1
|
Szymański M, Bonowicz K, Jerka D, Gagat M, Antosik P. Prognostic Evaluation and Functional Characterization of Cyclin K Expression in Endometrial Cancer: Immunohistochemical and In Silico Analysis. Cancers (Basel) 2025; 17:792. [PMID: 40075638 PMCID: PMC11898804 DOI: 10.3390/cancers17050792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/28/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: Endometrial cancer (EC) is a heterogeneous gynecological malignancy characterized by varied clinical outcomes and complex molecular mechanisms. The dysregulation of cyclin K (CCNK), a key regulator of transcription and cell cycle progression, has been implicated in cancer development. This study aimed to investigate CCNK expression at the protein level in EC tissues and at the mRNA level using in silico analysis. Additionally, the prognostic significance of CCNK expression in EC was assessed. Methods: CCNK expression was evaluated using immunohistochemical analysis and mRNA expression profiling in EC tissues, adjacent non-tumorous tissues, and histologically normal endometrial tissues. Immunohistochemical staining was performed on tissue macroarrays, and protein expression was quantified using the Immunoreactivity Score (IRS). mRNA expression analysis was conducted in silico using TCGA data via UCSC Xena and UALCAN web tool. Pathway enrichment was analyzed using Reactome and DAVID tool, while PPI networks were constructed with STRING and Cytoscape. Statistical analyses, including Mann-Whitney U test, Fisher's exact test, Chi-square test, Kaplan-Meier survival analysis, and Cox regression, were performed using GraphPad Prism. Results: Immunohistochemical analysis revealed significantly elevated CCNK protein expression in tumor tissues, particularly in advanced-stage cases, correlating with adverse pathological features such as higher tumor stage and FIGO grade. High CCNK protein expression was significantly associated with poorer OS in the overall EC cohort and non-endometrioid subtypes, whereas no significant association was observed in endometrioid subtypes. mRNA expression analysis demonstrated significantly higher CCNK levels in non-endometrioid tumors compared to adjacent non-tumorous tissues, but no significant correlation with OS was observed. Functional enrichment analysis highlighted the involvement of CCNK-associated genes in RNA metabolism and transcriptional regulation. Conclusions: These findings emphasize the prognostic value of CCNK expression in EC, particularly in aggressive subtypes. The results suggest that CCNK may serve as a potential therapeutic target, warranting further investigation into its role in EC progression and treatment strategies.
Collapse
Affiliation(s)
- Marcin Szymański
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (M.S.); (K.B.); (D.J.)
| | - Klaudia Bonowicz
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (M.S.); (K.B.); (D.J.)
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland
| | - Dominika Jerka
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (M.S.); (K.B.); (D.J.)
| | - Maciej Gagat
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (M.S.); (K.B.); (D.J.)
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland;
| |
Collapse
|
2
|
Liu X, Yu W, Song W, Zhang Z, Chen B, Lin H. METTL3/YTHDF1 stabilizes CORO6 expression promoting osteosarcoma progression through glycolysis. Exp Cell Res 2024; 443:114328. [PMID: 39536930 DOI: 10.1016/j.yexcr.2024.114328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
This study investigates the role of CORO6 (Coronin 6) in the development of osteosarcoma. Osteosarcoma is a common malignant bone tumor in children and adolescents, characterized by rapid and irregular bone growth and a high risk of distant lung metastasis. CORO6 is a member of the Coronin family, known for its conserved WD40 repeat domain. This structure allows CORO6 to inhibit actin dynamics through interactions with F-actin and Arp2/3, thereby affecting the organization of the cytoskeleton. Our research found that in osteosarcoma patients, the levels of CORO6 are significantly elevated. Experimental observations showed that reducing the expression of CORO6 significantly inhibits the growth, migration, and invasion abilities of osteosarcoma cells. Moreover, in vivo experiments demonstrated that the absence of CORO6 effectively inhibits the growth of osteosarcoma in animal models. We also discovered that CORO6 promotes the proliferation, migration and invasion capabilities of osteosarcoma cells by activating the Wnt/β-catenin signaling pathway. Moreover, CORO6 plays a critical important role in glycolysis of osteosarcoma cells. Mechanically, we found that METTL3/YTHDF1 induced m6A modification of CORO6 mRNA promoted the expression of CORO6 by enhancing its stability. These findings offer new directions for the treatment of osteosarcoma, suggesting that CORO6 could be a novel prognostic biomarker and an effective therapeutic target for patients. In summary, CORO6, as an oncogene, plays a key role in the development of osteosarcoma, providing a crucial theoretical basis for the development of new osteosarcoma treatment strategies.
