1
|
Tran TH, Le TH, Tran TTP. The Potential Effect of Endogenous Antimicrobial Peptides in Cancer Immunotherapy and Prevention. J Pept Sci 2025; 31:e3664. [PMID: 39716371 DOI: 10.1002/psc.3664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/07/2024] [Accepted: 11/24/2024] [Indexed: 12/25/2024]
Abstract
Antimicrobial peptides (AMPs) are crucial constituents of inherent immunity and serve as vital components of human host defense, playing a pivotal role in combating invading microbial pathogens. Beyond their antimicrobial functions, AMPs also exhibit various other biological activities including apoptosis induction, wound healing promotion, and immune modulation. These peptides are found in various exposed tissues or surfaces throughout the body, such as eyes, skin, mouth, ears, respiratory tract, lungs, digestive, and urinary system. Additionally, certain AMPs such as LL-37, HNP, and lactoferrin have shown potential as candidates for anticancer activity. Given the limited selectivity between normal and cancer cells exhibited by many current immunotherapeutic agents, the inherent properties of AMPs make them promising candidates for cancer treatment. Their abundance, bioavailability, safety profile, efficiency, and harmony with the host immune system position them as attractive tools in the fight against cancer. This review is aimed at exploring the potential anticancer properties of AMPs and elucidating their relationship with immunology and cancer immunotherapy.
Collapse
Affiliation(s)
- Tuan Hiep Tran
- Faculty of Pharmacy, Phenikaa University, Hanoi, Vietnam
| | - Thanh Huong Le
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thi Thu Phuong Tran
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| |
Collapse
|
2
|
Hosseini SA, Nasab NK, Kargozar S, Wang AZ. Advanced biomaterials and scaffolds for cancer immunotherapy. BIOMATERIALS FOR PRECISION CANCER MEDICINE 2025:377-424. [DOI: 10.1016/b978-0-323-85661-4.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Liu Y, Zhou F, Ali H, Lathia JD, Chen P. Immunotherapy for glioblastoma: current state, challenges, and future perspectives. Cell Mol Immunol 2024; 21:1354-1375. [PMID: 39406966 DOI: 10.1038/s41423-024-01226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive and lethal type of brain tumor in human adults. The standard of care offers minimal clinical benefit, and most GBM patients experience tumor recurrence after treatment. In recent years, significant advancements have been made in the development of novel immunotherapies or other therapeutic strategies that can overcome immunotherapy resistance in many advanced cancers. However, the benefit of immune-based treatments in GBM is limited because of the unique brain immune profiles, GBM cell heterogeneity, and immunosuppressive tumor microenvironment. In this review, we present a detailed overview of current immunotherapeutic strategies and discuss the challenges and potential molecular mechanisms underlying immunotherapy resistance in GBM. Furthermore, we provide an in-depth discussion regarding the strategies that can overcome immunotherapy resistance in GBM, which will likely require combination therapies.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Fei Zhou
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Heba Ali
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA
| | - Peiwen Chen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA.
| |
Collapse
|
4
|
Dhall A, Patiyal S, Raghava GPS. A hybrid method for discovering interferon-gamma inducing peptides in human and mouse. Sci Rep 2024; 14:26859. [PMID: 39501025 PMCID: PMC11538504 DOI: 10.1038/s41598-024-77957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Interferon-gamma (IFN-γ) is a versatile pleiotropic cytokine essential for both innate and adaptive immune responses. It exhibits both pro-inflammatory and anti-inflammatory properties, making it a promising therapeutic candidate for treating various infectious diseases and cancers. We present IFNepitope2, a host-specific technique to annotate IFN-γ inducing peptides, it is an updated version of IFNepitope introduced by Dhanda et al. In this study, dataset used for developing prediction method contain experimentally validated 25,492 and 7983 IFN-γ inducing peptides in human and mouse host, respectively. In initial phase, machine learning techniques have been exploited to develop classification model using wide range of peptide features. Further, to improve machine learning based models or alignment free models, we explore potential of similarity-based technique BLAST. Finally, a hybrid model has been developed that combine best machine learning based model with BLAST. In most of the case, models based on extra tree perform better than other machine learning techniques. In case of peptide features, compositional feature particularly dipeptide composition performs better than one-hot encoding or binary profile. Our best machine learning based models achieved AUROC 0.89 and 0.83 for human and mouse host, respectively. The hybrid model achieved the AUROC 0.90 and 0.85 for human and mouse host, respectively. All models have been evaluated on an independent/validation dataset not used for training or testing these models. Newly developed method performs better than existing method on independent dataset. The major objective of this study is to predict, design and scan IFN-γ inducing peptides, thus server/software have been developed ( https://webs.iiitd.edu.in/raghava/ifnepitope2/ ). This method is also available as standalone at https://github.com/raghavagps/ifnepitope2 and python package index at https://pypi.org/project/ifnepitope2/ .
Collapse
Affiliation(s)
- Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Phase III, (Near Govind Puri Metro Station), New Delhi, 110020, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Phase III, (Near Govind Puri Metro Station), New Delhi, 110020, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Phase III, (Near Govind Puri Metro Station), New Delhi, 110020, India.
| |
Collapse
|
5
|
Chen X, Zhao Z, Laster KV, Liu K, Dong Z. Advancements in therapeutic peptides: Shaping the future of cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189197. [PMID: 39413854 DOI: 10.1016/j.bbcan.2024.189197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
In the evolving landscape of cancer treatment, therapeutic peptides are assuming to play an increasingly vital role. Although the number of peptide drugs available for clinical cancer treatment is currently limited, extensive preclinical research is underway, presenting a promising trajectory for the future. The collaborative efforts of natural anti-cancer peptides (ACPs) and synthetic ACPs, propelled by advancements in molecular biology and peptide chemistry, are steering remarkable progress in this domain. We explores the intricate mechanisms underlying the anti-cancer effects of these peptides. The exploration of innovative strategies, including cancer immunotherapy and advanced drug delivery systems, is likely to contribute to the increasing presenceuse of peptide drugs in clinical cancer care. Furthermore, we delve into the potential implications and challenges associated with this anticipated shift, emphasizing the need for continued research and development to unlock the full therapeutic potential of peptide drugs in cancer treatment.
Collapse
Affiliation(s)
- Xiaojie Chen
- School of Basic Medical Sciences, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, China
| | - Zhiwei Zhao
- School of Basic Medical Sciences, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | | | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, China; Research Center of Basic Medicine Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, China; Research Center of Basic Medicine Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
6
|
Zhang X, Wu Y, Lin J, Lu S, Lu X, Cheng A, Chen H, Zhang W, Luan X. Insights into therapeutic peptides in the cancer-immunity cycle: Update and challenges. Acta Pharm Sin B 2024; 14:3818-3833. [PMID: 39309492 PMCID: PMC11413705 DOI: 10.1016/j.apsb.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/05/2024] [Accepted: 04/12/2024] [Indexed: 09/25/2024] Open
Abstract
Immunotherapies hold immense potential for achieving durable potency and long-term survival opportunities in cancer therapy. As vital biological mediators, peptides with high tissue penetration and superior selectivity offer significant promise for enhancing cancer immunotherapies (CITs). However, physicochemical peptide features such as conformation and stability pose challenges to their on-target efficacy. This review provides a comprehensive overview of recent advancements in therapeutic peptides targeting key steps of the cancer-immunity cycle (CIC), including tumor antigen presentation, immune cell regulation, and immune checkpoint signaling. Particular attention is given to the opportunities and challenges associated with these peptides in boosting CIC within the context of clinical progress. Furthermore, possible future developments in this field are also discussed to provide insights into emerging CITs with robust efficacy and safety profiles.
Collapse
Affiliation(s)
- Xiaokun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shengxin Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinchen Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Aoyu Cheng
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science &, Peking Union Medical College, Beijing 100193, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
7
|
Tobias J, Steinberger P, Wilkinson J, Klais G, Kundi M, Wiedermann U. SARS-CoV-2 Vaccines: The Advantage of Mucosal Vaccine Delivery and Local Immunity. Vaccines (Basel) 2024; 12:795. [PMID: 39066432 PMCID: PMC11281395 DOI: 10.3390/vaccines12070795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Immunity against respiratory pathogens is often short-term, and, consequently, there is an unmet need for the effective prevention of such infections. One such infectious disease is coronavirus disease 19 (COVID-19), which is caused by the novel Beta coronavirus SARS-CoV-2 that emerged around the end of 2019. The World Health Organization declared the illness a pandemic on 11 March 2020, and since then it has killed or sickened millions of people globally. The development of COVID-19 systemic vaccines, which impressively led to a significant reduction in disease severity, hospitalization, and mortality, contained the pandemic's expansion. However, these vaccines have not been able to stop the virus from spreading because of the restricted development of mucosal immunity. As a result, breakthrough infections have frequently occurred, and new strains of the virus have been emerging. Furthermore, SARS-CoV-2 will likely continue to circulate and, like the influenza virus, co-exist with humans. The upper respiratory tract and nasal cavity are the primary sites of SARS-CoV-2 infection and, thus, a mucosal/nasal vaccination to induce a mucosal response and stop the virus' transmission is warranted. In this review, we present the status of the systemic vaccines, both the approved mucosal vaccines and those under evaluation in clinical trials. Furthermore, we present our approach of a B-cell peptide-based vaccination applied by a prime-boost schedule to elicit both systemic and mucosal immunity.
Collapse
Affiliation(s)
- Joshua Tobias
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Joy Wilkinson
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gloria Klais
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Kundi
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, 1090 Vienna, Austria;
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
8
|
Dai J, Ashrafizadeh M, Aref AR, Sethi G, Ertas YN. Peptide-functionalized, -assembled and -loaded nanoparticles in cancer therapy. Drug Discov Today 2024; 29:103981. [PMID: 38614161 DOI: 10.1016/j.drudis.2024.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/20/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
The combination of peptides and nanoparticles in cancer therapy has shown synergistic results. Nanoparticle functionalization with peptides can increase their targeting ability towards tumor cells. In some cases, the peptides can develop self-assembled nanoparticles, in combination with drugs, for targeted cancer therapy. The peptides can be loaded into nanoparticles and can be delivered by other drugs for synergistic cancer removal. Multifunctional types of peptide-based nanoparticles, including pH- and redox-sensitive classes, have been introduced in cancer therapy. The tumor microenvironment remolds, and the acceleration of immunotherapy and vaccines can be provided by peptide nanoparticles. Moreover, the bioimaging and labeling of cancers can be mediated by peptide nanoparticles. Therefore, peptides can functionalize nanoparticles in targeted cancer therapy.
