1
|
Li Z, Hao L, Chen S, Fu W, Zhang H, Yin Z, Wang Y, Wang J. Forkhead box C1 promotes the pathology of osteoarthritis in subchondral bone osteoblasts via the Piezo1/YAP axis. Cell Signal 2024; 124:111463. [PMID: 39396563 DOI: 10.1016/j.cellsig.2024.111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Subchondral bone sclerosis is a key characteristic of osteoarthritis (OA). Prior research has shown that Forkhead box C1 (FoxC1) plays a role in the synovial inflammation of OA, but its specific role in the subchondral bone of OA has not been explored. Our research revealed elevated expression levels of FoxC1 and Piezo1 in OA subchondral bone tissues. Further experiments on OA subchondral bone osteoblasts with FoxC1 or Piezo1 overexpression showed increased cell proliferation activity, expression of Yes-associated Protein 1 (YAP) and osteogenic markers, and secretion of proinflammatory factors. Mechanistically, the overexpression of FoxC1 through Piezo1 activation, in combination with downstream YAP signaling, led to increased levels of alkaline phosphatase (ALP), collagen type 1 (COL1) A1, RUNX2, Osteocalcin, matrix metalloproteinase (MMP) 3, and MMP9 expression. Notably, inhibition of Piezo1 reversed the regulatory function of FoxC1. The binding of FoxC1 to the targeted area (ATATTTATTTA, residues +612 to +622) and the activation of Piezo1 transcription were verified by the dual luciferase assays. Additionally, Reduced subchondral osteosclerosis and microangiogenesis were observed in knee joints from FoxC1-conditional knockout (CKO) and Piezo1-CKO mice, indicating reduced lesions. Collectively, our study reveals the significant involvement of FoxC1 in the pathologic process of OA subchondral bone via the Piezo1/YAP signaling pathway, potentially establishing a novel therapeutic target.
Collapse
Affiliation(s)
- Zhengyuan Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Zoonoses, Anhui Medical University, Anhui, China
| | - Lin Hao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Zoonoses, Anhui Medical University, Anhui, China
| | - Shenghong Chen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Zoonoses, Anhui Medical University, Anhui, China
| | - Wenhan Fu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Zoonoses, Anhui Medical University, Anhui, China
| | - Hui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China
| | - Zongsheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China.
| | - Yin Wang
- Department of Wound Repair & Plastic and Aesthetic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, China; Anhui Public Health Clinical Center, Anhui, China.
| | - Jun Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China.
| |
Collapse
|
2
|
Li B, Li X, Jiang Z, Zhou D, Feng Y, Chen G, Li N. LncRNA XIST modulates miR-328-3p ectopic expression in lung injury induced by tobacco-specific lung carcinogen NNK both in vitro and in vivo. Br J Pharmacol 2024; 181:2509-2527. [PMID: 38589338 DOI: 10.1111/bph.16373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND AND PURPOSE It is well acknowledged that tobacco-derived lung carcinogens can induce lung injury and even lung cancer through a complex mechanism. MicroRNAs (MiRNAs) are differentially expressed in tobacco-derived carcinogen nicotine-derived nitrosamine ketone (NNK)-treated A/J mice. EXPERIMENTAL APPROACH RNA sequencing was used to detect the level of long non-coding RNAs (lncRNAs). Murine and human lung normal and cancer cells were used to evaluate the function of lncRNA XIST and miR-328-3p in vitro, and NNK-treated A/J mice were used to test their function in vivo. In vivo levels of miR-328-3p and lncRNA XIST were analysed, using in situ hybridization. miR-328-3p agomir and lncRNA XIST-specific siRNA were used to manipulate in vivo levels of miR-328-3p and lncRNA XIST in A/J mice. KEY RESULTS LncRNA XIST was up-regulated in NNK-induced lung injury and dominated the NNK-induced ectopic miRNA expression in NNK-induced lung injury both in vitro and in vivo. Either lncRNA XIST silencing or miR-328-3p overexpression exerted opposing effects in lung normal and cancer cells regarding cell migration. LncRNA XIST down-regulated miR-328-3p levels as a miRNA sponge, and miR-328-3p targeted the 3'-UTR of FZD7 mRNA, which is ectopically overexpressed in lung cancer patients. Both in vivo lncRNA XIST silencing and miR-328 overexpression could rescue NNK-induced lung injury and aberrant overexpression of the lung cancer biomarker CK19 in NNK-treated A/J mice. CONCLUSIONS AND IMPLICATIONS Our results highlight the promotive effect of lncRNA XIST in NNK-induced lung injury and elucidate its post-transcriptional mechanisms, indicating that targeting lncRNA XIST/miR-328-3p could be a potential therapeutic strategy to prevent tobacco carcinogen-induced lung injury in vivo.
Collapse
Affiliation(s)
- Bingxin Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Xuezheng Li
- Department of PIVAS, Yanbian University Hospital, Yanji, China
| | - Zhe Jiang
- Department of PIVAS, Yanbian University Hospital, Yanji, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuan Feng
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
3
|
Khokhar M, Dey S, Tomo S, Jaremko M, Emwas AH, Pandey RK. Unveiling Novel Drug Targets and Emerging Therapies for Rheumatoid Arthritis: A Comprehensive Review. ACS Pharmacol Transl Sci 2024; 7:1664-1693. [PMID: 38898941 PMCID: PMC11184612 DOI: 10.1021/acsptsci.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disease, that causes joint damage, deformities, and decreased functionality. In addition, RA can also impact organs like the skin, lungs, eyes, and blood vessels. This autoimmune condition arises when the immune system erroneously targets the joint synovial membrane, resulting in synovitis, pannus formation, and cartilage damage. RA treatment is often holistic, integrating medication, physical therapy, and lifestyle modifications. Its main objective is to achieve remission or low disease activity by utilizing a "treat-to-target" approach that optimizes drug usage and dose adjustments based on clinical response and disease activity markers. The primary RA treatment uses disease-modifying antirheumatic drugs (DMARDs) that help to interrupt the inflammatory process. When there is an inadequate response, a combination of biologicals and DMARDs is recommended. Biological therapies target inflammatory pathways and have shown promising results in managing RA symptoms. Close monitoring for adverse effects and disease progression is critical to ensure optimal treatment outcomes. A deeper understanding of the pathways and mechanisms will allow new treatment strategies that minimize adverse effects and maintain quality of life. This review discusses the potential targets that can be used for designing and implementing precision medicine in RA treatment, spotlighting the latest breakthroughs in biologics, JAK inhibitors, IL-6 receptor antagonists, TNF blockers, and disease-modifying noncoding RNAs.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department
of Biochemistry, All India Institute of
Medical Sciences, Jodhpur, 342005 Rajasthan, India
| | - Sangita Dey
- CSO
Department, Cellworks Research India Pvt
Ltd, Bengaluru, 560066 Karnataka, India
| | - Sojit Tomo
- Department
of Biochemistry, All India Institute of
Medical Sciences, Jodhpur, 342005 Rajasthan, India
| | - Mariusz Jaremko
- Smart-Health
Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological
and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955 Jeddah, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core
Laboratories, King Abdullah University of
Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Rajan Kumar Pandey
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden
| |
Collapse
|
4
|
Long G, Zhang Q, Yang X, Sun H, Ji C. miR-141-3p attenuates inflammation and oxidative stress-induced pulmonary fibrosis in ARDS via the Keap1/Nrf2/ARE signaling pathway. Immunol Res 2024:10.1007/s12026-024-09503-7. [PMID: 38865000 DOI: 10.1007/s12026-024-09503-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
The present research aimed to investigate the effects and mechanisms of microRNA (miR)-141-3p on pulmonary fibrosis of acute respiratory distress syndrome (ARDS). A rat ARDS model was established by the intratracheal drip of 10 mg/kg lipopolysaccharide (LPS). miR-141-3p and Kelch-like ECH-associated protein 1 (Keap1) expression was detected using RT-qPCR assay. Inflammatory factors in bronchoalveolar lavage fluid (BALF) and lung tissues were measured with enzyme-linked immunosorbent assay (ELISA). Lung fibrosis was evaluated using Masson's trichrome staining and hydroxyproline assay kits. Tissue oxidative stress marker levels were assessed by a commercial kit. Protein variations in the EMT pathway and Keap1/nuclear factor-erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway were investigated by Western blot analysis. Targeting relationship verified by dual-luciferase reporter assay. The expression of miR-141-3p was significantly upregulated in LPS-induced ARDS rats, while Keap1 was downregulated. Overexpression of miR-141-3p decreased the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, superoxide dismutase (SOD), and glutathione (GSH) while elevating malondialdehyde (MDA) expression in LPS-induced ARDS rats. Elevation of miR-141-3p reduced fibrosis scores, enhanced E-cadherin protein expression, and decreased vimentin and α-SMA protein expression in LPS-induced ARDS rats. This elevation of miR-141-3p also upregulated Nrf2, heme oxygenase-1 (HO-1), and NAD(P)H:quinone oxido-reductase-1 (NQO1) proteins levels. Moreover, Keap1 overexpression reversed the inhibitory effects of miR-141-3p on LPS-triggered inflammation, oxidative stress, and fibrosis. miR-141-3p may attenuate inflammation and oxidative stress-induced pulmonary fibrosis in ARDS via the Keap1/Nrf2/ARE signaling pathway. Our study provides new ideas for the treatment of ARDS.
