1
|
Liu L, Ding M, Zheng M, Xu G, Gao L, Yang W, Wei Z, Shang J, Wang L, Wang H, Gao F. Transformable peptide blocks NF-κB/IκBα pathway through targeted coating IκBα against rheumatoid arthritis. Biomaterials 2025; 314:122839. [PMID: 39288618 DOI: 10.1016/j.biomaterials.2024.122839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by destructive effects. Although current therapies utilizing antibodies against inflammatory cytokines have shown some success, the inhibition of a single inflammatory molecule may not suffice to impede the progression of RA due to the intricate pathogenesis involving multiple molecules. In this study, we have developed an intelligent transformable peptide, namely BP-FFVLK-DSGLDSM (BFD). BFD has the ability to self-assemble into spherical nanoparticles in water or in the blood circulation to facilitate their delivery and distribution. When endocytosed into immune cells, BFD can identify and attach to phosphorylation sites on IκBα and in situ transform into a nanofibrous network coating NF-κB/IκBα complexes, blocking the phosphorylation and degradation of IκBα. As a result, BFD enables decreasing expression of proinflammatory mediators. In the present study, we demonstrate that BFD exhibits notable efficacy in alleviating arthritis-related manifestations, such as joints and tissues swelling, as well as bone and cartilage destruction on the collagen-induced arthritis (CIA) rat model. The investigation of intracellular biodistribution, phosphorylation of IκBα, and cytokine detection in culture medium supernatant, joint tissue, and serum exhibits strong associations with therapeutic outcomes. The utilization of transformable peptide presents a novel approach for the management of inflammatory diseases.
Collapse
Affiliation(s)
- Linhong Liu
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, PR China; College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Mengru Ding
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China
| | - Miaomiao Zheng
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, PR China; College of Pharmacy, Hebei University, Baoding, 071002, PR China
| | - Guoyang Xu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China
| | - Liang Gao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Wenzhi Yang
- College of Pharmacy, Hebei University, Baoding, 071002, PR China
| | - Zijin Wei
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China
| | - Jun Shang
- Department of Orthopedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, PR China.
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China.
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China
| | - Fuping Gao
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, PR China; Jinan Laboratory of Applied Nuclear Science, Jinan, 251401, PR China.
| |
Collapse
|
2
|
Gao X, Zhang J, Gong Y, Yan L. The biomedical applications of nanozymes in orthopaedics based on regulating reactive oxygen species. J Nanobiotechnology 2024; 22:569. [PMID: 39285458 PMCID: PMC11406882 DOI: 10.1186/s12951-024-02844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024] Open
Abstract
Nanozymes, a category of nanomaterials with enzyme-like activity, have garnered growing interest in various biomedical contexts. Notably, nanozymes that are capable of regulating reactive oxygen species levels by emulating antioxidant or prooxidant enzymes within cells hold significant therapeutic potential for a range of disorders. Herein, we overview the catalytic mechanisms of four exemplary nanozymes within the orthopedic domain. Subsequently, we emphasize recent groundbreaking advancements in nanozyme applications in orthopaedics, encompassing osteoarthritis, osteoporosis, intervertebral disc degeneration, bone defects, spinal cord injury, gout, rheumatoid arthritis, osteosarcoma and bone infection. Furthermore, we discuss the emerging area's future prospects and several noteworthy challenges in biomedical application. This review not only fosters the ongoing development of nanozyme research but also fosters the emergence of more potent nanozymes for the treatment of orthopaedical diseases in the future.
Collapse
Affiliation(s)
- Xiangcheng Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jiejie Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Yining Gong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Liang Yan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
3
|
Li X, Zhu W, Liu R, Ding G, Huang H. Cerium Oxide Nanozymes Improve Skeletal Muscle Function in Gestational Diabetic Offspring by Attenuating Mitochondrial Oxidative Stress. ACS OMEGA 2024; 9:21851-21863. [PMID: 38799328 PMCID: PMC11112706 DOI: 10.1021/acsomega.3c09025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Gestational diabetes mellitus (GDM) is a significant complication during pregnancy that results in abnormalities in the function of multiple systems in the offspring, which include skeletal muscle dysfunction and reduced systemic metabolic capacity. One of the primary causes behind this intergenerational effect is the presence of mitochondrial dysfunction and oxidative stress in the skeletal muscle of the offspring due to exposure to a high-glucose environment in utero. Cerium oxide (CeO2) nanozymes are antioxidant agents with polymerase activity that have been widely used in the treatment of inflammatory and aging diseases. In this study, we synthesized ultrasmall particle size CeO2 nanozymes and applied them in GDM mouse offspring. The CeO2 nanozymes demonstrated an ability to increase insulin sensitivity and enhance skeletal muscle motility in GDM offspring by improving mitochondrial activity, increasing mitochondrial ATP synthesis function, and restoring abnormal mitochondrial morphology. Furthermore, at the cellular level, CeO2 nanozymes could ameliorate metabolic dysregulation and decrease cell differentiation in adult muscle cells induced by hyperglycemic stimuli. This was achieved through the elimination of endogenous reactive oxygen species (ROS) and an improvement in mitochondrial oxidative respiration function. In conclusion, CeO2 nanozymes play a crucial role in preserving muscle function and maintaining the metabolic stability of organisms. Consequently, they serve to reverse the negative effects of GDM on skeletal muscle physiology in the offspring.
Collapse
Affiliation(s)
- Xinyuan Li
- Obstetrics
and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai200433,China
- Research
Units of Embryo Original Diseases, Chinese
Academy of Medical Sciences (No. 2019RU056), Shanghai200011,China
- Key
Laboratory of Reproductive Genetics (Ministry of Education), Department
of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310058,China
| | - Wanbo Zhu
- Department
of Orthopedics, Shanghai Sixth People’s Hospital Affiliated
to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Rui Liu
- Obstetrics
and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai200433,China
- Research
Units of Embryo Original Diseases, Chinese
Academy of Medical Sciences (No. 2019RU056), Shanghai200011,China
- Key
Laboratory of Reproductive Genetics (Ministry of Education), Department
of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310058,China
- Reproductive
Medicine Center, International Institutes of Medicine, the Fourth
Affiliated Hospital, Zhejiang University
School of Medicine, Yiwu322000, China
| | - Guolian Ding
- Obstetrics
and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai200433,China
- Research
Units of Embryo Original Diseases, Chinese
Academy of Medical Sciences (No. 2019RU056), Shanghai200011,China
| | - Hefeng Huang
- Obstetrics
and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai200433,China
- Research
Units of Embryo Original Diseases, Chinese
Academy of Medical Sciences (No. 2019RU056), Shanghai200011,China
- Key
Laboratory of Reproductive Genetics (Ministry of Education), Department
of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310058,China
| |
Collapse
|
4
|
Fu X, Li P, Chen X, Ma Y, Wang R, Ji W, Gu J, Sheng B, Wang Y, Zhang Z. Ceria nanoparticles: biomedical applications and toxicity. J Zhejiang Univ Sci B 2024; 25:361-388. [PMID: 38725338 PMCID: PMC11087188 DOI: 10.1631/jzus.b2300854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/29/2024] [Indexed: 05/13/2024]
Abstract
Ceria nanoparticles (CeO2 NPs) have become popular materials in biomedical and industrial fields due to their potential applications in anti-oxidation, cancer therapy, photocatalytic degradation of pollutants, sensors, etc. Many methods, including gas phase, solid phase, liquid phase, and the newly proposed green synthesis method, have been reported for the synthesis of CeO2 NPs. Due to the wide application of CeO2 NPs, concerns about their adverse impacts on human health have been raised. This review covers recent studies on the biomedical applications of CeO2 NPs, including their use in the treatment of various diseases (e.g., Alzheimer's disease, ischemic stroke, retinal damage, chronic inflammation, and cancer). CeO2 NP toxicity is discussed in terms of the different systems of the human body (e.g., cytotoxicity, genotoxicity, respiratory toxicity, neurotoxicity, and hepatotoxicity). This comprehensive review covers both fundamental discoveries and exploratory progress in CeO2 NP research that may lead to practical developments in the future.
Collapse
Affiliation(s)
- Xiaoxuan Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Peng Li
- Department of Nephrology, Yantai Yuhuangding Hospital, Qingdao University, Yantai 264005, China
| | - Xi Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yuanyuan Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Rong Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Wenxuan Ji
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jiakuo Gu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Bowen Sheng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yizhou Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China. ,
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
5
|
Li J, Li W, Zhuang L. Natural biomimetic nano-system for drug delivery in the treatment of rheumatoid arthritis: a literature review of the last 5 years. Front Med (Lausanne) 2024; 11:1385123. [PMID: 38784236 PMCID: PMC11114446 DOI: 10.3389/fmed.2024.1385123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized primarily by synovitis, leading to the destruction of articular cartilage and bone and ultimately resulting in joint deformity, loss of function, and a significant impact on patients' quality of life. Currently, a combination of anti-rheumatic drugs, hormonal drugs, and biologics is used to mitigate disease progression. However, conventional drug therapy has limited bioavailability, and long-term use often leads to drug resistance and toxic side effects. Therefore, exploring new therapeutic approaches for RA is of great clinical importance. Nanodrug delivery systems offer promising solutions to overcome the limitations of conventional drugs. Among them, liposomes, the first nanodrug delivery system to be approved for clinical application and still widely studied, demonstrate the ability to enhance therapeutic efficacy with fewer adverse effects through passive or active targeting mechanisms. In this review, we provide a review of the research progress on the targeting mechanisms of various natural biomimetic nano-delivery systems in RA therapy. Additionally, we predict the development trends and application prospects of these systems, offering new directions for precision treatment of RA.
