1
|
Ren Y, Wang T, Yin J. The role of soluble epoxide hydrolase in the intestine. Cell Biol Int 2024; 48:1612-1620. [PMID: 39164961 DOI: 10.1002/cbin.12232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/19/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024]
Abstract
The soluble epoxide hydrolase (sEH; encoded by the EPHX2 gene) is an α/β hydrolase fold protein that is, widely distributed throughout the body. Recent studies have highlighted that sEH, in the metabolism of polyunsaturated fatty acids, plays a part in the pathogenesis of various diseases, including cardiovascular disease, Alzheimer's disease and intestine-associated disease. This review discusses the current findings on the role of sEH in the development of intestine- and intestine-associated diseases, including colitis, colorectal cancer, and other intestinal diseases, as well as the potential underlying mechanisms involved.
Collapse
Affiliation(s)
- Yanbei Ren
- Department of obstetrics-gynecology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ting Wang
- Faculty of nursing, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Jiuheng Yin
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Li X, Kempf S, Delgado Lagos F, Ukan Ü, Popp R, Hu J, Frömel T, Günther S, Weigert A, Fleming I. A regulatory loop involving the cytochrome P450-soluble epoxide hydrolase axis and TGF-β signaling. iScience 2024; 27:110938. [PMID: 39398242 PMCID: PMC11466655 DOI: 10.1016/j.isci.2024.110938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Fatty acid metabolites, produced by cytochrome P450 enzymes and soluble epoxide hydrolase (sEH), regulate inflammation. Here, we report that the transforming growth factor β (TGF-β)-induced polarization of macrophages to a pro-resolving phenotype requires Alk5 and Smad2 activation to increase sEH expression and activity. Macrophages lacking sEH showed impaired repolarization, reduced phagocytosis, and maintained a pro-inflammatory gene expression profile. 11,12-Epoxyeicosatrienoic acid (EET) was one altered metabolite in sEH-/- macrophages and mimicked the effect of sEH deletion on gene expression. Notably, 11,12-EET also reduced Alk5 expression, inhibiting TGF-β-induced Smad2 phosphorylation by triggering the cytosolic translocation of the E3 ligase Smurf2. These findings suggest that sEH expression is controlled by TGF-β and that sEH activity, which lowers 11,12-EET levels and promotes TGF-β signaling by metabolizing 11,12-EET to prevent Alk5 degradation. Thus, an autocrine loop between sEH/11,12-EET and TGF-β1 regulates macrophage function.
Collapse
Affiliation(s)
- Xiaoming Li
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Sebastian Kempf
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Fredy Delgado Lagos
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Ürün Ukan
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Rüdiger Popp
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Jiong Hu
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
- Department of Embryology and Histology, School of Basic Medicine, Tongi Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Timo Frömel
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Andreas Weigert
- Goethe University, Institute of Biochemistry I, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Chen Y, Schlotterer A, Lin J, Dietrich N, Fleming T, Lanzinger S, Holl RW, Hammes HP. Sex differences in the development of experimental diabetic retinopathy. Sci Rep 2024; 14:22812. [PMID: 39354039 PMCID: PMC11445250 DOI: 10.1038/s41598-024-73279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 09/15/2024] [Indexed: 10/03/2024] Open
Abstract
This study aimed to characterize the role of female sex in the pathogenesis of diabetic retinopathy. In the retinae of female Ins2Akita-diabetic mice (F-IA), ovariectomized female Ins2Akita-diabetic mice (F-IA/OVX), male Ins2Akita-diabetic mice (M-IA), and female STZ-diabetic mice (F-STZ), the formation of reactive metabolites and post-translational modifications, damage to the neurovascular unit, and expression of cellular stress response genes were analyzed. Compared to the male diabetic retina, the concentrations of the glycation adduct fructosyl-lysine, the Maillard product 3-deoxyglucosone, and the reactive metabolite methylglyoxal were significantly reduced in females. In females, there was also less evidence of diabetic damage to the neurovascular unit, as shown by decreased pericyte loss and reduced microglial activation. In the male diabetic retina, the expression of several members of the crystallin gene family (Cryab, Cryaa, Crybb2, Crybb1, and Cryba4) was increased. Clinical data from type 1 diabetic females showed that premenopausal women had a significantly lower prevalence of diabetic retinopathy compared to postmenopausal women stratified for disease duration and glycemic control. These data emphasize the importance of estradiol in protecting the diabetic retina and highlight the pathogenic relevance of sex in diabetic retinopathy.
