1
|
Jaber M, Armand A, Rochette E, Monzy S, Greze V, Kanold J, Merlin E, Paysal J, Nottin S. Anthracycline-induced cardiotoxicity on regional myocardial work and left ventricular mechanical dispersion in adolescents and young adults in post-lymphoma remission. Cancer Med 2024; 13:e6857. [PMID: 38204211 PMCID: PMC10904967 DOI: 10.1002/cam4.6857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Myocardial work (MW) is a new echocardiographic tool with a high sensitivity to detect early and subtle alterations of myocardial function. We aimed to evaluate the late effects of anthracyclines by assessing the global and segmental MW and intraventricular mechanical dispersion from speckle tracking echocardiography in childhood lymphoma survivors (CLS). METHODS Thirty-one young adults including CLS and age-matched healthy controls were enrolled. All underwent echocardiography including an evaluation of left ventricular (LV) morphology and regional function. We assessed LV longitudinal (differentiating sub-endocardial and sub-epicardial layers), circumferential strains and twist, global and regional MW index (MWI). LV mechanical dispersion was assessed from the time dispersion of LV longitudinal strain, from myocardial wasted work (MWW) and myocardial work efficiency (MWE). RESULTS The longitudinal strains both at the level of the sub-endocardium and sub-epicardium were reduced in CLS compared to controls. The global MWI was also decreased (1668 ± 266 vs 1870 ± 264%.mmHg in CLS patients and controls, respectively, p < 0.05), especially on the apical segments. An increase of LV intraventricular mechanical dispersion was observed in CLS. MWW and MWE remained unchanged compared to controls. CONCLUSION Our results strongly support that cardiac remodeling is observed in CLS, characterized by a decrease in MW and an increase in LV mechanical dispersion. The apex is specifically altered, but its clinical significance remains uncertain. MW as a complement to strain seems interesting in cancer survivors to detect myocardial dysfunction at early stage and adapt their follow-up.
Collapse
Affiliation(s)
- Mohamed Jaber
- CHU Clermont‐Ferrand, Pédiatrie GénéraleClermont‐FerrandFrance
| | - Alexandre Armand
- CHU de Clermont‐Ferrand, Service Hématologie Oncologie PédiatriqueClermont‐FerrandFrance
| | - Emmanuelle Rochette
- CHU Clermont‐Ferrand, Pédiatrie GénéraleClermont‐FerrandFrance
- Université Clermont Auvergne, INSERMCIC 1405, CRECHE UnitClermont‐FerrandFrance
| | - Severine Monzy
- Cardiologue libéral, Pôle Santé RépubliqueClermont‐FerrandFrance
| | - Victoria Greze
- CHU de Clermont‐Ferrand, Service Hématologie Oncologie PédiatriqueClermont‐FerrandFrance
- Université Clermont Auvergne, INSERMCIC 1405, CRECHE UnitClermont‐FerrandFrance
| | - Justyna Kanold
- CHU de Clermont‐Ferrand, Service Hématologie Oncologie PédiatriqueClermont‐FerrandFrance
- Université Clermont Auvergne, INSERMCIC 1405, CRECHE UnitClermont‐FerrandFrance
| | - Etienne Merlin
- CHU Clermont‐Ferrand, Pédiatrie GénéraleClermont‐FerrandFrance
- CHU de Clermont‐Ferrand, Service Hématologie Oncologie PédiatriqueClermont‐FerrandFrance
| | - Justine Paysal
- CHU de Clermont‐Ferrand, Service Hématologie Oncologie PédiatriqueClermont‐FerrandFrance
- CHU Clermont‐Ferrand, Néonatologie et Réanimation PédiatriqueClermont‐FerrandFrance
| | - Stéphane Nottin
- Laboratory of Cardiovascular Adaptations to ExerciseAvignonFrance
| |
Collapse
|
2
|
Shi P, Wu J, Li M, Cao Y, Wu J, Ren P, Liu K, Zhou J, Sha Y, Zhang Q, Sun H. Upregulation of Hsp27 via further inhibition of histone H2A ubiquitination confers protection against myocardial ischemia/reperfusion injury by promoting glycolysis and enhancing mitochondrial function. Cell Death Discov 2023; 9:466. [PMID: 38114486 PMCID: PMC10730859 DOI: 10.1038/s41420-023-01762-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
Research suggests that ischemic glycolysis improves myocardial tolerance to anoxia and low-flow ischemia. The rate of glycolysis during ischemia reflects the severity of the injury caused by ischemia and subsequent functional recovery following reperfusion. Histone H2AK119 ubiquitination (H2Aub) is a common modification that is primarily associated with gene silencing. Recent studies have demonstrated that H2Aub contributes to the development of cardiovascular diseases. However, the underlying mechanism remains unclear. This study identified Hsp27 (heat shock protein 27) as a H2Aub binding protein and explored its involvement in mediating glycolysis and mitochondrial function. Functional studies revealed that inhibition of PRC1 (polycomb repressive complex 1) decreased H2Aub occupancy and promoted Hsp27 expression through inhibiting ubiquitination. Additionally, it increased glycolysis by activating the NF-κB/PFKFB3 signaling pathway during myocardial ischemia. Furthermore, Hsp27 reduced mitochondrial ROS production by chaperoning COQ9, and suppressed ferroptosis during reperfusion. A delivery system was developed based on PCL-PEG-MAL (PPM)-PCM-SH (CWLSEAGPVVTVRALRGTGSW) to deliver PRT4165 (PRT), a potent inhibitor of PRC1, to damaged myocardium, resulting in decreased H2Aub. These findings revealed a novel epigenetic mechanism connecting glycolysis and ferroptosis in protecting the myocardium against ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Pilong Shi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, 163319, China
| | - Jiawei Wu
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, 163319, China
| | - Minghui Li
- Department of Pharmaceutics, Harbin Medical University-Daqing, Daqing, Heilongjiang, 163319, China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, 163319, China
| | - Jiabi Wu
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, 163319, China
| | - Ping Ren
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, 163319, China
| | - Kai Liu
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, 163319, China
| | - Jiajun Zhou
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, 163319, China
| | - Yuetong Sha
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, 163319, China
| | - Qianhui Zhang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, 163319, China
| | - Hongli Sun
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, 163319, China.