Collapse
Affiliation(s)
| | | | - Liping Zhuang
- Beidahuang Group Mudanjiang Hospital, Mudanjiang, Heilongjiang, China
| |
Collapse
|
6
|
Hill M, Chung SJ, Woo HJ, Park CR, Hadrick K, Nafiujjaman M, Kumar PP, Mwangi L, Parikh R, Kim T. Exosome-Coated Prussian Blue Nanoparticles for Specific Targeting and Treatment of Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38598311 PMCID: PMC11056931 DOI: 10.1021/acsami.4c02364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
Glioblastoma is one of the most aggressive and invasive types of brain cancer with a 5-year survival rate of 6.8%. With limited options, patients often have poor quality of life and are moved to palliative care after diagnosis. As a result, there is an extreme need for a novel theranostic method that allows for early diagnosis and noninvasive treatment as current peptide-based delivery standards may have off-target effects. Prussian Blue nanoparticles (PBNPs) have recently been investigated as photoacoustic imaging (PAI) and photothermal ablation agents. However, due to their inability to cross the blood-brain barrier (BBB), their use in glioblastoma treatment is limited. By utilizing a hybrid, biomimetic nanoparticle composed of a PBNP interior and a U-87 cancer cell-derived exosome coating (Exo:PB), we show tumor-specific targeting within the brain and selective thermal therapy potential due to the strong photoconversion abilities. Particle characterization was carried out and showed a complete coating around the PBNPs that contains exosome markers. In vitro cellular uptake patterns are similar to native U-87 exosomes and when exposed to an 808 nm laser, show localized cell death within the specified region. After intravenous injection of Exo:PB into subcutaneously implanted glioblastoma mice, they have shown effective targeting and eradication of tumor volume compared to PEG-coated PBNPs (PEG:PB). Through systemic administration of Exo:PB particles into orthotopic glioblastoma-bearing mice, the PBNP signal was detected in the brain tumor region through PAI. It was seen that Exo:PB had preferential tumor accumulation with less off-targeting compared to the RGD:PB control. Ex vivo analysis validated specific targeting with a direct overlay of Exo:PB with the tumor by both H&E staining and Ki67 labeling. Overall, we have developed a novel biomimetic material that can naturally cross the BBB and act as a theranostic agent for systemic targeting of glioblastoma tissue and photothermal therapeutic effect.
Collapse
Affiliation(s)
- Meghan
L. Hill
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Seock-Jin Chung
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Hyun-Joo Woo
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Cho Rong Park
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Kay Hadrick
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Md Nafiujjaman
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Panangattukara
Prabhakaran Praveen Kumar
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Leila Mwangi
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Rachna Parikh
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Taeho Kim
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
7
|
Bao J, Song Y, Hang M, Xu H, Li Q, Wang P, Chen T, Xia M, Shi Q, Wang Y, Wang X, Liang Q. Huangqi Guizhi Wuwu Decoction suppresses inflammation and bone destruction in collagen-induced arthritis mice. CHINESE HERBAL MEDICINES 2024; 16:274-281. [PMID: 38706818 PMCID: PMC11064554 DOI: 10.1016/j.chmed.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/02/2023] [Accepted: 10/13/2023] [Indexed: 05/07/2024] Open
Abstract
Objective Rheumatoid arthritis (RA) is a chronic inflammatory and destructive arthritis, characterized by inflammatory infiltration and bone destruction. Huangqi Guizhi Wuwu Decoction (HGWD) is traditional Chinese medicine, which has been applied in the treatment of RA in clinical. The aim of this study was to investigate the therapeutic effect of HGWD on collagen-induced arthritis (CIA) mouse model. Methods DBA/1J female mice were used to establish the collagen-induced arthritis (CIA) model. HGWD was administered intragastrically once a day for four weeks starting on the 22nd day after the first immunization. The body weight, hind paw thickness and clinical score were measured every five days. Gait analysis, histopathological staining, enzyme-linked immunosorbent assay (ELISA), ultrasound imaging and micro-computed tomography imaging were performed to determine the effects of HGWD treatment on inflammation and bone structure in this model. Moreover, Real-time PCR and Western blot analysis were used to detect inflammatory factors mRNA and protein levels after HGWD intervention in RAW 264.7 cells. Results HGWD attenuated symptoms of arthritis, suppressed inflammatory synovium area and the serum levels of inflammatory factors, inhibited joint space enlargement in the knee and ankle joints, reduced numbers of osteoclasts, protected bone destruction, as well as improved motor function. HGWD decreased the expression of mRNA for inflammatory factors and the protein expression levels of p-NF-кB and IL-17. Conclusion These results suggested that HGWD suppresses inflammation, attenuates bone erosion and maintains motor function in collagen-induced arthritis mice.
Collapse
Affiliation(s)
- Jiamin Bao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongjia Song
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Minghui Hang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qiang Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pengyu Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengxiong Xia
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qi Shi
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongjun Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoyun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Qianqian Liang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
8
|
Gao Y, Zhai L, Chen J, Lin D, Zhang LK, Yang H, Yang R, Mi L, Guan YQ. Focused ultrasound-mediated cerium-based nanoreactor against Parkinson's disease via ROS regulation and microglia polarization. J Control Release 2024; 368:580-594. [PMID: 38467194 DOI: 10.1016/j.jconrel.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Neuronal damage caused by oxidative stress and inflammatory microenvironment dominated by microglia are the main obstacles in the treatment of Parkinson's disease (PD). In this study, we developed an integrated nanoreactor Q@CeBG by encapsulating CeO2 nanozyme and quercetin (Que) into glutathione-modified bovine serum albumin, and then selected focused ultrasound (FUS) to temporarily open the blood-brain barrier (BBB) to enhance the accumulation level of Q@CeBG in the brain. Q@CeBG exhibited superior multi-ROS scavenging activity. Under the assistance of FUS, Q@CeBG nanoreactor can penetrate the BBB and act on neurons as well as microglia, reducing the neuron's oxidative stress level and polarizing microglia's phenotype from proinflammatory M1 to anti-inflammatory M2. In vitro and In vivo experiments demonstrated that Q@CeBG nanoreactor with good biocompatibility exhibit outstanding neuroprotection and immunomodulatory effects. In short, this dual synergetic nanoreactor will become a reliable platform against PD.
Collapse
Affiliation(s)
- Yifei Gao
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Limin Zhai
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jiapeng Chen
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Danmin Lin
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ling-Kun Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Hao Yang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Runcai Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510623, China
| | - LinJing Mi
- School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, China
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China.
| |
Collapse
|
9
|
Xia T, Zhu Y, Li K, Hao K, Chai Y, Jiang H, Lou C, Yu J, Yang W, Wang J, Deng J, Wang Z. Microneedles loaded with cerium-manganese oxide nanoparticles for targeting macrophages in the treatment of rheumatoid arthritis. J Nanobiotechnology 2024; 22:103. [PMID: 38468261 PMCID: PMC10926598 DOI: 10.1186/s12951-024-02374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a prevalent inflammatory autoimmune disease characterised by persistent inflammation and joint damage with elevated levels of reactive oxygen species (ROS). Current treatment modalities for RA have significant limitations, including poor bioavailability, severe side effects, and inadequate targeting of inflamed joints. Herein, we synthesised cerium/manganese oxide nanoparticles (NPs) as efficient drug carriers with antioxidant and catalytic-like functions that can eliminate ROS to facilitate the polarization of macrophages phenotype from M1 to M2 and alleviate inflammation. Methotrexate (MTX), a first-line RA medication, was loaded into the NPs, which were further modified with bovine serum albumin (BSA) and integrated into dissolving hyaluronic acid-based microneedles (MNs) for transdermal delivery. RESULT This innovative approach significantly enhanced drug delivery efficiency, reduced RA inflammation, and successfully modulated macrophage polarization toward an anti-inflammatory phenotype. CONCLUSION This research not only presents a promising drug delivery strategy for RA but also contributes broadly to the field of immune disease treatment by offering an advanced approach for macrophage phenotypic reprogramming.
Collapse
Affiliation(s)
- Tian Xia
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital ,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Yuting Zhu
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Kaiqiang Li
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital ,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Ke Hao
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital ,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yingqian Chai
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Hongyi Jiang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Chao Lou
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Jiachen Yu
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Wei Yang
- Department of Biophysics, Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Jilong Wang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China.
| | - Junjie Deng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China.
| | - Zhen Wang
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital ,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
- Laboratory Medicine Center, Department of Transfusion Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, 317200, Zhejiang, China.
| |
Collapse
|
10
|
Singh S. Antioxidant nanozymes as next-generation therapeutics to free radical-mediated inflammatory diseases: A comprehensive review. Int J Biol Macromol 2024; 260:129374. [PMID: 38242389 DOI: 10.1016/j.ijbiomac.2024.129374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Recent developments in exploring the biological enzyme mimicking properties in nanozymes have opened a separate avenue, which provides a suitable alternative to the natural antioxidants and enzymes. Due to high and tunable catalytic activity, low cost of synthesis, easy surface modification, and good biocompatibility, nanozymes have garnered significant research interest globally. Several inorganic nanomaterials have been investigated to exhibit catalytic activities of some of the key natural enzymes, including superoxide dismutase (SOD), catalase, glutathione peroxidase, peroxidase, and oxidase, etc. These nanozymes are used for diverse biomedical applications including therapeutics, imaging, and biosensing in various cells/tissues and animal models. In particular, inflammation-related diseases are closely associated with reactive oxygen and reactive nitrogen species, and therefore effective antioxidants could be excellent therapeutics due to their free radical scavenging ability. Although biological enzymes and other artificial antioxidants could perform well in scavenging the reactive oxygen and nitrogen species, however, suffer from several drawbacks such as the requirement of strict physiological conditions for enzymatic activity, limited stability in the environment beyond their optimum pH and temperature, and high cost of synthesis, purification, and storage make then unattractive for broad-spectrum applications. Therefore, this review systematically and comprehensively presents the free radical-mediated evolution of various inflammatory diseases (inflammatory bowel disease, mammary gland fibrosis, and inflammation, acute injury of the liver and kidney, mammary fibrosis, and cerebral ischemic stroke reperfusion) and their mitigation by various antioxidant nanozymes in the biological system. The mechanism of free radical scavenging by antioxidant nanozymes under in vitro and in vivo experimental models and catalytic efficiency comparison with corresponding natural enzymes has also been presented.
Collapse
Affiliation(s)
- Sanjay Singh
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India.
| |
Collapse
|
11
|
Kim YG, Lee Y, Lee N, Soh M, Kim D, Hyeon T. Ceria-Based Therapeutic Antioxidants for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210819. [PMID: 36793245 DOI: 10.1002/adma.202210819] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The growing interest in nanomedicine over the last 20 years has carved out a research field called "nanocatalytic therapy," where catalytic reactions mediated by nanomaterials are employed to intervene in disease-critical biomolecular processes. Among many kinds of catalytic/enzyme-mimetic nanomaterials investigated thus far, ceria nanoparticles stand out from others owing to their unique scavenging properties against biologically noxious free radicals, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), by exerting enzyme mimicry and nonenzymatic activities. Much effort has been made to utilize ceria nanoparticles as self-regenerating antioxidative and anti-inflammatory agents for various kinds of diseases, given the detrimental effects of ROS and RNS therein that need alleviation. In this context, this review is intended to provide an overview as to what makes ceria nanoparticles merit attention in disease therapy. The introductory part describes the characteristics of ceria nanoparticles as an oxygen-deficient metal oxide. The pathophysiological roles of ROS and RNS are then presented, as well as their scavenging mechanisms by ceria nanoparticles. Representative examples of recent ceria-nanoparticle-based therapeutics are summarized by categorization into organ and disease types, followed by the discussion on the remaining challenges and future research directions.