Collapse
Affiliation(s)
- Guangwen Long
- Department of Emergency, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, 550002, Guizhou, China.
| | - Qian Zhang
- Department of Emergency, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, 550002, Guizhou, China
| | - Xiulin Yang
- Department of Emergency, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, 550002, Guizhou, China
| | - Hongpeng Sun
- Department of Emergency, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, 550002, Guizhou, China
| | - Chunling Ji
- Department of Emergency, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, 550002, Guizhou, China
| |
Collapse
|
5
|
Shi Z, Zhao T, Li D, Wang C, Luo Y, Zheng Y. Silencing of forkhead box C1 reduces nasal epithelial barrier damage in mice with allergic rhinitis via epigenetically upregulating secreted frizzled-related protein 5. Mol Immunol 2024; 168:51-63. [PMID: 38422887 DOI: 10.1016/j.molimm.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
Allergic rhinitis (AR) is caused by immunoglobulin E (IgE)-mediated reactions to inhaled allergens, which leads to mucosal inflammation and barrier dysfunction. The transcription factor forkhead box C1 (FOXC1) has been identified to be associated with allergic inflammation. This study sought to uncover the role of FOXC1 in AR. A murine model of AR was induced by repeated intranasal ovalbumin (OVA) challenges. Results revealed that high FOXC1 expression was found in the nasal mucosal epithelium of AR mice. Nasal allergy symptoms, mucosal epithelial swelling, goblet cell hyperplasia and eosinophil infiltration in AR mice were attenuated after silencing of FOXC1. Knockdown of FOXC1 decreased the levels of T-helper 2 cytokines interleukin(IL)-4 and IL-13 in nasal lavage fluid, and serum OVA-specific IgE and histamine. Silencing of FOXC1 restored nasal epithelial integrity in AR mice by enhancing the expression of tight junctions (TJs) and adherence junction. Furthermore, knocking down FOXC1 increased tight junction expression and transepithelial electrical resistance (TEER) in IL-13-treated air-liquid interface (ALI) cultures of human nasal epithelial cells (HNEpCs). Mechanistically, silencing of FOXC1 induced DNA methylation of secreted frizzled-related protein 5 (SFRP5) promoter and increased its expression in the nasal mucosa of AR mice and IL-13-treated ALI cultures. FOXC1 overexpression transcriptionally activated DNA methyltransferase 3B (DNMT3B) in IL-13-treated ALI cultures. Knockdown of SFRP5 reversed the protection of FOXC1 silencing on epithelial barrier damage induced by IL-13. Collectively, silencing of FOXC1 reduced allergic inflammation and nasal epithelial barrier damage in AR mice via upregulating SFRP5, which may be attribute to DNMT3B-driven DNA methylation. Our study indicated that FOXC1 may represent a potential therapeutic target for AR.
Collapse
Affiliation(s)
- Zhaohui Shi
- Department of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research Institute, Shenzhen 518172, Guangdong, China; Department of Otorhinolaryngology-Head and Neck Surgery, Department of Allergy, Naso-Orbital-Maxilla and Skull Base Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China.
| | - Tianfeng Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of AFMU (Xijing Hospital), Air force Medical University, Xi'an 710032, Shaanxi , China
| | - Dingbo Li
- Department of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research Institute, Shenzhen 518172, Guangdong, China
| | - Chong Wang
- Department of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research Institute, Shenzhen 518172, Guangdong, China
| | - Yanjie Luo
- Department of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research Institute, Shenzhen 518172, Guangdong, China; Department of Otorhinolaryngology-Head and Neck Surgery, Department of Allergy, Naso-Orbital-Maxilla and Skull Base Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Yangshan Zheng
- Department of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research Institute, Shenzhen 518172, Guangdong, China
| |
Collapse
|
6
|
Zhang H, Qiao W, Liu R, Shi Z, Sun J, Dong S. Development and validation of a novel biomarker panel for Crohn's disease and rheumatoid arthritis diagnosis and treatment. Aging (Albany NY) 2024; 16:5224-5248. [PMID: 38462694 PMCID: PMC11006481 DOI: 10.18632/aging.205644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/02/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Crohn's disease (CD) and rheumatoid arthritis (RA) are immune-mediated inflammatory diseases. However, the molecular mechanisms linking these two diseases remain unclear. METHODS To identify shared core genes between CD and RA, we employed differential gene analysis and the least absolute shrinkage and selection operator (LASSO) algorithm. Functional annotation of these core biomarkers was performed using consensus clustering and gene set enrichment analysis. We also constructed a protein-protein network and a miRNA-mRNA network using multiple databases, and potential therapeutic agents targeting the core biomarkers were predicted. Finally, we confirmed the expression of the genes in the biomarker panel in both CD and RA using quantitative PCR. RESULTS A total of five shared core genes, namely C-X-C motif chemokine ligand 10 (CXCL10), C-X-C motif chemokine ligand 9 (CXCL9), aquaporin 9 (AQP9), secreted phosphoprotein 1 (SPP1), and metallothionein 1M (MT1M), were identified as core biomarkers. These biomarkers activate classical pro-inflammatory and immune signaling pathways, influencing immune cell aggregation. Additionally, testosterone was identified as a potential therapeutic agent targeting the biomarkers identified in this study. The expression of genes in the biomarker panel in CD and RA was confirmed through quantitative PCR. CONCLUSION Our study revealed some core genes shared between CD and RA and established a novel biomarker panel with potential implications for the diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Gastroenterology Surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong 250013, China
| | - Wenhao Qiao
- Department of Gastroenterology Surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong 250013, China
| | - Ran Liu
- Department of Gastroenterology Surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong 250013, China
| | - Zuoxiu Shi
- Department of Gastroenterology Surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong 250013, China
| | - Jie Sun
- Department of Gastroenterology Surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong 250013, China
| | - Shuxiao Dong
- Department of Gastroenterology Surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong 250013, China
| |
Collapse
|
7
|
Kuang X, Chen S, Ye Q. The Role of Histone Deacetylases in NLRP3 Inflammasomesmediated Epilepsy. Curr Mol Med 2024; 24:980-1003. [PMID: 37519210 DOI: 10.2174/1566524023666230731095431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023]
Abstract
Epilepsy is one of the most common brain disorders that not only causes death worldwide, but also affects the daily lives of patients. Previous studies have revealed that inflammation plays an important role in the pathophysiology of epilepsy. Activation of inflammasomes can promote neuroinflammation by boosting the maturation of caspase-1 and the secretion of various inflammatory effectors, including chemokines, interleukins, and tumor necrosis factors. With the in-depth research on the mechanism of inflammasomes in the development of epilepsy, it has been discovered that NLRP3 inflammasomes may induce epilepsy by mediating neuronal inflammatory injury, neuronal loss and blood-brain barrier dysfunction. Therefore, blocking the activation of the NLRP3 inflammasomes may be a new epilepsy treatment strategy. However, the drugs that specifically block NLRP3 inflammasomes assembly has not been approved for clinical use. In this review, the mechanism of how HDACs, an inflammatory regulator, regulates the activation of NLRP3 inflammasome is summarized. It helps to explore the mechanism of the HDAC inhibitors inhibiting brain inflammatory damage so as to provide a potential therapeutic strategy for controlling the development of epilepsy.