| |
Collapse
|
3
|
Desplanche E, Grillet PE, Wynands Q, Bideaux P, Alburquerque L, Charrabi A, Bourdin A, Cazorla O, Gouzi F, Virsolvy A. Elevated Blood Pressure Occurs without Endothelial Dysfunction in a Rat Model of Pulmonary Emphysema. Int J Mol Sci 2023; 24:12609. [PMID: 37628790 PMCID: PMC10454081 DOI: 10.3390/ijms241612609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disease involving airway closure and parenchyma destruction (emphysema). Cardiovascular diseases are the main causes of morbi-mortality in COPD and, in particular, hypertension and heart failure with preserved ejection fraction (HFpEF). However, no mechanistic link has currently been established between the onset of COPD, elevated blood pressure (BP) and systemic vascular impairment (endothelial dysfunction). Thus, we aimed to characterize BP and vascular function and remodeling in a rat model of exacerbated emphysema focusing on the role of sympathetic hyperactivity. Emphysema was induced in male Wistar rats by four weekly pulmonary instillations of elastase (4UI) and exacerbation by a single dose of lipopolysaccharides (LPS). Five weeks following the last instillation, in vivo and ex vivo cardiac and vascular functions were investigated. Exacerbated emphysema induced cardiac dysfunction (HFpEF) and a BP increase in this COPD model. We observed vasomotor changes and hypotrophic remodeling of the aorta without endothelial dysfunction. Indeed, changes in contractile and vasorelaxant properties, though endothelium-dependent, were pro-relaxant and NO-independent. A β1-receptor antagonist (bisoprolol) prevented HFpEF and vascular adaptations, while the effect on BP increase was partial. Endothelial dysfunction would not trigger hypertension and HFpEF in COPD. Vascular changes appeared as an adaptation to the increased BP. The preventing effect of bisoprolol revealed a pivotal role of sympathetic hyperactivation in BP elevation. The mechanistic link between HFpEF, cardiac sympathetic activation and BP deserves further studies in this exacerbated-emphysema model, as well as in COPD patients.
Collapse
Affiliation(s)
- Elodie Desplanche
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34295 Montpellier, France; (E.D.); (Q.W.); (P.B.); (L.A.); (A.C.); (O.C.)
| | - Pierre-Edouard Grillet
- PhyMedExp, Université de Montpellier, INSERM, CNRS, CHU de Montpellier, 34295 Montpellier, France; (P.-E.G.); (A.B.); (F.G.)
| | - Quentin Wynands
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34295 Montpellier, France; (E.D.); (Q.W.); (P.B.); (L.A.); (A.C.); (O.C.)
| | - Patrice Bideaux
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34295 Montpellier, France; (E.D.); (Q.W.); (P.B.); (L.A.); (A.C.); (O.C.)
| | - Laurie Alburquerque
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34295 Montpellier, France; (E.D.); (Q.W.); (P.B.); (L.A.); (A.C.); (O.C.)
| | - Azzouz Charrabi
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34295 Montpellier, France; (E.D.); (Q.W.); (P.B.); (L.A.); (A.C.); (O.C.)
| | - Arnaud Bourdin
- PhyMedExp, Université de Montpellier, INSERM, CNRS, CHU de Montpellier, 34295 Montpellier, France; (P.-E.G.); (A.B.); (F.G.)
| | - Olivier Cazorla
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34295 Montpellier, France; (E.D.); (Q.W.); (P.B.); (L.A.); (A.C.); (O.C.)
| | - Fares Gouzi
- PhyMedExp, Université de Montpellier, INSERM, CNRS, CHU de Montpellier, 34295 Montpellier, France; (P.-E.G.); (A.B.); (F.G.)
| | - Anne Virsolvy
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34295 Montpellier, France; (E.D.); (Q.W.); (P.B.); (L.A.); (A.C.); (O.C.)
| |
Collapse
|
4
|
Yehya M, Boulghobra D, Grillet PE, Fleitas-Paniagua PR, Bideaux P, Gayrard S, Sicard P, Thireau J, Reboul C, Cazorla O. Natural Extracts Mitigate the Deleterious Effects of Prolonged Intense Physical Exercise on the Cardiovascular and Muscular Systems. Antioxidants (Basel) 2023; 12:1474. [PMID: 37508012 PMCID: PMC10376415 DOI: 10.3390/antiox12071474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Muscle fatigue is a common symptom induced by exercise. A reversible loss of muscle force is observed with variable rates of recovery depending on the causes or underlying mechanisms. It can not only affect locomotion muscles, but can also affect the heart, in particular after intense prolonged exercise such as marathons and ultra-triathlons. The goal of our study was to explore the effect of four different natural extracts with recognized antioxidant properties on the contractile function of skeletal (locomotion) and cardiac muscles after a prolonged exhausting exercise. Male Wistar rats performed a bout of exhausting exercise on a treadmill for about 2.5 h and were compared to sedentary animals. Some rats received oral treatment of a natural extract (rosemary, buckwheat, Powergrape®, or rapeseed) or the placebo 24 h and 1 h before exercise. Experiments were performed 30 min after the race and after 7 days of recovery. All natural extracts had protective effects both in cardiac and skeletal muscles. The extent of protection was different depending on muscle type and the duration post-exercise (just after and after one-week recovery), including antiarrhythmic effect and anti-diastolic dysfunction for the heart, and faster recovery of contractility for the skeletal muscles. Moreover, the muscular protective effect varied between natural extracts. Our study shows that an acute antioxidant supplementation can protect against acute abnormal endogenous ROS toxicity, induced here by prolonged exhausting exercise.