Collapse
Affiliation(s)
- Jingyuan Dai
- School of Computer Science and Information Systems, Northwest Missouri State University, Maryville, MO, USA
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Amir Reza Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey; Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
9
|
Lv K, Ma S, Liu L, Chen H, Huang Z, Zhu Z, Qi Y, Song W. Peptide nanovaccine conjugated via a retro-Diels-Alder reaction linker for overcoming the obstacle in lymph node penetration and eliciting robust cellular immunity. J Mater Chem B 2024; 12:5848-5860. [PMID: 38775048 DOI: 10.1039/d4tb00674g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Nanoparticles have been regarded as a promising vaccine adjuvant due to their innate immune potentiation and enhanced antigen transport. However, the inefficient infiltration into the lymph node (LN) paracortex of nanoparticles caused by subcapsular sinus (SCS) obstruction is the main challenge in further improvement of nanovaccine immune efficacy. Herein, we propose to overcome paracortex penetration by using nanovaccine to spontaneously and continuously release antigens after retention in the SCS. In detail, we utilized a spontaneous retro-Diels-Alder (r-D-A) reaction linker to connect poly{(2-methyl-2-oxazoline)80-co-[(2-butyl-2-oxazoline)15-r-(2-thioethyl-2-oxazoline)8]} (PMBOxSH) and peptides for the peptide nanovaccine construction. The r-D-A reaction linker can spontaneously break over time, allowing the nanovaccine to release free antigens and adjuvants upon reaching the LN, thereby facilitating the entry of released antigens and adjuvants into the interior of the LNs. We showed that the efficacy of the peptide nanovaccine constructed using this dynamic linker could be significantly improved, thus greatly enhancing the tumor inhibition efficacy in the B16-OVA model. This dynamic-covalent-chemistry-based vaccine strategy may inspire designing more efficient therapeutic vaccines, especially those that require eliciting high-amount T cell responses.
Collapse
Affiliation(s)
- Kuncheng Lv
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Sheng Ma
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Liping Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hongyu Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zichao Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhenyi Zhu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yibo Qi
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| |
Collapse
|
10
|
Liu Y, Niu R, Zhang X, Zhang B, Chen X, Guo J, Song S, Wang Y, Zhang H, Zhao Y. Metal-Organic Framework-Based Nanovaccine for Relieving Immunosuppressive Tumors via Hindering Efferocytosis of Macrophages and Promoting Pyroptosis and Cuproptosis of Cancer Cells. ACS NANO 2024; 18:12386-12400. [PMID: 38699808 DOI: 10.1021/acsnano.4c01518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Current cancer vaccines face challenges due to an immunosuppressive tumor microenvironment and their limited ability to produce an effective immune response. To address the above limitations, we develop a 3-(2-spiroadamantyl)-4-methoxy-4-(3-phosphoryloxy)-phenyl-1,2-dioxetane (alkaline phosphatase substrate) and XMD8-92 (extracellular signal-regulated kinase 5 inhibitor)-codelivered copper-tetrahydroxybenzoquinone (Cu-THBQ/AX) nanosized metal-organic framework to in situ-generate therapeutic vaccination. Once inside the early endosome, the alkaline phosphatase overexpressed in the tumor cells' membrane activates the in situ type I photodynamic effect of Cu-THBQ/AX for generating •O2-, and the Cu-THBQ/AX catalyzes O2 and H2O2 to •O2- and •OH via semiquinone radical catalysis and Fenton-like reactions. This surge of ROS in early endosomes triggers caspase-3-mediated proinflammatory pyroptosis via activating phospholipase C. Meanwhile, Cu-THBQ/AX can also induce the oligomerization of dihydrolipoamide S-acetyltransferase to trigger tumor cell cuproptosis. The production of •OH could also trigger the release of XMD8-92 for effectively inhibiting the efferocytosis of macrophages to convert immunosuppressive apoptosis of cancer cells into proinflammatory secondary necrosis. The simultaneous induction of pyroptosis, cuproptosis, and secondary necrosis effectively converts the tumor microenvironment from "cold" to "hot" conditions, making it an effective antigen pool. This transformation successfully activates the antitumor immune response, inhibiting tumor growth and metastasis.
Collapse
Affiliation(s)
- Yang Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Rui Niu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiaodong Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Bin Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiaokai Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jingjing Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
11
|
Song Y, Lei L, Cai X, Wei H, Yu CY. Immunomodulatory Peptides for Tumor Treatment. Adv Healthc Mater 2024:e2400512. [PMID: 38657003 DOI: 10.1002/adhm.202400512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/07/2024] [Indexed: 04/26/2024]
Abstract
Peptides exhibit various biological activities, including biorecognition, cell targeting, and tumor penetration, and can stimulate immune cells to elicit immune responses for tumor immunotherapy. Peptide self-assemblies and peptide-functionalized nanocarriers can reduce the effect of various biological barriers and the degradation by peptidases, enhancing the efficiency of peptide delivery and improving antitumor immune responses. To date, the design and development of peptides with various functionalities have been extensively reviewed for enhanced chemotherapy; however, peptide-mediated tumor immunotherapy using peptides acting on different immune cells, to the knowledge, has not yet been summarized. Thus, this work provides a review of this emerging subject of research, focusing on immunomodulatory anticancer peptides. This review introduces the role of peptides in the immunomodulation of innate and adaptive immune cells, followed by a link between peptides in the innate and adaptive immune systems. The peptides are discussed in detail, following a classification according to their effects on different innate and adaptive immune cells, as well as immune checkpoints. Subsequently, two delivery strategies for peptides as drugs are presented: peptide self-assemblies and peptide-functionalized nanocarriers. The concluding remarks regarding the challenges and potential solutions of peptides for tumor immunotherapy are presented.
Collapse
Affiliation(s)
- Yang Song
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Longtianyang Lei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xingyu Cai
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| |
Collapse
|
12
|
Yazdi M, Hasanzadeh Kafshgari M, Khademi Moghadam F, Zarezade V, Oellinger R, Khosravi M, Haas S, Hoch CC, Pockley AG, Wagner E, Wollenberg B, Multhoff G, Bashiri Dezfouli A. Crosstalk Between NK Cell Receptors and Tumor Membrane Hsp70-Derived Peptide: A Combined Computational and Experimental Study. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305998. [PMID: 38298098 PMCID: PMC11005703 DOI: 10.1002/advs.202305998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/19/2023] [Indexed: 02/02/2024]
Abstract
Natural killer (NK) cells are central components of the innate immunity system against cancers. Since tumor cells have evolved a series of mechanisms to escape from NK cells, developing methods for increasing the NK cell antitumor activity is of utmost importance. It is previously shown that an ex vivo stimulation of patient-derived NK cells with interleukin (IL)-2 and Hsp70-derived peptide TKD (TKDNNLLGRFELSG, aa450-461) results in a significant upregulation of activating receptors including CD94 and CD69 which triggers exhausted NK cells to target and kill malignant solid tumors expressing membrane Hsp70 (mHsp70). Considering that TKD binding to an activating receptor is the initial step in the cytolytic signaling cascade of NK cells, herein this interaction is studied by molecular docking and molecular dynamics simulation computational modeling. The in silico results showed a crucial role of the heterodimeric receptor CD94/NKG2A and CD94/NKG2C in the TKD interaction with NK cells. Antibody blocking and CRISPR/Cas9-mediated knockout studies verified the key function of CD94 in the TKD stimulation and activation of NK cells which is characterized by an increased cytotoxic capacity against mHsp70 positive tumor cells via enhanced production and release of lytic granules and pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Mina Yazdi
- Pharmaceutical BiotechnologyDepartment of PharmacyLudwig‐Maximilians‐Universität (LMU)81377MunichGermany
| | - Morteza Hasanzadeh Kafshgari
- Heinz‐Nixdorf‐Chair of Biomedical ElectronicsCampus Klinikum München rechts der IsarTranslaTUMTechnische Universität München81675MunichGermany
| | | | - Vahid Zarezade
- Behbahan Faculty of Medical SciencesBehbahan6361796819Iran
| | - Rupert Oellinger
- Institute of Molecular Oncology and Functional GenomicsSchool of MedicineTechnische Universität München81675MunichGermany
- Central Institute for Translational Cancer Research (TranslaTUM)School of MedicineTechnische Universität München81675MunichGermany
| | - Mohammad Khosravi
- Department of PathobiologyFaculty of Veterinary MedicineShahid Chamran University of AhvazAhvaz6135783151Iran
| | - Stefan Haas
- Department of Radiation OncologySchool of MedicineTechnische Universität München81675MunichGermany
- Department of OtorhinolaryngologySchool of MedicineTechnische Universität München81675MunichGermany
| | - Cosima C. Hoch
- Department of OtorhinolaryngologySchool of MedicineTechnische Universität München81675MunichGermany
| | - Alan Graham Pockley
- John van Geest Cancer Research CentreSchool of Science and TechnologyNottingham Trent UniversityNottinghamNG11 8NSUK
| | - Ernst Wagner
- Pharmaceutical BiotechnologyDepartment of PharmacyLudwig‐Maximilians‐Universität (LMU)81377MunichGermany
| | - Barbara Wollenberg
- Department of OtorhinolaryngologySchool of MedicineTechnische Universität München81675MunichGermany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research (TranslaTUM)School of MedicineTechnische Universität München81675MunichGermany
- Department of Radiation OncologySchool of MedicineTechnische Universität München81675MunichGermany
| | - Ali Bashiri Dezfouli
- Central Institute for Translational Cancer Research (TranslaTUM)School of MedicineTechnische Universität München81675MunichGermany
- Department of Radiation OncologySchool of MedicineTechnische Universität München81675MunichGermany
- Department of OtorhinolaryngologySchool of MedicineTechnische Universität München81675MunichGermany
| |
Collapse
|
13
|
Zhou F, Huang L, Li S, Yang W, Chen F, Cai Z, Liu X, Xu W, Lehto V, Lächelt U, Huang R, Shi Y, Lammers T, Tao W, Xu ZP, Wagner E, Xu Z, Yu H. From structural design to delivery: mRNA therapeutics for cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20210146. [PMID: 38855617 PMCID: PMC11022630 DOI: 10.1002/exp.20210146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/15/2023] [Indexed: 06/11/2024]
Abstract
mRNA therapeutics have emerged as powerful tools for cancer immunotherapy in accordance with their superiority in expressing all sequence-known proteins in vivo. In particular, with a small dosage of delivered mRNA, antigen-presenting cells (APCs) can synthesize mutant neo-antigens and multi-antigens and present epitopes to T lymphocytes to elicit antitumor effects. In addition, expressing receptors like chimeric antigen receptor (CAR), T-cell receptor (TCR), CD134, and immune-modulating factors including cytokines, interferons, and antibodies in specific cells can enhance immunological response against tumors. With the maturation of in vitro transcription (IVT) technology, large-scale and pure mRNA encoding specific proteins can be synthesized quickly. However, the clinical translation of mRNA-based anticancer strategies is restricted by delivering mRNA into target organs or cells and the inadequate endosomal escape efficiency of mRNA. Recently, there have been some advances in mRNA-based cancer immunotherapy, which can be roughly classified as modifications of the mRNA structure and the development of delivery systems, especially the lipid nanoparticle platforms. In this review, the latest strategies for overcoming the limitations of mRNA-based cancer immunotherapies and the recent advances in delivering mRNA into specific organs and cells are summarized. Challenges and opportunities for clinical applications of mRNA-based cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Feng Zhou
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lujia Huang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shiqin Li
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Wenfang Yang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Fangmin Chen
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Wujun Xu
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Vesa‐Pekka Lehto
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Ulrich Lächelt
- Department of Pharmaceutical SciencesUniversity of ViennaViennaAustria
| | - Rongqin Huang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug DeliveryMinistry of Education, Fudan UniversityShanghaiChina
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular ImagingRWTH Aachen University ClinicAachenGermany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular ImagingRWTH Aachen University ClinicAachenGermany
| | - Wei Tao
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Zhi Ping Xu
- Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhenChina
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for NanoscienceLudwig‐Maximilians‐UniversitätMunichGermany
| | - Zhiai Xu
- School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
| | - Haijun Yu
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
14
|
Hassan MT, Tayara H, Chong KT. An integrative machine learning model for the identification of tumor T-cell antigens. Biosystems 2024; 237:105177. [PMID: 38458346 DOI: 10.1016/j.biosystems.2024.105177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/28/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
The escalating global incidence of cancer poses significant health challenges, underscoring the need for innovative and more efficacious treatments. Cancer immunotherapy, a promising approach leveraging the body's immune system against cancer, emerges as a compelling solution. Consequently, the identification and characterization of tumor T-cell antigens (TTCAs) have become pivotal for exploration. In this manuscript, we introduce TTCA-IF, an integrative machine learning-based framework designed for TTCAs identification. TTCA-IF employs ten feature encoding types in conjunction with five conventional machine learning classifiers. To establish a robust foundation, these classifiers are trained, resulting in the creation of 150 baseline models. The outputs from these baseline models are then fed back into the five classifiers, generating their respective meta-models. Through an ensemble approach, the five meta-models are seamlessly integrated to yield the final predictive model, the TTCA-IF model. Our proposed model, TTCA-IF, surpasses both baseline models and existing predictors in performance. In a comparative analysis involving nine novel peptide sequences, TTCA-IF demonstrated exceptional accuracy by correctly identifying 8 out of 9 peptides as TTCAs. As a tool for screening and pinpointing potential TTCAs, we anticipate TTCA-IF to be invaluable in advancing cancer immunotherapy.