Collapse
Affiliation(s)
- Xi Kuang
- Hainan Health Vocational College,Haikou, Hainan, 570311, China
| | - Shuang Chen
- Hubei Provincial Hospital of Integrated Chinese and Western Medicine, 430022, Hubei, China
| | - Qingmei Ye
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| |
Collapse
|
8
|
Vyavahare S, Kumar S, Smith K, Mendhe B, Zhong R, Cooley MA, Baban B, Isales CM, Hamrick M, Hill WD, Fulzele S. Inhibiting MicroRNA-141-3p Improves Musculoskeletal Health in Aged Mice. Aging Dis 2023; 14:2303-2316. [PMID: 37199586 PMCID: PMC10676793 DOI: 10.14336/ad.2023.0310-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/10/2023] [Indexed: 05/19/2023] Open
Abstract
Emerging evidence shows that the microRNA-141-3p is involved in various age-related pathologies. Previously, our group and others reported elevated levels of miR-141-3p in several tissues and organs with age. Here, we inhibited the expression of miR-141-3p using antagomir (Anti-miR-141-3p) in aged mice and explored its role in healthy aging. We analyzed serum (cytokine profiling), spleen (immune profiling), and overall musculoskeletal phenotype. We found decreased levels of pro-inflammatory cytokines (such as TNF-α, IL-1β, IFN-γ) in serum with Anti-miR-141-3p treatment. The flow-cytometry analysis on splenocytes revealed decreased M1 (pro-inflammatory) and increased M2 (anti-inflammatory) populations. We also found improved bone microstructure and muscle fiber size with Anti-miR-141-3p treatment. Molecular analysis revealed that miR-141-3p regulates the expression of AU-rich RNA-binding factor 1 (AUF1) and promotes senescence (p21, p16) and pro-inflammatory (TNF-α, IL-1β, IFN-γ) environment whereas inhibiting miR-141-3p prevents these effects. Furthermore, we demonstrated that the expression of FOXO-1 transcription factor was reduced with Anti-miR-141-3p and elevated with silencing of AUF1 (siRNA-AUF1), suggesting crosstalk between miR-141-3p and FOXO-1. Overall, our proof-of-concept study demonstrates that inhibiting miR-141-3p could be a potential strategy to improve immune, bone, and muscle health with age.
Collapse
Affiliation(s)
- Sagar Vyavahare
- Department of Cell biology and Anatomy, Augusta University, Augusta, GA, USA.
| | - Sandeep Kumar
- Department of Cell biology and Anatomy, Augusta University, Augusta, GA, USA.
| | - Kathryn Smith
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Arkansas, USA.
| | - Bharati Mendhe
- Department of Cell biology and Anatomy, Augusta University, Augusta, GA, USA.
| | - Roger Zhong
- Department of Neuroscience and Regenerative Medicine, Augusta, GA, USA.
| | - Marion A. Cooley
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA.
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA.
| | - Carlos M. Isales
- Department of Medicine, Augusta University, Augusta, GA, USA.
- Center for Healthy Aging, Augusta University, Augusta, GA, USA.
- Department of Neuroscience and Regenerative Medicine, Augusta, GA, USA.
| | - Mark Hamrick
- Department of Cell biology and Anatomy, Augusta University, Augusta, GA, USA.
- Center for Healthy Aging, Augusta University, Augusta, GA, USA.
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, SC 29403, USA.
| | - Sadanand Fulzele
- Department of Cell biology and Anatomy, Augusta University, Augusta, GA, USA.
- Department of Medicine, Augusta University, Augusta, GA, USA.
- Center for Healthy Aging, Augusta University, Augusta, GA, USA.
- Department of Neuroscience and Regenerative Medicine, Augusta, GA, USA.
| |
Collapse
|
9
|
Chen F, Wang S, Zeng C, Tang S, Gu H, Wang Z, Li J, Feng P, Zhang Y, Wang P, Wu Y, Shen H. Silencing circSERPINE2 restrains mesenchymal stem cell senescence via the YBX3/PCNA/p21 axis. Cell Mol Life Sci 2023; 80:325. [PMID: 37831180 PMCID: PMC10575817 DOI: 10.1007/s00018-023-04975-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
Increasing evidence indicates that circular RNAs (circRNAs) accumulate in aging tissues and nonproliferating cells due to their high stability. However, whether upregulation of circRNA expression mediates stem cell senescence and whether circRNAs can be targeted to alleviate aging-related disorders remain unclear. Here, RNA sequencing analysis of differentially expressed circRNAs in long-term-cultured mesenchymal stem cells (MSCs) revealed that circSERPINE2 expression was significantly increased in late passages. CircSERPINE2 small interfering RNA delayed MSC senescence and rejuvenated MSCs, while circSERPINE2 overexpression had the opposite effect. RNA pulldown followed by mass spectrometry revealed an interaction between circSERPINE2 and YBX3. CircSERPINE2 increased the affinity of YBX3 for ZO-1 through the CCAUC motif, resulting in the sequestration of YBX3 in the cytoplasm, inhibiting the association of YBX3 with the PCNA promoter and eventually affecting p21 ubiquitin-mediated degradation. In addition, our results demonstrated that senescence-related downregulation of EIF4A3 gave rise to circSERPINE2. In vivo, intra-articular injection of si-circSerpine2 restrained native joint-resident MSC senescence and cartilage degeneration in mice with aging-related osteoarthritis. Taken together, our findings provide strong evidence for a regulatory role for the circSERPINE2/YBX3/PCNA/p21 axis in MSC senescence and the therapeutic potential of si-circSERPINE2 in alleviating aging-associated syndromes, such as osteoarthritis.