Collapse
Affiliation(s)
- Young Geon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yunjung Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nohyun Lee
- School of Advanced Materials Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| | - Min Soh
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Center for Advanced Pharmaceutical Technology, HyeonTechNBio, Inc., Seoul, 08826, Republic of Korea
| | - Dokyoon Kim
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
12
|
Ye Q, Jia D, Ji J, Liu Y, Wu G. Effects of nano-cerium dioxide on intestinal microflora in rats by oral subchronic exposure. PLoS One 2024; 19:e0298917. [PMID: 38422109 PMCID: PMC10903844 DOI: 10.1371/journal.pone.0298917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVE To investigate intestinal toxicity in rats and the effects of Nano-cerium dioxide on intestinal flora in rats after oral sub-chronic exposure. METHOD Forty healthy male SD rats were randomly divided into four groups: a control group (deionized water) and three groups treated with different doses of Nano-ceria (e.g., 20 mg/kg, 100 mg/kg, and 500 mg/kg), with 10 rats in each group. The rats were given intragastric administrations (every other day) for 90 days. After the last intragastric administration, fresh fecal samples were collected by pressing the abdomen, and the animals were sacrificed. Jejunum, ileum and cecum tissues were retained for pathological analysis by Hematoxylin-eosin staining. The stool samples of rats were sequenced by the Illumina NovaSeq sequencing platform, and the sequencing results were further analyzed by QIIME2 software. RESULTS The histopathology results show that compared with the control group, in the middle- and high-dose groups, epithelial tissue was shed, lamina propria glandular structures were damaged or disappeared, and large numbers of inflammatory cells were distributed in the mucosa. The intestinal flora results show that there were no significant differences in the α-/β-diversities in each Nano-ceria-treated group compared with the control group (P>0.05). Compared with the control group, the intestinal pathogenic bacteria, Mucispirillum and Streptococcus increased significantly after Nano-cerium dioxide ingestion, while Weissella decreased. The abundances of Akkermansia in all Nano-ceria-treated groups were higher than those in the control group, but the abundances decreased with increasing dose. MetagenomesSeq analysis show that, compared with the control group, the abundances of S24-7, Lactobacillus and Clostridiales in all experimental groups significantly decreased. CONCLUSIONS The sub-chronic toxicity of Nano-cerium dioxide to rats can affect the structure and abundance of intestinal microflora, long-term exposure to high doses (>100 mg/kg) causes enteritis, but there was no significant difference in the diversity of gut microbiota. Therefore, we infer that the enteritis in rats may be associated with the relative ratios of the pathogenic bacteria and intestinal probiotics, and increased of the intestinal pathogenic bacteria can disrupted intestinal homeostasis.
Collapse
Affiliation(s)
- Qianru Ye
- Department of Basic Medicine and Forensic Medicine, Baotou Medical School, Inner Mongolia University of Science and Technology, Baotou, China
- Clinical Laboratory, the Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Dantong Jia
- Department of Basic Medicine and Forensic Medicine, Baotou Medical School, Inner Mongolia University of Science and Technology, Baotou, China
| | - Jun Ji
- The Southern University of Science and Technology, Shenzhen, China
| | - Yang Liu
- Department of Basic Medicine and Forensic Medicine, Baotou Medical School, Inner Mongolia University of Science and Technology, Baotou, China
- The Southern University of Science and Technology, Shenzhen, China
| | - Gang Wu
- Department of Basic Medicine and Forensic Medicine, Baotou Medical School, Inner Mongolia University of Science and Technology, Baotou, China
| |
Collapse
|
13
|
Sun X, Xu X, Yue X, Wang T, Wang Z, Zhang C, Wang J. Nanozymes With Osteochondral Regenerative Effects: An Overview of Mechanisms and Recent Applications. Adv Healthc Mater 2024; 13:e2301924. [PMID: 37633309 DOI: 10.1002/adhm.202301924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/14/2023] [Indexed: 08/28/2023]
Abstract
With the discovery of the intrinsic enzyme-like activity of metal oxides, nanozymes garner significant attention due to their superior characteristics, such as low cost, high stability, multi-enzyme activity, and facile preparation. Notably, in the field of biomedicine, nanozymes primarily focus on disease detection, antibacterial properties, antitumor effects, and treatment of inflammatory conditions. However, the potential for application in regenerative medicine, which primarily addresses wound healing, nerve defect repair, bone regeneration, and cardiovascular disease treatment, is garnering interest as well. This review introduces nanozymes as an innovative strategy within the realm of bone regenerative medicine. The primary focus of this approach lies in the facilitation of osteochondral regeneration through the modulation of the pathological microenvironment. The catalytic mechanisms of four types of representative nanozymes are first discussed. The pathological microenvironment inhibiting osteochondral regeneration, followed by summarizing the therapy mechanism of nanozymes to osteochondral regeneration barriers is introduced. Further, the therapeutic potential of nanozymes for bone diseases is included. To improve the therapeutic efficiency of nanozymes and facilitate their clinical translation, future potential applications in osteochondral diseases are also discussed and some significant challenges addressed.
Collapse
Affiliation(s)
- Xueheng Sun
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
| | - Xiang Xu
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Xiaokun Yue
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Tianchang Wang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Zhaofei Wang
- Department of Orthopaedic Surgery, Shanghai ZhongYe Hospital, Genertec Universal Medical Group, Shanghai, 200941, China
| | - Changru Zhang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
- Institute of Translational Medicine, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Jinwu Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
| |
Collapse
|
14
|
Sun J, Liu X, Du J, An J, Li Y, Hu Y, Cheng S, Xiong Y, Yu Y, Tian H, Mei X, Wu C. Manganese-doped albumin-gelatin composite nanogel loaded with berberine applied to the treatment of gouty arthritis in rats via a SPARC-dependent mechanism. Int J Biol Macromol 2023; 253:126999. [PMID: 37730000 DOI: 10.1016/j.ijbiomac.2023.126999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
In this study, manganese-doped albumin-gelatin composite nanogels (MAGN) were prepared and used to load berberine (Ber) for the treatment of gouty arthritis (GA). The nanodrug delivery system (Ber-MAGN) can target inflammatory joints due to the intrinsic high affinity of albumin for SPARC, which is overexpressed at the inflammatory site of GA. Characterization of the pharmaceutical properties in vitro showed that Ber-MAGN had good dispersion, and the particle size was 121 ± 10.7 nm. The sustained release effect significantly improved the bioavailability of berberine. In vitro and in vivo experimental results showed that Ber-MAGN has better therapeutic effects in relieving oxidative stress and suppressing inflammation. Therefore, Ber-MAGN, as a potential pharmaceutical preparation for GA, provides a new reference for the clinical treatment plan of GA.
Collapse
Affiliation(s)
- Junpeng Sun
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Xiaobang Liu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Jiaqun Du
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Jinyu An
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Yingqiao Li
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Yu Hu
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Shuai Cheng
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, China.
| | - Ying Xiong
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie (LCS), 14050 Caen, France.
| | - Yanan Yu
- Medical College of Jinzhou Medical University, Jinzhou Medical University, 121010, China
| | - He Tian
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, China.
| | - Xifan Mei
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121001, China.
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121001, China.
| |
Collapse
|
15
|
Garg U, Jain N, Kaul S, Nagaich U. Role of Albumin as a Targeted Drug Carrier in the Management of Rheumatoid Arthritis: A Comprehensive Review. Mol Pharm 2023; 20:5345-5358. [PMID: 37870420 DOI: 10.1021/acs.molpharmaceut.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
An endogenous transporter protein called albumin interacts with the Fc receptor to provide it with multiple substrate-binding domains, cell membrane receptor activation, and an extended circulating half-life. Albumin has the remarkable ability to bind with receptors viz. secreted protein acidic and rich in cysteine (SPARC) and scavenger protein-A (SR-A) that are overexpressed during rheumatoid arthritis (RA), enabling active targeting of the disease site instead of requiring specialized substrates to be added to the nanocarrier. RA, a chronic autoimmune illness, is characterized by the presence of a severe inflammatory response. RA patients have low serum albumin concentration, which signifies the high uptake of albumin at the inflammatory sites, giving a rationale to use albumin as a drug carrier for RA therapy. Albumin has the capacity for both passive and active targeting. It is an abundantly available protein in the bloodstream showing excellent cellular compatibility, degradability in biological tissues, nonantigenicity, and safety. There are three strategies of albumin mediated drug delivery as encapsulating therapeutics in albumin nanoparticles, chemically conjugating drugs with functional proteins, and albumin itself which is used as a targeting ligand to deliver drugs specifically to cells or tissues that express albumin-binding receptors. In the current review, an attempt has been made to highlight the significant evidence of albumin as a drug delivery carrier for the safe and effective management of RA. Evidence has been provided in the form of recent research advances, clinical trials, and patents. Additionally, this review will outline the prospective for the potential utilization of albumin as a drug vehicle for RA and suggest possible future avenues to provide the perspective for subsequent studies.
Collapse
Affiliation(s)
- Unnati Garg
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201303, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201303, India
| | - Shreya Kaul
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201303, India
| | - Upendra Nagaich
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201303, India
| |
Collapse
|
16
|
He ZH, Zou JT, Chen X, Gong JS, Chen Y, Jin L, Liu YW, Rao SS, Yin H, Tan YJ, Wang Z, Du W, Li HM, Qian YX, Wang ZX, Wang YY, Wan TF, Luo Y, Zhu H, Chen CY, Xie H. Ångstrom-scale silver particles ameliorate collagen-induced and K/BxN-transfer arthritis in mice via the suppression of inflammation and osteoclastogenesis. Inflamm Res 2023; 72:2053-2072. [PMID: 37816881 DOI: 10.1007/s00011-023-01778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 10/12/2023] Open
Abstract
OBJECTIVE Nanoparticles (NPs) hold a great promise in combating rheumatoid arthritis, but are often compromised by their toxicities because the currently used NPs are usually synthesized by chemical methods. Our group has previously fabricated Ångstrom-scale silver particles (AgÅPs) and demonstrated the anti-tumor and anti-sepsis efficacy of fructose-coated AgÅPs (F-AgÅPs). This study aimed to uncover the efficacy and mechanisms of F-AgÅPs for arthritis therapy. METHODS We evaluated the efficacy of F-AgÅPs in collagen-induced arthritis (CIA) mice. We also compared the capacities of F-AgÅPs, the commercial AgNPs, and the clinical drug methotrexate (MTX) in protecting against K/BxN serum-transfer arthritis (STA) mice. Moreover, we evaluated the effects of F-AgÅPs and AgNPs on inflammation, osteoclast formation, synoviocytes migration, and matrix metalloproteinases (MMPs) production in vitro and in vivo. Meanwhile, the toxicities of F-AgÅPs and AgNPs in vitro and in vivo were also tested. RESULTS F-AgÅPs significantly prevented bone erosion, synovitis, and cartilage damage, attenuated rheumatic pain, and improved the impaired motor function in mouse models of CIA or STA, the anti-rheumatic effects of which were comparable or stronger than AgNPs and MTX. Further studies revealed that F-AgÅPs exhibited similar or greater inhibitory abilities than AgNPs to suppress inflammation, osteoclast formation, synoviocytes migration, and MMPs production. No obvious toxicities were observed in vitro and in vivo after F-AgÅPs treatment. CONCLUSIONS F-AgÅPs can effectively alleviate arthritis without notable toxicities and their anti-arthritic effects are associated with the inhibition of inflammation, osteoclastogenesis, synoviocytes migration, and MMPs production. Our study suggests the prospect of F-AgÅPs as an efficient and low-toxicity agent for arthritis therapy.