Collapse
Affiliation(s)
- Ying Chen
- Fifth Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Andrea Schlotterer
- Fifth Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jihong Lin
- Fifth Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nadine Dietrich
- Fifth Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Stefanie Lanzinger
- Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Reinhard W Holl
- Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Hans-Peter Hammes
- Fifth Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
4
|
Chen Y, Schlotterer A, Kurowski L, Li L, Dannehl M, Hammes HP, Lin J. miRNA-124 Prevents Rat Diabetic Retinopathy by Inhibiting the Microglial Inflammatory Response. Int J Mol Sci 2023; 24:ijms24032291. [PMID: 36768614 PMCID: PMC9917205 DOI: 10.3390/ijms24032291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Diabetic retinopathy (DR) is characterized by vasoregression and glial activation. miRNA-124 (miR-124) reduces retinal microglial activation and alleviates vasoregression in a neurodegenerative rat model. Our aim was to determine whether miR-124 affects vascular and neural damage in the early diabetic retina. Diabetes was induced in 8-week-old Wistar rats by streptozotocin (STZ) injection. At 16 and 20 weeks, the diabetic rats were intravitreally injected with miR-124 mimic, and retinae were analyzed at 24 weeks. Microvascular damage was identified by evaluating pericyte loss and acellular capillary (AC) formation. Müller glial activation was assessed by glial fibrillary acidic protein (GFAP) immunofluorescence staining. Microglial activation was determined by immunofluorescent staining of ionized calcium-binding adaptor molecule 1 (Iba1) in whole mount retinae. The neuroretinal function was assessed by electroretinography. The expression of inflammation-associated genes was evaluated by qRT-PCR. A wound healing assay was performed to quantitate the mobility of microglial cells. The results showed that miR-124 treatment alleviated diabetic vasoregression by reducing AC formation and pericyte loss. miR-124 blunted Müller glial- and microglial activation in diabetic retinae and ameliorated neuroretinal function. The retinal expression of inflammatory factors including Tnf-α, Il-1β, Cd74, Ccl2, Ccl3, Vcam1, Tgf-β1, Arg1, and Il-10 was reduced by miR-124 administration. The elevated mobility of microglia upon high glucose exposure was normalized by miR-124. The expression of the transcription factor PU.1 and lipid raft protein Flot1 was downregulated by miR-124. In rat DR, miR-124 prevents vasoregression and glial activation, improves neuroretinal function, and modulates microglial activation and inflammatory responses.
Collapse
Affiliation(s)
- Ying Chen
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Andrea Schlotterer
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Luke Kurowski
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Lin Li
- Department of Vascular Surgery, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Marcus Dannehl
- Department of Pediatrics, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Jihong Lin
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
- Correspondence: ; Tel.: +49-621-383-3774
| |
Collapse
|
5
|
Lipid mediators generated by the cytochrome P450—Epoxide hydrolase pathway. ADVANCES IN PHARMACOLOGY 2023; 97:327-373. [DOI: 10.1016/bs.apha.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Zhang Y, Cai J, Lu W, Xu S, Qu M, Zhao S, Ding X. Comprehensive Network-Based Analyses Reveal Novel Renal Function-Related Targets in Acute Kidney Injury. Front Genet 2022; 13:907145. [PMID: 35860471 PMCID: PMC9289212 DOI: 10.3389/fgene.2022.907145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Acute kidney injury (AKI) is a common clinical syndrome with limited methods of treatment and diagnosis. Although several molecules associated with AKI have been discovered, molecular mechanisms underlying AKI still remain unclear. Weighted gene co-expression network analysis (WGCNA) is a novel method to uncover the relationship between co-expression genes and clinical traits at the system level. Methods: First, by employing WGCNA in transcriptional data on 30 patients with well/poor functioning kidney graft, we identified two co-expression modules that were significantly related to serum creatinine (SCr). Second, based on the modules, potential small molecular compound candidates for developing targeted therapeutics were obtained by connectivity map analysis. Furthermore, multiple validations of expression in space/time were carried out with two classical AKI models in vivo and other five databases of over 152 samples. Results: Two of the 14 modules were found to be closely correlated with SCr. Function enrichment analysis illustrated that one module was enriched in the immune system, while the other was in the metabolic process. Six key renal function-related genes (RFRGs) were finally obtained. Such genes performed well in cisplatin-induced or cecal ligation and puncture-induced AKI mouse models. Conclusion: The analysis suggests that WGCNA is a proper method to connect clinical traits with genome data to find novel targets in AKI. The kidney tissue with worse renal function tended to develop a “high immune but low metabolic activity” expression pattern. Also, ACSM2A, GLYAT, CORO1A, DPEP1, ALDH7A1, and EPHX2 are potential targets of molecular diagnosis and treatment in AKI.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jieru Cai