Collapse
Affiliation(s)
- Xuzhou Liu
- The Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, China; The Department of Orthopaedics, The First people's Hospital of Zhaoqing, Zhaoqing, China
| | - Wenchong Yu
- The Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Song
- The Department of Orthopaedics, The First people's Hospital of Zhaoqing, Zhaoqing, China
| | - Zhengqian Zhang
- The Department of Orthopaedics, The First people's Hospital of Zhaoqing, Zhaoqing, China
| | - Benqiang Chen
- The Department of Orthopaedics, The First people's Hospital of Zhaoqing, Zhaoqing, China
| | - Hongsheng Lin
- The Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Nisar H, Brauny M, Labonté FM, Schmitz C, Konda B, Hellweg CE. DNA Damage and Inflammatory Response of p53 Null H358 Non-Small Cell Lung Cancer Cells to X-Ray Exposure Under Chronic Hypoxia. Int J Mol Sci 2024; 25:12590. [PMID: 39684302 DOI: 10.3390/ijms252312590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Hypoxia-induced radioresistance limits therapeutic success in cancer. In addition, p53 mutations are widespread in tumors including non-small cell lung carcinomas (NSCLCs), and they might modify the radiation response of hypoxic tumor cells. We therefore analyzed the DNA damage and inflammatory response in chronically hypoxic (1% O2, 48 h) p53 null H358 NSCLC cells after X-ray exposure. We used the colony-forming ability assay to determine cell survival, γH2AX immunofluorescence microscopy to quantify DNA double-strand breaks (DSBs), flow cytometry of DAPI-stained cells to measure cell cycle distribution, ELISAs to quantify IL-6 and IL-8 secretion in cell culture supernatants, and RNA sequencing to determine gene expression. Chronic hypoxia increased the colony-forming ability and radioresistance of H358 cells. It did not affect the formation or resolution of X-ray-induced DSBs. It reduced the fraction of cells undergoing G2 arrest after X-ray exposure and delayed the onset of G2 arrest. Hypoxia led to an earlier enhancement in cytokines secretion rate after X-irradiation compared to normoxic controls. Gene expression changes were most pronounced after the combined exposure to hypoxia and X-rays and pertained to senescence and different cell death pathways. In conclusion, hypoxia-induced radioresistance is present despite the absence of functional p53. This resistance is related to differences in clonogenicity, cell cycle regulation, cytokine secretion, and gene expression under chronic hypoxia, but not to differences in DNA DSB repair kinetics.
Collapse
Affiliation(s)
- Hasan Nisar
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
- Department of Medical Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
| | - Melanie Brauny
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science & Faculty of Medicine, University of Tübingen, 72074 Tübingen, Germany
| | - Frederik M Labonté
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Cologne, 50923 Cologne, Germany
| | - Claudia Schmitz
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Bikash Konda
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Christine E Hellweg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| |
Collapse
|
4
|
Zhong M, Fang Z, Zou J, Chen X, Qiu Z, Zhou L, Le Y, Chen Z, Liao Y, Nie F, Wei X, Zhan J, Xiong J, Xiang X, Fang Z. SPIN1 accelerates tumorigenesis and confers radioresistance in non-small cell lung cancer by orchestrating the FOXO3a/FOXM1 axis. Cell Death Dis 2024; 15:832. [PMID: 39548064 PMCID: PMC11568276 DOI: 10.1038/s41419-024-07225-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Despite the importance of radiation therapy as a nonsurgical treatment for non-small cell lung cancer (NSCLC), radiation resistance has always been a concern because of poor patient response and outcomes. Therefore, it is crucial to identify novel targets to increase the effectiveness of radiotherapy and investigate the mechanisms underlying radioresistance. Previously, we demonstrated that Spindlin 1 (SPIN1) was related to tumour initiation and progression. In this study, we found that SPIN1 expression was higher in NSCLC tissues and cell lines than in the corresponding controls. SPIN1 overexpression in NSCLC patients was closely correlated with disease progression and poor prognosis. Functionally, SPIN1 depletion inhibited cell proliferation, decreased the percentage of cells in the G2/M phase and suppressed cell migration and invasion. Moreover, SPIN1 knockdown decreased the clonogenic capacity, impaired double-strand break (DSB) repair and increased NSCLC radiosensitivity. Mechanistically, forkhead box M1 (FOXM1) was identified as a key downstream effector of SPIN1 in NSCLC cells. Furthermore, SPIN1 was found to facilitate MDM2-mediated FOXO3a ubiquitination and degradation, leading to FOXM1 upregulation. Moreover, restoration of FOXM1 expression markedly abolished the inhibitory effects and increased radiosensitivity induced by SPIN1 depletion. These results indicate that the SPIN1-MDM2-FOXO3a/FOXM1 signalling axis is essential for NSCLC progression and radioresistance and could serve as a therapeutic target for increasing radiotherapy efficacy.
