attanasio F, Tabbì G, Rizzarelli E. Copper(II) Complexes with Carnosine Conjugates of Hyaluronic Acids at Different Dipeptide Loading Percentages Behave as Multiple SOD Mimics and Stimulate Nrf2 Translocation and Antioxidant Response in In Vitro Inflammatory Model. Antioxidants (Basel) 2023; 12:1632. [PMID: 37627627 PMCID: PMC10452038 DOI: 10.3390/antiox12081632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
A series of copper(II) complexes with the formula [Cu2+Hy(x)Car%] varying the molecular weight (MW) of Hyaluronic acid (Hy, x = 200 or 700 kDa) conjugated with carnosine (Car) present at different loading were synthesized and characterized via different spectroscopic techniques. The metal complexes behaved as Cu, Zn-superoxide dismutase (SOD1) mimics and showed some of the most efficient reaction rate values produced using a synthetic and water-soluble copper(II)-based SOD mimic reported to date. The increase in the percentage of Car moieties parallels the enhancement of the I50 value determined via the indirect method of Fridovich. The presence of the non-functionalized Hy OH groups favors the scavenger activity of the copper(II) complexes with HyCar, recalling similar behavior previously found for the copper(II) complexes with Car conjugated using β-cyclodextrin or trehalose. In keeping with the new abilities of SOD1 to activate protective agents against oxidative stress in rheumatoid arthritis and osteoarthritis diseases, Cu2+ interaction with HyCar promotes the nuclear translocation of erythroid 2-related factor that regulates the expressions of target genes, including Heme-Oxigenase-1, thus stimulating an antioxidant response in osteoblasts subjected to an inflammatory/oxidative insult.
Collapse
Affiliation(s)
- Francesco Bellia
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
| | - Valeria Lanza
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
| | - Irina Naletova
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Valeria Ciaffaglione
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
| | - Valentina Greco
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| | - Sebastiano Sciuto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| | - Pietro Amico
- Fidia Farmaceutici SpA, Contrada Pizzuta, 96017 Noto, Italy; (P.A.); (R.I.); (S.V.)
| | - Rosanna Inturri
- Fidia Farmaceutici SpA, Contrada Pizzuta, 96017 Noto, Italy; (P.A.); (R.I.); (S.V.)
| | - Susanna Vaccaro
- Fidia Farmaceutici SpA, Contrada Pizzuta, 96017 Noto, Italy; (P.A.); (R.I.); (S.V.)
| | - Tiziana Campagna
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
| | - Francesco Attanasio
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
| | - Giovanni Tabbì
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| |
Collapse
|
38
|
Wang P, Gong Y, Zhou G, Ren W, Wang X. Biodegradable Implants for Internal Fixation of Fractures and Accelerated Bone Regeneration. ACS OMEGA 2023; 8:27920-27931. [PMID: 37576626 PMCID: PMC10413843 DOI: 10.1021/acsomega.3c02727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023]
Abstract
Bone fractures have always been a burden to patients due to their common occurrence and severe complications. Traditionally, operative treatments have been widely used in the clinic for implanting, despite the fact that they can only achieve bone fixation with limited stability and pose no effect on promoting tissue growth. In addition, the nondegradable implants usually need a secondary surgery for implant removal, otherwise they may block the regeneration of bones resulting in bone nonunion. To overcome the low degradability of implants and avoid multiple surgeries, tissue engineers have investigated various biodegradable materials for bone regeneration, whereas the significance of stability of long-term bone fixation tends to be neglected during this process. Combining the traditional orthopedic implantation surgeries and emerging tissue engineering, we believe that both bone fixation and bone regeneration are indispensable factors for a successful bone repair. Herein, we define such a novel idea as bone regenerative fixation (BRF), which should be the main future development trend of biodegradable materials.