Collapse
Affiliation(s)
- Ze-Hui He
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Jing-Tao Zou
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Xia Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiang-Shan Gong
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Ya Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Ling Jin
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Yi-Wei Liu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Shan-Shan Rao
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Yin
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Yi-Juan Tan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Zun Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Nursing, Central South University, Changsha, Hunan, China
| | - Wei Du
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Rehabilitation, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hong-Ming Li
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Yu-Xuan Qian
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Zhen-Xing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Yi Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Teng-Fei Wan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Yi Luo
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Hao Zhu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Chun-Yuan Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China.
- Angmedicine Research Center, Central south university, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China.
- Angmedicine Research Center, Central south university, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
17
|
Corsi F, Deidda Tarquini G, Urbani M, Bejarano I, Traversa E, Ghibelli L. The Impressive Anti-Inflammatory Activity of Cerium Oxide Nanoparticles: More than Redox? NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2803. [PMID: 37887953 PMCID: PMC10609664 DOI: 10.3390/nano13202803] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Cerium oxide nanoparticles (CNPs) are biocompatible nanozymes exerting multifunctional biomimetic activities, including superoxide dismutase (SOD), catalase, glutathione peroxidase, photolyase, and phosphatase. SOD- and catalase-mimesis depend on Ce3+/Ce4+ redox switch on nanoparticle surface, which allows scavenging the most noxious reactive oxygen species in a self-regenerating, energy-free manner. As oxidative stress plays pivotal roles in the pathogenesis of inflammatory disorders, CNPs have recently attracted attention as potential anti-inflammatory agents. A careful survey of the literature reveals that CNPs, alone or as constituents of implants and scaffolds, strongly contrast chronic inflammation (including neurodegenerative and autoimmune diseases, liver steatosis, gastrointestinal disorders), infections, and trauma, thereby ameliorating/restoring organ function. By general consensus, CNPs inhibit inflammation cues while boosting the pro-resolving anti-inflammatory signaling pathways. The mechanism of CNPs' anti-inflammatory effects has hardly been investigated, being rather deductively attributed to CNP-induced ROS scavenging. However, CNPs are multi-functional nanozymes that exert additional bioactivities independent from the Ce3+/Ce4+ redox switch, such as phosphatase activity, which could conceivably mediate some of the anti-inflammatory effects reported, suggesting that CNPs fight inflammation via pleiotropic actions. Since CNP anti-inflammatory activity is potentially a pharmacological breakthrough, it is important to precisely attribute the described effects to one or another of their nanozyme functions, thus achieving therapeutic credibility.
Collapse
Affiliation(s)
- Francesca Corsi
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.D.T.); (M.U.); (E.T.)
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Greta Deidda Tarquini
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.D.T.); (M.U.); (E.T.)
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Marta Urbani
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.D.T.); (M.U.); (E.T.)
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Ignacio Bejarano
- Institute of Biomedicine of Seville (IBiS), University of Seville, HUVR, Junta de Andalucía, CSIC, 41013 Seville, Spain;
- Department of Medical Biochemistry, Molecular Biology and Immunology, University of Seville, 41004 Seville, Spain
| | - Enrico Traversa
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.D.T.); (M.U.); (E.T.)
| | - Lina Ghibelli
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
18
|
Shang W, Sun Q, Zhang C, Liu H, Yang Y, Liu Y, Gao W, Shen W, Yin D. Drug in Therapeutic Polymer: Sinomenine-Loaded Oxidation-Responsive Polymeric Nanoparticles for Rheumatoid Arthritis Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47552-47565. [PMID: 37768213 DOI: 10.1021/acsami.3c10562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease that frequently involves cartilage damage and the destruction of the bone structure, ultimately resulting in disability and long-term pain. It is clear that overexpression of reactive oxygen species (ROS) and the complex inflammatory microenvironment are the main causes of RA pathogenesis; thereby, the efficacy of any single-drug treatment is limited. Herein, we formulated a therapeutic hyaluronic acid derivative (PAM-HA) with adsorption capacity to the subchondral bone, a long retention time within inflamed joints, and ROS-scavenging capacity, which was used as a drug carrier for realizing the controlled release of sinomenine (Sin) within arthritic joints. This "drug in therapeutic polymer" design strategy was aimed at realizing antioxidant and anti-inflammatory combination therapy for RA. In vivo experiments suggest that PAM-HA@Sin NPs can be retained in the inflamed joints of rats for a long time compared with commercially available free Sin injections. As expected, therapeutic PAM-HA polymeric carriers can increase joint lubrication and reduce oxidative stress, while the released Sin induces downregulation of proinflammatory factors (TNF-α and IL-1β) and upregulation of anti-inflammatory factors (Arg-1 and IL-10) via the NF-κB pathway. In summary, a ROS-scavenging hyaluronic acid (HA) derivative was developed as the nanocarrier for Sin delivery to simultaneously remodel the oxidative/inflammatory microenvironment in RA, which opens up new horizons for the development of therapeutic polymers and the combined therapeutic strategies.
Collapse
Affiliation(s)
- Wencui Shang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Quanwei Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chenxu Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Hanmeng Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Provincial Key Laboratory of Pharmaceutical Technolgoy and Application, Hefei 230012, China
| | - Yang Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wenheng Gao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Provincial Key Laboratory of Pharmaceutical Technolgoy and Application, Hefei 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Provincial Key Laboratory of Pharmaceutical Technolgoy and Application, Hefei 230012, China
- Anhui Provincial Key Laboratory of Research & Chinese Medicine, Hefei 230012, China
| |
Collapse
|
19
|
Huang Y, Zhang M, Jin M, Ma T, Guo J, Zhai X, Du Y. Recent Advances on Cerium Oxide-Based Biomaterials: Toward the Next Generation of Intelligent Theranostics Platforms. Adv Healthc Mater 2023; 12:e2300748. [PMID: 37314429 DOI: 10.1002/adhm.202300748] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/24/2023] [Indexed: 06/15/2023]
Abstract
Disease or organ damage due to unhealthy living habits, or accidents, is inevitable. Discovering an efficient strategy to address these problems is urgently needed in the clinic. In recent years, the biological applications of nanotechnology have received extensive attention. Among them, as a widely used rare earth oxide, cerium oxide (CeO2 ) has shown good application prospects in biomedical fields due to its attractive physical and chemical properties. Here, the enzyme-like mechanism of CeO2 is elucidated, and the latest research progress in the biomedical field is reviewed. At the nanoscale, Ce ions in CeO2 can be reversibly converted between +3 and +4. The conversion process is accompanied by the generation and elimination of oxygen vacancies, which give CeO2 the performance of dual redox properties. This property facilitates nano-CeO2 to catalyze the scavenging of excess free radicals in organisms, hence providing a possibility for the treatment of oxidative stress diseases such as diabetic foot, arthritis, degenerative neurological diseases, and cancer. In addition, relying on its excellent catalytic properties, customizable life-signaling factor detectors based on electrochemical techniques are developed. At the end of this review, an outlook on the opportunities and challenges of CeO2 in various fields is provided.
Collapse
Affiliation(s)
- Yongkang Huang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Mengzhen Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Mengdie Jin
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Tengfei Ma
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Jialiang Guo
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Xinyun Zhai
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| |
Collapse
|
20
|
Rani R, Raina N, Sharma A, Kumar P, Tulli HS, Gupta M. Advancement in nanotechnology for treatment of rheumatoid arthritis: scope and potential applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2287-2310. [PMID: 37166463 DOI: 10.1007/s00210-023-02514-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Rheumatoid arthritis is a hyperactive immune disorder that results in severe inflammation in synovial joints, cartilage, and bone deterioration, resulting in immobilization of joints. Traditional approaches for the treatment of rheumatoid arthritis are associated with some limiting factors such as suboptimal patient compliance, inability to control the progression of disorder, and safety concerns. Therefore, innovative drug delivery carriers for efficient therapeutic delivery at inflamed synovial sites with better safety assessment are urgently needed to address these issues. From this perspective, nanotechnology is an outstanding alternative to traditional drug delivery approaches, and it has shown great promise in developing novel carriers to treat rheumatoid arthritis. Considering the current research and future application of nanocarriers, it is believed that nanocarriers can be a crucial element in rheumatoid arthritis treatment. This paper covers all currently available pathophysiological aspects of rheumatoid arthritis and treatment options. Future research for the reduction of synovial inflammation should focus on developing multifunction nanoparticles capable of delivering therapeutic agents with improved safety, efficacy, and cost-effectiveness to be commercialized.
Collapse
Affiliation(s)
- Radha Rani
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Neha Raina
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Ajay Sharma
- Institute of Nuclear Medicine & Allied Sciences (INMAS-DRDO), Ministry of Defence, Brig. SK Mazumdar Marg, Lucknow Road, Timarpur, Delhi-110054, India
| | - Pramod Kumar
- Institute of Lung Health and Immunity, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Hardeep Singh Tulli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
| |
Collapse
|
21
|
Mohapatra A, Mohanty A, Sathiyamoorthy P, Chahal S, Vijayan V, Rajendrakumar SK, Park IK. Targeted treatment of gouty arthritis by biomineralized metallic nanozyme-mediated oxidative stress-mitigating nanotherapy. J Mater Chem B 2023; 11:7684-7695. [PMID: 37464890 DOI: 10.1039/d3tb00669g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Gouty arthritis is characterized by chronic deposition of monosodium urate (MSU) crystals in the joints and other tissues, resulting in the production of excess reactive oxygen species (ROS) and proinflammatory cytokines that intensify synovial inflammation. This condition is mainly associated with inflammatory M1 macrophage activation and oxidative stress production. Hence, gout symptoms can often be resolved by eliminating M1 macrophage activation and scavenging oxidative stress in the inflamed areas. Herein, we developed M1-macrophage-targeting biomineralized metallic nanozymes (FALNZs) that deplete oxidative stress and reduce the M1 macrophage levels to mitigate gouty arthritis. Intra-articular injection of the FALNZs targets inflammatory macrophages and suppresses ROS levels in joints with MSU-crystal-induced arthritis. In addition, the FALNZs alleviate joint swelling, inflammatory cytokine production, and pathological features of the joints. Overall, the proposed therapeutic approach is biocompatible and is an effective ROS scavenger for the treatment of gouty pathogenesis.