Collapse
Affiliation(s)
- Fenglei Chen
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, People's Republic of China
| | - Shan Wang
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, People's Republic of China
| | - Chenying Zeng
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, People's Republic of China
| | - Su'an Tang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Huimin Gu
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, People's Republic of China
| | - Ziming Wang
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, People's Republic of China
| | - Jinteng Li
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, People's Republic of China
| | - Pei Feng
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, People's Republic of China
| | - Yunhui Zhang
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, People's Republic of China
| | - Peng Wang
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, People's Republic of China.
| | - Yanfeng Wu
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, People's Republic of China.
| | - Huiyong Shen
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, People's Republic of China.
| |
Collapse
|
10
|
Wu XN, Gao ZW, Yang L, Zhang J, Liu C, Zhang HZ, Dong K. CD5L aggravates rheumatoid arthritis progression via promoting synovial fibroblasts proliferation and activity. Clin Exp Immunol 2023; 213:317-327. [PMID: 37191481 PMCID: PMC10571003 DOI: 10.1093/cei/uxad054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/13/2023] [Accepted: 05/15/2023] [Indexed: 05/17/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease with progressive cartilage erosion and joint destruction. Synovial fibroblasts (SFs) play a crucial role in the pathogenesis of RA. This study aims to explore the function and mechanism of CD5L during RA progression. We examined the levels of CD5L in synovial tissues and SFs. The collagen-induced arthritis (CIA) rat models were used to investigate the effect of CD5L on RA progression. We also investigated the effects of exogenous CD5L on the behavior and activity of RA synovial fibroblasts (RASFs). Our results showed that CD5L expression was significantly upregulated in synovium of RA patients and CIA-rats. Histology and Micro-CT analysis showed that synovial inflammation and bone destruction were more severe in CD5L-treated CIA rats compared with control rats. Correspondingly, CD5L blockade alleviated bone damage and synovial inflammation in CIA-rats. The exogenous CD5L treatment promoted RASFs proliferation invasion and proinflammatory cytokine production. Knockdown of CD5L receptor by siRNA significantly reversed the effect of CD5L treatment on RASFs. Moreover, we observed that CD5L treatment potentiated PI3K/Akt signaling in the RASFs. The promoted effects of CD5L on IL-6 and IL-8 expression were significantly reversed by PI3K/Akt signaling inhibitor. In conclusion, CD5L promote RA disease progression via activating RASFs. CD5L blocking is a potential therapeutic approach for RA patients.
Collapse
Affiliation(s)
- Xia-Nan Wu
- Department of Clinical Laboratory, Tangdu Hospital, Airforce Medical University, Xi’an, China
| | - Zhao-Wei Gao
- Department of Clinical Laboratory, Tangdu Hospital, Airforce Medical University, Xi’an, China
| | - Lan Yang
- Department of Clinical Laboratory, Tangdu Hospital, Airforce Medical University, Xi’an, China
| | - Juan Zhang
- Department of Clinical Laboratory, Tangdu Hospital, Airforce Medical University, Xi’an, China
| | - Chong Liu
- Department of Clinical Laboratory, Tangdu Hospital, Airforce Medical University, Xi’an, China
| | - Hui-Zhong Zhang
- Department of Clinical Laboratory, Tangdu Hospital, Airforce Medical University, Xi’an, China
| | - Ke Dong
- Department of Clinical Laboratory, Tangdu Hospital, Airforce Medical University, Xi’an, China
| |
Collapse
|
11
|
Zhang Y, Yang M, Xie H, Hong F, Yang S. Role of miRNAs in Rheumatoid Arthritis Therapy. Cells 2023; 12:1749. [PMID: 37443783 PMCID: PMC10340706 DOI: 10.3390/cells12131749] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease characterized by autoimmunity, synovial inflammation and joint destruction. Pannus formation in the synovial cavity can cause irreversible damage to the joint and cartilage and eventually permanent disability. Current conventional treatments for RA have limitations regarding efficacy, safety and cost. microRNA (miRNA) is a type of non-coding RNA (ncRNA) that regulates gene expression at the post-transcriptional level. The dysregulation of miRNA has been observed in RA patients and implicated in the pathogenesis of RA. miRNAs have emerged as potential biomarkers or therapeutic agents. In this review, we explore the role of miRNAs in various aspects of RA pathophysiology, including immune cell imbalance, the proliferation and invasion of fibroblast-like synovial (FLS) cell, the dysregulation of inflammatory signaling and disturbance in angiogenesis. We delve into the regulatory effects of miRNAs on Treg/Th17 and M1/M2 polarization, the activation of the NF-κB/NLRP3 signaling pathway, neovascular formation, energy metabolism induced by FLS-cell-induced energy metabolism, apoptosis, osteogenesis and mobility. These findings shed light on the potential applications of miRNAs as diagnostic or therapeutic biomarkers for RA management. Furthermore, there are some strategies to regulate miRNA expression levels by utilizing miRNA mimics or exosomes and to hinder miRNA activity via competitive endogenous RNA (ceRNA) network-based antagonists. We conclude that miRNAs offer a promising avenue for RA therapy with unlimited potential.
Collapse
Affiliation(s)
- Yiping Zhang
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China; (Y.Z.); (M.Y.)
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Meiwen Yang
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China; (Y.Z.); (M.Y.)
- Department of Physiology, Fuzhou Medical College of Nanchang University, Fuzhou 344100, China
- Technology Innovation Center of Chronic Disease Research in Fuzhou City, Fuzhou Science and Technology Bureau, Fuzhou 344100, China
| | - Hongyan Xie
- Department of Foreign Language, Fuzhou Medical College of Nanchang University, Fuzhou 344100, China;
| | - Fenfang Hong
- Experimental Centre of Pathogen Biology, Nanchang University, Nanchang 330031, China
| | - Shulong Yang
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China; (Y.Z.); (M.Y.)
- Department of Physiology, Fuzhou Medical College of Nanchang University, Fuzhou 344100, China
- Technology Innovation Center of Chronic Disease Research in Fuzhou City, Fuzhou Science and Technology Bureau, Fuzhou 344100, China
| |
Collapse
|
12
|
Zhang Z, Li Y, Chen N, Li H, Chen S, Cui X, Shao H, Wei L, Ma J, Zhang S, Li X, Zhang X. Pertussis toxin-induced inhibition of Wnt/β-catenin signaling in dendritic cells promotes an autoimmune response in experimental autoimmune uveitis. J Neuroinflammation 2023; 20:24. [PMID: 36739434 PMCID: PMC9898909 DOI: 10.1186/s12974-023-02707-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/27/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previous reports have indicated that disrupting the Wnt/β-catenin pathway in dendritic cells (DCs) may affect the progression of autoimmune inflammation; however, the factors and timing that regulate Wnt/β-catenin signaling have not been clearly understood. METHODS Experimental autoimmune uveitis (EAU) mice and Vogt-Koyanagi-Harada disease (VKH) patient samples were used to detect the expression of Wnt/β-catenin pathway genes. Western blot, real-time PCR, flow cytometry, and ELISA were performed to examine the expression of components of the Wnt/β-catenin pathway and inflammatory factors. DC-specific β-catenin knockout mice and 6-bromoindirubin-3'-oxime (BIO) administered mice were used to observe the effect of disrupting the Wnt pathway on EAU pathogenesis. RESULTS Wnt/β-catenin signaling was inhibited in DCs during the induction phase of EAU. The inhibition was mediated by pertussis toxin (PTX), which promoted DC maturation, in turn promoting pathogenic T cell proliferation and differentiation. In vivo experiments confirmed that deleting β-catenin in DCs enhanced EAU severity, and pre-injection of PTX advanced EAU onset. Administration of a Wnt activator (BIO) limited the effects of PTX, in turn ameliorating EAU. CONCLUSIONS Our results demonstrate that PTX plays a key role as a virulence factor in initiating autoimmune inflammation via DCs by inhibiting Wnt/β-catenin signaling in EAU, and highlight the potential mechanism by which infection can trigger apparent autoimmunity.