Collapse
Affiliation(s)
- Marc Yehya
- PhyMedExp, INSERM, CNRS, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
- UPR-4278, Laboratoire de Physiologie Expérimentale Cardiovasculaire, Avignon University, 84029 Avignon, France
| | - Doria Boulghobra
- UPR-4278, Laboratoire de Physiologie Expérimentale Cardiovasculaire, Avignon University, 84029 Avignon, France
| | - Pierre-Edouard Grillet
- PhyMedExp, INSERM, CNRS, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
- Département de Biochimie et d'Hormonologie, CHU Montpellier, 34295 Montpellier, France
| | | | - Patrice Bideaux
- PhyMedExp, INSERM, CNRS, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| | - Sandrine Gayrard
- UPR-4278, Laboratoire de Physiologie Expérimentale Cardiovasculaire, Avignon University, 84029 Avignon, France
| | - Pierre Sicard
- PhyMedExp, INSERM, CNRS, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| | - Jérome Thireau
- PhyMedExp, INSERM, CNRS, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| | - Cyril Reboul
- UPR-4278, Laboratoire de Physiologie Expérimentale Cardiovasculaire, Avignon University, 84029 Avignon, France
| | - Olivier Cazorla
- PhyMedExp, INSERM, CNRS, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| |
Collapse
|
5
|
Ponzoni M, Coles JG, Maynes JT. Rodent Models of Dilated Cardiomyopathy and Heart Failure for Translational Investigations and Therapeutic Discovery. Int J Mol Sci 2023; 24:3162. [PMID: 36834573 PMCID: PMC9963155 DOI: 10.3390/ijms24043162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Even with modern therapy, patients with heart failure only have a 50% five-year survival rate. To improve the development of new therapeutic strategies, preclinical models of disease are needed to properly emulate the human condition. Determining the most appropriate model represents the first key step for reliable and translatable experimental research. Rodent models of heart failure provide a strategic compromise between human in vivo similarity and the ability to perform a larger number of experiments and explore many therapeutic candidates. We herein review the currently available rodent models of heart failure, summarizing their physiopathological basis, the timeline of the development of ventricular failure, and their specific clinical features. In order to facilitate the future planning of investigations in the field of heart failure, a detailed overview of the advantages and possible drawbacks of each model is provided.
Collapse
Affiliation(s)
- Matteo Ponzoni
- Division of Cardiovascular Surgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Program in Translational Medicine, SickKids Research Institute, Toronto, ON M5G 0A4, Canada
| | - John G. Coles
- Division of Cardiovascular Surgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Program in Translational Medicine, SickKids Research Institute, Toronto, ON M5G 0A4, Canada
| | - Jason T. Maynes
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON M5G 0A4, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON M5G 1E2, Canada
| |
Collapse
|
6
|
Wan Y, He B, Zhu D, Wang L, Huang R, Wang S, Wang C, Zhang M, Ma L, Gao F. Nicorandil Ameliorates Doxorubicin-Induced Cardiotoxicity in Rats, as Evaluated by 7 T Cardiovascular Magnetic Resonance Imaging. Cardiovasc Drugs Ther 2023; 37:39-51. [PMID: 34595611 PMCID: PMC9834367 DOI: 10.1007/s10557-021-07252-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE Doxorubicin-induced cardiotoxicity (DIC) is a common side effect of doxorubicin chemotherapy, and a major mechanism of DIC is inflammation. However, no effective method exists to prevent DIC. In the present study, we investigated the cardioprotective effects of nicorandil against DIC using multiparametric cardiac magnetic resonance (CMR) imaging and elucidated the anti-inflammatory properties of nicorandil in rat models. METHODS Male Sprague-Dawley rats received four weekly intraperitoneal doxorubicin doses (4 mg/kg/injection) to establish the DIC model. After treatment with or without nicorandil (3 mg/kg/day) or diazoxide (10 mg/kg/day) orally, all the groups underwent weekly CMR examinations, including cardiac function and strain assessment and T2 mapping, for 6 weeks. Additionally, blood samples and hearts were collected to examine inflammation and histopathology. RESULTS According to our results, the earliest DIC CMR parameter in the doxorubicin group was T2 mapping time prolongation compared with the DIC rats treated with nicorandil (doxorubicin+nicorandil group) at week 2. Subsequently, the left ventricular ejection fraction (LVEF) and global peak systolic myocardial strain in the doxorubicin group were significantly reduced, and nicorandil effectively inhibited these effects at week 6. Our results were confirmed by histopathological evaluations. Furthermore, nicorandil treatment had a protective effect against the doxorubicin-induced inflammatory response. Interestingly, similar protective results were obtained using the KATP channel opener diazoxide. CONCLUSION Collectively, our findings indicate that nicorandil application ameliorates DIC in rats with significantly higher cardiac function and myocardial strain and less fibrosis, apoptosis and inflammatory cytokine production. Nicorandil prevents T2 abnormalities in the early stages of DIC, showing a high clinical value for early nicorandil treatment in chemotherapy patients.