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Kidney and Dialysis Institute of Shanghai, Shanghai, China
- Kidney and Blood Purification Key Laboratory of Shanghai, Shanghai, China
| | - Wei Lu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sujuan Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengdi Qu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuan Zhao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Kidney and Dialysis Institute of Shanghai, Shanghai, China
- Kidney and Blood Purification Key Laboratory of Shanghai, Shanghai, China
- *Correspondence: Xiaoqiang Ding, ; Shuan Zhao,
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Kidney and Dialysis Institute of Shanghai, Shanghai, China
- Kidney and Blood Purification Key Laboratory of Shanghai, Shanghai, China
- *Correspondence: Xiaoqiang Ding, ; Shuan Zhao,
| |
Collapse
|
7
|
Frömel T, Naeem Z, Pirzeh L, Fleming I. Cytochrome P450-derived fatty acid epoxides and diols in angiogenesis and stem cell biology. Pharmacol Ther 2021; 234:108049. [PMID: 34848204 DOI: 10.1016/j.pharmthera.2021.108049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
Cytochrome P450 (CYP) enzymes are frequently referred to as the third pathway for the metabolism of arachidonic acid. While it is true that these enzymes generate arachidonic acid epoxides i.e. the epoxyeicosatrienoic acids (EETs), they are able to accept a wealth of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) to generate a large range of regio- and stereo-isomers with distinct biochemical properties and physiological actions. Probably the best studied are the EETs which have well documented effects on vascular reactivity and angiogenesis. CYP enzymes can also participate in crosstalk with other PUFA pathways and metabolize prostaglandin G2 and H2, which are the precursors of effector prostaglandins, to affect macrophage function and lymphangiogenesis. The activity of the PUFA epoxides is thought to be kept in check by the activity of epoxide hydrolases. However, rather than being inactive, the diols generated have been shown to regulate neutrophil activation, stem and progenitor cell proliferation and Notch signaling in addition to acting as exercise-induced lipokines. Excessive production of PUFA diols has also been implicated in pathologies such as severe respiratory distress syndromes, including COVID-19, and diabetic retinopathy. This review highlights some of the recent findings related to this pathway that affect angiogenesis and stem cell biology.
Collapse
Affiliation(s)
- Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Zumer Naeem
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Lale Pirzeh
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Frankfurt am Main, Germany; The Cardio-Pulmonary Institute, Frankfurt am Main, Germany.
| |
Collapse
|
8
|
Chen Y, Lin J, Schlotterer A, Kurowski L, Hoffmann S, Hammad S, Dooley S, Buchholz M, Hu J, Fleming I, Hammes HP. MicroRNA-124 Alleviates Retinal Vasoregression via Regulating Microglial Polarization. Int J Mol Sci 2021; 22:ijms222011068. [PMID: 34681723 PMCID: PMC8538759 DOI: 10.3390/ijms222011068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/15/2022] Open
Abstract
Microglial activation is implicated in retinal vasoregression of the neurodegenerative ciliopathy-associated disease rat model (i.e., the polycystic kidney disease (PKD) model). microRNA can regulate microglial activation and vascular function, but the effect of microRNA-124 (miR-124) on retinal vasoregression remains unclear. Transgenic PKD and wild-type Sprague Dawley (SD) rats received miR-124 at 8 and 10 weeks of age intravitreally. Retinal glia activation was assessed by immunofluorescent staining and in situ hybridization. Vasoregression and neuroretinal function were evaluated by quantitative retinal morphometry and electroretinography (ERG), respectively. Microglial polarization was determined by immunocytochemistry and qRT-PCR. Microglial motility was examined via transwell migration assays, wound healing assays, and single-cell tracking. Our data showed that miR-124 inhibited glial activation and improved vasoregession, as evidenced by the reduced pericyte loss and decreased acellular capillary formation. In addition, miR-124 improved neuroretinal function. miR-124 shifted microglial polarization in the PKD retina from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype by suppressing TNF-α, IL-1β, CCL2, CCL3, MHC-II, and IFN-γ and upregulating Arg1 and IL-10. miR-124 also decreased microglial motility in the migration assays. The transcriptional factor of C/EBP-α-PU.1 signaling, suppressed by miR-124 both in vivo (PKD retina) and in vitro (microglial cells), could serve as a key regulator in microglial activation and polarization. Our data illustrate that miR-124 regulates microglial activation and polarization. miR-124 inhibits pericyte loss and thereby alleviates vasoregression and ameliorates neurovascular function.