Collapse
Affiliation(s)
- Mir Tanveerul Hassan
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju, 54896, South Korea.
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, South Korea; Advances Electronics and Information Research Centre, Jeonbuk National University, Jeonju, 54896, South Korea.
| |
Collapse
|
15
|
Wang CW, Biswas PK, Islam A, Chen MK, Chueh PJ. The Use of Immune Regulation in Treating Head and Neck Squamous Cell Carcinoma (HNSCC). Cells 2024; 13:413. [PMID: 38474377 DOI: 10.3390/cells13050413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Immunotherapy has emerged as a promising new treatment modality for head and neck cancer, offering the potential for targeted and effective cancer management. Squamous cell carcinomas pose significant challenges due to their aggressive nature and limited treatment options. Conventional therapies such as surgery, radiation, and chemotherapy often have limited success rates and can have significant side effects. Immunotherapy harnesses the power of the immune system to recognize and eliminate cancer cells, and thus represents a novel approach with the potential to improve patient outcomes. In the management of head and neck squamous cell carcinoma (HNSCC), important contributions are made by immunotherapies, including adaptive cell therapy (ACT) and immune checkpoint inhibitor therapy. In this review, we are focusing on the latter. Immune checkpoint inhibitors target proteins such as programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) to enhance the immune response against cancer cells. The CTLA-4 inhibitors, such as ipilimumab and tremelimumab, have been approved for early-stage clinical trials and have shown promising outcomes in terms of tumor regression and durable responses in patients with advanced HNSCC. Thus, immune checkpoint inhibitor therapy holds promise in overcoming the limitations of conventional therapies. However, further research is needed to optimize treatment regimens, identify predictive biomarkers, and overcome potential resistance mechanisms. With ongoing advancements in immunotherapy, the future holds great potential for transforming the landscape of oral tumor treatment and providing new hope for patients.
Collapse
Affiliation(s)
- Che-Wei Wang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Pulak Kumar Biswas
- Institute of Molecular Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Atikul Islam
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
16
|
Al Qutami F, AlHalabi W, Vijayakumar A, Rawat SS, Mossa AH, Jayakumar MN, Samreen B, Hachim MY. Characterizing the Inflammatory Profile of Neutrophil-Rich Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:747. [PMID: 38398138 PMCID: PMC10886617 DOI: 10.3390/cancers16040747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Breast cancer (BC) is one of the most common types of cancer in women in the United Arab Emirates. Immunogenic tumours, such as triple-negative breast cancer (TNBC), show increased neutrophil infiltration, which is associated with poor prognosis and limited efficacy of immunotherapy. This study aims to investigate in vitro the bidirectional effect of neutrophils on metastatic TNBC (MDA-MB-231) compared to less-metastatic luminal breast cancer (MCF-7) cell lines. We found that BC cells or their conditioned medium (CM) reduced the viability of neutrophil-like cells (HL60). This was supported by increased cellular stress and NETosis in differentiated HL60 cells (dHL60) upon exposure to MDA-MB-231 compared to MCF-7-CM using nucleic acid staining essays. Flow cytometry showed comparable expression of inflammatory markers by polymorphonuclear cells (PMN) when treated with MDA-MB-231-CM and standard polarizing cocktails. Furthermore, MDA-MB-231-CM triggered an inflammatory pattern with evidence of stronger adhesion (CD62L) and degranulation (CD11b and CD66b) phenotypes. The proinflammatory polarization of dHL60 by MDA-MB-231-CM was additionally confirmed by the elevated CD54 expression, myeloperoxidase, and CD11b protein levels, which matched an increased transwell migratory capacity. In conclusion, BC might use neutrophils to their benefit through NETosis and complement system activation, which makes this crosstalk a potential mechanism for understanding tumour progression.
Collapse
Affiliation(s)
- Fatma Al Qutami
- Department of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (F.A.Q.); (W.A.); (A.V.); (S.S.R.); (B.S.)
| | - Walaa AlHalabi
- Department of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (F.A.Q.); (W.A.); (A.V.); (S.S.R.); (B.S.)
| | - Aswathy Vijayakumar
- Department of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (F.A.Q.); (W.A.); (A.V.); (S.S.R.); (B.S.)
| | - Surendra Singh Rawat
- Department of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (F.A.Q.); (W.A.); (A.V.); (S.S.R.); (B.S.)
| | - Abubakr H. Mossa
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.H.M.); (M.N.J.)
| | - Manju Nidagodu Jayakumar
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.H.M.); (M.N.J.)
| | - Baila Samreen
- Department of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (F.A.Q.); (W.A.); (A.V.); (S.S.R.); (B.S.)
| | - Mahmood Y. Hachim
- Department of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (F.A.Q.); (W.A.); (A.V.); (S.S.R.); (B.S.)
| |
Collapse
|
17
|
Lv Y, Li W, Liao W, Jiang H, Liu Y, Cao J, Lu W, Feng Y. Nano-Drug Delivery Systems Based on Natural Products. Int J Nanomedicine 2024; 19:541-569. [PMID: 38260243 PMCID: PMC10802180 DOI: 10.2147/ijn.s443692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Natural products have proven to have significant curative effects and are increasingly considered as potential candidates for clinical prevention, diagnosis, and treatment. Compared with synthetic drugs, natural products not only have diverse structures but also exhibit a range of biological activities against different disease states and molecular targets, making them attractive for development in the field of medicine. Despite advancements in the use of natural products for clinical purposes, there remain obstacles that hinder their full potential. These challenges include issues such as limited solubility and stability when administered orally, as well as short durations of effectiveness. To address these concerns, nano-drug delivery systems have emerged as a promising solution to overcome the barriers faced in the clinical application of natural products. These systems offer notable advantages, such as a large specific surface area, enhanced targeting capabilities, and the ability to achieve sustained and controlled release. Extensive in vitro and in vivo studies have provided further evidence supporting the efficacy and safety of nanoparticle-based systems in delivering natural products in preclinical disease models. This review describes the limitations of natural product applications and the current status of natural products combined with nanotechnology. The latest advances in nano-drug delivery systems for delivery of natural products are considered from three aspects: connecting targeting warheads, self-assembly, and co-delivery. Finally, the challenges faced in the clinical translation of nano-drugs are discussed.
Collapse
Affiliation(s)
- Ying Lv
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wenqing Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wei Liao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Haibo Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Yuwei Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Jiansheng Cao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wenfei Lu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Yufei Feng
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| |
Collapse
|
18
|
Kim K, Park MH. Role of Functionalized Peptides in Nanomedicine for Effective Cancer Therapy. Biomedicines 2024; 12:202. [PMID: 38255307 PMCID: PMC10813321 DOI: 10.3390/biomedicines12010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Peptide-functionalized nanomedicine, which addresses the challenges of specificity and efficacy in drug delivery, is emerging as a pivotal approach for cancer therapy. Globally, cancer remains a leading cause of mortality, and conventional treatments, such as chemotherapy, often lack precision and cause adverse effects. The integration of peptides into nanomedicine offers a promising solution for enhancing the targeting and delivery of therapeutic agents. This review focuses on the three primary applications of peptides: cancer cell-targeting ligands, building blocks for self-assembling nanostructures, and elements of stimuli-responsive systems. Nanoparticles modified with peptides improved targeting of cancer cells, minimized damage to healthy tissues, and optimized drug delivery. The versatility of self-assembled peptide structures makes them an innovative vehicle for drug delivery by leveraging their biocompatibility and diverse nanoarchitectures. In particular, the mechanism of cell death induced by self-assembled structures offers a novel approach to cancer therapy. In addition, peptides in stimuli-responsive systems enable precise drug release in response to specific conditions in the tumor microenvironment. The use of peptides in nanomedicine not only augments the efficacy and safety of cancer treatments but also suggests new research directions. In this review, we introduce systems and functionalization methods using peptides or peptide-modified nanoparticles to overcome challenges in the treatment of specific cancers, including breast cancer, lung cancer, colon cancer, prostate cancer, pancreatic cancer, liver cancer, skin cancer, glioma, osteosarcoma, and cervical cancer.
Collapse
Affiliation(s)
- Kibeom Kim
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Republic of Korea;
- Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Republic of Korea
| | - Myoung-Hwan Park
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Republic of Korea;
- Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Republic of Korea
- Department of Convergence Science, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
19
|
Chen Y, Li W, Wang Z, Yu Y, Li J, Ding Y, Hu Z, Liu Q, Yang Z, Gao J. A Transformable Supramolecular Bispecific Cell Engager for Augmenting Natural Killer and T Cell-Based Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306736. [PMID: 37853568 DOI: 10.1002/adma.202306736] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Indexed: 10/20/2023]
Abstract
Immune cells are pivotal in cancer immunotherapy, yet their therapeutic effectiveness is often hampered by limited tumor infiltration and inhibitory tumor microenvironments. An alkaline phosphatase (ALP)-responsive and transformable supramolecular bis-specific cell engager (Supra-BiCE) to harness natural killer (NK)/T cells for effective cancer immunotherapy is introduced here. The Supra-BiCE, consisting of both SA-P (a phosphorylated peptide targeting and blocking programmed cell death ligand 1 (PD-L1)) and SA-T (a phosphorylated peptide targeting and blocking T cell immunoglobulin and ITIM domain (TIGIT)) is constructed by a simple co-assembling strategy. Upon intravenous administration, Supra-BiCE self-assembles into nanoribbons and interacts with NK/T cells via TIGIT. Notably, these nanoribbons undergo transformation into long nanofibrils within ALP-overexpressing tumor regions, resulting in enhanced binding affinities of Supra-BiCE to both PD-L1 and TIGIT. Consequently, this leads to the accumulation and retention of NK/T cells within tumor regions. Furthermore, the combinatorial blockade of checkpoints by Supra-BiCE activates infiltrating NK/T cells. Moreover, the adjustable peptide ratio in Supra-BiCE enables customization for optimal therapeutic effects against distinct tumor types. Particularly, Supra-BiCE (T:P = 1:3) achieved 98.27% tumor suppression rate against colon carcinoma model. Overall, this study offers a promising tool for engaging NK and T cells for cancer immunotherapy.