Collapse
Affiliation(s)
- Yixuan Wan
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Bo He
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Dongyong Zhu
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Lei Wang
- Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ruijue Huang
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Shiyu Wang
- Department of Radiology, Huashan Hospital, Shanghai, China
| | - Chunhua Wang
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, Radiation Oncology Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Shanghai, China
| | - Mengdi Zhang
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Lu Ma
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Fabao Gao
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China.
- Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Gavotto A, Dubard V, Avesani M, Huguet H, Picot MC, Abassi H, Guillaumont S, De La Villeon G, Haouy S, Sirvent N, Sirvent A, Theron A, Requirand A, Matecki S, Amedro P. Impaired aerobic capacity in adolescents and young adults after treatment for cancer or non-malignant haematological disease. Pediatr Res 2023:10.1038/s41390-023-02477-6. [PMID: 36709386 DOI: 10.1038/s41390-023-02477-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/29/2023]
Abstract
PURPOSE Childhood cancer survivors are at increased risk for cardiovascular disease. Maximal oxygen uptake (VO2max) is a major determinant of cardiovascular morbidity. The aim of this study was to compare aerobic capacity, measured by cardiopulmonary exercise test (CPET), of adolescents and young adults in remission with that of healthy controls and to identify the predictors of aerobic capacity in this population. METHOD This is a controlled cross-sectional study. RESULTS A total of 477 subjects (77 in remission and 400 controls), aged from 6 to 25 years, were included, with a mean delay between end of treatment and CPET of 2.9 ± 2.3 years in the remission group. In this group, the mean VO2max was significantly lower than in controls (37.3 ± 7.6 vs. 43.3 ± 13.1 mL/kg/min, P < 0.01, respectively), without any clinical or echocardiographic evidence of heart failure. The VAT was significantly lower in the remission group (26.9 ± 6.0 mL/kg/min vs. 31.0 ± 9.9 mL/kg/min, P < 0.01, respectively). A lower VO2max was associated with female sex, older age, higher BMI, radiotherapy, and hematopoietic stem cell transplantation. CONCLUSION Impaired aerobic capacity had a higher prevalence in adolescents and young adults in cancer remission. This impairment was primarily related to physical deconditioning and not to heart failure. TRIAL REGISTRY NCT04815447. IMPACT In childhood cancer survivors, aerobic capacity is five times more impaired than in healthy subjects. This impairment mostly reflects early onset of physical deconditioning. No evidence of heart failure was observed in this population.
Collapse
Affiliation(s)
- Arthur Gavotto
- Paediatric Cardiology and Pulmonology Unit, Department of Paediatrics, Montpellier University Hospital, Montpellier, France.,PhyMedExp, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Vincent Dubard
- Paediatric Cardiology and Pulmonology Unit, Department of Paediatrics, Montpellier University Hospital, Montpellier, France
| | - Martina Avesani
- Paediatric and Congenital Cardiology Department, M3C National Reference Centre, Bordeaux University Hospital, Bordeaux, France
| | - Helena Huguet
- Epidemiology and Clinical Research Department, Clinical Investigation Centre, INSERM-CIC 1411, University of Montpellier, Montpellier University Hospital, Montpellier, France
| | - Marie-Christine Picot
- Epidemiology and Clinical Research Department, Clinical Investigation Centre, INSERM-CIC 1411, University of Montpellier, Montpellier University Hospital, Montpellier, France
| | - Hamouda Abassi
- Paediatric Cardiology and Pulmonology Unit, Department of Paediatrics, Montpellier University Hospital, Montpellier, France
| | - Sophie Guillaumont
- Paediatric Cardiology and Pulmonology Unit, Department of Paediatrics, Montpellier University Hospital, Montpellier, France.,Paediatric Cardiology and Rehabilitation Centre, Saint-Pierre Institute, Palavas-Les-Flots, France
| | - Gregoire De La Villeon
- Paediatric Cardiology and Pulmonology Unit, Department of Paediatrics, Montpellier University Hospital, Montpellier, France.,Paediatric Cardiology and Rehabilitation Centre, Saint-Pierre Institute, Palavas-Les-Flots, France
| | - Stephanie Haouy
- Paediatric Cancer Unit, Department of Paediatrics, Montpellier University Hospital, Montpellier, France
| | - Nicolas Sirvent
- Paediatric Cancer Unit, Department of Paediatrics, Montpellier University Hospital, Montpellier, France
| | - Anne Sirvent
- Paediatric Cancer Unit, Department of Paediatrics, Montpellier University Hospital, Montpellier, France
| | - Alexandre Theron
- Paediatric Cancer Unit, Department of Paediatrics, Montpellier University Hospital, Montpellier, France
| | - Anne Requirand
- Paediatric Cardiology and Pulmonology Unit, Department of Paediatrics, Montpellier University Hospital, Montpellier, France
| | - Stefan Matecki
- Paediatric Cardiology and Pulmonology Unit, Department of Paediatrics, Montpellier University Hospital, Montpellier, France.,PhyMedExp, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Pascal Amedro
- Paediatric and Congenital Cardiology Department, M3C National Reference Centre, Bordeaux University Hospital, Bordeaux, France. .,IHU Liryc, INSERM 1045, Bordeaux University, Bordeaux, France.