Collapse
Affiliation(s)
- Adityanarayan Mohapatra
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, South Korea.
| | - Ayeskanta Mohanty
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, South Korea.
| | - Padmanaban Sathiyamoorthy
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, South Korea.
| | - Sahil Chahal
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, South Korea.
| | - Veena Vijayan
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, South Korea.
| | | | - In-Kyu Park
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, South Korea.
| |
Collapse
|
22
|
Liu H, Ji M, Bi Y, Xiao P, Zhao J, Gou J, Yin T, He H, Ding H, Tang X, Zhang Y. Integration of MyD88 inhibitor into mesoporous cerium oxide nanozymes-based targeted delivery platform for enhancing treatment of ulcerative colitis. J Control Release 2023; 361:493-509. [PMID: 37572964 DOI: 10.1016/j.jconrel.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Excessive reactive oxygen species (ROS) and stressed inflammatory response are major characteristics of ulcerative colitis, which cause disease progression and aggravation. Herein, a novel mesoporous cerium oxide nanozymes (MCN) was designed and then loaded with Myeloid differentiation factor-88 (MyD88) inhibitor for synergistic treatment of colitis by scavenging ROS and regulating inflammation. This innovative MCN with average particle size of 200.7 nm, specific surface area of 119.78 m2/g and mesopores of 4.47 nm not only exhibited excellent SOD-like and CAT-like activities to scavenge ROS but also could act as a carrier to load MyD88 inhibitor, TJ-M2010-5, (abbreviated as TJ-5) into their mesopores, achieving the effect of 'two birds with one stone'. Besides, the modification of dextran sulfate sodium (TJ-5/MCN/DSS) increased the internalization of nanozymes into activated macrophages and enhanced in vitro anti-inflammatory ability. To enhance colon targeting, we coated TJ-5/MCN/DSS with the enteric material Eudragit S100, preventing premature release or absorption of the drug in the gastrointestinal tract after oral administration. The results demonstrated that TJ-5/MCN/DSS/Eudragit not only achieved delayed drug release and improved colon targeting but also exhibited optimal therapeutic efficacy in colitis mice. Mechanistically, the MCN-mediated ROS scavenging and TJ-5-mediated MyD88 blockade synergistically inhibited the NF-κB signaling pathway, thereby reducing the inflammatory response. Importantly, TJ-5/MCN/DSS/Eudragit did not induce systemic toxicity. In conclusion, our work not only presents a novel carrier capable of scavenging ROS but also provides proof of concept for the synergistic treatment of colitis using this carrier in combination with MyD88 inhibitors. This study proposes a safe and efficient strategy for targeting ROS-associated inflammation.
Collapse
Affiliation(s)
- Hongbing Liu
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Muse Ji
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuti Bi
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Peifu Xiao
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiansong Zhao
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingxin Gou
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haibing He
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huaiwei Ding
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Zhang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
23
|
Song Y, You Q, Chen X. Transition Metal-Based Therapies for Inflammatory Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212102. [PMID: 36863722 DOI: 10.1002/adma.202212102] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/15/2023] [Indexed: 08/04/2023]
Abstract
Inflammatory disease (ID) is a general term that covers all diseases in which chronic inflammation performs as the major manifestation of pathogenesis. Traditional therapies based on the anti-inflammatory and immunosuppressive drugs are palliative with the short-term remission. The emergence of nanodrugs has been reported to solve the potential causes and prevent recurrences, thus holding great potential for the treatment of IDs. Among various nanomaterial systems, transition metal-based smart nanosystems (TMSNs) with unique electronic structures possess therapeutic advantages owing to their large surface area to volume ratio, high photothermal conversion efficiency, X-ray absorption capacity, and multiple catalytic enzyme activities. In this review, the rationale, design principle, and therapeutic mechanisms of TMSNs for treatments of various IDs are summarized. Specifically, TMSNs can not only be designed to scavenge danger signals, such as reactive oxygen and nitrogen species and cell-free DNA, but also can be engineered to block the mechanism of initiating inflammatory responses. In addition, TMSNs can be further applied as nanocarriers to deliver anti-inflammatory drugs. Finally, the opportunities and challenges of TMSNs are discussed, and the future directions of TMSN-based ID treatment for clinical applications are emphasized.
Collapse
Affiliation(s)
- Yilin Song
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Qing You
- Departments of Diagnostic, Radiology Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program NUS center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic, Radiology Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program NUS center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
24
|
Ogawa Y, Kawaguchi T, Tanaka M, Hashimoto A, Fukui K, Uekawa N, Ozawa T, Kamachi T, Kohno M. Quenching effect of cerium oxide nanoparticles on singlet oxygen: validation of the potential for reaction with multiple reactive oxygen species. J Clin Biochem Nutr 2023; 73:1-8. [PMID: 37534098 PMCID: PMC10390806 DOI: 10.3164/jcbn.22-68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/07/2022] [Indexed: 08/04/2023] Open
Abstract
Here we studied cerium oxide nanoparticles (nanoceria) as an agent for the future treatment of oxidative damage by validating and evaluating its scavenging activity towards reactive oxygen species (ROS) in vitro. Nanoceria has been shown to mimic the activities of superoxide dismutase and catalase, degrading superoxide (O2•-) and hydrogen peroxide (H2O2). We examined the antioxidative activity of nanoceria, focusing on its ability to quench singlet oxygen (1O2) in an aqueous solution. Electron paramagnetic resonance (EPR) was used to determine the rates of second-order reactions between nanoceria and three ROS (1O2, O2•-, and H2O2) in aqueous solution, and its antioxidative abilities were demonstrated. Nanoceria shows a wide range of ultraviolet-light absorption bands and thus 1O2 was produced directly in a nanoceria suspension using high-frequency ultrasound. The quenching or scavenging abilities of nanoceria for 1O2 and hypoxanthine-xanthine oxidase reaction-derived O2•- were examined by EPR spin-trapping methods, and the consumption of H2O2 was estimated by the EPR oximetry method. Our results indicated that nanoceria interact not only with two previously reported ROS but also with 1O2. Nanoceria were shown to degrade O2•- and H2O2, and their ability to quench 1O2 may be one mechanism by which they protect against oxidative damage such as inflammation.
Collapse
Affiliation(s)
- Yukihiro Ogawa
- Applause Company Limited, Biko-building 4F, 2-24-2, Shinkawa, Chuo-ku, Tokyo 104-0033, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Tsunetaka Kawaguchi
- Applause Company Limited, Biko-building 4F, 2-24-2, Shinkawa, Chuo-ku, Tokyo 104-0033, Japan
| | - Mami Tanaka
- Applause Company Limited, Biko-building 4F, 2-24-2, Shinkawa, Chuo-ku, Tokyo 104-0033, Japan
| | - Akiko Hashimoto
- Applause Company Limited, Biko-building 4F, 2-24-2, Shinkawa, Chuo-ku, Tokyo 104-0033, Japan
| | - Koji Fukui
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of System Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama 337-8570, Japan
| | - Naofumi Uekawa
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-chou, Image-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Toshihiko Ozawa
- School of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, lna-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Toshiaki Kamachi
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masahiro Kohno
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
25
|
Radu AF, Bungau SG. Nanomedical approaches in the realm of rheumatoid arthritis. Ageing Res Rev 2023; 87:101927. [PMID: 37031724 DOI: 10.1016/j.arr.2023.101927] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Rheumatoid arthritis (RA) is a heterogeneous autoimmune inflammatory disorder defined by the damage to the bone and cartilage in the synovium, which causes joint impairment and an increase in the mortality rate. It is associated with an incompletely elucidated pathophysiological mechanism. Even though disease-modifying antirheumatic drugs have contributed to recent improvements in the standard of care for RA, only a small fraction of patients is able to attain and maintain clinical remission without the necessity for ongoing immunosuppressive drugs. The evolution of tolerance over time as well as patients' inability to respond to currently available therapy can alter the overall management of RA. A significant increase in the research of RA nano therapies due to the possible improvements they may provide over traditional systemic treatments has been observed. New approaches to getting beyond the drawbacks of existing treatments are presented by advancements in the research of nanotherapeutic techniques, particularly drug delivery nano systems. Via passive or active targeting of systemic delivery, therapeutic drugs can be precisely transported to and concentrated in the affected sites. As a result, nanoscale drug delivery systems improve the solubility and bioavailability of certain drugs and reduce dose escalation. In the present paper, we provide a thorough overview of the possible biomedical applications of various nanostructures in the diagnostic and therapeutic management of RA, derived from the shortcomings of conventional therapies. Moreover, the paper suggests the need for improvement on the basis of research directions and properly designed clinical studies.
Collapse
Affiliation(s)
- Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania.
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| |
Collapse
|
26
|
Zhou F, Li M, Chen M, Chen M, Chen X, Luo Z, Cai K, Hu Y. Redox Homeostasis Strategy for Inflammatory Macrophage Reprogramming in Rheumatoid Arthritis Based on Ceria Oxide Nanozyme-Complexed Biopolymeric Micelles. ACS NANO 2023; 17:4358-4372. [PMID: 36847819 DOI: 10.1021/acsnano.2c09127] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The synovial tissues under rheumatoid arthritis conditions are usually infiltrated by inflammatory cells, particularly M1 macrophages with aberrant redox homeostasis, which causes rapid deterioration of articular structure and function. Herein, we created an ROS-responsive micelle (HA@RH-CeOX) through the in situ host-guest complexation between ceria oxide nanozymes and hyaluronic acid biopolymers, which precisely delivered nanozyme and clinically approved rheumatoid arthritis drug Rhein (RH) to proinflammatory M1 macrophage populations in inflamed synovial tissues. The abundant cellular ROS could cleave the thioketal linker to trigger the release of RH and Ce. Specifically, the Ce3+/Ce4+ redox pair could present SOD-like enzymatic activity to rapidly decompose ROS and alleviate the oxidative stress in M1 macrophages, while RH could inhibit the TLR4 signaling in M1 macrophages, both of which could act in a concerted manner to induce their repolarization into anti-inflammatory M2 phenotype to ameliorate local inflammation and promote cartilage repair. Notably, rats bearing rheumatoid arthritis showed a drastic increase in the M1-to-M2 macrophage ratio from 1:0.48 to 1:1.91 in the inflamed tissue and significantly reduced inflammatory cytokine levels including TNF-α and IL-6 following the intra-articular injection of HA@RH-CeOX, accompanied by efficient cartilage regeneration and restored articular function. Overall, this study revealed an approach to in situ modulate the redox homeostasis in inflammatory macrophages and reprogram their polarization states through micelle-complexed biomimetic enzymes, which offers alternative opportunities for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Fei Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Maohua Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Maowen Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xiaodong Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
27
|
Han Y, Huang S. Nanomedicine is more than a supporting role in rheumatoid arthritis therapy. J Control Release 2023; 356:142-161. [PMID: 36863691 DOI: 10.1016/j.jconrel.2023.02.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
Rheumatoid arthritis(RA) is an autoimmune disorder that affects the joints. Various medications successfully alleviate the symptoms of RA in clinical. Still, few therapy strategies can cure RA, especially when joint destruction begins, and there is currently no effective bone-protective treatment to reverse the articular damage. Furthermore, the RA medications now used in clinical practice accompany various adverse side effects. Nanotechnology can improve the pharmacokinetics of traditional anti-RA drugs and therapeutic precision through targeting modification. Although the clinical application of nanomedicines for RA is in its infancy, preclinical research is rising. Current anti-RA nano-drug studies mainly focus on the following: drug delivery systems, nanomedicines with anti-inflammatory and anti-arthritic properties, biomimetic design with better biocompatibility and therapeutic features, and nanoparticle-dominated energy conversion therapies. These therapies have shown promising therapeutic benefits in animal models, indicating that nanomedicines are a potential solution to the current bottleneck in RA treatment. This review will summarize the present state of anti-RA nano-drug research.