Collapse
Affiliation(s)
- Min Zhong
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, PR China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi province, PR China
- Department of Respiratory, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, PR China
| | - Zhi Fang
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, PR China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi province, PR China
| | - Juntao Zou
- Department of Respiratory, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, PR China
| | - Xiao Chen
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, PR China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi province, PR China
| | - Zezhi Qiu
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, PR China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi province, PR China
| | - Ling Zhou
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, PR China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi province, PR China
| | - Yi Le
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, PR China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi province, PR China
| | - Zhen Chen
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, PR China
| | - Yanyu Liao
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, PR China
| | - Fengting Nie
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, PR China
| | - Xianpin Wei
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, PR China
| | - Jinbo Zhan
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi province, PR China
| | - Jianping Xiong
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, PR China
| | - Xiaojun Xiang
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, PR China.
| | - Ziling Fang
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, PR China.
| |
Collapse
|
5
|
Zhang M, Zhou H, Liu L, Song W. Biological effect of U(VI) exposure on lung epithelial BEAS-2B cells. CHEMOSPHERE 2024; 366:143451. [PMID: 39362378 DOI: 10.1016/j.chemosphere.2024.143451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
In this study, the biological effects of U(VI) exposure on lung epithelial cells were investigated by MTT assay, immunofluorescence, flow cytometry, and Western blotting. U(VI)-induced stress triggers oxidative stress in cells, activates MAPK signaling pathways, and promotes inflammation. Additionally, U(VI) causes damage to the cell membrane structure and severe DNA injury, impacting the accuracy of transcription and translation. The results demonstrate that U(VI) exposure significantly inhibits cell proliferation and migration. This is attributed to the disruption of the PI3K/AKT/GSK-3β/β-catenin signaling pathway and the reduction in CyclinD1 expression, leading to a delayed cell cycle, decreased growth rate, mitochondrial damage, and reduced energy metabolism. This study provides a comprehensive understanding of the molecular mechanisms underlying uranium-induced cellular toxicity in lung epithelial cells.
Collapse
Affiliation(s)
- Mingxia Zhang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Han Zhou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Lei Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Wencheng Song
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China; Collaborative Innovation Center of Radiation Medicine, Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
6
|
Frei K, Schecher S, Daher T, Hörner N, Richter J, Hildebrand U, Schindeldecker M, Witzel HR, Tsaur I, Porubsky S, Gaida MM, Roth W, Tagscherer KE. Inhibition of the Cyclin K-CDK12 complex induces DNA damage and increases the effect of androgen deprivation therapy in prostate cancer. Int J Cancer 2024; 154:1082-1096. [PMID: 37916780 DOI: 10.1002/ijc.34778] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023]
Abstract
Androgen deprivation therapy (ADT) is the mainstay of the current first-line treatment concepts for patients with advanced prostate carcinoma (PCa). However, due to treatment failure and recurrence investigation of new targeted therapeutics is urgently needed. In this study, we investigated the suitability of the Cyclin K-CDK12 complex as a novel therapeutic approach in PCa using the new covalent CDK12/13 inhibitor THZ531. Here we show that THZ531 impairs cellular proliferation, induces apoptosis, and decreases the expression of selected DNA repair genes in PCa cell lines, which is associated with an increasing extent of DNA damage. Furthermore, combination of THZ531 and ADT leads to an increase in these anti-tumoral effects in androgen-sensitive PCa cells. The anti-proliferative and pro-apoptotic activity of THZ531 in combination with ADT was validated in an ex vivo PCa tissue culture model. In a retrospective immunohistochemical analysis of 300 clinical tissue samples we show that Cyclin K (CycK) but not CDK12 expression correlates with a more aggressive type of PCa. In conclusion, this study demonstrates the clinical relevance of the CycK-CDK12 complex as a promising target for combinational therapy with ADT in PCa and its importance as a prognostic biomarker for patients with PCa.