| |
Collapse
|
8
|
Kaur N, Sharma RK, Singh Kushwah A, Singh N, Thakur S. A Comprehensive Review of Dilated Cardiomyopathy in Pre-clinical Animal Models in Addition to Herbal Treatment Options and Multi-modality Imaging Strategies. Cardiovasc Hematol Disord Drug Targets 2023; 22:207-225. [PMID: 36734898 DOI: 10.2174/1871529x23666230123122808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/05/2022] [Accepted: 11/17/2022] [Indexed: 02/01/2023]
Abstract
Dilated cardiomyopathy (DCM) is distinguished by ventricular chamber expansion, systolic dysfunction, and normal left ventricular (LV) wall thickness, and is mainly caused due to genetic or environmental factors; however, its aetiology is undetermined in the majority of patients. The focus of this work is on pathogenesis, small animal models, as well as the herbal medicinal approach, and the most recent advances in imaging modalities for patients with dilated cardiomyopathy. Several small animal models have been proposed over the last few years to mimic various pathomechanisms that contribute to dilated cardiomyopathy. Surgical procedures, gene mutations, and drug therapies are all characteristic features of these models. The pros and cons, including heart failure stimulation of extensively established small animal models for dilated cardiomyopathy, are illustrated, as these models tend to procure key insights and contribute to the development of innovative treatment techniques for patients. Traditional medicinal plants used as treatment in these models are also discussed, along with contemporary developments in herbal therapies. In the last few decades, accurate diagnosis, proper recognition of the underlying disease, specific risk stratification, and forecasting of clinical outcome, have indeed improved the health of DCM patients. Cardiac magnetic resonance (CMR) is the bullion criterion for assessing ventricular volume and ejection fraction in a reliable and consistent direction. Other technologies, like strain analysis and 3D echocardiography, have enhanced this technique's predictive and therapeutic potential. Nuclear imaging potentially helps doctors pinpoint the causative factors of left ventricular dysfunction, as with cardiac sarcoidosis and amyloidosis.
Collapse
Affiliation(s)
- Navneet Kaur
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Bela, Ropar, Punjab, India
| | - Rahul Kumar Sharma
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Bela, Ropar, Punjab, India
| | - Ajay Singh Kushwah
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Bela, Ropar, Punjab, India
| | - Nisha Singh
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Bela, Ropar, Punjab, India
| | - Shilpa Thakur
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Bela, Ropar, Punjab, India
| |
Collapse
|
9
|
Investigation of doxorubicin combined with ciprofloxacin-induced cardiotoxicity: from molecular mechanism to fundamental heart function. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022:10.1007/s00210-022-02331-2. [DOI: 10.1007/s00210-022-02331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022]
|
10
|
Podyacheva E, Toropova Y. SIRT1 activation and its effect on intercalated disc proteins as a way to reduce doxorubicin cardiotoxicity. Front Pharmacol 2022; 13:1035387. [PMID: 36408244 PMCID: PMC9672938 DOI: 10.3389/fphar.2022.1035387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
According to the World Health Organization, the neoplasm is one of the main reasons for morbidity and mortality worldwide. At the same time, application of cytostatic drugs like an independent type of cancer treatment and in combination with surgical methods, is often associated with the development of cardiovascular complications both in the early and in the delayed period of treatment. Doxorubicin (DOX) is the most commonly used cytotoxic anthracycline antibiotic. DOX can cause both acute and delayed side effects. The problem is still not solved, as evidenced by the continued activity of researchers in terms of developing approaches for the prevention and treatment of cardiovascular complications. It is known, the heart muscle consists of cardiomyocytes connected by intercalated discs (ID), which ensure the structural, electrical, metabolic unity of the heart. Various defects in the ID proteins can lead to the development of cardiovascular diseases of various etiologies, including DOX-induced cardiomyopathy. The search for ways to influence the functioning of ID proteins of the cardiac muscle can become the basis for the creation of new therapeutic approaches to the treatment and prevention of cardiac pathologies. SIRT1 may be an interesting cardioprotective variant due to its wide functional significance. SIRT1 activation triggers nuclear transcription programs that increase the efficiency of cellular, mitochondrial metabolism, increases resistance to oxidative stress, and promotes cell survival. It can be assumed that SIRT1 can not only provide a protective effect at the cardiomyocytes level, leading to an improvement in mitochondrial and metabolic functions, reducing the effects of oxidative stress and inflammatory processes, but also have a protective effect on the functioning of IDs structures of the cardiac muscle.