Collapse
Affiliation(s)
- Pei Wang
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yan Gong
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guangdong Zhou
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Institute
of Regenerative Medicine and Orthopedics, Institutes of Health Central
Plain, Xinxiang Medical University, Henan 453003, China
| | - Wenjie Ren
- Institute
of Regenerative Medicine and Orthopedics, Institutes of Health Central
Plain, Xinxiang Medical University, Henan 453003, China
| | - Xiansong Wang
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Institute
of Regenerative Medicine and Orthopedics, Institutes of Health Central
Plain, Xinxiang Medical University, Henan 453003, China
| |
Collapse
|
39
|
Fang W, Yang M, Liu M, Jin Y, Wang Y, Yang R, Wang Y, Zhang K, Fu Q. Review on Additives in Hydrogels for 3D Bioprinting of Regenerative Medicine: From Mechanism to Methodology. Pharmaceutics 2023; 15:1700. [PMID: 37376148 PMCID: PMC10302687 DOI: 10.3390/pharmaceutics15061700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The regeneration of biological tissues in medicine is challenging, and 3D bioprinting offers an innovative way to create functional multicellular tissues. One common way in bioprinting is bioink, which is one type of the cell-loaded hydrogel. For clinical application, however, the bioprinting still suffers from satisfactory performance, e.g., in vascularization, effective antibacterial, immunomodulation, and regulation of collagen deposition. Many studies incorporated different bioactive materials into the 3D-printed scaffolds to optimize the bioprinting. Here, we reviewed a variety of additives added to the 3D bioprinting hydrogel. The underlying mechanisms and methodology for biological regeneration are important and will provide a useful basis for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kaile Zhang
- Department of Urology, Affiliated Sixth People’s Hospital, Shanghai Jiaotong University, No. 600 Yi-Shan Road, Shanghai 200233, China; (W.F.); (M.Y.)
| | - Qiang Fu
- Department of Urology, Affiliated Sixth People’s Hospital, Shanghai Jiaotong University, No. 600 Yi-Shan Road, Shanghai 200233, China; (W.F.); (M.Y.)
| |
Collapse
|
40
|
Zhang L, Niu W, Lin Y, Ma J, Leng T, Cheng W, Wang Y, Wang M, Ning J, Yang S, Lei B. Multifunctional antibacterial bioactive nanoglass hydrogel for normal and MRSA infected wound repair. J Nanobiotechnology 2023; 21:162. [PMID: 37211601 DOI: 10.1186/s12951-023-01929-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023] Open
Abstract
Large-scale skin damage brings potential risk to patients, such as imbalance of skin homeostasis, inflammation, fluid loss and bacterial infection. Moreover, multidrug resistant bacteria (MDRB) infection is still a great challenge for skin damage repair. Herein, we developed an injectable self-healing bioactive nanoglass hydrogel (FABA) with robust antibacterial and anti-inflammatory ability for normal and Methicillin-resistant Staphylococcus aureus (MRSA) infected skin wound repair. FABA hydrogel was fabricated facilely by the self-crosslinking of F127-CHO (FA) and alendronate sodium (AL)-decorated Si-Ca-Cu nanoglass (BA). FABA hydrogel could significantly inhibit the growth of Staphylococcus aureus, Escherichia coli and MRSA in vitro, while showing good cytocompatibility and hemocompatibility. In addition, FABA hydrogel could inhibit the expression of proinflammatory factor TNF-α and enhance the expression of anti-inflammatory factor IL-4/ IL-10. Based on its versatility, FABA hydrogel could complete wound closure efficiently (75% at day 3 for normal wound, 70% at day 3 for MRSA wound), which was almost 3 times higher than control wound, which was related with the decrease of inflammatory factor in early wound. This work suggested that FABA hydrogel could be a promising dressing for acute and MRSA-infected wound repair.