Collapse
Affiliation(s)
- Katharina Frei
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sabrina Schecher
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tamas Daher
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nina Hörner
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jutta Richter
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ute Hildebrand
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Mario Schindeldecker
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Tissue Biobank of the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hagen R Witzel
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Porubsky
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias M Gaida
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katrin E Tagscherer
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
7
|
Batool A, Rashid W, Fatima K, Khan SU. Mechanisms of Cancer Resistance to Various Therapies. DRUG RESISTANCE IN CANCER: MECHANISMS AND STRATEGIES 2024:31-75. [DOI: 10.1007/978-981-97-1666-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Dai W, Wang H, Zhan Y, Li N, Li F, Wang J, Yan H, Zhang Y, Wang J, Wu L, Liu H, Fan Y, Tao Y, Mo X, Yang JJ, Sun K, Chen G, Yu Y. CCNK Gene Deficiency Influences Neural Progenitor Cells Via Wnt5a Signaling in CCNK-Related Syndrome. Ann Neurol 2023; 94:1136-1154. [PMID: 37597256 DOI: 10.1002/ana.26766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
OBJECTIVE Rare variants of CCNK (cyclin K) give rise to a syndrome with intellectual disability. The purpose of this study was to describe the genotype-phenotype spectrum of CCNK-related syndrome and the underlying molecular mechanisms of pathogenesis. METHODS We identified a number of de novo CCNK variants in unrelated patients. We generated patient-induced pluripotent stem cells (iPSCs) and neural progenitor cells (NPCs) as disease models. In addition, we constructed NPC-specific Ccnk knockout (KO) mice and performed molecular and morphological analyses. RESULTS We identified 2 new patients harboring CCNK missense variants and followed-up 3 previous reported patients, which constitute the largest patient population analysis of the disease. We demonstrate that both the patient-derived NPC models and the Ccnk KO mouse displayed deficient NPC proliferation and enhanced apoptotic cell death. RNA sequencing analyses of these NPC models uncovered transcriptomic signatures unique to CCNK-related syndrome, revealing significant changes in genes, including WNT5A, critical for progenitor proliferation and cell death. Further, to confirm WNT5A's role, we conducted rescue experiments using NPC and mouse models. We found that a Wnt5a inhibitor significantly increased proliferation and reduced apoptosis in NPCs derived from patients with CCNK-related syndrome and NPCs in the developing cortex of Ccnk KO mice. INTERPRETATION We discussed the genotype-phenotype relationship of CCNK-related syndrome. Importantly, we demonstrated that CCNK plays critical roles in NPC proliferation and NPC apoptosis in vivo and in vitro. Together, our study highlights that Wnt5a may serve as a promising therapeutic target for the disease intervention. ANN NEUROL 2023;94:1136-1154.
Collapse
Affiliation(s)
- Weiqian Dai
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - He Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongkun Zhan
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Nan Li
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Fei Li
- Department of Developmental and Behavioral Pediatrics, Department of Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingmin Wang
- Departmentof Pediatrics, Peking University First Hospital, Beijing, China
| | - Huifang Yan
- Departmentof Pediatrics, Peking University First Hospital, Beijing, China
| | - Yu Zhang
- Departmentof Pediatrics, Peking University First Hospital, Beijing, China
| | - Junyu Wang
- Departmentof Pediatrics, Peking University First Hospital, Beijing, China
| | - Lingqian Wu
- State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Huili Liu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yanjie Fan
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yue Tao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xi Mo
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Sun
- Department of Pediatric Cardiovascular, Center of Clinical Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guiquan Chen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School, Nanjing University, Nanjing, China
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
9
|
Xie X, Yu T, Li X, Zhang N, Foster LJ, Peng C, Huang W, He G. Recent advances in targeting the "undruggable" proteins: from drug discovery to clinical trials. Signal Transduct Target Ther 2023; 8:335. [PMID: 37669923 PMCID: PMC10480221 DOI: 10.1038/s41392-023-01589-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Undruggable proteins are a class of proteins that are often characterized by large, complex structures or functions that are difficult to interfere with using conventional drug design strategies. Targeting such undruggable targets has been considered also a great opportunity for treatment of human diseases and has attracted substantial efforts in the field of medicine. Therefore, in this review, we focus on the recent development of drug discovery targeting "undruggable" proteins and their application in clinic. To make this review well organized, we discuss the design strategies targeting the undruggable proteins, including covalent regulation, allosteric inhibition, protein-protein/DNA interaction inhibition, targeted proteins regulation, nucleic acid-based approach, immunotherapy and others.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tingting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Gu He
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
10
|
Xiao Y, Dong J. Coming of Age: Targeting Cyclin K in Cancers. Cells 2023; 12:2044. [PMID: 37626854 PMCID: PMC10453554 DOI: 10.3390/cells12162044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Cyclins and cyclin-dependent kinases (CDKs) play versatile roles in promoting the hallmarks of cancer. Therefore, cyclins and CDKs have been widely studied and targeted in cancer treatment, with four CDK4/6 inhibitors being approved by the FDA and many other inhibitors being examined in clinical trials. The specific purpose of this review is to delineate the role and therapeutic potential of Cyclin K in cancers. Studies have shown that Cyclin K regulates many essential biological processes, including the DNA damage response, mitosis, and pre-replicative complex assembly, and is critical in both cancer cell growth and therapeutic resistance. Importantly, the druggability of Cyclin K has been demonstrated in an increasing number of studies that identify novel opportunities for its use in cancer treatment. This review first introduces the basic features and translational value of human cyclins and CDKs. Next, the discovery, phosphorylation targets, and related functional significance of Cyclin K-CDK12/13 complexes in cancer are detailed. This review then provides a summary of current Cyclin K-associated cancer studies, with an emphasis on the available Cyclin K-targeting drugs. Finally, the current knowledge gaps regarding the potential of Cyclin K in cancers are discussed, along with interesting directions for future investigation.