Collapse
|
11
|
Agostinucci K, Grant MKO, Seelig D, Yücel D, van Berlo J, Bartolomucci A, Dyck JRB, Zordoky BN. Divergent Cardiac Effects of Angiotensin II and Isoproterenol Following Juvenile Exposure to Doxorubicin. Front Cardiovasc Med 2022; 9:742193. [PMID: 35402534 PMCID: PMC8990895 DOI: 10.3389/fcvm.2022.742193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
Hypertension is the most significant risk factor for heart failure in doxorubicin (DOX)-treated childhood cancer survivors. We previously developed a two-hit mouse model of juvenile DOX-induced latent cardiotoxicity that is exacerbated by adult-onset angiotensin II (ANGII)-induced hypertension. It is still not known how juvenile DOX-induced latent cardiotoxicity would predispose the heart to pathologic stimuli that do not cause hypertension. Our main objective is to determine the cardiac effects of ANGII (a hypertensive pathologic stimulus) and isoproterenol (ISO, a non-hypertensive pathologic stimulus) in adult mice pre-exposed to DOX as juveniles. Five-week-old male C57BL/6N mice were administered DOX (4 mg/kg/week) or saline for 3 weeks and then allowed to recover for 5 weeks. Thereafter, mice were administered either ANGII (1.4 mg/kg/day) or ISO (10 mg/kg/day) for 14 days. Juvenile exposure to DOX abrogated the hypertrophic response to both ANGII and ISO, while it failed to correct ANGII- and ISO-induced upregulation in the hypertrophic markers, ANP and BNP. ANGII, but not ISO, worsened cardiac function and exacerbated cardiac fibrosis in DOX-exposed mice as measured by echocardiography and histopathology, respectively. The adverse cardiac remodeling in the DOX/ANGII group was associated with a marked upregulation in several inflammatory and fibrotic markers and altered expression of Ace, a critical enzyme in the RAAS. In conclusion, juvenile exposure to DOX causes latent cardiotoxicity that predisposes the heart to a hypertensive pathologic stimulus (ANGII) more than a non-hypertensive stimulus (ISO), mirroring the clinical scenario of worse cardiovascular outcome in hypertensive childhood cancer survivors.
Collapse
Affiliation(s)
- Kevin Agostinucci
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, United States
| | - Marianne K. O. Grant
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, United States
| | - Davis Seelig
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States
| | - Doğacan Yücel
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Medicine, Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Jop van Berlo
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Medicine, Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Jason R. B. Dyck
- Department of Pediatrics, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Beshay N. Zordoky
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, United States
| |
Collapse
|
12
|
Amedro P, Vincenti M, Abassi H, Lanot N, De La Villeon G, Guillaumont S, Gamon L, Mura T, Lopez-Perrin K, Haouy S, Sirvent A, Cazorla O, Vergely L, Lacampagne A, Avesani M, Sirvent N, Saumet L. Use of speckle tracking echocardiography to detect late anthracycline-induced cardiotoxicity in childhood cancer: A prospective controlled cross-sectional study. Int J Cardiol 2022; 354:75-83. [DOI: 10.1016/j.ijcard.2022.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/09/2022] [Accepted: 02/10/2022] [Indexed: 01/10/2023]
|
13
|
Wan Y, Zhu D, He B, Guo Y, Wang L, Dingda D, Laji A, Wang C, Zhang Y, Gao F. Protective effect of a chronic hypobaric hypoxic environment at high altitude on cardiotoxicity induced by doxorubicin in rats: a 7 T magnetic resonance study. Quant Imaging Med Surg 2022; 12:711-725. [PMID: 34993113 DOI: 10.21037/qims-21-360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/06/2021] [Indexed: 02/05/2023]
Abstract
Background Doxorubicin (DOX)-induced cardiotoxicity (DIC), a major clinical problem, has no effective preventive therapies. We hypothesized that left ventricular (LV) systolic function would be improved in a chronic hypobaric hypoxia environment at high altitude. The purpose of this study was to investigate whether cardiovascular magnetic resonance could reveal the cardioprotective effect of chronic hypobaric hypoxia on DIC. Methods In total, 60 rats were randomly assigned to 1 of 6 groups (n=10 per group): the P group (plain), PD group (plain + DOX), HH group (high altitude), HHD4 group (high altitude + DOX for 4 weeks), HHD8 group (high altitude + DOX for 8 weeks), and HHD12 group (high altitude + DOX for 12 weeks). The rats were transported to either Yushu (altitude: 4,250 m) or Chengdu (altitude: 500 m) where they underwent intraperitoneal injection of DOX (5 mg/kg/week for 3 weeks) or saline. Preclinical 7 T cardiovascular magnetic resonance was performed at weeks 4, 8, and 12. Tissue tracking was used to measure LV cardiac function and to analyze global and segmental strains. Subsequently, histological and oxidative stress tests were performed to evaluate the protective effect of a high-altitude environment on DIC. Results The left ventricular ejection fraction (LVEF) and global and regional strains in the middle, apical, anterior, septal, inferior, and lateral segments (all P<0.05) were improved in the HHD4 group compared with the PD group. The global strain was significantly greater in absolute value in the HHD8 and HHD12 groups than in the HHD4 group (all P<0.05). Additionally, histological and enzyme-linked immunosorbent assay evaluations supported the in vivo results. Conclusions A chronic hypobaric and hypoxic environment at high altitude partially prevented cardiac dysfunction and increased global and regional strain in DIC rat models, thereby minimizing myocardial injury and fibrosis. In addition, by increasing the total duration of chronic hypobaric hypoxia, the global strain was further increased, which was likely due to reduced oxidative stress.