Collapse
Affiliation(s)
- Long Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Wen Niu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yuyao Lin
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Junping Ma
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Tongtong Leng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Wei Cheng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yidan Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Min Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710068, China
| | - Jingya Ning
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
41
|
Li S, Zhang L, Liu C, Kim J, Su K, Chen T, Zhao L, Lu X, Zhang H, Cui Y, Cui X, Yuan F, Pan H. Spontaneous immunomodulation and regulation of angiogenesis and osteogenesis by Sr/Cu-borosilicate glass (BSG) bone cement to repair critical bone defects. Bioact Mater 2023; 23:101-117. [DOI: 10.1016/j.bioactmat.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
|
42
|
Tu B, Fang R, Zhu Z, Chen G, Peng C, Ning R. Comprehensive analysis of arachidonic acid metabolism-related genes in diagnosis and synovial immune in osteoarthritis: based on bulk and single-cell RNA sequencing data. Inflamm Res 2023; 72:955-970. [PMID: 36995411 DOI: 10.1007/s00011-023-01720-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is one of degenerative-related arthritis, which can be aggravated by low-grade synovitis. It is known that arachidonic acid (AA) dysmetabolism brings OA synovitis. However, the impact of synovial AA metabolism pathway (AMP) related genes on OA remains uncovered. METHODS Here, we conducted a comprehensive analysis to explore the impact of AA metabolism genes in OA synovium. We obtained transcriptome expression profiles from three raw datasets related to OA synovium (GSE12021, GSE29746, GSE55235) and identified the hub genes of AA metabolism pathways (AMP) in OA synovium. An OA occurrence diagnostic model was constructed and validated based on the identified hub genes. Then, we explored the correlation between hub gene expression and the immune-related module using CIBERSORT and MCP-counter analysis. The unsupervised consensus clustering analysis and weighted correlation network analysis (WGCNA) were utilized to identify robust clusters of identified genes in each cohort. Moreover, the interaction between the hub genes of AMP and immune cells was elucidated through single-cell RNA (scRNA) analysis by scRNA sequencing data from GSE152815. RESULTS We found that the expression of AMP-related genes was up-regulated in OA synovium, and seven hub genes (LTC4S, PTGS2, PTGS1, MAPKAPK2, CBR1, PTGDS, and CYP2U1) were identified. The diagnostic model that combined the identified hub genes showed great clinical validity in diagnosing OA (AUC = 0.979). Moreover, significant associations were noticed between the hub genes' expression, immune cell infiltration, and inflammatory cytokine levels. The 30 OA patients were randomized and clustered into three groups using WGCNA analysis based on the hub genes, and diverse immune status was found in different clusters. Of interest, older patients were more likely to be classified into a cluster with higher levels of inflammatory cytokines IL-6 and less infiltration of immune cells. Based on the scRNA-sequencing data, we found that the hub genes had relatively higher expression in macrophages and B cells than other immune cells. Moreover, inflammation-related pathways were significantly enriched in macrophages. CONCLUSION These results suggest that AMP-related genes are closely involved in alterations of OA synovial inflammation. The transcriptional level of hub genes could serve as a potential diagnostic marker for OA.
Collapse
Affiliation(s)
- Bizhi Tu
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, 390 Huaihe Road, Hefei, 230061, Anhui, China
| | - Run Fang
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, 390 Huaihe Road, Hefei, 230061, Anhui, China
| | - Zheng Zhu
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, 390 Huaihe Road, Hefei, 230061, Anhui, China
| | - Guang Chen
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, 390 Huaihe Road, Hefei, 230061, Anhui, China
| | - Cheng Peng
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, 390 Huaihe Road, Hefei, 230061, Anhui, China
| | - Rende Ning
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, 390 Huaihe Road, Hefei, 230061, Anhui, China.
| |
Collapse
|
43
|
Ji X, Du W, Che W, Wang L, Zhao L. Apigenin Inhibits the Progression of Osteoarthritis by Mediating Macrophage Polarization. Molecules 2023; 28:molecules28072915. [PMID: 37049677 PMCID: PMC10095825 DOI: 10.3390/molecules28072915] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
OBJECTIVE The overall purpose of this study was to investigate the mechanism of macrophage polarization on chondrocyte injury in osteoarthritis and the protective effect of apigenin on chondrocytes in osteoarthritis. METHOD Primary chondrocytes were isolated from the knee cartilage of three-day-old mice, and cells positive for Alsine blue staining and type II collagen immunocytochemical staining were identified and used in followup experiments. Transwell coculture was performed. Chondrocytes were inoculated in the inferior compartment, and macrophages were inoculated in the upper compartment. The experimental groups were the N group, LPS group, and LPS+ apigenin group. The effect of macrophage polarization on chondrocyte inflammation and the protective effect of apigenin on chondrocytes were verified by the drug administration. Real-time quantitative PCR (qPCR) and Western blot were used to detect the expression of RNA and protein. Experimental OA was induced by modified Hulth surgery in mice. Modified Hulth surgery was performed on the mouse's right knee to induce experimental osteoarthritis in mice, with the nonoperative right knee serving as an ipsilateral control. The mice were randomly assigned to three groups (six mice per group): the sham group, the modified Hulth group, and the modified Hulth + apigenin group. Animals were given gavage for four weeks. The protective effect of apigenin on articular cartilage was verified by histological staining and immunohistochemical analysis. RESULTS Histological staining showed that apigenin had a protective effect on cartilage degeneration induced by modified Hulth surgery. The PCR results showed that apigenin significantly reduced the expression levels of IL-1, IL-6, MMP3, and MMP13 in the articular cartilage of OA mice, and it had a protective effect on articular cartilage. Apigenin reduced the levels of IL-1, IL-6, TNF-α, and IL-12 in macrophages and increased the levels of MG-L1, MG-L2, ARG-1, and IL-10, which can inhibit the M1 polarization of macrophages and promote M2 polarization. In the coculture system, apigenin decreased the protein levels of TRPM7, P-mTOR, BAX, and c-caspase3 in macrophages, while significantly increasing the protein levels of Bcl2. The levels of IL-1, IL-6, MMP13, TNF-α, P38, JNK, and ERK phosphorylation were reduced in chondrocytes. CONCLUSION Apigenin alleviates cartilage injury in OA mice induced by modified Hulth. Apigenin inhibits chondrocyte inflammation through the MAPK pathway. Apigenin alleviates macrophage-polarization-induced inflammatory response and chondrocyte apoptosis in the macrophage-chondrocyte coculture system through the TRPM7-mTOR pathway.