Collapse
Affiliation(s)
- Zhihui Zhang
- grid.412729.b0000 0004 1798 646XTianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yongtao Li
- grid.412729.b0000 0004 1798 646XTianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Nu Chen
- grid.412729.b0000 0004 1798 646XTianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Huan Li
- grid.412729.b0000 0004 1798 646XTianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Shuang Chen
- grid.412729.b0000 0004 1798 646XTianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xuexue Cui
- grid.412729.b0000 0004 1798 646XTianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hui Shao
- grid.266623.50000 0001 2113 1622Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, School of Medicine, Louisville, KY USA
| | - Lai Wei
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jianxing Ma
- grid.241167.70000 0001 2185 3318Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC USA
| | - Song Zhang
- grid.216938.70000 0000 9878 7032Institute for Immunology and College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaorong Li
- grid.412729.b0000 0004 1798 646XTianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaomin Zhang
- grid.412729.b0000 0004 1798 646XTianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
13
|
Wu Y, Wang H, Huo Y, Yan B, Honda H, Liu W, Yang J. Differentiated embryonic chondrocyte expressed gene-1 is a central signaling component in the development of collagen-induced rheumatoid arthritis. J Biol Chem 2023; 299:102982. [PMID: 36739947 PMCID: PMC10011830 DOI: 10.1016/j.jbc.2023.102982] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases and affects almost 1% of the population. Differentiated embryo-chondrocyte expressed gene-1 (DEC1) has been associated with both osteogenesis and osteoclastogenesis. RA condition is marked by inflammatory hyperplasia, and DEC1 is known to support inflammatory reactions and implicated in antiapoptosis and cell invasion. Here, our goal was to test the hypothesis that DEC1 enhances RA development induced by collagen-induced arthritis (CIA), a well-recognized protocol for developing RA animal models. DEC1+/+ and DEC1-/- mice were subjected to CIA protocol, and the development of RA condition was monitored. We found that CIA robustly induced RA phenotypes (e.g., synovial hyperplasia) and greatly increased the expression of proinflammatory cytokines such as TNF-α. However, these changes were detected in DEC1+/+ but not DEC1-/- mice. Interestingly, these very cytokines strongly induced DEC1, and such a dual role of DEC1, as an inducer for and being induced by proinflammatory cytokines, constitutes a DEC1-amplifying circuit for inflammation. Knockdown of DEC1 in human MH7A cells strongly decreased cell migration and invasion as well as the expression of genes related to RA phenotypes. The combination of DEC1-directed migration and invasion in vitro with synovial hyperplasia in vivo mechanistically establishes cellular bases on how DEC1 is involved in the development of RA phenotypes. In addition to inflammatory signaling, DEC1 functionally interacted with PI3KCA(p110α)/Akt/GSK3β, Wnt/β-catenin, and NFATc1. Such engagement in multiple signaling pathways suggests that DEC1 plays coordinated and integral roles in developing RA, one of the most common autoimmune diseases.
Collapse
Affiliation(s)
- Yichen Wu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Haobin Wang
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Ying Huo
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Bingfang Yan
- Department of Pharmacology, James L. Winkle College of Pharmacy University of Cincinnati, Cincinnati, Ohio, USA
| | - Hiroaki Honda
- Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Wei Liu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China.
| | - Jian Yang
- Department of Pharmacology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
14
|
Peng X, Wang Q, Li W, Ge G, Peng J, Xu Y, Yang H, Bai J, Geng D. Comprehensive overview of microRNA function in rheumatoid arthritis. Bone Res 2023; 11:8. [PMID: 36690624 PMCID: PMC9870909 DOI: 10.1038/s41413-023-00244-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/15/2022] [Accepted: 12/04/2022] [Indexed: 01/25/2023] Open
Abstract
MicroRNAs (miRNAs), a class of endogenous single-stranded short noncoding RNAs, have emerged as vital epigenetic regulators of both pathological and physiological processes in animals. They direct fundamental cellular pathways and processes by fine-tuning the expression of multiple genes at the posttranscriptional level. Growing evidence suggests that miRNAs are implicated in the onset and development of rheumatoid arthritis (RA). RA is a chronic inflammatory disease that mainly affects synovial joints. This common autoimmune disorder is characterized by a complex and multifaceted pathogenesis, and its morbidity, disability and mortality rates remain consistently high. More in-depth insights into the underlying mechanisms of RA are required to address unmet clinical needs and optimize treatment. Herein, we comprehensively review the deregulated miRNAs and impaired cellular functions in RA to shed light on several aspects of RA pathogenesis, with a focus on excessive inflammation, synovial hyperplasia and progressive joint damage. This review also provides promising targets for innovative therapies of RA. In addition, we discuss the regulatory roles and clinical potential of extracellular miRNAs in RA, highlighting their prospective applications as diagnostic and predictive biomarkers.
Collapse
Affiliation(s)
- Xiaole Peng
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Qing Wang
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Wenming Li
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Gaoran Ge
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Jiachen Peng
- grid.413390.c0000 0004 1757 6938Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, P. R. China
| | - Yaozeng Xu
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Huilin Yang
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Jiaxiang Bai
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Dechun Geng
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| |
Collapse
|
15
|
Chen Y, Wang Y, Jiang X, Cai J, Chen Y, Huang H, Yang Y, Zheng L, Zhao J, Gao M. Dimethylamino group modified polydopamine nanoparticles with positive charges to scavenge cell-free DNA for rheumatoid arthritis therapy. Bioact Mater 2022; 18:409-420. [PMID: 35415310 PMCID: PMC8968194 DOI: 10.1016/j.bioactmat.2022.03.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
Excessive cell-free DNA (cfDNA) released by damaged or apoptotic cells can cause inflammation, impacting the progression of rheumatoid arthritis (RA). cfDNA scavengers, such as cationic nanoparticles (NPs), have been demonstrated as an efficient strategy for treating RA. However, most scavengers are limited by unfavorable biocompatibility and poor scavenging efficacy. Herein, by exploiting the favorable biocompatibility, biodegradability and bioadhesion of polydopamine (P), we modified P with dimethylamino groups to form altered charged DPs to bind negatively charged cfDNA for RA therapy. Results showed that DPs endowed with superior binding affinity of cfDNA and little cytotoxicity, which effectively inhibited lipopolysaccharide (LPS) stimulated inflammation in vitro, resulting in the relief of joint swelling, synovial hyperplasia and cartilage destruction in RA rats. Significantly, DPs with higher DS of bis dimethylamino group exhibited higher positive charge density and stronger cfDNA binding affinity, leading to excellent RA therapeutic effect among all of the treated groups, which was even close to normal rats. These finding provides a novel strategy for the treatment of cfDNA-associated diseases. Novel dimethylamino modified PDA NPs is applied as cfDNA scavenger. The high positively charged modified P displays high binding affinity of cfDNA. High positive charge density of cfDNA scavenger endows high efficacy RA therapy. Novel biocompatible cfDNA scavenger aims for cfDNA associated diseases therapy.
Collapse
|
16
|
Duan B, Yu Z, Liu R, Li J, Song Z, Zhou Q, Chen L. Tetrandrine-induced downregulation of lncRNA NEAT1 inhibits rheumatoid arthritis progression through the STAT3/miR-17-5p pathway. Immunopharmacol Immunotoxicol 2022; 44:886-893. [PMID: 35815670 DOI: 10.1080/08923973.2022.2092748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The inhibitory effect of Tetrandrine (Tet) on rheumatoid arthritis (RA) is well established. However, its exact molecular mechanism remains unknown. METHODS RT-qPCR coupled with western blotting was employed to analyze the expression of NEAT1, miR-17-5p, and STAT3 in RA tissues and/or RA-fibroblast-like synoviocytes (RA-FLS) treated with 3 μmol/L of Tet for 48 h. Cell Counting Kit-8 assay and flow cytometry were performed to assess RA-FLS proliferation and apoptosis. Luciferase reporter assays were used to validate the interactions between miR-17-5p and STAT3 or NEAT1. RESULTS The expression of NEAT1 decreased in a time-dependent manner upon Tet treatment. Tet significantly inhibited RA-FLS proliferation and triggered apoptosis by downregulating NEAT1 expression. Additionally, NEAT1 directly targeted miR-17-5p to upregulate STAT3 expression. Tet-induced low NEAT1 expression impaired RA-FLS growth by targeting miR-17-5p and inhibiting STAT3. CONCLUSION Tet exerts its inhibitory role in RA progression by regulating the NEAT1/miR-17-5p/STAT3 pathway.