Collapse
Affiliation(s)
- Yu Han
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Shilei Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
28
|
Tao J, Yang P, Gao M, Zhang F, Wu Y, Jiang Y, Ning Y, Li Z, Ai F. Reversing inflammatory microenvironment by a single intra-articular injection of multi-stimulus responsive lipogel to relieve rheumatoid arthritis and promote joint repair. Mater Today Bio 2023; 20:100622. [PMID: 37056918 PMCID: PMC10085779 DOI: 10.1016/j.mtbio.2023.100622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Rheumatoid arthritis (RA) is a common chronic disease dominated by inflammatory synovitis, which is characterized with hyperplastic synovium, up-regulated matrix metalloproteinase (MMP) expression, hypoxic joint cavity and excessive reactive oxygen species (ROS) accumulation. Such local adverse microenvironment in RA joints further exacerbates the infiltration of synovial inflammatory cells, especially M1-type macrophages. Regulating intra-articular pathological conditions, eliminating excess M1 macrophages or converting them to an anti-inflammatory M2 phenotype may break the vicious progression circle. Herein, we develop a multi-stimulus responsive lipogel as effective platform to relieve RA symptoms and promote articular cartilage recovery via reversing its inflammatory microenvironment. The injectable lipogel is fabricated by loading polydopamine nanoparticles and methotrexate into a thermosensitive gel, and intra-articularly injected to form the therapeutic depot (PDA/MTX@TSG) in situ. The gel degrades slowly under esterase hydrolysis, and maintains sustained drug release in physiological conditions. Meanwhile, it can 1) induce a reversible gel-sol phase transition upon mild photothermal treatment (external NIR light control), and 2) specifically respond to MMP-rich RA microenvironment (internal enzymatic hydrolysis effect). Such stimulus-responsive system can deliver therapeutic components in a controllable manner, and significantly reverse adverse inflammatory microenvironment of RA joints through ROS eliminating, hypoxia alleviating, and M1-M2 macrophage polarization effects. Animal experiments indicate that observable RA relief and joint repair are realized after a single lipogel injection combined with NIR irradiation. Our study highlights the importance of altering local RA microenvironment via anti-inflammatory macrophage polarization, and therefore presents a potent therapeutic strategy for RA treatment in clinical intervention.
Collapse
Affiliation(s)
- Jun Tao
- The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, PR China
| | - Peng Yang
- The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, PR China
| | - Mingying Gao
- Pingyang Hospital Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang 325400, PR China
| | - Fan Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, PR China
| | - Yongzhong Wu
- Department of Orthopaedics, The Second People's Hospital of Jingdezhen, Jingdezhen, Jiangxi 333099, PR China
| | - Yan Jiang
- The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, PR China
| | - Yunxuan Ning
- The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, PR China
- Corresponding author. : .
| | - Zhenglin Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, PR China
- Corresponding author.School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China .
| | - Fanrong Ai
- School of Advanced Manufacturing, Nanchang University, Nanchang, Jiangxi 330031, PR China
- Corresponding author. .
| |
Collapse
|
29
|
Zhang L, Meng W, Chen X, Wu L, Chen M, Zhou Z, Chen Y, Yuan L, Chen M, Chen J, Shui P. Multifunctional Nanoplatform for Mild Microwave-Enhanced Thermal, Antioxidative, and Chemotherapeutic Treatment of Rheumatoid Arthritis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10341-10355. [PMID: 36790223 DOI: 10.1021/acsami.2c19198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Rheumatoid arthritis (RA) is usually associated with excessive proliferation of M1-type proinflammatory macrophages, resulting in severe hypoxia and excess reactive oxygen species (ROS) in the joint cavity. Inhibiting M1-type proinflammatory macrophages and/or repolarizing them into M2 phenotype anti-inflammatory cells by alleviating hypoxia and scavenging ROS could be a promising strategy for RA treatment. In this work, a microwave-sensitive metal-organic framework of UiO-66-NH2 is constructed for coating a nanoenzyme of cerium oxide (CeO2) and loading with the drug celastrol (Cel) to give UiO-66-NH2/CeO2/Cel, which is ultimately wrapped with hyaluronic acid (HA) to form a nanocomposite UiO-66-NH2/CeO2/Cel@HA (UCCH). With the microwave-susceptible properties of UiO-66-NH2, the thermal effect of microwaves can eliminate the excessive proliferation of inflammatory cells. In addition, superoxide-like and catalase-like activities originating from CeO2 in UCCH are boosted to scavenge ROS and accelerate the decomposition of H2O2 to produce O2 under microwave irradiation. The nonthermal effect of microwaves could synergistically promote the repolarization of M1-type macrophages into the M2 phenotype. Accompanied by the release of the anti-RA chemotherapeutic drug Cel, UCCH can efficiently ameliorate RA in vitro and in vivo through microwave-enhanced multisynergistic effects. This strategy could inspire the design of other multisynergistic platforms enhanced by microwaves to exploit new treatment modalities in RA therapies.
Collapse
Affiliation(s)
- Lianying Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Wei Meng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaotong Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Libo Wu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Mingwa Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhaoxi Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yongjian Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lixia Yuan
- School of Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ming Chen
- The People's Hospital of Gaozhou, Maoming 525200, China
| | - Jinxiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pixian Shui
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
30
|
Zhang Y, Liu S, Peng J, Cheng S, Zhang Q, Zhang N, Zhou Z, Zhang Y, Zhao Y, Liu T. Biomimetic Nanozymes Suppressed Ferroptosis to Ameliorate Doxorubicin-Induced Cardiotoxicity via Synergetic Effect of Antioxidant Stress and GPX4 Restoration. Nutrients 2023; 15:nu15051090. [PMID: 36904089 PMCID: PMC10005374 DOI: 10.3390/nu15051090] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
Mitochondria-dependent ferroptosis plays an important role in the pathogenesis of doxorubicin (DOX)-induced cardiotoxicity (DIC), which remains a clinical challenge due to the lack of effective interventions. Cerium oxide (CeO2), a representative nanozyme, has attracted much attention because of its antioxidant properties. This study evaluated CeO2-based nanozymes for the prevention and treatment of DIC in vitro and in vivo by adding nanoparticles (NPs), which were synthesized by biomineralization, to the culture or giving them to the mice, and the ferroptosis-specific inhibitor ferrostatin-1 (Fer-1) was used as control. The prepared NPs exhibited an excellent antioxidant response and glutathione peroxidase 4 (GPX4)-depended bioregulation, with the additional merits of bio-clearance and long retention in the heart. The experiments showed that NP treatment could significantly reverse myocardial structural and electrical remodeling, and reduce myocardial necrosis. These cardioprotective therapeutic effects were associated with their ability to alleviate oxidative stress, mitochondrial lipid peroxidation, and mitochondrial membrane potential damage, with a superior efficiency to the Fer-1. The study also found that the NPs significantly restored the expression of GPX4 and mitochondrial-associated proteins, thereby restoring mitochondria-dependent ferroptosis. Therefore, the study provides some insights into the role of ferroptosis in DIC. It also shows that CeO2-based nanozymes could be a promising prevention and treatment candidate as a novel cardiomyocyte ferroptosis protector to mitigate DIC and improve prognosis and quality of life in cancer patients.
Collapse
Affiliation(s)
- Yunpeng Zhang
- Department of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Shuang Liu
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jing Peng
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Shifeng Cheng
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Qingling Zhang
- Department of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Nan Zhang
- Department of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Zandong Zhou
- Department of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yue Zhang
- Department of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yang Zhao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Correspondence: (Y.Z.); (T.L.); Tel.: +86-022-88328617 (T.L.)
| | - Tong Liu
- Department of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Correspondence: (Y.Z.); (T.L.); Tel.: +86-022-88328617 (T.L.)
| |
Collapse
|
31
|
Albarqi HA, Garg A, Ahmad MZ, Alqahtani AA, Walbi IA, Ahmad J. Recent Progress in Chitosan-Based Nanomedicine for Its Ocular Application in Glaucoma. Pharmaceutics 2023; 15:pharmaceutics15020681. [PMID: 36840002 PMCID: PMC9963436 DOI: 10.3390/pharmaceutics15020681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Glaucoma is a degenerative, chronic ocular disease that causes irreversible vision loss. The major symptom of glaucoma is high intraocular pressure, which happens when the flow of aqueous humor between the front and back of the eye is blocked. Glaucoma therapy is challenging because of the low bioavailability of drugs from conventional ocular drug delivery systems such as eye drops, ointments, and gels. The low bioavailability of antiglaucoma agents could be due to the precorneal and corneal barriers as well as the low biopharmaceutical attributes of the drugs. These limitations can be overcome by employing nanoparticulate drug delivery systems. Over the last decade, there has been a lot of interest in chitosan-based nanoparticulate systems to overcome the limitations (such as poor residence time, low corneal permeability, etc.) associated with conventional ocular pharmaceutical products. Therefore, the main aim of the present manuscript is to review the recent research work involving the chitosan-based nanoparticulate system to treat glaucoma. It discusses the significance of the chitosan-based nanoparticulate system, which provides mucoadhesion to improve the residence time of drugs and their ocular bioavailability. Furthermore, different types of chitosan-based nanoparticulate systems are also discussed, namely nanoparticles of chitosan core only, nanoparticles coated with chitosan, and hybrid nanoparticles of chitosan. The manuscript also provides a critical analysis of contemporary research related to the impact of this chitosan-based nanomedicine on the corneal permeability, ocular bioavailability, and therapeutic performance of loaded antiglaucoma agents.