Collapse
Affiliation(s)
- Xueyan Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Wei Du
- Department of Pharmacy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
| | - Wenqing Che
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Liping Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lu Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
44
|
Altunbek M, Afghah F, Caliskan OS, Yoo JJ, Koc B. Design and bioprinting for tissue interfaces. Biofabrication 2023; 15. [PMID: 36716498 DOI: 10.1088/1758-5090/acb73d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Tissue interfaces include complex gradient structures formed by transitioning of biochemical and mechanical properties in micro-scale. This characteristic allows the communication and synchronistic functioning of two adjacent but distinct tissues. It is particularly challenging to restore the function of these complex structures by transplantation of scaffolds exclusively produced by conventional tissue engineering methods. Three-dimensional (3D) bioprinting technology has opened an unprecedented approach for precise and graded patterning of chemical, biological and mechanical cues in a single construct mimicking natural tissue interfaces. This paper reviews and highlights biochemical and biomechanical design for 3D bioprinting of various tissue interfaces, including cartilage-bone, muscle-tendon, tendon/ligament-bone, skin, and neuro-vascular/muscular interfaces. Future directions and translational challenges are also provided at the end of the paper.
Collapse
Affiliation(s)
- Mine Altunbek
- Sabanci Nanotechnology Research and Application Center, Istanbul 34956, Turkey.,Sabanci University Faculty of Engineering and Natural Sciences, Istanbul 34956, Turkey
| | - Ferdows Afghah
- Sabanci Nanotechnology Research and Application Center, Istanbul 34956, Turkey.,Sabanci University Faculty of Engineering and Natural Sciences, Istanbul 34956, Turkey
| | - Ozum Sehnaz Caliskan
- Sabanci Nanotechnology Research and Application Center, Istanbul 34956, Turkey.,Sabanci University Faculty of Engineering and Natural Sciences, Istanbul 34956, Turkey
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, NC 27157, United States of America
| | - Bahattin Koc
- Sabanci Nanotechnology Research and Application Center, Istanbul 34956, Turkey.,Sabanci University Faculty of Engineering and Natural Sciences, Istanbul 34956, Turkey
| |
Collapse
|
45
|
Wen J, Cai D, Gao W, He R, Li Y, Zhou Y, Klein T, Xiao L, Xiao Y. Osteoimmunomodulatory Nanoparticles for Bone Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040692. [PMID: 36839060 PMCID: PMC9962115 DOI: 10.3390/nano13040692] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 05/27/2023]
Abstract
Treatment of large bone fractures remains a challenge for orthopedists. Bone regeneration is a complex process that includes skeletal cells such as osteoblasts, osteoclasts, and immune cells to regulate bone formation and resorption. Osteoimmunology, studying this complicated process, has recently been used to develop biomaterials for advanced bone regeneration. Ideally, a biomaterial shall enable a timely switch from early stage inflammatory (to recruit osteogenic progenitor cells) to later-stage anti-inflammatory (to promote differentiation and terminal osteogenic mineralization and model the microstructure of bone tissue) in immune cells, especially the M1-to-M2 phenotype switch in macrophage populations, for bone regeneration. Nanoparticle (NP)-based advanced drug delivery systems can enable the controlled release of therapeutic reagents and the delivery of therapeutics into specific cell types, thereby benefiting bone regeneration through osteoimmunomodulation. In this review, we briefly describe the significance of osteoimmunology in bone regeneration, the advancement of NP-based approaches for bone regeneration, and the application of NPs in macrophage-targeting drug delivery for advanced osteoimmunomodulation.