Collapse
Affiliation(s)
- Bo Duan
- Department of Rheumatology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Zhao Yu
- Department of Rheumatology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Ruilin Liu
- Department of Rheumatology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jigao Li
- Department of Rheumatology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhe Song
- Department of Rheumatology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Quan Zhou
- Department of Rheumatology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Lichuan Chen
- Department of Rheumatology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
17
|
Evolving understandings for the roles of non-coding RNAs in autoimmunity and autoimmune disease. J Autoimmun 2022:102948. [DOI: 10.1016/j.jaut.2022.102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
|
18
|
Yang J, Zhang Y, Liang J, Yang X, Liu L, Zhao H. Fibronectin-1 is a dominant mechanism for rheumatoid arthritis via the mediation of synovial fibroblasts activity. Front Cell Dev Biol 2022; 10:1010114. [PMID: 36225320 PMCID: PMC9548557 DOI: 10.3389/fcell.2022.1010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Rheumatoid arthritis (RA) has a high incidence and adverse effects on patients, thus posing a serious threat to people’s life and health. However, the underlying mechanisms regarding the development of RA are still elusive. Herein, we aimed to evaluate the RA-associated molecular mechanisms using the scRNA-seq technique. We used the GEO database to obtain scRNA-seq datasets for synovial fibroblasts (SFs) from RA cases, and the genes were then analyzed using principal component analysis (PCA) and T-Stochastic Neighbor Embedding (TSNE) analyses. Bioinformatics evaluations were carried out for asserting the highly enriched signaling pathways linked to the marker genes, and the key genes related to RA initiation were further identified. According to the obtained results, 3 cell types (0, 1, and 2) were identified by TSNE and some marker genes were statistically upregulated in cell type 1 than the other cell types. These marker genes predominantly contributed to extracellular matrix (ECM) architecture, collagen-harboring ECM, and ECM structural components, and identified as enriched with PI3K/AKT signaling cascade. Notably, fibronectin-1 (FN-1) has been identified as a critical gene that is strongly linked to the development of SFs and has enormous promise for regulating the onset of RA. Moreover, such an investigation offers novel perspectives within onset/progression of RA, suggesting that FN-1 may be a key therapeutic target for RA therapies.
Collapse
|
19
|
Osteoblastic microRNAs in skeletal diseases: Biological functions and therapeutic implications. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
20
|
Wang Y, Lu L, Niu Y, Zhang Q, Cheng C, Huang H, Huang X, Huang Q. The osteoporosis risk variant rs9820407 at 3p22.1 acts as an allele-specific enhancer to regulate CTNNB1 expression by long-range chromatin loop formation. Bone 2021; 153:116165. [PMID: 34461284 DOI: 10.1016/j.bone.2021.116165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022]
Abstract
Previous powerful genome-wide association studies (GWASs) and whole-genome sequencing have identified multiple single-nucleotide polymorphisms (SNPs) located over 69 kb upstream of CTNNB1 at 3p22.1 locus associated with osteoporosis. The CTNNB1 gene encodes β-catenin that is an integral part of adherens junctions and the primary mediator of the canonical Wnt signaling pathway. The causal variants and underlying molecular mechanisms of the osteoporosis susceptibility locus 3p22.1 remains unknown. Through comprehensive computational analyses, including expression quantitative trait locus (eQTL), high-throughput chromatin interaction (Hi-C), epigenomic and functional annotation, four enhancer SNPs (rs9820407, rs9878224, rs454690 and rs9832204) were prioritized as potential causal SNPs at 3p22.1 for osteoporosis. Rs9820407 displayed the strongest enhancer activity in dual-luciferase assays. Specifically, the minor rs9820407-A can preferentially bind transcription factor FOXC1, elevate the enhancer activity and increase CTNNB1 expression. The architectural protein CTCF was presumably involved in long-range chromatin interaction between rs9820407 and CTNNB1. Our study provided a mechanistic insight into how noncoding enhancer SNP rs9820407 distally regulates CTNNB1 expression and modulates osteoporosis risk.
Collapse
Affiliation(s)
- Ya Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Li Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yajing Niu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Qiongdan Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Chen Cheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Han Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xinyao Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Qingyang Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
21
|
Fang X, Wang H, Zhuo Z, Tian P, Chen Z, Wang Y, Cheng X. miR-141-3p inhibits the activation of astrocytes and the release of inflammatory cytokines in bacterial meningitis through down-regulating HMGB1. Brain Res 2021; 1770:147611. [PMID: 34403663 DOI: 10.1016/j.brainres.2021.147611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Bacterial meningitis (BM) is a serious infectious disease of the central nervous system that often occurs in children and adolescents. Many studies have suggested that microRNAs (miRNAs) are involved in BM. This study aimed to address the effects of miR-141-3p on astrocyte activation and inflammatory response in BM through HMGB1. METHODS The 3-week-old rats were injected with Streptococcus pneumoniae (SP) into the lateral ventricle to establish a BM model. Loeffler scoring method was used to evaluate the recovery of neurological function. Brain pathological damage was observed by hematoxylin and eosin (H&E) staining. Primary astrocytes were isolated from brain tissues of BM or non-infected SD rats. The levels of TNF-α, IL-1β, and IL-6 in brain tissues and astrocyte culture supernatant were measured by enzyme-linked immunosorbent assay (ELISA). The targeting relationship between miR-141-3p and HMGB1 was tested using dual-luciferase reporter assay. The expression of miR-141-3p, HMGB1, and the astrocytic marker glial fibrillary acidic protein (GFAP) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) or western blotting. Methylation-specific PCR (MSP) analysis was performed to measure the methylation status of miR-141 promoter. RESULTS The results showed that lower Loeffler scores were exhibited in rats with BM. The subarachnoid space of brain tissues of BM rats was widened, and obvious inflammatory cells were observed. miR-141-3p expression was reduced in BM rats and SP-treated astrocytes. Additionally, we found that overexpression of miR-141-3p led to the downregulation of HMGB1, GFAP, and inflammatory cytokines (TNF-α, IL-1β, and IL-6) in astrocytes. Furthermore, the results of dual-luciferase reporter assay confirmed that miR-141-3p directly targeted HMGB1. Overexpression of miR-141-3p inhibited the levels of GFAP, TNF-α, IL-1β, and IL-6 in astrocytes, which was eliminated by the up-regulation of HMGB1. The results of MSP analysis indicated that miR-141 promoter was highly methylated in brain tissues and astrocytes. DNMT1 was involved in the methylation of miR-141 promoter in BM. CONCLUSION The present study verified that miR-141-3p affected inflammatory response by suppressing HMGB1 in SP-induced astrocytes and BM rat model.