Collapse
Affiliation(s)
- Hassan A. Albarqi
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Anuj Garg
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Abdulsalam A. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Ismail A. Walbi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
- Correspondence: or
| |
Collapse
|
32
|
Li M, Cui H, Cao Y, Lin Y, Yang Y, Gao M, Zhang W, Wang C. Deep eutectic solvents-Hydrogels for the topical management of rheumatoid arthritis. J Control Release 2023; 354:664-679. [PMID: 36682725 DOI: 10.1016/j.jconrel.2023.01.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
Deep eutectic solvents (DES) have demonstrated their ability to facilitate skin penetrability of rigid nanoparticles (NPs). Here, we reported a feasible and simple transdermal delivery strategy using mesoporous silica nanoparticles impregnated in DES hydrogels for topical management of rheumatoid arthritis (RA). To achieve this goal, nanoceria was immobilized within a silica nanoparticle matrix (MSN) and encapsulated with methotrexate (MTX). The functionalized nanoparticles were first engineered in an Arginine (Arg)-citric acid (CA) DES and then transferred to the carbomer hydrogel matrix. Due to the strong affinity of DES hydrogels to the skin, combined with solvent-driven "Drag" effects, the prepared DES-MSNs hydrogels produced dynamic mobility of MSNs through skin layers, resulting in high skin penetrability. After application to the skin, the hydrogel solvent drove the rigid NPs across the skin barrier in a nonintrusive manner, resulting in sustained penetration and accumulation of MSNs at subcutaneous inflammation sites. Subsequently, the MTX payload exerted a direct therapeutic effect, while nanoceria moderated the inflammatory microenvironment by initiating reactive oxygen species (ROS) scavenging and transformation of the macrophage phenotype. In this way, the synergistic action of the combination of immuno- and chemotherapy of the drug and its carrier on RA was achieved. Our work provides a novel strategy for multisite regulation and controlled management of RA in a noninvasive way.
Collapse
Affiliation(s)
- Mingjian Li
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Hao Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yubiao Cao
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yameng Lin
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Mingju Gao
- College of Notoginseng Medicine and Pharmacy, Wenshan University, Wenshan 663000, Yunnan, PR China
| | - Wen Zhang
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, PR China.
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
33
|
Wang R, Shi J, Zhang Q, Peng Q, Sun X, Song L, Zhang Y. Dual-Triggered Near-Infrared Persistent Luminescence Nanoprobe for Autofluorescence-Free Imaging-Guided Precise Therapy of Rheumatoid Arthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205320. [PMID: 36461720 PMCID: PMC9896051 DOI: 10.1002/advs.202205320] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/12/2022] [Indexed: 06/17/2023]
Abstract
Rheumatoid arthritis (RA) is a common, chronic, and highly disabling autoimmune disease characterized by difficult treatment, long disease duration, and easy recurrence. The development and application of high-sensitivity theranostic probes for RA that will facilitate precise monitoring of disease progression and enable effective treatment are currently hotspots in the field of RA theranostics. In this study, mZMI@HA, a dual-triggered theranostics nanoprobe, is constructed based on near-infrared persistent luminescence nanoparticles (NIR-PLNPs) for precise RA treatment and therapeutic evaluation. This is the first reported use of high-sensitivity autofluorescence-free imaging based on NIR-PLNPs for precise RA treatment and therapeutic evaluation. Compared with the NIR fluorescence imaging probe-indocyanine green, the signal-to-background ratio of persistent luminescence (PersL) imaging is improved nearly 14-fold. Using PersL imaging to guide photothermal therapy and controllable drug release through NIR/pH-responsiveness, the progress of collagen-induced RA is relieved. Additionally, the therapeutic evaluation of RA by PersL imaging is consistent with clinical micro-computed tomography and histological analyses. This study demonstrates the potential of NIR-PLNPs for high-sensitivity imaging-guided RA treatment, providing a new strategy for RA precise theranostics.
Collapse
Affiliation(s)
- Ruoping Wang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou, FujianChina
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth Materials, Haixi InstituteChinese Academy of SciencesXiamen, Fujian361021China
- University of Chinese Academy of SciencesBeijing100049China
| | - Junpeng Shi
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou, FujianChina
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth Materials, Haixi InstituteChinese Academy of SciencesXiamen, Fujian361021China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qian Zhang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou, FujianChina
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth Materials, Haixi InstituteChinese Academy of SciencesXiamen, Fujian361021China
| | - Qiang Peng
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou, FujianChina
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth Materials, Haixi InstituteChinese Academy of SciencesXiamen, Fujian361021China
| | - Xia Sun
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhou, Fujian350108China
| | - Liang Song
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou, FujianChina
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth Materials, Haixi InstituteChinese Academy of SciencesXiamen, Fujian361021China
| | - Yun Zhang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou, FujianChina
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth Materials, Haixi InstituteChinese Academy of SciencesXiamen, Fujian361021China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
34
|
Cao Y, Cheng K, Yang M, Deng Z, Ma Y, Yan X, Zhang Y, Jia Z, Wang J, Tu K, Liang J, Zhang M. Orally administration of cerium oxide nanozyme for computed tomography imaging and anti-inflammatory/anti-fibrotic therapy of inflammatory bowel disease. J Nanobiotechnology 2023; 21:21. [PMID: 36658555 PMCID: PMC9854161 DOI: 10.1186/s12951-023-01770-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic nonspecific disease with unknown etiology. Currently, the anti-inflammatory therapeutic approaches have achieved a certain extent of effects in terms of inflammation alleviation. Still, the final pathological outcome of intestinal fibrosis has not been effectively improved yet. RESULTS In this study, dextran-coated cerium oxide (D-CeO2) nanozyme with superoxide dismutase (SOD) and catalase (CAT) activities was synthesized by chemical precipitation. Our results showed that D-CeO2 could efficiently scavenge reactive oxide species (ROS) as well as downregulate the pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and iNOS) to protect cells from H2O2-induced oxidative damage. Moreover, D-CeO2 could suppress the expression of fibrosis-related gene levels, such as α-SMA, and Collagen 1/3, demonstrating the anti-fibrotic effect. In both TBNS- and DSS-induced colitis models, oral administration of D-CeO2 in chitosan/alginate hydrogel alleviated intestinal inflammation, reduced colonic damage by scavenging ROS, and decreased inflammatory factor levels. Notably, our findings also suggested that D-CeO2 reduced fibrosis-related cytokine levels, predicting a contribution to alleviating colonic fibrosis. Meanwhile, D-CeO2 could also be employed as a CT contrast agent for noninvasive gastrointestinal tract (GIT) imaging. CONCLUSION We introduced cerium oxide nanozyme as a novel therapeutic approach with computed tomography (CT)-guided anti-inflammatory and anti-fibrotic therapy for the management of IBD. Collectively, without appreciable systemic toxicity, D-CeO2 held the promise of integrated applications for diagnosis and therapy, pioneering the exploration of nanozymes with ROS scavenging capacity in the anti-fibrotic treatment of IBD.
Collapse
Affiliation(s)
- Yameng Cao
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243School of Basic Medical Sciences, Xian Key Laboratory of Immune Related Diseases, Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243Key Laboratory of Environment and Genes Related to Diseases, Xian Jiaotong University, Ministry of Education, Xi’an, 710061 Shaanxi China
| | - Kai Cheng
- grid.33199.310000 0004 0368 7223Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Mei Yang
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243School of Basic Medical Sciences, Xian Key Laboratory of Immune Related Diseases, Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243Key Laboratory of Environment and Genes Related to Diseases, Xian Jiaotong University, Ministry of Education, Xi’an, 710061 Shaanxi China
| | - Zhichao Deng
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243School of Basic Medical Sciences, Xian Key Laboratory of Immune Related Diseases, Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243Key Laboratory of Environment and Genes Related to Diseases, Xian Jiaotong University, Ministry of Education, Xi’an, 710061 Shaanxi China
| | - Yana Ma
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243School of Basic Medical Sciences, Xian Key Laboratory of Immune Related Diseases, Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243Key Laboratory of Environment and Genes Related to Diseases, Xian Jiaotong University, Ministry of Education, Xi’an, 710061 Shaanxi China
| | - Xiangji Yan
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243School of Basic Medical Sciences, Xian Key Laboratory of Immune Related Diseases, Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243Key Laboratory of Environment and Genes Related to Diseases, Xian Jiaotong University, Ministry of Education, Xi’an, 710061 Shaanxi China
| | - Yuanyuan Zhang
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243School of Basic Medical Sciences, Xian Key Laboratory of Immune Related Diseases, Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243Key Laboratory of Environment and Genes Related to Diseases, Xian Jiaotong University, Ministry of Education, Xi’an, 710061 Shaanxi China
| | - Zhenzhen Jia
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243School of Basic Medical Sciences, Xian Key Laboratory of Immune Related Diseases, Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243Key Laboratory of Environment and Genes Related to Diseases, Xian Jiaotong University, Ministry of Education, Xi’an, 710061 Shaanxi China
| | - Jun Wang
- grid.452438.c0000 0004 1760 8119Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 China
| | - Kangsheng Tu
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Jie Liang
- grid.417295.c0000 0004 1799 374XXijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, 710068 Shaanxi China
| | - Mingzhen Zhang
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243School of Basic Medical Sciences, Xian Key Laboratory of Immune Related Diseases, Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243Key Laboratory of Environment and Genes Related to Diseases, Xian Jiaotong University, Ministry of Education, Xi’an, 710061 Shaanxi China
| |
Collapse
|
35
|
Chen W, Liu H, Song F, Xin L, Zhang Q, Zhang P, Ding C. pH-Switched Near-Infrared Fluorescent Strategy for Ratiometric Detection of ONOO - in Lysosomes and Precise Imaging of Oxidative Stress in Rheumatoid Arthritis. Anal Chem 2023; 95:1301-1308. [PMID: 36576392 DOI: 10.1021/acs.analchem.2c04175] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is well-known as a kind of autoimmune disease, which brings unbearable pain to the patients by multiple organ complications besides arthritis. To date, RA can be hardly cured, but early diagnosis and standard treatment can relieve symptoms and pain. Therefore, an effective tool to assist the early diagnosis of RA deserves considerable attention. On account of the overexpressed ONOO- during the early stage of RA, a near-infrared (NIR) receptor, Lyso-Cy, is proposed in this work by linker chemistry to expand the conjugated rhodamine framework by cyanine groups. Contributed by the pH-sensitive spiral ring in rhodamine, receptor Lyso-Cy has been found to be workable in lysosomes specifically, which was confirmed by the pH-dependent spectra with a narrow responding region and a well-calculated pKa value of 5.81. We presented an excellent ratiometric sensing protocol for ONOO- in an acidic environment, which was also available for targeting ONOO- in lysosomes selectively. This innovative dual-targeting responsive design is expected to be promising for assisting RA diagnosis at an early stage with respect to the joint inflammatory model established in this work at the organism level.