Collapse
Affiliation(s)
- Jingyi Wen
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Donglin Cai
- School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
| | - Wendong Gao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Ruiying He
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430061, China
| | - Yulin Li
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200231, China
| | - Yinghong Zhou
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Travis Klein
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Lan Xiao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Yin Xiao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia
- School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
46
|
Frade BB, Dias RB, Gemini Piperni S, Bonfim DC. The role of macrophages in fracture healing: a narrative review of the recent updates and therapeutic perspectives. Stem Cell Investig 2023; 10:4. [PMID: 36817259 PMCID: PMC9936163 DOI: 10.21037/sci-2022-038] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/10/2023] [Indexed: 02/10/2023]
Abstract
Objective This review addresses the latest advances in research on the role of macrophages in fracture healing, exploring their relationship with failures in bone consolidation and the perspectives for the development of advanced and innovative therapies to promote bone regeneration. Background The bone can fully restore its form and function after a fracture. However, the regenerative process of fracture healing is complex and is influenced by several factors, including macrophage activity. These cells have been found in the fracture site at all stages of bone regeneration, and their general depletion or the knockdown of receptors that mediate their differentiation, polarization, and/or function result in impaired fracture healing. Methods The literature search was carried out in the PubMed database, using combinations of the keywords "macrophage", "fracture healing, "bone regeneration", and "bone repair". Articles published within the last years (2017-2022) reporting evidence from in vivo long bone fracture healing experiments were included. Conclusions Studies published in the last five years on the role of macrophages in fracture healing strengthened the idea that what appears to be essential when it comes to a successful consolidation is the right balance between the M1/M2 populations, which have different but complementary roles in the process. These findings opened promising new avenues for the development of several macrophage-targeted therapies, including the administration of molecules and/or biomaterials intended to regulate macrophage differentiation and polarization, the local transplantation of macrophage precursors, and the use of exosomes to deliver signaling molecules that influence macrophage activities. However, more research is still warranted to better understand the diversity of macrophage phenotypes and their specific roles in each step of fracture healing and to decipher the key molecular mechanisms involved in the in vivo crosstalk between macrophages and other microenvironmental cell types, such as endothelial and skeletal stem/progenitor cells.
Collapse
Affiliation(s)
- Bianca Braga Frade
- Laboratory of Stem Cells and Bone Regeneration, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil;,Postgraduation Program in Biological Sciences-Biophysics, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rhayra Braga Dias
- Laboratory of Stem Cells and Bone Regeneration, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil;,Postgraduation Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sara Gemini Piperni
- Laboratory of Biotechnology, Bioengineering and Nanostructured Biomaterials, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle Cabral Bonfim
- Laboratory of Stem Cells and Bone Regeneration, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Guo ZX, Zhang Z, Yan JF, Xu HQ, Wang SY, Ye T, Han XX, Wang WR, Wang Y, Gao JL, Niu LN, Chang J, Jiao K. A biomaterial-based therapy using a sodium hyaluronate/bioglass composite hydrogel for the treatment of oral submucous fibrosis. Acta Biomater 2023; 157:639-654. [PMID: 36509401 DOI: 10.1016/j.actbio.2022.