Collapse
Affiliation(s)
- Xiao Fang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huaili Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhihong Zhuo
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Peichao Tian
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zheng Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yue Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiuyong Cheng
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
22
|
Ali SA, Peffers MJ, Ormseth MJ, Jurisica I, Kapoor M. The non-coding RNA interactome in joint health and disease. Nat Rev Rheumatol 2021; 17:692-705. [PMID: 34588660 DOI: 10.1038/s41584-021-00687-y] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Non-coding RNAs have distinct regulatory roles in the pathogenesis of joint diseases including osteoarthritis (OA) and rheumatoid arthritis (RA). As the amount of high-throughput profiling studies and mechanistic investigations of microRNAs, long non-coding RNAs and circular RNAs in joint tissues and biofluids has increased, data have emerged that suggest complex interactions among non-coding RNAs that are often overlooked as critical regulators of gene expression. Identifying these non-coding RNAs and their interactions is useful for understanding both joint health and disease. Non-coding RNAs regulate signalling pathways and biological processes that are important for normal joint development but, when dysregulated, can contribute to disease. The specific expression profiles of non-coding RNAs in various disease states support their roles as promising candidate biomarkers, mediators of pathogenic mechanisms and potential therapeutic targets. This Review synthesizes literature published in the past 2 years on the role of non-coding RNAs in OA and RA with a focus on inflammation, cell death, cell proliferation and extracellular matrix dysregulation. Research to date makes it apparent that 'non-coding' does not mean 'non-essential' and that non-coding RNAs are important parts of a complex interactome that underlies OA and RA.
Collapse
Affiliation(s)
- Shabana A Ali
- Bone and Joint Center, Department of Orthopaedic Surgery, Henry Ford Health System, Detroit, MI, USA. .,Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, USA.
| | - Mandy J Peffers
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Michelle J Ormseth
- Department of Research and Development, Veterans Affairs Medical Center, Nashville, TN, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
23
|
Zhang S, Dong J, Li Y, Xiao H, Shang Y, Wang B, Chen Z, Zhang M, Fan S, Cui M. Gamma-irradiation fluctuates the mRNA N 6-methyladenosine (m 6A) spectrum of bone marrow in hematopoietic injury. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117509. [PMID: 34380217 DOI: 10.1016/j.envpol.2021.117509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/25/2021] [Accepted: 05/30/2021] [Indexed: 06/13/2023]
Abstract
Humans benefit from nuclear technologies but consequently experience nuclear disasters or side effects of iatrogenic radiation. Hematopoietic system injury first arises upon radiation exposure. As an intricate new layer of genetic control, the posttranscriptional m6A modification of RNA has recently come under investigation and has been demonstrated to play pivotal roles in multiple physiological and pathological processes. However, how the m6A methylome functions in the hematopoietic system after irradiation remains ambiguous. Here, we uncovered the time-varying epitranscriptome-wide m6A methylome and transcriptome alterations in γ-ray-exposed mouse bone marrow. 4 Gy γ-irradiation rapidly (5 min and 2 h) and severely impaired the mouse hematopoietic system, including spleen and thymus weight, blood components, tissue inflammation and malondialdehyde (MDA) levels. The m6A content and expression of m6A related enzymes were altered. Gamma-irradiation triggered dynamic and reversible m6A modification profiles and altered mRNA expression, where both m6A fold-enrichment and mRNA expression most followed the (5 min_up/2 h_down) pattern. The CDS enrichment region preferentially upregulated m6A peaks at 5 min. Moreover, the main GO and KEGG pathways were closely related to metabolism and the classical radiation response. Finally, m6A modifications correlated with transcriptional regulation of genes in multiple aspects. Blocking the expression of m6A demethylases FTO and ALKBH5 mitigated radiation hematopoietic toxicity. Together, our findings present the comprehensive landscape of mRNA m6A methylation in the mouse hematopoietic system in response to γ-irradiation, shedding light on the significance of m6A modifications in mammalian radiobiology. Regulation of the epitranscriptome may be exploited as a strategy against radiation damage.
Collapse
Affiliation(s)
- Shuqin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Huiwen Xiao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Yue Shang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Bin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Zhiyuan Chen
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Mengran Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China.
| |
Collapse
|
24
|
Oligonucleotide Therapies in the Treatment of Arthritis: A Narrative Review. Biomedicines 2021; 9:biomedicines9080902. [PMID: 34440106 PMCID: PMC8389545 DOI: 10.3390/biomedicines9080902] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are two of the most common chronic inflammatory joint diseases, for which there remains a great clinical need to develop safer and more efficacious pharmacological treatments. The pathology of both OA and RA involves multiple tissues within the joint, including the synovial joint lining and the bone, as well as the articular cartilage in OA. In this review, we discuss the potential for the development of oligonucleotide therapies for these disorders by examining the evidence that oligonucleotides can modulate the key cellular pathways that drive the pathology of the inflammatory diseased joint pathology, as well as evidence in preclinical in vivo models that oligonucleotides can modify disease progression.
Collapse
|
25
|
Huang J, Fu X, Chen X, Li Z, Huang Y, Liang C. Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis. Front Immunol 2021; 12:686155. [PMID: 34305919 PMCID: PMC8299711 DOI: 10.3389/fimmu.2021.686155] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic poly-articular chronic autoimmune joint disease that mainly damages the hands and feet, which affects 0.5% to 1.0% of the population worldwide. With the sustained development of disease-modifying antirheumatic drugs (DMARDs), significant success has been achieved for preventing and relieving disease activity in RA patients. Unfortunately, some patients still show limited response to DMARDs, which puts forward new requirements for special targets and novel therapies. Understanding the pathogenetic roles of the various molecules in RA could facilitate discovery of potential therapeutic targets and approaches. In this review, both existing and emerging targets, including the proteins, small molecular metabolites, and epigenetic regulators related to RA, are discussed, with a focus on the mechanisms that result in inflammation and the development of new drugs for blocking the various modulators in RA.
Collapse
Affiliation(s)
- Jie Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xuekun Fu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xinxin Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zheng Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yuhong Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
26
|
Tsai CY, Hsieh SC, Liu CW, Lu CH, Liao HT, Chen MH, Li KJ, Wu CH, Shen CY, Kuo YM, Yu CL. The Expression of Non-Coding RNAs and Their Target Molecules in Rheumatoid Arthritis: A Molecular Basis for Rheumatoid Pathogenesis and Its Potential Clinical Applications. Int J Mol Sci 2021; 22:ijms22115689. [PMID: 34073629 PMCID: PMC8198764 DOI: 10.3390/ijms22115689] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a typical autoimmune-mediated rheumatic disease presenting as a chronic synovitis in the joint. The chronic synovial inflammation is characterized by hyper-vascularity and extravasation of various immune-related cells to form lymphoid aggregates where an intimate cross-talk among innate and adaptive immune cells takes place. These interactions facilitate production of abundant proinflammatory cytokines, chemokines and growth factors for the proliferation/maturation/differentiation of B lymphocytes to become plasma cells. Finally, the autoantibodies against denatured immunoglobulin G (rheumatoid factors), EB virus nuclear antigens (EBNAs) and citrullinated protein (ACPAs) are produced to trigger the development of RA. Furthermore, it is documented that gene mutations, abnormal epigenetic regulation of peptidylarginine deiminase genes 2 and 4 (PADI2 and PADI4), and thereby the induced autoantibodies against PAD2 and PAD4 are implicated in ACPA production in RA patients. The aberrant expressions of non-coding RNAs (ncRNAs) including microRNAs (miRs) and long non-coding RNAs (lncRNAs) in the immune system undoubtedly derange the mRNA expressions of cytokines/chemokines/growth factors. In the present review, we will discuss in detail the expression of these ncRNAs and their target molecules participating in developing RA, and the potential biomarkers for the disease, its diagnosis, cardiovascular complications and therapeutic response. Finally, we propose some prospective investigations for unraveling the conundrums of rheumatoid pathogenesis.