Collapse
Affiliation(s)
| | - Jixin Dong
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
11
|
Zhang J, Xie Y, Liu X, Gan L, Li P, Dou Z, Di C, Zhang H, Si J. Carbon ions trigger DNA damage response to overcome radioresistance by regulating β-catenin signaling in quiescent HeLa cells. J Cell Physiol 2023; 238:1836-1849. [PMID: 37334439 DOI: 10.1002/jcp.31052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 05/06/2023] [Indexed: 06/20/2023]
Abstract
Quiescent cancer cells are major impediments to effective radiotherapy (RT) and exhibit limited sensitivity to traditional photon therapy. Herein, the functional role and underlying mechanism of carbon ions in overcoming the radioresistance of quiescent cervical cancer HeLa cells were determined. Briefly, serum withdrawal was used to induce synchronized quiescence in HeLa cells. Quiescent HeLa cells displayed strong radioresistance and DNA repair potential. After irradiation with carbon ions, the DNA damage repair pathway may markedly rely on error-prone nonhomologous end-joining in proliferating cells, whereas the high-precision homologous recombination pathway is more relevant in quiescent cells. This phenomenon could be explained by the ionizing radiation (IR)-induced cell cycle re-entry of quiescent cancer cells. There are three strategies for eradicating quiescent cancer cells using high-linear energy transfer (LET) carbon ions: direct cell death through complex DNA damage; apoptosis via an enhanced mitochondria-mediated intrinsic pathway; forced re-entry of quiescent cancer cells into the cell cycle, thereby improving their susceptibility to IR. Silencing β-catenin signaling is essential for maintaining the dormant state in quiescent cells. Herein, carbon ions activated the β-catenin pathway in quiescent cells, and inhibition of this pathway improved the resistance of quiescent HeLa cells to carbon ions by alleviating DNA damage, improving DNA damage repair, maintaining quiescent depth, and inhibiting apoptosis. Collectively, carbon ions conquer the radioresistance of quiescent HeLa cells by activating β-catenin signaling, which provides a theoretical basis for improved therapeutic effects in patients with middle-advanced-stage cervical cancer with radioresistance.
Collapse
Affiliation(s)
- Jinhua Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Yi Xie
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Xiaoyi Liu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lu Gan
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Pingping Li
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Zhihui Dou
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Cuixia Di
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Hong Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Jing Si
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| |
Collapse
|
12
|
Ma D, Liu S, He Q, Kong L, Liu K, Xiao L, Xin Q, Bi Y, Wu J, Jiang C. A novel approach for the analysis of single-cell RNA sequencing identifies TMEM14B as a novel poor prognostic marker in hepatocellular carcinoma. Sci Rep 2023; 13:10508. [PMID: 37380717 DOI: 10.1038/s41598-023-36650-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023] Open
Abstract
A fundamental goal in cancer-associated genome sequencing is to identify the key genes. Protein-protein interactions (PPIs) play a crucially important role in this goal. Here, human reference interactome (HuRI) map was generated and 64,006 PPIs involving 9094 proteins were identified. Here, we developed a physical link and co-expression combinatory network construction (PLACE) method for genes of interest, which provides a rapid way to analyze genome sequencing datasets. Next, Kaplan‒Meier survival analysis, CCK8 assays, scratch wound assays and Transwell assays were applied to confirm the results. In this study, we selected single-cell sequencing data from patients with hepatocellular carcinoma (HCC) in GSE149614. The PLACE method constructs a protein connection network for genes of interest, and a large fraction (80%) of the genes (screened by the PLACE method) were associated with survival. Then, PLACE discovered that transmembrane protein 14B (TMEM14B) was the most significant prognostic key gene, and target genes of TMEM14B were predicted. The TMEM14B-target gene regulatory network was constructed by PLACE. We also detected that TMEM14B-knockdown inhibited proliferation and migration. The results demonstrate that we proposed a new effective method for identifying key genes. The PLACE method can be used widely and make outstanding contributions to the tumor research field.
Collapse
Affiliation(s)
- Ding Ma
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan City, Shandong Province, China
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuwen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan City, Shandong Province, China
| | - Qinyu He
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan City, Shandong Province, China
| | - Lingkai Kong
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan City, Shandong Province, China
| | - Kua Liu
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan City, Shandong Province, China
| | - Lingjun Xiao
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan City, Shandong Province, China
| | - Qilei Xin
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Yanyu Bi
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan City, Shandong Province, China.