Collapse
Affiliation(s)
- Yumiao Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Wei Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Zhongqiu Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Yingying Yu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Jie Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Yinghao Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Zhiwen Hu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
20
|
Al-Hawary SIS, Saleh EAM, Mamajanov NA, S Gilmanova N, Alsaab HO, Alghamdi A, Ansari SA, Alawady AHR, Alsaalamy AH, Ibrahim AJ. Breast cancer vaccines; A comprehensive and updated review. Pathol Res Pract 2023; 249:154735. [PMID: 37611432 DOI: 10.1016/j.prp.2023.154735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023]
Abstract
According to the International Agency for Research on Cancer, breast cancer is more common than lung cancer globally. By 2040, mortality from breast cancer will rise by 50% and 40%, respectively. Despite advances in chemotherapy, endocrine therapy, and HER2-targeted therapy, breast cancer metastases and recurrences remain challenging to treat. Cancer vaccines are an effective treatment option because they stimulate a long-lasting immune response that will eliminate tumor cells. In studies on the breast cancer vaccine, no appreciable advantages were discovered. A recent study claims that immune checkpoint inhibitors or anti-HER2 monoclonal antibodies may be used in vaccinations. This vaccination strengthens the immune system to fight off breast cancer cells. Clinical trials have been conducted on DNA, dendritic cells, and peptide-based breast cancer vaccines. Studies on the breast cancer vaccine have employed subcutaneous, intramuscular, and intradermal injections. Clinical studies have shown that these efforts have not been successful. Several factors might have slowed the development of a breast cancer vaccine. The complexity of the immune system makes it challenging to create cancer vaccines. Given the heterogeneity of breast cancer, there may be a need for different vaccination strategies. Despite these obstacles, research into breast cancer vaccines continues. Effective methods for creating vaccines include immune checkpoint inhibition and anti-HER2 monoclonal antibodies. Research is also being done on specialized tumor vaccinations.
Collapse
Affiliation(s)
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Nodirjon Akhmetovich Mamajanov
- Teaching Assistant, MD, Department of Public Health, Healthcare Management and Physical Culture, Tashkent State Dental Institute, Tashkent, Uzbekistan; Research scholar, Department of Scientific Affairs, Samarkand State Medical Institute, Samarkand, Uzbekistan
| | - Nataliya S Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
| | - Adel Alghamdi
- Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Shakeel Ahmed Ansari
- Department of Biochemistry, General Medicine Practice Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Ahmed Hussien Radie Alawady
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ali Hashiem Alsaalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | | |
Collapse
|
21
|
Charoenkwan P, Schaduangrat N, Shoombuatong W. StackTTCA: a stacking ensemble learning-based framework for accurate and high-throughput identification of tumor T cell antigens. BMC Bioinformatics 2023; 24:301. [PMID: 37507654 PMCID: PMC10386778 DOI: 10.1186/s12859-023-05421-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The identification of tumor T cell antigens (TTCAs) is crucial for providing insights into their functional mechanisms and utilizing their potential in anticancer vaccines development. In this context, TTCAs are highly promising. Meanwhile, experimental technologies for discovering and characterizing new TTCAs are expensive and time-consuming. Although many machine learning (ML)-based models have been proposed for identifying new TTCAs, there is still a need to develop a robust model that can achieve higher rates of accuracy and precision. RESULTS In this study, we propose a new stacking ensemble learning-based framework, termed StackTTCA, for accurate and large-scale identification of TTCAs. Firstly, we constructed 156 different baseline models by using 12 different feature encoding schemes and 13 popular ML algorithms. Secondly, these baseline models were trained and employed to create a new probabilistic feature vector. Finally, the optimal probabilistic feature vector was determined based the feature selection strategy and then used for the construction of our stacked model. Comparative benchmarking experiments indicated that StackTTCA clearly outperformed several ML classifiers and the existing methods in terms of the independent test, with an accuracy of 0.932 and Matthew's correlation coefficient of 0.866. CONCLUSIONS In summary, the proposed stacking ensemble learning-based framework of StackTTCA could help to precisely and rapidly identify true TTCAs for follow-up experimental verification. In addition, we developed an online web server ( http://2pmlab.camt.cmu.ac.th/StackTTCA ) to maximize user convenience for high-throughput screening of novel TTCAs.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nalini Schaduangrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Watshara Shoombuatong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
22
|
Nordin ML, Azemi AK, Nordin AH, Nabgan W, Ng PY, Yusoff K, Abu N, Lim KP, Zakaria ZA, Ismail N, Azmi F. Peptide-Based Vaccine against Breast Cancer: Recent Advances and Prospects. Pharmaceuticals (Basel) 2023; 16:923. [PMID: 37513835 PMCID: PMC10386531 DOI: 10.3390/ph16070923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer is considered the second-leading cancer after lung cancer and is the most prevalent cancer among women globally. Currently, cancer immunotherapy via vaccine has gained great attention due to specific and targeted immune cell activity that creates a potent immune response, thus providing long-lasting protection against the disease. Despite peptides being very susceptible to enzymatic degradation and poor immunogenicity, they can be easily customized with selected epitopes to induce a specific immune response and particulate with carriers to improve their delivery and thus overcome their weaknesses. With advances in nanotechnology, the peptide-based vaccine could incorporate other components, thereby modulating the immune system response against breast cancer. Considering that peptide-based vaccines seem to show remarkably promising outcomes against cancer, this review focuses on and provides a specific view of peptide-based vaccines used against breast cancer. Here, we discuss the benefits associated with a peptide-based vaccine, which can be a mainstay in the prevention and recurrence of breast cancer. Additionally, we also report the results of recent trials as well as plausible prospects for nanotechnology against breast cancer.
Collapse
Affiliation(s)
- Muhammad Luqman Nordin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan (UMK), Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| | - Ahmad Khusairi Azemi
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Abu Hassan Nordin
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Malaysia
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Pei Yuen Ng
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Khatijah Yusoff
- National Institutes of Biotechnology, Malaysia Genome and Vaccine Institute, Jalan Bangi, Kajang 43000, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Kue Peng Lim
- Cancer Immunology & Immunotherapy Unit, Cancer Research Malaysia, No. 1 Jalan SS12/1A, Subang Jaya 47500, Malaysia
| | - Zainul Amiruddin Zakaria
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Fazren Azmi
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
23
|
Tian R, Shang Y, Wang Y, Jiang Q, Ding B. DNA Nanomaterials-Based Platforms for Cancer Immunotherapy. SMALL METHODS 2023; 7:e2201518. [PMID: 36651129 DOI: 10.1002/smtd.202201518] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Indexed: 05/17/2023]
Abstract
The past few decades have witnessed the evolving paradigm for cancer therapy from nonspecific cytotoxic agents to selective, mechanism-based therapeutics, especially immunotherapy. In particular, the integration of nanomaterials with immunotherapy is proven to improve the therapeutic outcome and minimize off-target toxicity in the treatment. As a novel nanomaterial, DNA-based self-assemblies featuring uniform geometries, feasible modifications, programmability, surface addressability, versatility, and intrinsic biocompatibility, are extensively exploited for innovative and effective cancer immunotherapy. In this review, the successful employment of DNA nanoplatforms for cancer immunotherapy, including the delivery of immunogenic cell death inducers, adjuvants and vaccines, immune checkpoint blockers as well as the application in immune cell engineering and adoptive cell therapy is summarized. The remaining challenges and future perspectives regarding the pharmacokinetics/pharmacodynamics, in vivo fate and immunogenicity of DNA materials, and the design of intelligent DNA nanomedicine for individualized cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Run Tian
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, China
| | - Yiming Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, China
| | - Qiao Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
24
|
Dhall A, Patiyal S, Choudhury S, Jain S, Narang K, Raghava GPS. TNFepitope: A webserver for the prediction of TNF-α inducing epitopes. Comput Biol Med 2023; 160:106929. [PMID: 37126926 DOI: 10.1016/j.compbiomed.2023.106929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Tumor Necrosis Factor alpha (TNF-α) is a pleiotropic pro-inflammatory cytokine that is crucial in controlling the signaling pathways within the immune cells. Recent studies reported that higher expression levels of TNF-α are associated with the progression of several diseases, including cancers, cytokine release syndrome in COVID-19, and autoimmune disorders. Thus, it is the need of the hour to develop immunotherapies or subunit vaccines to manage TNF-α progression in various disease conditions. In the pilot study, we proposed a host-specific in-silico tool for predicting, designing, and scanning TNF-α inducing epitopes. The prediction models were trained and validated on the experimentally validated TNF-α inducing/non-inducing epitopes from human and mouse hosts. Firstly, we developed alignment-free (machine learning based models using composition-based features of peptides) methods for predicting TNF-α inducing peptides and achieved maximum AUROC of 0.79 and 0.74 for human and mouse hosts, respectively. Secondly, an alignment-based (using BLAST) method has been used for predicting TNF-α inducing epitopes. Finally, a hybrid method (combination of alignment-free and alignment-based method) has been developed for predicting epitopes. Hybrid approach achieved maximum AUROC of 0.83 and 0.77 on an independent dataset for human and mouse hosts, respectively. We have also identified potential TNF-α inducing peptides in different proteins of HIV-1, HIV-2, SARS-CoV-2, and human insulin. The best models developed in this study has been incorporated in the webserver TNFepitope (https://webs.iiitd.edu.in/raghava/tnfepitope/), standalone package and GitLab (https://gitlab.com/raghavalab/tnfepitope).
Collapse
Affiliation(s)
- Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Shubham Choudhury
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Shipra Jain
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Kashish Narang
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India. http://webs.iiitd.edu.in/raghava/
| |
Collapse
|
25
|
Khalily MP, Soydan M. Peptide-based diagnostic and therapeutic agents: Where we are and where we are heading? Chem Biol Drug Des 2023; 101:772-793. [PMID: 36366980 DOI: 10.1111/cbdd.14180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Peptides are increasingly present in all branches of medicine as innovative drugs, imaging agents, theragnostic, and constituent moieties of other sophisticated drugs such as peptide-drug conjugates. Due to new developments in chemical synthesis strategies, computational biology, recombinant technology, and chemical biology, peptide drug development has made a great progress in the last decade. Numerous natural peptides and peptide mimics have been obtained and studied, covering multiple therapeutic areas. Even though peptides have been investigated across the wide therapeutic spectrum, oncology, metabolism, and endocrinology are the most frequent medical indications of them. This review summarizes the current use of and the emerging new opportunities of peptides for diagnosis and treatment of various diseases.