Collapse
Affiliation(s)
- Yixuan Wan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Dongyong Zhu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Bo He
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Guo
- Department of Radiology, Yushu People's Hospital, Qinghai, China
| | - Lei Wang
- Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu, China
| | - Duojie Dingda
- Department of Radiology, Yushu People's Hospital, Qinghai, China
| | - Angwen Laji
- Department of Clinical Laboratory, Yushu People's Hospital, Yushu, China
| | - Chunhua Wang
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Yonghai Zhang
- Department of Radiology, The Fifth People's Hospital of Qinghai Province, Xining, China
| | - Fabao Gao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Cazorla O, Barthélémy I, Su JB, Meli AC, Chetboul V, Scheuermann V, Gouni V, Anglerot C, Richard S, Blot S, Ghaleh B, Lacampagne A. Stabilizing Ryanodine Receptors Improves Left Ventricular Function in Juvenile Dogs With Duchenne Muscular Dystrophy. J Am Coll Cardiol 2021; 78:2439-2453. [PMID: 34886965 DOI: 10.1016/j.jacc.2021.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 01/26/2023]
Abstract
BACKGROUND Duchenne muscular dystrophy is associated with progressive deterioration in left ventricular (LV) function. The golden retriever muscular dystrophy (GRMD) dog model recapitulates the pathology and clinical manifestations of Duchenne muscular dystrophy. Importantly, they develop progressive LV dysfunction starting at early age. OBJECTIVES The authors tested the cardioprotective effect of chronic administration of the ARM036, a small molecule that stabilizes the closed conformation of the cardiac sarcoplasmic reticulum ryanodine receptor/calcium release channel (RyR2) in young GRMD-dogs. METHODS Two-month-old GRMD-dogs were treated with ARM036 or placebo for 4 months. Healthy-dogs of the same genetic background served as controls. Cardiac function was evaluated by conventional and 2-dimensional speckle-tracking echocardiography. Cardiac cellular and molecular analyses were performed at 6 months old. RESULTS Conventional echocardiography showed normal LV dimensions and ejection fraction in 6-month-old GRMD dogs. Interestingly, 2-dimensional speckle-tracking echocardiography revealed decreased global longitudinal strain and the presence of hypokinetic segments in placebo-treated GRMD dogs. Single-channel measurements revealed higher RyR2 open probability at low resting Ca2+ in GRMD cardiomyocytes than in controls. ARM036 prevented those in vivo and in vitro dysfunctions in GRMD dogs. Myofilament Ca2+-sensitivity was increased in permeabilized GRMD cardiomyocytes at short sarcomere length. ARM036 had no effect on this parameter. Cross-bridge cycling kinetics were altered in GRMD myocytes and recovered with ARM036 treatment, which coincided with the level of myosin binding protein-C-S glutathionylation. CONCLUSIONS GRMD-dogs exhibit early LV dysfunction associated with altered myofilament contractile properties. These abnormalities were prevented pharmacologically by stabilizing RyR2 with ARM036.
Collapse
Affiliation(s)
- Olivier Cazorla
- Phymedexp INSERM, CNRS, Université de Montpellier, CHRU Montpellier, France.
| | - Inès Barthélémy
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France; EnvA, IMRB, Maisons-Alfort, France
| | - Jin Bo Su
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France; EnvA, IMRB, Maisons-Alfort, France
| | - Albano C Meli
- Phymedexp INSERM, CNRS, Université de Montpellier, CHRU Montpellier, France
| | - Valérie Chetboul
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France; EnvA, IMRB, Maisons-Alfort, France
| | | | - Vassiliky Gouni
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France; EnvA, IMRB, Maisons-Alfort, France
| | - Camille Anglerot
- Phymedexp INSERM, CNRS, Université de Montpellier, CHRU Montpellier, France
| | - Sylvain Richard
- Phymedexp INSERM, CNRS, Université de Montpellier, CHRU Montpellier, France
| | - Stéphane Blot
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France; EnvA, IMRB, Maisons-Alfort, France
| | - Bijan Ghaleh
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France; EnvA, IMRB, Maisons-Alfort, France
| | - Alain Lacampagne
- Phymedexp INSERM, CNRS, Université de Montpellier, CHRU Montpellier, France.
| |
Collapse
|
15
|
Doxorubicin Paradoxically Ameliorates Tumor-Induced Inflammation in Young Mice. Int J Mol Sci 2021; 22:ijms22169023. [PMID: 34445729 PMCID: PMC8396671 DOI: 10.3390/ijms22169023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/29/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023] Open
Abstract
Doxorubicin (DOX) is one of the most widely used chemo-therapeutic agents in pediatric oncology. DOX elicits an inflammatory response in multiple organs, which contributes to DOX-induced adverse effects. Cancer itself causes inflammation leading to multiple pathologic conditions. The current study investigated the inflammatory response to DOX and tumors using an EL4-lymphoma, immunocompetent, juvenile mouse model. Four-week old male C57BL/6N mice were injected subcutaneously with EL4 lymphoma cells (5 × 104 cells/mouse) in the flank region, while tumor-free mice were injected with vehicle. Three days following tumor implantation, both tumor-free and tumor-bearing mice were injected intraperitoneally with either DOX (4 mg/kg/week) or saline for 3 weeks. One week after the last DOX injection, the mice were euthanized and the hearts, livers, kidneys, and serum were harvested. Gene expression and serum concentration of inflammatory markers were quantified using real-time PCR and ELISA, respectively. DOX treatment significantly suppressed tumor growth in tumor-bearing mice and caused significant cardiac atrophy in tumor-free and tumor-bearing mice. EL4 tumors elicited a strong inflammatory response in the heart, liver, and kidney. Strikingly, DOX treatment ameliorated tumor-induced inflammation paradoxical to the effect of DOX in tumor-free mice, demonstrating a widely divergent effect of DOX treatment in tumor-free versus tumor-bearing mice.