Collapse
Affiliation(s)
- Ying Chen
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (Y.C.); (J.L.); (A.S.); (L.K.)
| | - Jihong Lin
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (Y.C.); (J.L.); (A.S.); (L.K.)
| | - Andrea Schlotterer
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (Y.C.); (J.L.); (A.S.); (L.K.)
| | - Luke Kurowski
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (Y.C.); (J.L.); (A.S.); (L.K.)
| | - Sigrid Hoffmann
- Center of Medical Research, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany;
| | - Seddik Hammad
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (S.H.); (S.D.)
| | - Steven Dooley
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (S.H.); (S.D.)
| | - Malte Buchholz
- Department of Gastroenterology and Endocrinology, University Hospital, Philipps-University Marburg, Hans-Meerwein-Str. 3, D-35043 Marburg, Germany;
| | - Jiong Hu
- Institute for Vascular Signalling, Center for Molecular Medicine, Goethe University, D-60590 Frankfurt, Germany; (J.H.); (I.F.)
| | - Ingrid Fleming
- Institute for Vascular Signalling, Center for Molecular Medicine, Goethe University, D-60590 Frankfurt, Germany; (J.H.); (I.F.)
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (Y.C.); (J.L.); (A.S.); (L.K.)
- Correspondence: ; Tel.: +49-621-383-2663
| |
Collapse
|
9
|
Chang CC, Chu A, Meyer S, Ding Y, Sun MM, Abiri P, Baek KI, Gudapati V, Ding X, Guihard P, Bostrom KI, Li S, Gordon LK, Zheng JJ, Hsiai TK. Three-dimensional Imaging Coupled with Topological Quantification Uncovers Retinal Vascular Plexuses Undergoing Obliteration. Theranostics 2021; 11:1162-1175. [PMID: 33391527 PMCID: PMC7738897 DOI: 10.7150/thno.53073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction: Murine models provide microvascular insights into the 3-D network disarray seen in retinopathy and cardiovascular diseases. Light-sheet fluorescence microscopy (LSFM) has emerged to capture retinal vasculature in 3-D, allowing for assessment of the progression of retinopathy and the potential to screen new therapeutic targets in mice. We hereby coupled LSFM, also known as selective plane illumination microscopy, with topological quantification, to characterize the retinal vascular plexuses undergoing preferential obliteration. Method and Result: In postnatal mice, we revealed the 3-D retinal microvascular network in which the vertical sprouts bridge the primary (inner) and secondary (outer) plexuses, whereas, in an oxygen-induced retinopathy (OIR) mouse model, we demonstrated preferential obliteration of the secondary plexus and bridging vessels with a relatively unscathed primary plexus. Using clustering coefficients and Euler numbers, we computed the local versus global vascular connectivity. While local connectivity was preserved (p > 0.05, n = 5 vs. normoxia), the global vascular connectivity in hyperoxia-exposed retinas was significantly reduced (p < 0.05, n = 5 vs. normoxia). Applying principal component analysis (PCA) for auto-segmentation of the vertical sprouts, we corroborated the obliteration of the vertical sprouts bridging the secondary plexuses, as evidenced by impaired vascular branching and connectivity, and reduction in vessel volumes and lengths (p < 0.05, n = 5 vs. normoxia). Conclusion: Coupling 3-D LSFM with topological quantification uncovered the retinal vasculature undergoing hyperoxia-induced obliteration from the secondary (outer) plexus to the vertical sprouts. The use of clustering coefficients, Euler's number, and PCA provided new network insights into OIR-associated vascular obliteration, with translational significance for investigating therapeutic interventions to prevent visual impairment.
Collapse
Affiliation(s)
- Chih-Chiang Chang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA
| | - Alison Chu
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Scott Meyer
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Yichen Ding
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Michel M. Sun
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Parinaz Abiri
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Kyung In Baek
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Varun Gudapati
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Xili Ding
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA
| | - Pierre Guihard
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Kristina I. Bostrom
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Greater Los Angeles VA Healthcare System, Los Angeles, CA
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA
| | - Lynn K. Gordon
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jie J. Zheng
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Tzung K. Hsiai
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Greater Los Angeles VA Healthcare System, Los Angeles, CA
- Medical Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|