Collapse
Affiliation(s)
- Melek P Khalily
- Department of Basic Science and Health, Cannabis Research Institute, Yozgat Bozok University, Yozgat, Turkey
| | - Medine Soydan
- Department of Chemistry, Faculty of Arts and Science, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
26
|
Choe D, Choi D. Cancel cancer: The immunotherapeutic potential of CD200/CD200R blockade. Front Oncol 2023; 13:1088038. [PMID: 36756156 PMCID: PMC9900175 DOI: 10.3389/fonc.2023.1088038] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Immune checkpoint molecules function to inhibit and regulate immune response pathways to prevent hyperactive immune activity from damaging healthy tissues. In cancer patients, targeting these key molecules may serve as a valuable therapeutic mechanism to bolster immune function and restore the body's natural defenses against tumors. CD200, an immune checkpoint molecule, is a surface glycoprotein that is widely but not ubiquitously expressed throughout the body. By interacting with its inhibitory receptor CD200R, CD200 suppresses immune cell activity within the tumor microenvironment, creating conditions that foster tumor growth. Targeting the CD200/CD200R pathway, either through the use of monoclonal antibodies or peptide inhibitors, has shown to be effective in boosting anti-tumor immune activity. This review will explore CD200 and the protein's expression and role within the tumor microenvironment, blood endothelial cells, and lymph nodes. This paper will also discuss the advantages and challenges of current strategies used to target CD200 and briefly summarize relevant preclinical/clinical studies investigating the immunotherapeutic efficacy of CD200/CD200R blockade.
Collapse
|
27
|
Du JJ, Su Z, Yu H, Qin S, Wang D. From design to clinic: Engineered peptide nanomaterials for cancer immunotherapy. Front Chem 2023; 10:1107600. [PMID: 36733612 PMCID: PMC9887119 DOI: 10.3389/fchem.2022.1107600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Immunotherapy has revolutionized the field of cancer therapy. Nanomaterials can further improve the efficacy and safety of immunotherapy because of their tunability and multifunctionality. Owing to their natural biocompatibility, diverse designs, and dynamic self-assembly, peptide-based nanomaterials hold great potential as immunotherapeutic agents for many malignant cancers, with good immune response and safety. Over the past several decades, peptides have been developed as tumor antigens, effective antigen delivery carriers, and self-assembling adjuvants for cancer immunotherapy. In this review, we give a brief introduction to the use of peptide-based nanomaterials for cancer immunotherapy as antigens, carriers, and adjuvants, and to their current clinical applications. Overall, this review can facilitate further understanding of peptide-based nanomaterials for cancer immunotherapy and may pave the way for designing safe and efficient methods for future vaccines or immunotherapies.
Collapse
Affiliation(s)
- Jing-Jing Du
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Zhenhong Su
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Haoyi Yu
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Sanhai Qin
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Dongyuan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China,*Correspondence: Dongyuan Wang,
| |
Collapse
|
28
|
Luan X, Kong H, He P, Yang G, Zhu D, Guo L, Wei G. Self-Assembled Peptide-Based Nanodrugs: Molecular Design, Synthesis, Functionalization, and Targeted Tumor Bioimaging and Biotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205787. [PMID: 36440657 DOI: 10.1002/smll.202205787] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Functional nanomaterials as nanodrugs based on the self-assembly of inorganics, polymers, and biomolecules have showed wide applications in biomedicine and tissue engineering. Ascribing to the unique biological, chemical, and physical properties of peptide molecules, peptide is used as an excellent precursor material for the synthesis of functional nanodrugs for highly effective cancer therapy. Herein, recent progress on the design, synthesis, functional regulation, and cancer bioimaging and biotherapy of peptide-based nanodrugs is summarized. For this aim, first molecular design and controllable synthesis of peptide nanodrugs with 0D to 3D structures are presented, and then the functional customization strategies for peptide nanodrugs are presented. Then, the applications of peptide-based nanodrugs in bioimaging, chemotherapy, photothermal therapy (PTT), and photodynamic therapy (PDT) are demonstrated and discussed in detail. Furthermore, peptide-based drugs in preclinical, clinical trials, and approved are briefly described. Finally, the challenges and potential solutions are pointed out on addressing the questions of this promising research topic. This comprehensive review can guide the motif design and functional regulation of peptide nanomaterials for facile synthesis of nanodrugs, and further promote their practical applications for diagnostics and therapy of diseases.
Collapse
Affiliation(s)
- Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Hao Kong
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Guozheng Yang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, P. R. China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
29
|
PSRTTCA: A new approach for improving the prediction and characterization of tumor T cell antigens using propensity score representation learning. Comput Biol Med 2023; 152:106368. [PMID: 36481763 DOI: 10.1016/j.compbiomed.2022.106368] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 10/19/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Despite the arsenal of existing cancer therapies, the ongoing recurrence and new cases of cancer pose a serious health concern that necessitates the development of new and effective treatments. Cancer immunotherapy, which uses the body's immune system to combat cancer, is a promising treatment option. As a result, in silico methods for identifying and characterizing tumor T cell antigens (TTCAs) would be useful for better understanding their functional mechanisms. Although few computational methods for TTCA identification have been developed, their lack of model interpretability is a major drawback. Thus, developing computational methods for the effective identification and characterization of TTCAs is a critical endeavor. PSRTTCA, a new machine learning (ML)-based approach for improving the identification and characterization of TTCAs based on their primary sequences, is proposed in this study. Specifically, we introduce a new propensity score representation learning algorithm that allows one to generate various sets of propensity scores of amino acids, dipeptides, and g-gap dipeptides to be TTCAs. To enhance the predictive performance, optimal sets of variant propensity scores were determined and fed into the final meta-predictor (PSRTTCA). Benchmarking results revealed that PSRTTCA was a more precise and promising tool for the identification and characterization of TTCAs than conventional ML classifiers and existing methods. Furthermore, PSR-derived propensities of amino acids in becoming TTCAs are used to reveal the relationship between TTCAs and their informative physicochemical properties in order to provide insights into TTCA characteristics. Finally, a user-friendly online computational platform of PSRTTCA is publicly available at http://pmlabstack.pythonanywhere.com/PSRTTCA. The PSRTTCA predictor is anticipated to facilitate community-wide efforts in accelerating the discovery of novel TTCAs for cancer immunotherapy and other clinical applications.
Collapse
|
30
|
Bassan GA, Marchesan S. Peptide-Based Materials That Exploit Metal Coordination. Int J Mol Sci 2022; 24:ijms24010456. [PMID: 36613898 PMCID: PMC9820281 DOI: 10.3390/ijms24010456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Metal-ion coordination has been widely exploited to control the supramolecular behavior of a variety of building blocks into functional materials. In particular, peptides offer great chemical diversity for metal-binding modes, combined with inherent biocompatibility and biodegradability that make them attractive especially for medicine, sensing, and environmental remediation. The focus of this review is the last 5 years' progress in this exciting field to conclude with an overview of the future directions that this research area is currently undertaking.
Collapse
|
31
|
Serrano-Quintero A, Sequeda-Juárez A, Pérez-Hernández CA, Sosa-Delgado SM, Mendez-Tenorio A, Ramón-Gallegos E. Immunogenic analysis of epitope-based vaccine candidate induced by photodynamic therapy in MDA-MB-231 triple-negative breast cancer cells. Photodiagnosis Photodyn Ther 2022; 40:103174. [PMID: 36602069 DOI: 10.1016/j.pdpdt.2022.103174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) is used to treat tumors through selective cytotoxic effects. PDT induces damage-associated molecular patterns (DAMPs) expression, which can cause an immunogenic death cell (IDC). In this study we identified potential immunogenic epitopes generated by PDT on triple-negative breast cancer cell line (MDA-MB-231). METHODS MDA-MB-231 cells were exposed to PDT using ALA (160 µg/mL)/630 nm at 8 J/cm2. Membrane proteins were extracted and separated by 2D PAGE. Proteins overexpressed were identified by LC-MS/MS and analyzed in silico through a peptide-HLA docking in order to identify the epitopes with more immunogenicity and antigenicity properties, as well as lower allergenicity and toxicity activity. The selected peptides were evaluated in response to macrophage activation and cytokine release by flow cytometry. RESULTS Differential proteins were overexpressed in the cells treated with PDT. A group of 16 peptides were identified from them, established in a rigorous selection by measuring antigenicity, immunogenicity, allergenicity, and toxicity in silico. The final selection was based on molecular dynamics, where 2 peptides showed the highest stability regarding to the RMSD value. These peptides were obtained from the proteins calreticulin and HSP90. The cytokine analysis evidenced macrophage activation by the releasing of TNF. CONCLUSION Two peptides were identified from calreticulin and HSP90; proteins induced by PDT in MDA-MB-231 cells. Both epitopes showed immunogenic potential as a peptide-based vaccine for triple-negative breast cancer.
Collapse
Affiliation(s)
- Alina Serrano-Quintero
- Laboratorio de Citopatología Ambiental, ENCB, Instituto Politécnico Nacional (IPN), Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda. Manuel Stampa, Col. Zacatenco. Alcaldia Gustavo A. Madero, Mexico City C.P. 07738, Mexico
| | - Alfonso Sequeda-Juárez
- Laboratorio de Citopatología Ambiental, ENCB, Instituto Politécnico Nacional (IPN), Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda. Manuel Stampa, Col. Zacatenco. Alcaldia Gustavo A. Madero, Mexico City C.P. 07738, Mexico
| | - C Angélica Pérez-Hernández
- Laboratorio de Citopatología Ambiental, ENCB, Instituto Politécnico Nacional (IPN), Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda. Manuel Stampa, Col. Zacatenco. Alcaldia Gustavo A. Madero, Mexico City C.P. 07738, Mexico
| | - Sara M Sosa-Delgado
- Laboratorio de Citopatología Ambiental, ENCB, Instituto Politécnico Nacional (IPN), Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda. Manuel Stampa, Col. Zacatenco. Alcaldia Gustavo A. Madero, Mexico City C.P. 07738, Mexico
| | - Alfonso Mendez-Tenorio
- Laboratorio de Bioinformática y Biotecnología Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Eva Ramón-Gallegos
- Laboratorio de Citopatología Ambiental, ENCB, Instituto Politécnico Nacional (IPN), Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda. Manuel Stampa, Col. Zacatenco. Alcaldia Gustavo A. Madero, Mexico City C.P. 07738, Mexico.
| |
Collapse
|
32
|
Combined Vaccination with B Cell Peptides Targeting Her-2/neu and Immune Checkpoints as Emerging Treatment Option in Cancer. Cancers (Basel) 2022; 14:cancers14225678. [PMID: 36428769 PMCID: PMC9688220 DOI: 10.3390/cancers14225678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022] Open
Abstract
The application of monoclonal antibodies (mAbs), targeting tumor-associated (TAAs) or tumor-specific antigens or immune checkpoints (ICs), has shown tremendous success in cancer therapy. However, the application of mAbs suffers from a series of limitations, including the necessity of frequent administration, the limited duration of clinical response and the emergence of frequently pronounced immune-related adverse events. However, the introduction of mAbs has also resulted in a multitude of novel developments for the treatment of cancers, including vaccinations against various tumor cell-associated epitopes. Here, we reviewed recent clinical trials involving combination therapies with mAbs targeting the PD-1/PD-L1 axis and Her-2/neu, which was chosen as a paradigm for a clinically highly relevant TAA. Our recent findings from murine immunizations against the PD-1 pathway and Her-2/neu with peptides representing the mimotopes/B cell peptides of therapeutic antibodies targeting these molecules are an important focus of the present review. Moreover, concerns regarding the safety of vaccination approaches targeting PD-1, in the context of the continuing immune response, as a result of induced immunological memory, are also addressed. Hence, we describe a new frontier of cancer treatment by active immunization using combined mimotopes/B cell peptides aimed at various targets relevant to cancer biology.