Collapse
|
16
|
Early Myocardial Dysfunction and Benefits of Cardiac Treatment in Young X-Linked Duchenne Muscular Dystrophy Mice. Cardiovasc Drugs Ther 2021; 36:793-803. [PMID: 34138361 DOI: 10.1007/s10557-021-07218-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
CONTEXT Duchenne muscular dystrophy (DMD) is associated with a progressive alteration in cardiac function. OBJECTIVE The aim of this study was to detect early cardiac dysfunction using the high sensitive two-dimensional speckle-tracking echocardiography (2D strain) in mdx mouse model and to investigate the potential preventive effects of the S107 ryanodine receptor (RyR2) stabilizer on early onset of DMD-related cardiomyopathy. METHODS AND RESULTS Conventional echocardiography and global and segmental left ventricle (LV) 2D strains were assessed in male mdx mice and control C57/BL10 mice from 2 to 12 months of age. Up to 12 months of age, mdx mice showed preserved myocardial function as assessed by conventional echocardiography. However, global longitudinal, radial, and circumferential LV 2D strains significantly declined in mdx mice compared to controls from the 9 months of age. Segmental 2D strain analysis found a predominant alteration in posterior, inferior, and lateral LV segments, with a more marked impairment with aging. Then, mdx mice were treated with S107 in the drinking water at a dose of 250 mg/L using two different protocols: earlier therapy from 2 to 6 months of age and later therapy from 6 to 9 months of age. The treatment with S107 was efficient only when administered earlier in very young animals (from 2 to 6 months of age) and prevented the segmental alterations seen in non-treated mdx mice. CONCLUSIONS This is the first animal study to evaluate the therapeutic effect of a drug targeting early onset of DMD-related cardiomyopathy, using 2D strain echocardiography. Speckle-tracking analyses revealed early alterations of LV posterior segments that could be prevented by 4 months of RyR2 stabilization.
Collapse
|
17
|
Podyacheva EY, Kushnareva EA, Karpov AA, Toropova YG. Analysis of Models of Doxorubicin-Induced Cardiomyopathy in Rats and Mice. A Modern View From the Perspective of the Pathophysiologist and the Clinician. Front Pharmacol 2021; 12:670479. [PMID: 34149423 PMCID: PMC8209419 DOI: 10.3389/fphar.2021.670479] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Today the pharmacological possibilities of treating cancer are expanding and as a result, life expectancy is increasing against the background of chemotherapy and supportive treatment. In the conditions of successful antitumor treatment, complications associated with its toxic effect on healthy tissues and organs began to come to the fore. Anthracycline cardiomyopathy was the first serious cardiovascular complication to draw the attention of oncologists and cardiologists around the world. Anthracycline drugs such as doxorubicin, epirubicin, idarubicin are still widely used in oncological practice to treat a wide range of solid and hematological malignancies. Doxorubicin-induced cardiomyopathy is closely associated with an increase in oxidative stress, as evidenced by reactive oxygen species (ROS) nduced damage such as lipid peroxidation, and decreased levels of antioxidants. Myofibrillar destruction and dysregulation of intracellular calcium are also important mechanisms, usually associated with doxorubicin-induced cardiotoxicity. Despite the abundance of data on various mechanisms involved in the implementation of doxorubicin-induced cardiotoxicity, a final understanding of the mechanism of the development of doxorubicin cardiomyopathy has not yet been formed. It poses the most significant challenges to the development of new methods of prevention and treatment, as well as to the unambiguous choice of a specific treatment regimen using the existing pharmacological tools. In order to resolve these issues new models that could reflect the development of the chemotherapy drugs effects are needed. In this review we have summarized and analyzed information on the main existing models of doxorubicin cardiomyopathy using small laboratory animals. In addition, this paper discusses further areas of research devoted to the development and validation of new improved models of doxorubicin cardiomyopathy suitable both for studying the mechanisms of its implementation and for the preclinical drugs effectiveness assessment.
Collapse
Affiliation(s)
- Ekaterina Yu Podyacheva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, Saint-Petersburg, Russia
| | - Ekaterina A Kushnareva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, Saint-Petersburg, Russia
| | - Andrei A Karpov
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, Saint-Petersburg, Russia
| | - Yana G Toropova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, Saint-Petersburg, Russia
| |
Collapse
|
18
|
Solís C, Solaro RJ. Novel insights into sarcomere regulatory systems control of cardiac thin filament activation. J Gen Physiol 2021; 153:211903. [PMID: 33740037 PMCID: PMC7988513 DOI: 10.1085/jgp.202012777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Our review focuses on sarcomere regulatory mechanisms with a discussion of cardiac-specific modifications to the three-state model of thin filament activation from a blocked to closed to open state. We discuss modulation of these thin filament transitions by Ca2+, by crossbridge interactions, and by thick filament–associated proteins, cardiac myosin–binding protein C (cMyBP-C), cardiac regulatory light chain (cRLC), and titin. Emerging evidence supports the idea that the cooperative activation of the thin filaments despite a single Ca2+ triggering regulatory site on troponin C (cTnC) cannot be considered in isolation of other functional domains of the sarcomere. We discuss long- and short-range interactions among these domains with the regulatory units of thin filaments, including proteins at the barbed end at the Z-disc and the pointed end near the M-band. Important to these discussions is the ever-increasing understanding of the role of cMyBP-C, cRLC, and titin filaments. Detailed knowledge of these control processes is critical to the understanding of mechanisms sustaining physiological cardiac state with varying hemodynamic load, to better defining genetic and acquired cardiac disorders, and to developing targets for therapies at the level of the sarcomeres.
Collapse
Affiliation(s)
- Christopher Solís
- University of Illinois at Chicago, College of Medicine, Department of Physiology and Biophysics and Center for Cardiovascular Research, Chicago, IL
| | - R John Solaro
- University of Illinois at Chicago, College of Medicine, Department of Physiology and Biophysics and Center for Cardiovascular Research, Chicago, IL
| |
Collapse
|