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan City, Shandong Province, China.
| |
Collapse
|
13
|
Cai W, Shu LZ, Liu DJ, Zhou L, Wang MM, Deng H. Targeting cyclin D1 as a therapeutic approach for papillary thyroid carcinoma. Front Oncol 2023; 13:1145082. [PMID: 37427143 PMCID: PMC10324616 DOI: 10.3389/fonc.2023.1145082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Cyclin D1 functions as a mitogenic sensor that specifically binds to CDK4/6, thereby integrating external mitogenic inputs and cell cycle progression. Cyclin D1 interacts with transcription factors and regulates various important cellular processes, including differentiation, proliferation, apoptosis, and DNA repair. Therefore, its dysregulation contributes to carcinogenesis. Cyclin D1 is highly expressed in papillary thyroid carcinoma (PTC). However, the particular cellular mechanisms through which abnormal cyclin D1 expression causes PTC are poorly understood. Unveiling the regulatory mechanisms of cyclin D1 and its function in PTC may help determine clinically effective strategies, and open up better opportunities for further research, leading to the development of novel PTC regimens that are clinically effective. This review explores the mechanisms underlying cyclin D1 overexpression in PTC. Furthermore, we discuss the role of cyclin D1 in PTC tumorigenesis via its interactions with other regulatory elements. Finally, recent progress in the development of therapeutic options targeting cyclin D1 in PTC is examined and summarized.
Collapse
Affiliation(s)
- Wei Cai
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lin-Zhen Shu
- Medical College, Nanchang University, Nanchang, China
| | - Ding-Jie Liu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Lv Zhou
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meng-Meng Wang
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Wang J, Su W, Zhang T, Zhang S, Lei H, Ma F, Shi M, Shi W, Xie X, Di C. Aberrant Cyclin D1 splicing in cancer: from molecular mechanism to therapeutic modulation. Cell Death Dis 2023; 14:244. [PMID: 37024471 PMCID: PMC10079974 DOI: 10.1038/s41419-023-05763-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Cyclin D1 (CCND1), a crucial mediator of cell cycle progression, possesses many mutation types with different mutation frequencies in human cancers. The G870A mutation is the most common mutation in CCND1, which produces two isoforms: full-length CCND1a and divergent C-terminal CCND1b. The dysregulation of the CCND1 isoforms is associated with multiple human cancers. Exploring the molecular mechanism of CCND1 isoforms has offer new insight for cancer treatment. On this basis, the alterations of CCND1 gene are described, including amplification, overexpression, and mutation, especially the G870A mutation. Subsequently, we review the characteristics of CCND1 isoforms caused by G870A mutation. Additionally, we summarize cis-regulatory elements, trans-acting factors, and the splice mutation involved in splicing regulation of CCND1. Furthermore, we highlight the function of CCND1 isoforms in cell cycle, invasion, and metastasis in cancers. Importantly, the clinical role of CCND1 isoforms is also discussed, particularly concerning prognosis, chemotherapy, and radiotherapy. Last, emphasis is given to the corrective strategies that modulate the cancerous CCND1 isoforms. Thus, it is highlighting significance of aberrant isoforms of CCND1 as targets for cancer therapy.
Collapse
Affiliation(s)
- Jing Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wei Su
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Taotao Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Shasha Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huiwen Lei
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Fengdie Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Maoning Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wenjing Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Cuixia Di
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
15
|
Lu Z, Zheng X, Ding C, Zou Z, Liang Y, Zhou Y, Li X. Deciphering the Biological Effects of Radiotherapy in Cancer Cells. Biomolecules 2022; 12:biom12091167. [PMID: 36139006 PMCID: PMC9496570 DOI: 10.3390/biom12091167] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy remains an effective conventional method of treatment for patients with cancer. However, the clinical efficacy of radiotherapy is compromised by the development of radioresistance of the tumor cells during the treatment. Consequently, there is need for a comprehensive understanding of the regulatory mechanisms of tumor cells in response to radiation to improve radiotherapy efficacy. The current study aims to highlight new developments that illustrate various forms of cancer cell death after exposure to radiation. A summary of the cellular pathways and important target proteins that are responsible for tumor radioresistance and metastasis is also provided. Further, the study outlines several mechanistic descriptions of the interaction between ionizing radiation and the host immune system. Therefore, the current review provides a reference for future research studies on the biological effects of new radiotherapy technologies, such as ultra-high-dose-rate (FLASH) radiotherapy, proton therapy, and heavy-ion therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Zhou
- Correspondence: (Y.Z.); (X.L.); Tel.: +86-0816-225-2295 (Y.Z.); +86-0816-220-6272 (X.L.)
| | - Xiaoan Li
- Correspondence: (Y.Z.); (X.L.); Tel.: +86-0816-225-2295 (Y.Z.); +86-0816-220-6272 (X.L.)