Collapse
|
33
|
Diep YN, Kim TJ, Cho H, Lee LP. Nanomedicine for advanced cancer immunotherapy. J Control Release 2022; 351:1017-1037. [DOI: 10.1016/j.jconrel.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/09/2022]
|
34
|
Sharma R, Borah SJ, Bhawna, Kumar S, Gupta A, Singh P, Goel VK, Kumar R, Kumar V. Functionalized Peptide-Based Nanoparticles for Targeted Cancer Nanotherapeutics: A State-of-the-Art Review. ACS OMEGA 2022; 7:36092-36107. [PMID: 36278104 PMCID: PMC9583493 DOI: 10.1021/acsomega.2c03974] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/19/2022] [Indexed: 10/04/2023]
Abstract
Cancer mortality is increasing at an alarming rate across the globe. Albeit, many therapeutics are available commercially, they are not effective and have no cure up to today. Moreover, the knowledge gap in cancer therapy persists, representing a potential blind spot for the innovation of effective anticancer therapeutics. This review presents an update on current advancements in nanopeptide therapeutics. Herein, a detailed exploration of peptide-functionalized nanoparticles for the development of nanotherapeutics was carried out. Different approaches that include self-assembly nanostructures, solid phase peptide synthesis, ligand exchange, chemical reduction, and conjugation methods for assembling peptides for functionalizing nanodrugs are also highlighted. An outlook on biomedical applications is also reviewed. Additionally, a comprehensive discussion on targeted cancer cell therapy and mechanism of action are provided. The present review reflects the functional novelty of nanodrugs to improve stability, accessibility, bioavailability, and specificity toward cancerous cells. Finally, it summarizes the current challenges and future perspectives on the formulation of these nanodrugs.
Collapse
Affiliation(s)
- Ritika Sharma
- Department of Biochemistry, University of Delhi, Delhi 110021, India
| | - Shikha Jyoti Borah
- Special Centre for Nano Sciences, Jawaharlal Nehru University, Delhi 110067, India
| | - Bhawna
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Sanjeev Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Akanksha Gupta
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110007, India
| | - Poonam Singh
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India
| | - Vijay Kumar Goel
- School of Physical Science, Jawaharlal Nehru University, Delhi 110067, India
| | - Ravinder Kumar
- Department of Chemistry, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India
| | - Vinod Kumar
- Special Centre for Nano Sciences, Jawaharlal Nehru University, Delhi 110067, India
| |
Collapse
|
35
|
Sittplangkoon C, Alameh MG, Weissman D, Lin PJC, Tam YK, Prompetchara E, Palaga T. mRNA vaccine with unmodified uridine induces robust type I interferon-dependent anti-tumor immunity in a melanoma model. Front Immunol 2022; 13:983000. [PMID: 36311701 PMCID: PMC9614103 DOI: 10.3389/fimmu.2022.983000] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022] Open
Abstract
An mRNA with unmodified nucleosides induces type I interferons (IFN-I) through the stimulation of innate immune sensors. Whether IFN-I induced by mRNA vaccine is crucial for anti-tumor immune response remains to be elucidated. In this study, we investigated the immunogenicity and anti-tumor responses of mRNA encoding tumor antigens with different degrees of N1-methylpseudouridine (m1Ψ) modification in B16 melanoma model. Our results demonstrated that ovalbumin (OVA) encoding mRNA formulated in a lipid nanoparticle (OVA-LNP) induced substantial IFN-I production and the maturation of dendritic cells (DCs) with negative correlation with increasing percentages of m1Ψ modification. In B16-OVA murine melanoma model, unmodified OVA-LNP significantly reduced tumor growth and prolonged survival, compared to OVA-LNP with m1Ψ modification. This robust anti-tumor effect correlated with the increase in intratumoral CD40+ DCs and the frequency of granzyme B+/IFN-γ+/TNF-α+ polyfunctional OVA peptide-specific CD8+ T cells. Blocking type I IFN receptor completely reversed the anti-tumor immunity of unmodified mRNA-OVA reflected in a significant decrease in OVA-specific IFN-γ secreting T cells and enrichment of PD-1+ tumor-infiltrating T cells. The robust anti-tumor effect of unmodified OVA-LNP was also observed in the lung metastatic tumor model. Finally, this mRNA vaccine was tested using B16 melanoma neoantigens (Pbk-Actn4) which resulted in delayed tumor growth. Taken together, our findings demonstrated that an unmodified mRNA vaccine induces IFN-I production or the downstream signaling cascades which plays a crucial role in inducing robust anti-tumor T cell response for controlling tumor growth and metastasis.
Collapse
Affiliation(s)
- Chutamath Sittplangkoon
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Mohamad-Gabriel Alameh
- Division of Infectious Diseases, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Drew Weissman
- Division of Infectious Diseases, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | | | | | - Eakachai Prompetchara
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Tanapat Palaga,
| |
Collapse
|
36
|
Jiang C, Li J, Zhang W, Zhuang Z, Liu G, Hong W, Li B, Zhang X, Chao CC. Potential association factors for developing effective peptide-based cancer vaccines. Front Immunol 2022; 13:931612. [PMID: 35967400 PMCID: PMC9364268 DOI: 10.3389/fimmu.2022.931612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022] Open
Abstract
Peptide-based cancer vaccines have been shown to boost immune systems to kill tumor cells in cancer patients. However, designing an effective T cell epitope peptide-based cancer vaccine still remains a challenge and is a major hurdle for the application of cancer vaccines. In this study, we constructed for the first time a library of peptide-based cancer vaccines and their clinical attributes, named CancerVaccine (https://peptidecancervaccine.weebly.com/). To investigate the association factors that influence the effectiveness of cancer vaccines, these peptide-based cancer vaccines were classified into high (HCR) and low (LCR) clinical responses based on their clinical efficacy. Our study highlights that modified peptides derived from artificially modified proteins are suitable as cancer vaccines, especially for melanoma. It may be possible to advance cancer vaccines by screening for HLA class II affinity peptides may be an effective therapeutic strategy. In addition, the treatment regimen has the potential to influence the clinical response of a cancer vaccine, and Montanide ISA-51 might be an effective adjuvant. Finally, we constructed a high sensitivity and specificity machine learning model to assist in designing peptide-based cancer vaccines capable of providing high clinical responses. Together, our findings illustrate that a high clinical response following peptide-based cancer vaccination is correlated with the right type of peptide, the appropriate adjuvant, and a matched HLA allele, as well as an appropriate treatment regimen. This study would allow for enhanced development of cancer vaccines.
Collapse
Affiliation(s)
- Chongming Jiang
- Department of Medicine, Baylor College of Medicine, Houston TX, United States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Chongming Jiang, ; Cheng-Chi Chao,
| | - Jianrong Li
- Department of Medicine, Baylor College of Medicine, Houston TX, United States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, United States
| | - Wei Zhang
- Institute of Super Cell, BGI-Shenzhen, Shenzhen, China
| | | | - Geng Liu
- Institute of Super Cell, BGI-Shenzhen, Shenzhen, China
| | - Wei Hong
- Department of Medicine, Baylor College of Medicine, Houston TX, United States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, United States
| | - Bo Li
- Institute of Super Cell, BGI-Shenzhen, Shenzhen, China
| | - Xiuqing Zhang
- Institute of Super Cell, BGI-Shenzhen, Shenzhen, China
| | - Cheng-Chi Chao
- Department of Pipeline Development, Biomap, Inc, San Francisco, CA, United States
- *Correspondence: Chongming Jiang, ; Cheng-Chi Chao,
| |
Collapse
|
37
|
FXYD3 Expression Predicts Poor Prognosis in Renal Cell Carcinoma with Immunosuppressive Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14153596. [PMID: 35892856 PMCID: PMC9330147 DOI: 10.3390/cancers14153596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary FXYD3 belongs to the protein-coding gene family associated with Na+/K+-ATPase enzymes and chloride ion channels. Recently, the biological role of FXYD3 has been reported in multiple cancers. Nevertheless, the prognostic value of FXYD3 expression has been undiscovered in clear renal cell carcinoma (KIRC). In this study, we assessed the datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) dataset (GSE29609). We found the FXYD3 high KIRC patients had distinct clinical characteristics, including hypoxia and poor overall survival. Furthermore, the algorithms discovered that FXYD3 mRNA levels were associated with tumor purity, multiple types of the tumor infiltrating lymphocytes (TILs) and several genes related to T cell exhaustion. In conclusion, FXYD3 predicts a poor prognosis associated with hypoxia, pro-tumor TILs, and T cell exhaustion in KIRC. Abstract FXYD3 is a protein-coding gene, belonging to the FXYD protein family associated with Na+/K+-ATPase enzymes and chloride ion channels. Accumulating evidence suggests the biological role of FXYD3 in multiple cancers. However, the prognostic value of FXYD3 expression in clear renal cell carcinoma (KIRC) is unclear. Therefore, we evaluated the clinical data with tumor-infiltrating lymphocytes (TILs) and immunoinhibitory gene expression data using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) dataset (GSE29609). First, the FXYD3 high KIRC patients had distinct clinical characteristics, including age, sex, disease stage, histological grade, and hypoxia-related gene expressions. Next, FXYD3 gene expression was correlated with poor overall survival in both TCGA and GSE29609 cohorts. The ESTIMATE algorithm revealed that higher FXYD3 mRNA levels were associated with increased infiltration of immune cells and tumor purity. Moreover, the FXYD3 high KIRC tissue harbored increased TILs such as B cells, CD8+ T cells, and M1 macrophage, whereas NK cells and neutrophils were decreased. In addition, we showed FXYD3 was co-expressed with several immunoinhibitory genes related to T cell exhaustion such as LGALS9, CTLA4, BTLA, PDCD1, and LAG3. In conclusion, FXYD3 is an unfavorable prognostic biomarker associated with hypoxia, pro-tumor TILs, and T cell exhaustion.
Collapse
|
38
|
Zhang T, Guo S, Li F, Lan X, Jia Y, Zhang J, Huang Y, Liang XJ. Image-guided/improved diseases management: From immune-strategies and beyond. Adv Drug Deliv Rev 2022; 188:114446. [PMID: 35820600 DOI: 10.1016/j.addr.2022.114446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/25/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
Timely and accurate assessment and diagnosis are extremely important and beneficial for all diseases, especially for some of the major human disease, such as cancers, cardiovascular diseases, infectious diseases, and neurodegenerative diseases. Limited by the variable disease microenvironment, early imperceptible symptoms, complex immune system interactions, and delayed clinical phenotypes, disease diagnosis and treatment are difficult in most cases. Molecular imaging (MI) techniques can track therapeutic drugs and disease sites in vivo and in vitro in a non-invasive, real-time and visible strategies. Comprehensive visual imaging and quantitative analysis based on different levels can help to clarify the disease process, pathogenesis, drug pharmacokinetics, and further evaluate the therapeutic effects. This review summarizes the application of different MI techniques in the diagnosis and treatment of these major human diseases. It is hoped to shed a light on the development of related technologies and fields.