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Oral submucous fibrosis (OSF) is a chronic, inflammatory and potentially malignant oral disorder. Its pathophysiology is extremely complex, including excessive collagen deposition, massive inflammatory infiltration, and capillary atrophy. However, the existing clinical treatment methods do not fully take into account all the pathophysiological processes of OSF, so they are generally low effective and have many side effects. In the present study, we developed an injectable sodium hyaluronate/45S5 bioglass composite hydrogel (BG/HA), which significantly relieved mucosal pallor and restricted mouth opening in OSF rats without any obvious side effects. The core mechanism of BG/HA in the treatment of OSF is the release of biologically active silicate ions, which inhibit collagen deposition and inflammation, and promote angiogenesis and epithelial regeneration. Most interestingly, silicate ions can overall regulate the physiological environment of OSF by down-regulating α-smooth muscle actin (α-SMA) and CD68 and up-regulating CD31 expression, as well as regulating the expression of pro-fibrotic factors [transforming growth factor-β1 (TGF-β1), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α) and tissue inhibitors of metalloproteinase-1 (TIMP-1)] and anti-fibrotic factors [interleukin-1β (IL-1β)] in macrophage. In conclusion, our study shows that BG/HA has great potential in the clinical treatment of OSF, which provides an important theoretical basis for the subsequent development of new anti-fibrotic clinical preparations. STATEMENT OF SIGNIFICANCE: : Oral submucous fibrosis (OSF) is a chronic, inflammatory and potentially malignant mucosal disease with significant impact on the quality of patients' life. However, the existing clinical treatments have limited efficacy and many side effects. There is an urgent need for development of specific drugs for OSF treatment. In the present study, bioglass (BG) composited with sodium hyaluronate solution (HA) was used to treat OSF in an arecoline-induced rat model. BG/HA can significantly inhibit collagen deposition, regulate inflammatory response, promote angiogenesis and repair damaged mucosal epithelial cells, and thereby mitigate the development of fibrosis in vivo.
Collapse
Affiliation(s)
- Zhen-Xing Guo
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhaowenbin Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Jian-Fei Yan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hao-Qing Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shu-Yan Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Tao Ye
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiao-Xiao Han
- The College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China; State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wan-Rong Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yue Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jia-Lu Gao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Jiang Chang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Kai Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
48
|
Cao Z, Wang H, Chen J, Zhang Y, Mo Q, Zhang P, Wang M, Liu H, Bao X, Sun Y, Zhang W, Yao Q. Silk-based hydrogel incorporated with metal-organic framework nanozymes for enhanced osteochondral regeneration. Bioact Mater 2023; 20:221-242. [PMID: 35702612 PMCID: PMC9163388 DOI: 10.1016/j.bioactmat.2022.05.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Osteochondral defects (OCD) cannot be efficiently repaired due to the unique physical architecture and the pathological microenvironment including enhanced oxidative stress and inflammation. Conventional strategies, such as the control of implant microstructure or the introduction of growth factors, have limited functions failing to manage these complex environments. Here we developed a multifunctional silk-based hydrogel incorporated with metal-organic framework nanozymes (CuTA@SF) to provide a suitable microenvironment for enhanced OCD regeneration. The incorporation of CuTA nanozymes endowed the SF hydrogel with a uniform microstructure and elevated hydrophilicity. In vitro cultivation of mesenchymal stem cells (MSCs) and chondrocytes showed that CuTA@SF hydrogel accelerated cell proliferation and enhanced cell viability, as well as had antioxidant and antibacterial properties. Under the inflammatory environment with the stimulation of IL-1β, CuTA@SF hydrogel still possessed the potential to promote MSC osteogenesis and deposition of cartilage-specific extracellular matrix (ECM). The proteomics analysis further confirmed that CuTA@SF hydrogel promoted cell proliferation and ECM synthesis. In the full-thickness OCD model of rabbit, CuTA@SF hydrogel displayed successfully in situ OCD regeneration, as evidenced by micro-CT, histology (HE, S/O, and toluidine blue staining) and immunohistochemistry (Col I and aggrecan immunostaining). Therefore, CuTA@SF hydrogel is a promising biomaterial targeted at the regeneration of OCD. A multifunctional silk-based hydrogel incorporated with metal-organic framework nanozymes (CuTA@SF) was fabricated. CuTA@SF hydrogel has antioxidant, anti-inflammation and antibacterial capacities. Proteomics analysis confirmed that CuTA@SF hydrogel promoted cell proliferation and ECM synthesis. CuTA@SF hydrogel displayed successful osteochondral regeneration in vivo.