| |
Collapse
|
16
|
NEIL3 Mediates Lung Cancer Progression and Modulates PI3K/AKT/mTOR Signaling: A Potential Therapeutic Target. Int J Genomics 2022; 2022:8348499. [PMID: 35535347 PMCID: PMC9078818 DOI: 10.1155/2022/8348499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/09/2022] [Indexed: 11/17/2022] Open
Abstract
Background. Nei endonuclease VIII-like 3 (NEIL3) is widely involved in pathophysiological processes of the body; however, its role in lung cancer has not been conclusively determined. Objective. This study is aimed at exploring the role of NEIL3 in lung cancer. Methods. The public data used in this study were downloaded from The Cancer Genome Atlas (TCGA) database. “Limma” in R was used for the analysis of differentially expressed genes. Clinical correlations and prognostic analyses were performed using the survival package in R. The proliferative abilities of lung cancer cells were evaluated by the CCK8 and colony formation assays while their invasive and migration abilities were assessed by the transwell and wound healing assays. Quantitative real-time PCR (qRT-PCR) and western blot analyses were utilized to detect RNA and protein levels. Biological differences between groups were determined by gene set enrichment analysis (GSEA). Tumor Immune Dysfunction and Exclusion (TIDE) as well as Genomics of Drug Sensitivity in Cancer (GDSC) was used for immunotherapeutic and chemotherapeutic sensitivity analyses. Results. NEIL3 was upregulated in NSCLC tissues and cell lines, implying that it is involved in lung cancer initiation and progression. Clinical correlation and prognostic analyses showed that NEIL3 was associated with worse clinical features (stage and T and N classifications) and poor prognostic outcomes. In vitro, NEIL3 significantly enhanced NSCLC proliferation, invasion, and migration. GSEA indicated that NEIL3 might be involved in PI3K/AKT/mTOR, G2/M checkpoints, and E2F target pathways. Inhibition of NEIL3 suppressed cyclinD1 and p-AKT protein levels; however, it had no effects on AKT levels, indicating that NEIL3 can partially activate the PI3K/AKT/mTOR signaling pathway. The predicted result of TIDE indicated that immunotherapeutic nonresponders had elevated NEIL3 levels. Moreover, there was a positive correlation between NEIL3 levels and chemosensitivity to cisplatin and paclitaxel. Conclusion. In general, NEIL3 mediates NSCLC progression and affects sensitivity to immunotherapy and chemotherapy; therefore, it is a potential molecular target for treatment.
Collapse
|
17
|
Yu XN, Zhang GC, Liu HN, Zhu JM, Liu TT, Song GQ, Dong L, Yin J, Shen XZ. Pre-mRNA processing factor 19 functions in DNA damage repair and radioresistance by modulating cyclin D1 in hepatocellular carcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:390-403. [PMID: 35036052 PMCID: PMC8728313 DOI: 10.1016/j.omtn.2021.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 12/07/2021] [Indexed: 01/10/2023]
Abstract
Pre-mRNA processing factor 19 (PRP19) is elevated in hepatocellular carcinoma (HCC); however, little is known about its function in DNA damage repair in HCC. In this study, analysis of The Cancer Genome Atlas data and our tumor models after ionizing radiation (IR) treatment indicated that increased expression of PRP19 was positively correlated with DNA damage repair. Gain of PRP19 expression induced by plasmids resulted in decreases in apoptosis and double-strand breaks (DSBs), and an increase in cell survival after IR. Loss of PRP19 expression induced by small interfering RNAs resulted in the accumulation of apoptosis and DSBs, and a decrease in cell survival. Mechanistically, the effect of PRP19 on DNA damage repair was mediated by the modulation of cyclin D1 expression in HCC. PRP19 controlled the translation of cyclin D1 by modulating eukaryotic initiation factor 4E. PRP19 affected the DNA damage repair ability of cyclin D1 by interacting with the WD40 domain. The combination of PRP19 and cyclin D1 was more valuable than each single marker for predicting the prognosis of patients. Taken together, the present results demonstrate that PRP19 promotes DNA damage repair by modulating cyclin D1 expression and function, thereby contributing to the radioresistance in HCC.
Collapse
Affiliation(s)
- Xiang-Nan Yu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.,Shanghai Institute of Liver disease, Shanghai 200032, China
| | - Guang-Cong Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.,Shanghai Institute of Liver disease, Shanghai 200032, China
| | - Hai-Ning Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.,Shanghai Institute of Liver disease, Shanghai 200032, China
| | - Jin-Min Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.,Shanghai Institute of Liver disease, Shanghai 200032, China
| | - Tao-Tao Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.,Shanghai Institute of Liver disease, Shanghai 200032, China
| | - Guang-Qi Song
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.,Shanghai Institute of Liver disease, Shanghai 200032, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.,Shanghai Institute of Liver disease, Shanghai 200032, China
| | - Jie Yin
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.,Shanghai Institute of Liver disease, Shanghai 200032, China
| | - Xi-Zhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.,Shanghai Institute of Liver disease, Shanghai 200032, China.,Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| |
Collapse
|
18
|
Zhuang Y, Ma Y, Yan S, Zhao B, Wu S, Zhang Q, Huang X, Zhao H, Zhao C, Liu Z, Yang L. Cyy260, a novel small molecule inhibitor, suppresses non-small cell lung cancer cell growth via JAK2/STAT3 pathway. Am J Cancer Res 2021; 11:4241-4258. [PMID: 34659885 PMCID: PMC8493399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a malignant tumor that accounts for the most new cancer cases and cancer-related deaths worldwide, and the proliferation and metastasis of NSCLC are the main reasons for treatment failure and patient death. Traditional chemotherapeutic drugs have low selectivity, which can kill cancer cells and cause damage to normal cells at the same time. Therefore, it is particularly important to study therapies that target cancer cells and to find low-toxicity, high-efficiency anticancer drugs. Cyy260 is a novel small molecule inhibitor that we synthesized for the first time. Here, we investigated the in vitro and in vivo antitumor activities of Cyy260 and explored the underlying mechanisms in NSCLC. Cyy260 had a concentration- and time-dependent inhibitory effect on NSCLC cells, but it was less toxic to normal cells. Cyy260 regulated apoptosis through intracellular and extracellular apoptotic pathways. In addition, Cyy260 could also induce cell cycle arrest, thereby inhibiting cell proliferation. Further analysis of molecular mechanisms showed that the JAK2/STAT3 signaling pathway was involved in the antitumor effect mediated by Cyy260. Analysis of subcutaneously transplanted tumors in mice showed that Cyy260 suppressed tumor growth in vivo. Our results proved that Cyy260 is a novel inhibitor of the JAK2/STAT3 pathway thus may have potential in therapy of NSCLC and other cancers.