Collapse
Affiliation(s)
- Tian Zhang
- School of Life Science Advanced Research Institute of Multidisciplinary Science School of Medical Technology (Institute of Engineering Medicine) Key Laboratory of Molecular Medicine and Biotherapy Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Beijing Institute of Technology, Beijing 100081, China
| | - Shuai Guo
- School of Life Science Advanced Research Institute of Multidisciplinary Science School of Medical Technology (Institute of Engineering Medicine) Key Laboratory of Molecular Medicine and Biotherapy Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Beijing Institute of Technology, Beijing 100081, China
| | - Fangzhou Li
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Xinmiao Lan
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Yaru Jia
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Yuanyu Huang
- School of Life Science Advanced Research Institute of Multidisciplinary Science School of Medical Technology (Institute of Engineering Medicine) Key Laboratory of Molecular Medicine and Biotherapy Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Beijing Institute of Technology, Beijing 100081, China.
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China; College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China; University of Chinese Academy of Sciences. Beijing 100049, China.
| |
Collapse
|
39
|
Flickinger JC, Staudt RE, Singh J, Carlson RD, Barton JR, Baybutt TR, Rappaport JA, Zalewski A, Pattison A, Waldman SA, Snook AE. Chimeric adenoviral (Ad5.F35) and listeria vector prime-boost immunization is safe and effective for cancer immunotherapy. NPJ Vaccines 2022; 7:61. [PMID: 35739202 PMCID: PMC9226178 DOI: 10.1038/s41541-022-00483-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 05/16/2022] [Indexed: 12/15/2022] Open
Abstract
Strategies to augment immunity to self/neoantigens expressed by cancers are urgently needed to expand the proportion of patients benefiting from immunotherapy, particularly for GI cancers where only a fraction of patients respond to immunotherapies. However, current vaccine strategies are limited by poor immunogenicity, pre-existing vector-specific immunity, and vaccine-induced vector-specific immunity. Here, we examined a prime-boost strategy using a chimeric adenoviral vector (Ad5.F35) that resists pre-existing immunity followed by recombinant Listeria monocytogenes (Lm) to amplify immunity to the GI cancer antigen GUCY2C. This previously unexplored combination enhanced the quantity, avidity, polyfunctionality, and antitumor efficacy of GUCY2C-specific effector CD8+ T cells, without toxicity in any tissue, including GUCY2C-expressing intestines and brain. Importantly, this combination was partially resistant to pre-existing immunity to Ad5 which is endemic in human populations and vector-specific immunity did not limit the ability of multiple Lm administrations to repeatedly enhance GUCY2C-specific responses. Broadly, these findings suggest that cancer patient immunizations targeting self/neoantigens, as well as immunizations for difficult infectious diseases (HIV, malaria, etc), may be most successful using a combination of Ad5.F35-based priming, followed by Lm-based boosting. More specifically, Lm-GUCY2C may be utilized to amplify GUCY2C-specific immunity in patients receiving adenovirus-based GUCY2C vaccines currently in clinical trials to prevent or treat recurrent GI cancer.
Collapse
Affiliation(s)
- John C Flickinger
- Department of Pharmacology, Physiology, & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ross E Staudt
- Department of Pharmacology, Physiology, & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jagmohan Singh
- Department of Pharmacology, Physiology, & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Robert D Carlson
- Department of Pharmacology, Physiology, & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Joshua R Barton
- Department of Pharmacology, Physiology, & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Trevor R Baybutt
- Department of Pharmacology, Physiology, & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jeffrey A Rappaport
- Department of Pharmacology, Physiology, & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Alicja Zalewski
- Department of Pharmacology, Physiology, & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Department of Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Amanda Pattison
- Department of Pharmacology, Physiology, & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Scott A Waldman
- Department of Pharmacology, Physiology, & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, 19107, USA
| | - Adam E Snook
- Department of Pharmacology, Physiology, & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, 19107, USA.
| |
Collapse
|
40
|
Pan X, Geng Z, Li J, Li X, Zhang M, Wang X, Cong Y, Huang K, Xu J, Jia X. Peptide PDHPS1 inhibits ovarian cancer growth through disrupting YAP signaling. Mol Cancer Ther 2022; 21:1160-1170. [PMID: 35545004 DOI: 10.1158/1535-7163.mct-21-0848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/09/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022]
Abstract
The lives of ovarian cancer patients are threatened largely due to metastasis and drug resistance. Endogenous peptides attract increasing attention in oncologic therapeutic area, a few anti-tumor peptides have been approved by the food and drug administration (FDA) for clinical use over the past decades. However, only few peptides or peptide-derived drugs with anti-ovarian cancer effects have been identified. Here we focused on the biological roles and mechanism of a peptide named PDHPS1 in ovarian cancer development. Our results indicated that PDHPS1 reduced the proliferation ability of ovarian cancer cells in vitro and inhibited the ovarian cancer growth in vivo. Peptide pull down and following mass spectrometry, western blot and qRT-PCR revealed that PDHPS1 could bind to protein phosphatase 2 phosphatase activator (PTPA), an essential activator of protein phosphatase 2A (PP2A), which resulted in increase of phosphorylated YAP, further inactivated YAP and suppressed the expression of its downstream target genes. Flow cytometry, cell membrane permeability test and immunohistochemical staining study demonstrated that there are no observable side effects of PDHPS1 on normal ovarian epithelium and hepatorenal function. Besides, modification of membrane penetration could improve the physicochemical properties and biological activity of PDHPS1. In conclusion, our study demonstrated that the endogenous peptide PDHPS1 serves as an anti-tumor peptide to inhibit YAP signaling pathway though interacting with PTPA in ovarian cancer.
Collapse
Affiliation(s)
- Xinxing Pan
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Zhe Geng
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jingyun Li
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xingxing Li
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Mi Zhang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xusu Wang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yu Cong
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ke Huang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Juan Xu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xuemei Jia
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
41
|
Feola S, Russo S, Martins B, Lopes A, Vandermeulen G, Fluhler V, De Giorgi C, Fusciello M, Pesonen S, Ylösmäki E, Antignani G, Chiaro J, Hamdan F, Feodoroff M, Grönholm M, Cerullo V. Peptides-Coated Oncolytic Vaccines for Cancer Personalized Medicine. Front Immunol 2022; 13:826164. [PMID: 35493448 PMCID: PMC9047942 DOI: 10.3389/fimmu.2022.826164] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Oncolytic Viruses (OVs) work through two main mechanisms of action: the direct lysis of the virus-infected cancer cells and the release of tumor antigens as a result of the viral burst. In this sc.enario, the OVs act as in situ cancer vaccines, since the immunogenicity of the virus is combined with tumor antigens, that direct the specificity of the anti-tumor adaptive immune response. However, this mechanism in some cases fails in eliciting a strong specific T cell response. One way to overcome this problem and enhance the priming efficiency is the production of genetically modified oncolytic viruses encoding one or more tumor antigens. To avoid the long and expensive process related to the engineering of the OVs, we have exploited an approach based on coating OVs (adenovirus and vaccinia virus) with tumor antigens. In this work, oncolytic viruses encoding tumor antigens and tumor antigen decorated adenoviral platform (PeptiCRAd) have been used as cancer vaccines and evaluated both for their prophylactic and therapeutic efficacy. We have first tested the oncolytic vaccines by exploiting the OVA model, moving then to TRP2, a more clinically relevant tumor antigen. Finally, both approaches have been investigated in tumor neo-antigens settings. Interestingly, both genetically modified oncolytic adenovirus and PeptiCRAd elicited T cells-specific anti-tumor responses. However, in vitro cross-representation experiments, showed an advantage of PeptiCRAd as regards the fast presentation of the model epitope SIINFEKL from OVA in an immunogenic rather than tolerogenic fashion. Here two approaches used as cancer oncolytic vaccines have been explored and characterized for their efficacy. Although the generation of specific anti-tumor T cells was elicited in both approaches, PeptiCRAd retains the advantage of being rapidly adaptable by coating the adenovirus with a different set of tumor antigens, which is crucial in personalized cancer vaccines clinical setting.
Collapse
Affiliation(s)
- Sara Feola
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Salvatore Russo
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Beatriz Martins
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Alessandra Lopes
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Gaëlle Vandermeulen
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Vinciane Fluhler
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Camilla De Giorgi
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Manlio Fusciello
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | | | - Erkko Ylösmäki
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Gabriella Antignani
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Jacopo Chiaro
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Firas Hamdan
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Michaela Feodoroff
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Mikaela Grönholm
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Medical Biotechnology, Naples University “Federico II”, Naples, Italy
- *Correspondence: Vincenzo Cerullo,
| |
Collapse
|
42
|
Wang XJ, Cheng J, Zhang LY, Zhang JG. Self-assembling peptides-based nano-cargos for targeted chemotherapy and immunotherapy of tumors: recent developments, challenges, and future perspectives. Drug Deliv 2022; 29:1184-1200. [PMID: 35403517 PMCID: PMC9004497 DOI: 10.1080/10717544.2022.2058647] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Xue-Jun Wang
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Jian Cheng
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital of Hangzhou Medical College), Hangzhou, China
| | - Le-Yi Zhang
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Jun-Gang Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital of Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
43
|
Song H, Jiang C. Recent advances in targeted drug delivery for the treatment of pancreatic ductal adenocarcinoma. Expert Opin Drug Deliv 2022; 19:281-301. [PMID: 35220832 DOI: 10.1080/17425247.2022.2045943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) has become a serious health problem with high impact worldwide. The heterogeneity of PDAC makes it difficult to apply drug delivery systems (DDS) used in other cancer models, for example, the poorly developed vascular system makes anti-angiogenic therapy ineffective. Due to its various malignant pathological changes, drug delivery against PDAC is a matter of urgent concern. Based on this situation, various drug delivery strategies specially designed for PDAC have been generated. AREAS COVERED This review will briefly describe how delivery systems can be designed through nanotechnology and formulation science. Most research focused on penetrating the stromal barrier, exploiting and alleviating the hypoxic microenvironment, targeting immune cells, or designing vaccines, and combination therapies. This review will summarize the ways to reverse the malignant pathological features of PDAC and hopefully provide ideas for subsequent studies. EXPERT OPINION Drug delivery systems designed to achieve penetrating functions or to alleviate hypoxia and activate immunity have achieved good therapeutic results in animal models in several studies. In future studies, there is a need to deliver PDAC therapeutics in a more precise manner, or the use of drug carriers for multiple functions simultaneously, are potential therapeutic strategy.