Collapse
Affiliation(s)
- Chang-Youh Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.); (M.-H.C.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
| | - Chih-Wei Liu
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.); (M.-H.C.)
| | - Cheng-Hsun Lu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.); (M.-H.C.)
| | - Ming-Han Chen
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.); (M.-H.C.)
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
| | - Cheng-Han Wu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Cheih-Yu Shen
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Yu-Min Kuo
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| |
Collapse
|
27
|
Jiang J, Li J, Yao W, Wang W, Shi B, Yuan F, Dong J, Zhang H. FOXC1 Negatively Regulates DKK1 Expression to Promote Gastric Cancer Cell Proliferation Through Activation of Wnt Signaling Pathway. Front Cell Dev Biol 2021; 9:662624. [PMID: 33987183 PMCID: PMC8111291 DOI: 10.3389/fcell.2021.662624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
Gastric cancer (GC), characterized by uncontrolled growth, is a common malignant tumor of the digestive system. The Wnt signaling pathway plays an important role in the tumorigenesis and proliferation of GC. Many studies on this signaling pathway have focused on its intracellular regulatory mechanism, whereas little attention has been given to extracellular regulatory factors. Dickkopf-1 (Dkk1) is a secretory glycoprotein, and it can bind inhibit activation of the Wnt pathway. However, the regulation and mechanism of DKK1 in the proliferation of GC remain unclear. FOXC1 plays an important role in organ development and tumor growth, but its role in GC tumor growth remains unknown. In this study, we found that the FOXC1 is highly expressed in patients with GC and high expression of FOXC1 correlates to poor prognosis. In addition, we found that the Wnt signaling pathway in GC cells with high FOXC1 expression was strongly activated. FOXC1 negatively regulates DKK1 expression by binding to its promoter region, thereby promoting the activation of Wnt pathway. FOXC1 can also form a complex with unphosphorylated β-catenin protein in the cytoplasm and then dissociates from β-catenin in the nucleus, thereby promoting the entry of β-catenin into the nucleus and regulating expression of c-MYC, which promotes the proliferation of GC cells. Our study not only reveals the function and mechanism of FOXC1 in GC, but also provides a potential target for clinic GC treatment.
Collapse
Affiliation(s)
- Jiang Jiang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfang Li
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwu Yao
- Department of Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenfang Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bowen Shi
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Yuan
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyan Dong
- Department of Ocular Fundus Diseases, Shanxi Eye Hospital, Shanxi, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Imas JJ, Ruiz Zamarreño C, Zubiate P, Sanchez-Martín L, Campión J, Matías IR. Optical Biosensors for the Detection of Rheumatoid Arthritis (RA) Biomarkers: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6289. [PMID: 33158306 PMCID: PMC7663853 DOI: 10.3390/s20216289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Abstract
A comprehensive review of optical biosensors for the detection of biomarkers associated with rheumatoid arthritis (RA) is presented here, including microRNAs (miRNAs), C-reactive protein (CRP), rheumatoid factor (RF), anti-citrullinated protein antibodies (ACPA), interleukin-6 (IL-6) and histidine, which are biomarkers that enable RA detection and/or monitoring. An overview of the different optical biosensors (based on fluorescence, plasmon resonances, interferometry, surface-enhanced Raman spectroscopy (SERS) among other optical techniques) used to detect these biomarkers is given, describing their performance and main characteristics (limit of detection (LOD) and dynamic range), as well as the connection between the respective biomarker and rheumatoid arthritis. It has been observed that the relationship between the corresponding biomarker and rheumatoid arthritis tends to be obviated most of the time when explaining the mechanism of the optical biosensor, which forces the researcher to look for further information about the biomarker. This review work attempts to establish a clear association between optical sensors and rheumatoid arthritis biomarkers as well as to be an easy-to-use tool for the researchers working in this field.
Collapse
Affiliation(s)
- José Javier Imas
- Electrical, Electronics and Communications Engineering Department, Public University of Navarra, 31006 Pamplona, Spain; (J.J.I.); (P.Z.); (I.R.M.)
- Institute of Smart Cities (ISC), Public University of Navarra, 31006 Pamplona, Spain
| | - Carlos Ruiz Zamarreño
- Electrical, Electronics and Communications Engineering Department, Public University of Navarra, 31006 Pamplona, Spain; (J.J.I.); (P.Z.); (I.R.M.)
- Institute of Smart Cities (ISC), Public University of Navarra, 31006 Pamplona, Spain
| | - Pablo Zubiate
- Electrical, Electronics and Communications Engineering Department, Public University of Navarra, 31006 Pamplona, Spain; (J.J.I.); (P.Z.); (I.R.M.)
| | | | - Javier Campión
- Making Genetics S.L., Plaza CEIN 5, 31110 Noáin, Spain; (L.S.-M.); (J.C.)
| | - Ignacio Raúl Matías
- Electrical, Electronics and Communications Engineering Department, Public University of Navarra, 31006 Pamplona, Spain; (J.J.I.); (P.Z.); (I.R.M.)
- Institute of Smart Cities (ISC), Public University of Navarra, 31006 Pamplona, Spain
| |
Collapse
|
29
|
Li S, Wang H, Wu H, Chang X. Therapeutic Effect of Exogenous Regulatory T Cells on Collagen-induced Arthritis and Rheumatoid Arthritis. Cell Transplant 2020; 29:963689720954134. [PMID: 32990025 PMCID: PMC7784507 DOI: 10.1177/0963689720954134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/14/2020] [Accepted: 08/07/2020] [Indexed: 01/02/2023] Open
Abstract
Regulatory T (Treg) cells have anti-inflammatory functions and heighten immune tolerance. The proportion and functions of Treg cells are perturbed in rheumatoid arthritis (RA), contributing to the excessive immune activation associated with this disease. We therefore hypothesized that supplementation with foreign Treg cells could be used to treat RA. To investigate the therapeutic effects of exogenous Treg cells on RA and its mechanism, we used human Treg cells to treat collagen-induced arthritis (CIA) in a rat model to observe whether exogenous Treg cells can treat the disease across species. Successful treatment would indicate that Treg cell transplantation in humans is more likely to affect RA. In the present study, human Treg cells were collected from healthy human peripheral blood and culture-expanded in vitro. Induced human Treg cells were injected into CIA rats via the tail vein. The rats' lymphocyte subtypes, cytokines, and Th1/Th2 ratios were measured using flow cytometry. In the rats, following injection of the human Treg cells, the severity of CIA was significantly reduced (P < 0.01), the proportion of endogenous Treg cells increased in the peripheral blood and spleen (P = 0.007 and P < 0.01, respectively), and the proportion of B cells decreased (P = 0.031). The IL-5 level, IL-6 level, and Th1/Th2 ratio in the peripheral blood were decreased (P = 0.013, 0.009, and 0.012, respectively). The culture-expanded human Treg cells were also cultured with synovial fibroblast cells from RA patients (RASFs). After coculture with Treg cells, RASFs showed reduced proliferation (P < 0.01) and increased apoptosis (P = 0.037). These results suggest that exogenous and induced Treg cells can produce a therapeutic effect in RA and CIA by increasing endogenous Treg cells and RASF apoptosis and reducing B cells, the Th1/Th2 ratio, and secretion levels of IL-5 and IL-6. Treg cell transplantation could serve as a therapy for RA that does not cause immune rejection.
Collapse
Affiliation(s)
- Shutong Li
- Medical Research Center of the Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, PR China
- Medical School of Pingdingshan University, Pingdingshan, Henan, PR China
| | - Hongxing Wang
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, PR China
| | - Hui Wu
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, PR China
| | - Xiaotian Chang
- Medical Research Center of the Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China
| |
Collapse
|