Collapse
Affiliation(s)
- Zhicheng Cao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Hongmei Wang
- School of Medicine, Southeast University, 210009, Nanjing, China
- Department of Pharmaceutical Sciences, Binzhou Medical University, 264003, Yantai, Shandong, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Yanan Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Qingyun Mo
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Po Zhang
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Mingyue Wang
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Haoyang Liu
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Xueyang Bao
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Yuzhi Sun
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
- Corresponding author. School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
- Corresponding author. Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China.
| |
Collapse
|
49
|
Zhou Z, Zhong J, Zhang J, Yang J, Leng X, Yao B, Wang X, Dong H. Comparative transcriptome analysis provides insight into the molecular targets and signaling pathways of deer TGF-1 regulating chondrocytes proliferation and differentiation. Mol Biol Rep 2023; 50:3155-3166. [PMID: 36696024 DOI: 10.1007/s11033-023-08265-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND Chondrocytes are the only cell components in the cartilage, which has the poor regeneration ability. Thus, repairing damaged cartilage remains a huge challenge. Sika deer antlers are mainly composed of cartilaginous tissues that have an astonishing capacity for repair and renewal. Our previous study has demonstrated the transforming growth factor β (TGF-β1) is considered to be a key molecule involved in rapid growth, with the strongest expression in the cartilage layer. However, it remains to be clarified whether deer TGF-β1 has significantly different function from other species such as mouse, and what is the molecular mechanism of regulating cartilage growth. METHODS Primary chondrocytes was collected from new born mouse rib cartilage. The effect of TGF-β1 on primary chondrocytes viability was elucidated by RNA sequencing (RNA-seq) technology combined with validation methods such as quantitative real-time polymerase chain reaction (qRT-PCR) and immunofluorescence assay (IFA). Differential expression genes were identified using the DEGseq package. RESULTS Our results demonstrated that the overexpression of deer TGF-β1 possibly promoted chondrocyte proliferation and extracellular matrix (ECM) synthesis, while simultaneously suppressing chondrocyte differentiation through regulating transcription factors, growth factors, ECM related genes, proliferation and differentiation marker genes, such as Comp, Fgfr3, Atf4, Stat1 etc., and signaling pathways such as the MAPK signaling pathway, inflammatory mediator regulation of TRP channels etc. In addition, by comparing the amino acid sequence and structures between the deer TGF-β1 and mouse TGF-β1, we found that deer TGF-β1 and mouse TGF-β1 proteins are mainly structurally different in arm domains, which is the main functional domain. Phenotypic identification results showed that deer TGF-β1 may has stronger function than mouse TGF-β1. CONCLUSION These results suggested that deer TGF-β1 has the ability to promote chondrogenesis by regulating chondrocyte proliferation, differentiation and ECM synthesis. This study provides insights into the molecular mechanisms underlying the effects of deer TGF-β1 on chondrocyte viability.
Collapse
Affiliation(s)
- Zhenwei Zhou
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China
| | - Jinghong Zhong
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China
| | - Jingcheng Zhang
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China
| | - Jie Yang
- College of traditional Chinese medicine, Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China
| | - Xiangyang Leng
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China
| | - Baojin Yao
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China
| | - Xukai Wang
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China.
| | - Haisi Dong
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China.
| |
Collapse
|
50
|
Yu X, Wang Y, Zhang M, Ma H, Feng C, Zhang B, Wang X, Ma B, Yao Q, Wu C. 3D printing of gear-inspired biomaterials: Immunomodulation and bone regeneration. Acta Biomater 2023; 156:222-233. [PMID: 36100177 DOI: 10.1016/j.actbio.2022.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 01/18/2023]
Abstract
It is of significance to construct the immunomodulatory and osteogenic microenvironment for three dimension (3D) regeneration of bone tissues. 3D scaffolds, with various chemical composition, macroporous structure and surface characteristics offer a beneficial microenvironment for bone tissue regeneration. However, there is a gap between the well-ordered surface microstructure of bioceramic scaffolds and immune microenvironment for bone regeneration. In this study, a gear-inspired 3D scaffold with well-ordered surface microstructure was successfully prepared through a modified extrusion-based 3D printing strategy for immunomodulation and bone regeneration. The prepared gear-inspired scaffolds could induce M2 phenotype polarization of macrophages and further promoted osteogenic differentiation of bone mesenchymal stem cells in vitro. The subsequent in vivo study demonstrated that the gear-inspired scaffolds were able to attenuate inflammation and further promote new bone formation. The study develops a facile strategy to construct well-ordered surface microstructure which plays a key role in 3D immunomodulatory and osteogenic microenvironment for bone tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Xiaopeng Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yufeng Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Meng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hongshi Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chun Feng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bingjun Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bing Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|