Collapse
Affiliation(s)
- Haolin Song
- Department of Pharmaceutics, Fudan University, Shanghai, Sichuan, 201203 China
| | - Chen Jiang
- Department of Pharmaceutics, Fudan University, Shanghai, Sichuan, 201203 China
| |
Collapse
|
44
|
Solomon A, Alteber Z, Bassan D, Sharbi-Yunger A, Esbit S, Tzehoval E, Eisenbach L. On the development of a neoantigen vaccine for the prevention of Lynch Syndrome. Int J Cancer 2022; 151:107-119. [PMID: 35179790 DOI: 10.1002/ijc.33971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 11/10/2022]
Abstract
Lynch Syndrome (LS) is an autosomal dominant genetic condition that causes a high risk of colorectal cancer (CRC). The hallmark of LS is genetic instability as a result of mismatch repair (MMR) deficiency, particularly in repetitive low complexity regions called microsatellites (MS). MLH1-/- mice deficient in MMR are prone to developing tumors in the colon, upon oral administration of dextran sodium sulfate (DSS), at a rate of more than 70%. Using this LS mouse model, we found a novel tumor neo-antigen from a deletion mutation of the coding MS in the SENP6 gene that prevented tumorigenesis or hindered tumor growth rate in immunized mice. This was accomplished via high throughput exome sequencing of DSS-induced colorectal tumors in the MLH1-/- mice and predicting the most highly immunogenic mutant gene products processed and presented as antigens in C57B6 MHC-I molecules. Throughout this study, we were able to prove the validity of the vaccine by analyzing the colorectal tumors in immunized DSS-treated mice using either our epitope, called Sp6D1, or an unrelated peptide as a negative control. Tumors developed in this context were found to be antigenic and Sp6D1-specific CD8+ tumor infiltrating lymphocytes (TILs) were detected by flow cytometry and cytotoxic T lymphocytes (CTL) killing assays. Additionally, immunohistochemistry showed that tumor-adjacent tertiary lymphoid organs were a potentially significant source of CD8+ lymphocytes. Altogether, our results indicate that there may be a protective effect to patients carrying LS mutations through the induction of a peptide-specific CTL response from the use of neoepitope vaccination. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Adam Solomon
- Deparment of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Zoya Alteber
- Deparment of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - David Bassan
- Deparment of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Adi Sharbi-Yunger
- Deparment of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Simon Esbit
- Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Esther Tzehoval
- Deparment of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Lea Eisenbach
- Deparment of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
45
|
Liu Y, Zhang L, Chang R, Yan X. Supramolecular cancer photoimmunotherapy based on precise peptide self-assembly design. Chem Commun (Camb) 2022; 58:2247-2258. [PMID: 35083992 DOI: 10.1039/d1cc06355c] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Combinational photoimmunotherapy (PIT) is considered to be an ideal strategy for the treatment of highly recurrent and metastatic cancer, because it can ablate the primary tumor and provide in situ an autologous tumor vaccine to induce the host immune response, ultimately achieving the goal of controlling tumor growth and distal metastasis. Significant efforts have been devoted to enhancing the immune response caused by phototherapy-eliminated tumors. Recently, supramolecular PIT nanoagents based on precise peptide self-assembly design have been employed to improve the efficacy of photoimmunotherapy by utilizing the stability, targeting capability and flexibility of drugs, increasing tumor immunogenicity and realizing the synergistic amplification of immune effects through multiple pathways and collaborative strategy. This review summarizes peptide-based supramolecular PIT nanoagents for phototherapy-synergized cancer immunotherapy and its progress in enhancing the effect of photoimmunotherapy, especially focusing on the design of peptide-based PIT nanoagents, the progress of bioactive peptides combined photoimmunotherapy, and the synergistic immune-response mechanism.
Collapse
Affiliation(s)
- Yamei Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
| | - Lu Zhang
- State Key Laboratory of Polymer Physics & Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
| | - Rui Chang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China.,Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China.
| |
Collapse
|
46
|
Roesler AS, Anderson KS. Beyond Sequencing: Prioritizing and Delivering Neoantigens for Cancer Vaccines. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2410:649-670. [PMID: 34914074 DOI: 10.1007/978-1-0716-1884-4_35] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neoantigens are tumor-specific proteins and peptides that can be highly immunogenic. Immune-mediated tumor rejection is strongly associated with cytotoxic responses to neoantigen-derived peptides in noncovalent association with self-HLA molecules. Neoantigen-based therapies, such as adoptive T cell transfer, have shown the potential to induce remission of treatment-resistant metastatic disease in select patients. Cancer vaccines are similarly designed to elicit or amplify antigen-specific T cell populations and stimulate directed antitumor immunity, but the selection and prioritization of the neoantigens remains a challenge. Bioinformatic algorithms can predict tumor neoantigens from somatic mutations, insertion-deletions, and other aberrant peptide products, but this often leads to hundreds of potential neoepitopes, all unique for that tumor. Selecting neoantigens for cancer vaccines is complicated by the technical challenges of neoepitope discovery, the diversity of HLA molecules, and intratumoral heterogeneity of passenger mutations leading to immune escape. Despite strong preclinical evidence, few neoantigen cancer vaccines tested in vivo have generated epitope-specific T cell populations, suggesting suboptimal immune system activation. In this chapter, we review factors affecting the prioritization and delivery of candidate neoantigens in the design of therapeutic and preventive cancer vaccines and consider synergism with standard chemotherapies.
Collapse
Affiliation(s)
- Alexander S Roesler
- School of Medicine, Duke University, Durham, NC, USA
- Mayo Clinic, Scottsdale, AZ, USA
| | - Karen S Anderson
- Mayo Clinic, Scottsdale, AZ, USA.
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
47
|
Vyas D, Patel M, Wairkar S. Strategies for active tumor targeting-an update. Eur J Pharmacol 2022; 915:174512. [PMID: 34555395 DOI: 10.1016/j.ejphar.2021.174512] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 01/26/2023]
Abstract
A complete cure for cancer is still the holy grail for scientists. The existing treatment of cancer is primarily focused on surgery, radiation and conventional chemotherapy. However, chemotherapeutic agents also affect healthy tissues or organs due to a lack of specificity. While passive targeting is studied for anticancer drugs focused on the enhanced permeability and retention effect, it failed to achieve drug accumulation at the tumor site and desired therapeutic efficacy. This review presents an outline of the current significant targets for active tumor drug delivery systems and provides insight into the direction of active tumor-targeting strategies. For this purpose, a systematic understanding of the physiological factors, tumor microenvironment and its components, overexpressed receptor and associated proteins are covered here. We focused on angiogenesis mediated targeting, receptor-mediated targeting and peptide targeting. This active targeting along with integration with nano delivery systems helps in achieving specific action, thus reducing the associated adverse effects to healthy tissues. Although the tumor-targeting methods and possibilities explored so far seem revolutionary in cancer treatment, in-depth clinical studies data is required for its commercial translation.
Collapse
Affiliation(s)
- Darshan Vyas
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Mital Patel
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
48
|
Kim SH, Park JH, Lee SJ, Lee HS, Jung JK, Lee YR, Cho HI, Kim JK, Kim K, Park CS, Lee CK. Efficient Anti-Tumor Immunotherapy Using Tumor Epitope-Coated Biodegradable Nanoparticles Combined With Polyinosinic-Polycytidylic Acid and an Anti-PD1 Monoclonal Antibody. Immune Netw 2022; 22:e42. [DOI: 10.4110/in.2022.22.e42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Sang-Hyun Kim
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Ji-Hyun Park
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Sun-Jae Lee
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Hee-Sung Lee
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Jae-Kyung Jung
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Young-Ran Lee
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Korea
| | - Hyun-Il Cho
- Research and Development Division, ViGenCell Inc., Seoul 06591, Korea
| | - Jeong-Ki Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | - Kyungjae Kim
- Department of Pharmacy, College of Pharmacy, Sahmyook University, Seoul 01795, Korea
| | - Chan-Su Park
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Chong-Kil Lee
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
49
|
Zafar A, Hasan M, Tariq T, Dai Z. Enhancing Cancer Immunotherapeutic Efficacy with Sonotheranostic Strategies. Bioconjug Chem 2021; 33:1011-1034. [PMID: 34793138 DOI: 10.1021/acs.bioconjchem.1c00437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immunotherapy has revolutionized the modality for establishing a firm immune response and immunological memory. However, intrinsic limitations of conventional low responsive poor T cell infiltration and immune related adverse effects urge the coupling of cancer nanomedicines with immunotherapy for boosting antitumor response under ultrasound (US) sensitization to mimic dose-limiting toxicities for safe and effective therapy against advanced cancer. US is composed of high-frequency sound waves that mediate targeted spatiotemporal control over release and internalization of the drug. The unconventional US triggered immunogenic nanoengineered arena assists the limited immunogenic dose, limiting toxicities and efficacies. In this Review, we discuss current prospects of enhanced immunotherapy using nanomedicine under US. We highlight how nanotechnology designs and incorporates nanomedicines for the reprogramming of systematic immunity in the tumor microenvironment. We also emphasize the mechanical and biological potential of US, encompassing sonosensitizer activation for enhanced immunotherapeutic efficacies. Finally, the smartly converging combinational platform of US stimulated cancer nanomedicines for amending immunotherapy is summarized. This Review will widen scientists' ability to explore and understand the limiting factors for combating cancer in a precisely customized way.
Collapse
Affiliation(s)
- Ayesha Zafar
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Murtaza Hasan
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Tuba Tariq
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
50
|
Mondlane ER, Abreu-Mendes P, Martins D, Cruz R, Mendes F. The role of immunotherapy in advanced renal cell carcinoma: Review. Int Braz J Urol 2021; 47:1228-1242. [PMID: 33650838 PMCID: PMC8486460 DOI: 10.1590/s1677-5538.ibju.2020.0681] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/05/2020] [Indexed: 01/05/2023] Open
Affiliation(s)
- Ercília Rita Mondlane
- ESTeSCPolitécnico de CoimbraCoimbraPortugalPolitécnico de Coimbra, ESTeSC, DFARM, ESTeSC, SM Bispo, Coimbra, Portugal.
| | - Pedro Abreu-Mendes
- Centro Hospital Universitário de São JoãoServiço de UrologiaPortoPortugalServiço de Urologia, Centro Hospital Universitário de São João, Porto, Portugal.
- Universidade do PortoFaculdade de MedicinaPortoPortugalFaculdade de Medicina Universidade do Porto, Porto, Portugal.
| | - Diana Martins
- ESTeSCPolitécnico de CoimbraCoimbraPortugalPolitécnico de Coimbra, ESTeSC, DCBL, SM Bispo, Coimbra, Portugal.
- Universidade de CoimbraInstituto de Investigação Clínica e Biomédica de Coimbra CoimbraPortugalUniversidade de Coimbra, Instituto de Investigação Clínica e Biomédica de Coimbra Coimbra, Portugal.
- Universidade de CoimbraCentro de Biomedicina e Biotecnologia Inovadoras (CIBB)CoimbraPortugalUniversidade de Coimbra, Centro de Biomedicina e Biotecnologia Inovadoras (CIBB), Coimbra, Portugal.
- Centro Académico Clínico de CoimbraCoimbraPortugalCentro Académico Clínico de Coimbra (CACC), Coimbra, Portugal.
- Universidade do PortoInstituto de Investigação e Inovação em SaúdePortoPortugalInstituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| | - Rui Cruz
- ESTeSCPolitécnico de CoimbraCoimbraPortugalPolitécnico de Coimbra, ESTeSC, DFARM, ESTeSC, SM Bispo, Coimbra, Portugal.
| | - Fernando Mendes
- ESTeSCPolitécnico de CoimbraCoimbraPortugalPolitécnico de Coimbra, ESTeSC, DCBL, SM Bispo, Coimbra, Portugal.
- Universidade de CoimbraInstituto de Investigação Clínica e Biomédica de Coimbra CoimbraPortugalUniversidade de Coimbra, Instituto de Investigação Clínica e Biomédica de Coimbra Coimbra, Portugal.
- Universidade de CoimbraCentro de Biomedicina e Biotecnologia Inovadoras (CIBB)CoimbraPortugalUniversidade de Coimbra, Centro de Biomedicina e Biotecnologia Inovadoras (CIBB), Coimbra, Portugal.
- Centro Académico Clínico de CoimbraCoimbraPortugalCentro Académico Clínico de Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|