Collapse
Affiliation(s)
- Yan Zhuang
- The First Affiliated Hospital, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
- Affiliated Yueqing Hospital, Wenzhou Medical UniversityWenzhou 325600, Zhejiang, China
- The Institute of Life Sciences, Wenzhou UniversityWenzhou 325035, Zhejiang, China
| | - Yue Ma
- The First Affiliated Hospital, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
- Affiliated Yueqing Hospital, Wenzhou Medical UniversityWenzhou 325600, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Sunshun Yan
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical UniversityWenzhou 325027, Zhejiang, China
| | - Bing Zhao
- The First Affiliated Hospital, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
- Affiliated Yueqing Hospital, Wenzhou Medical UniversityWenzhou 325600, Zhejiang, China
- The Institute of Life Sciences, Wenzhou UniversityWenzhou 325035, Zhejiang, China
| | - Shuling Wu
- The First Affiliated Hospital, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
- Affiliated Yueqing Hospital, Wenzhou Medical UniversityWenzhou 325600, Zhejiang, China
- The Institute of Life Sciences, Wenzhou UniversityWenzhou 325035, Zhejiang, China
| | - Qianwen Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Xiaoying Huang
- The First Affiliated Hospital, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Haiyang Zhao
- The Institute of Life Sciences, Wenzhou UniversityWenzhou 325035, Zhejiang, China
| | - Chengguang Zhao
- The First Affiliated Hospital, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
- Affiliated Yueqing Hospital, Wenzhou Medical UniversityWenzhou 325600, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Zhiguo Liu
- The First Affiliated Hospital, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
- Affiliated Yueqing Hospital, Wenzhou Medical UniversityWenzhou 325600, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Lehe Yang
- The First Affiliated Hospital, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
- Affiliated Yueqing Hospital, Wenzhou Medical UniversityWenzhou 325600, Zhejiang, China
| |
Collapse
|
19
|
Feng X, Ding W, Ma J, Liu B, Yuan H. Targeted Therapies in Lung Cancers: Current Landscape and Future Prospects. Recent Pat Anticancer Drug Discov 2021; 16:540-551. [PMID: 34132185 DOI: 10.2174/1574892816666210615161501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/09/2021] [Accepted: 03/31/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung cancer is the most common and malignant cancer worldwide. Targeted therapies have emerged as a promising treatment strategy for lung cancers. OBJECTIVE The objective of this study is to evaluate the current landscape of targets and finding promising targets for future new drug discovery for lung cancers by identifying the science-technology-clinical development pattern and mapping the interaction network of targets. METHODS Targets for cancers were classified into 3 groups based on a paper published in Nature. We search for scientific literature, patent documents and clinical trials of targets in Group 1 and Group 2 for lung cancers. Then, a target-target interaction network of Group 1 was constructed, and the science-technology-clinical(S-T-C) development patterns of targets in Group 1 were identified. Finally, based on the cluster distribution and the development pattern of targets in Group 1, interactions between the targets were employed to predict potential targets in Group 2 on drug development. RESULTS The target-target interaction(TTI)network of group 1 resulted in 3 clusters with different developmental stages. The potential targets in Group 2 are divided into 3 ranks. Level-1 is the first priority and level-3 is the last. Level-1 includes 16 targets, such as STAT3, CRKL, and PTPN11, that are mostly involved in signaling transduction pathways. Level-2 and level-3 contain 8 and 6 targets related to various biological functions. CONCLUSION This study will provide references for drug development in lung cancers, emphasizing that priorities should be given to targets in Level-1, whose mechanisms are worth further exploration.
Collapse
Affiliation(s)
- Xin Feng
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenqing Ding
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| | - Junhong Ma
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| | - Baijun Liu
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongmei Yuan
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|