Collapse
Affiliation(s)
- Wenjuan Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| | - Haihong Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| | - Fuxiang Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| | - Liantao Xin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| | - Qian Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| | - Peng Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| |
Collapse
|
36
|
Mohapatra A, Park IK. Recent Advances in ROS-Scavenging Metallic Nanozymes for Anti-Inflammatory Diseases: A Review. Chonnam Med J 2023; 59:13-23. [PMID: 36794252 PMCID: PMC9900225 DOI: 10.4068/cmj.2023.59.1.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 02/01/2023] Open
Abstract
Oxidative stress and dysregulated inflammatory responses are the hallmarks of inflammatory disorders, which are key contributors to high mortality rates and impose a substantial economic burden on society. Reactive oxygen species (ROS) are vital signaling molecules that promote the development of inflammatory disorders. The existing mainstream therapeutic approaches, including steroid and non-steroidal anti-inflammatory drugs, and proinflammatory cytokine inhibitors with anti-leucocyte inhibitors, are not efficient at curing the adverse effects of severe inflammation. Moreover, they have serious side effects. Metallic nanozymes (MNZs) mimic the endogenous enzymatic process and are promising candidates for the treatment of ROS-associated inflammatory disorders. Owing to the existing level of development of these metallic nanozymes, they are efficient at scavenging excess ROS and can resolve the drawbacks of traditional therapies. This review summarizes the context of ROS during inflammation and provides an overview of recent advances in metallic nanozymes as therapeutic agents. Furthermore, the challenges associated with MNZs and an outline for future to promote the clinical translation of MNZs are discussed. Our review of this expanding multidisciplinary field will benefit the current research and clinical application of metallic-nanozyme-based ROS scavenging in inflammatory disease treatment.
Collapse
Affiliation(s)
- Adityanarayan Mohapatra
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju, Korea
| | - In-Kyu Park
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
37
|
Zhu L, Luo M, Zhang Y, Fang F, Li M, An F, Zhao D, Zhang J. Free radical as a double-edged sword in disease: Deriving strategic opportunities for nanotherapeutics. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Zheng K, Bai J, Yang H, Xu Y, Pan G, Wang H, Geng D. Nanomaterial-assisted theranosis of bone diseases. Bioact Mater 2022; 24:263-312. [PMID: 36632509 PMCID: PMC9813540 DOI: 10.1016/j.bioactmat.2022.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/27/2022] Open
Abstract
Bone-related diseases refer to a group of skeletal disorders that are characterized by bone and cartilage destruction. Conventional approaches can regulate bone homeostasis to a certain extent. However, these therapies are still associated with some undesirable problems. Fortunately, recent advances in nanomaterials have provided unprecedented opportunities for diagnosis and therapy of bone-related diseases. This review provides a comprehensive and up-to-date overview of current advanced theranostic nanomaterials in bone-related diseases. First, the potential utility of nanomaterials for biological imaging and biomarker detection is illustrated. Second, nanomaterials serve as therapeutic delivery platforms with special functions for bone homeostasis regulation and cellular modulation are highlighted. Finally, perspectives in this field are offered, including current key bottlenecks and future directions, which may be helpful for exploiting nanomaterials with novel properties and unique functions. This review will provide scientific guidance to enhance the development of advanced nanomaterials for the diagnosis and therapy of bone-related diseases.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China,Corresponding author.Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China,Corresponding author.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China,Corresponding author. Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
39
|
Da J, Li Y, Zhang K, Ren J, Wang J, Liu X, Liu X, Zhang J, Liu L, Zhang W, Zhang S, Guo Y, Zhang B, Jin H. Functionalized Prussian Blue Nanozyme as Dual-Responsive Drug Therapeutic Nanoplatform Against Maxillofacial Infection via Macrophage Polarization. Int J Nanomedicine 2022; 17:5851-5868. [PMCID: PMC9719692 DOI: 10.2147/ijn.s385899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Purpose Maxillofacial infection is a common disease in stomatology and is difficult to treat owing to its high potential to spread to vital anatomical structures. Excessive levels of reactive oxygen species (ROS) in infected tissues lead to cellular damage and impede tissue regeneration. However, uncontrollable strategies to remove ROS have limited therapeutic efficacy. Nanoparticle systems for scavenging ROS and remodeling the inflammatory microenvironment offer much promise in the treatment of maxillofacial inflammation. Methods Here, a novel microenvironment-stimuli-responsive drug delivery nanoplatform (HMPB@Cur@PDA) based on a polydopamine (PDA)-functionalized hollow mesoporous Prussian blue (HMPB) nanozyme was developed for the delivery of curcumin (Cur) in the treatment of maxillofacial infection. Low pH and excess ROS in the inflammatory microenvironment cause degradation of the outer PDA layer of the nanocomplex, exposing the HMPB nanozyme and loaded Cur, which synergistically act as a ROS scavenger and anti-inflammatory agent, respectively, and induce macrophage polarization from the pro-inflammatory M1 to the anti-inflammatory M2 phenotype. Results Experiments in vitro provided strong evidence for the application of novel nanocomplexes in scavenging multiple ROS and inhibiting lipopolysaccharide-induced inflammation. In addition, in vivo results obtained using a mouse maxillofacial infection model demonstrated that HMPB@Cur@PDA had excellent biocompatibility, significantly attenuated the inflammatory response in periodontal tissue, and improved the repair of damaged tissue. Conclusion Our results indicate that HMPB@Cur@PDA nanocomposites have great potential for ROS regulation as well as having anti-inflammatory effects, providing new insights for the development of dual-response maxillofacial infection treatments.
Collapse
Affiliation(s)
- Junlong Da
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Ying Li
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Kai Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Junyu Ren
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Jianqun Wang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Xinpeng Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Xiaoyao Liu
- Department of Orthodontics, the First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Jiahui Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Lixue Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Wenxuan Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Shujian Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Yuyao Guo
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Bin Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China,Heilongjiang Academy of Medical Sciences, Harbin, People’s Republic of China
| | - Han Jin
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China,Correspondence: Han Jin; Bin Zhang, Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China, Tel/Fax +86 0451-86297231, Email ;
| |
Collapse
|
40
|
Liang S, Tian X, Wang C. Nanozymes in the Treatment of Diseases Caused by Excessive Reactive Oxygen Specie. J Inflamm Res 2022; 15:6307-6328. [PMID: 36411826 PMCID: PMC9675353 DOI: 10.2147/jir.s383239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/11/2022] [Indexed: 10/29/2023] Open
Abstract
Excessive reactive oxygen species (ROS) may generate deleterious effects on biomolecules, such as DNA damage, protein oxidation and lipid peroxidation, causing cell and tissue damage and eventually leading to the pathogenesis of diseases, such as neurodegenerative diseases, ischemia/reperfusion ((I/R)) injury, and inflammatory diseases. Therefore, the modulation of ROS can be an efficient means to relieve the aforementioned diseases. Several studies have verified that antioxidants such as Mitoquinone (a mitochondrial-targeted coenzyme Q10 derivative) can scavenge ROS and attenuate related diseases. Nanozymes, defined as nanomaterials with intrinsic enzyme-like properties that also possess antioxidant properties, are hence expected to be promising alternatives for the treatment of ROS-related diseases. This review introduces the types of nanozymes with inherent antioxidant activities, elaborates on various strategies (eg, controlling the size or shape of nanozymes, regulating the composition of nanozymes and environmental factors) for modulating their catalytic activities, and summarizes their performances in treating ROS-induced diseases.
Collapse
Affiliation(s)
- Shufeng Liang
- Department of Molecular Biology, Shanxi Province Cancer Hospital/Shanxi Hospital, Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, People’s Republic of China
- Institute of Environmental Sciences, Shanxi University, Taiyuan, People’s Republic of China
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, People’s Republic of China
| | - Chunyan Wang
- Department of Transfusion, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
41
|
Zhang N, Xiong G, Liu Z. Toxicity of metal-based nanoparticles: Challenges in the nano era. Front Bioeng Biotechnol 2022; 10:1001572. [PMID: 36619393 PMCID: PMC9822575 DOI: 10.3389/fbioe.2022.1001572] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022] Open
Abstract
With the rapid progress of nanotechnology, various nanoparticles (NPs) have been applicated in our daily life. In the field of nanotechnology, metal-based NPs are an important component of engineered NPs, including metal and metal oxide NPs, with a variety of biomedical applications. However, the unique physicochemical properties of metal-based NPs confer not only promising biological effects but also pose unexpected toxic threats to human body at the same time. For safer application of metal-based NPs in humans, we should have a comprehensive understanding of NP toxicity. In this review, we summarize our current knowledge about metal-based NPs, including the physicochemical properties affecting their toxicity, mechanisms of their toxicity, their toxicological assessment, the potential strategies to mitigate their toxicity and current status of regulatory movement on their toxicity. Hopefully, in the near future, through the convergence of related disciplines, the development of nanotoxicity research will be significantly promoted, thereby making the application of metal-based NPs in humans much safer.
Collapse
Affiliation(s)
- Naiding Zhang
- Department of Vascular Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guiya Xiong
- Department of Science and Research, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenjie Liu
- Department of Vascular Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Zhenjie Liu,
| |
Collapse
|
42
|
Mou X, Wu Q, Zhang Z, Liu Y, Zhang J, Zhang C, Chen X, Fan K, Liu H. Nanozymes for Regenerative Medicine. SMALL METHODS 2022; 6:e2200997. [PMID: 36202750 DOI: 10.1002/smtd.202200997] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Nanozymes refer to nanomaterials that catalyze enzyme substrates into products under relevant physiological conditions following enzyme kinetics. Compared to natural enzymes, nanozymes possess the characteristics of higher stability, easier preparation, and lower cost. Importantly, nanozymes possess the magnetic, fluorescent, and electrical properties of nanomaterials, making them promising replacements for natural enzymes in industrial, biological, and medical fields. On account of the rapid development of nanozymes recently, their application potentials in regeneration medicine are gradually being explored. To highlight the achievements in the regeneration medicine field, this review summarizes the catalytic mechanism of four types of representative nanozymes. Then, the strategies to improve the biocompatibility of nanozymes are discussed. Importantly, this review covers the recent advances in nanozymes in tissue regeneration medicine including wound healing, nerve defect repair, bone regeneration, and cardiovascular disease treatment. In addition, challenges and prospects of nanozyme researches in regeneration medicine are summarized.
Collapse
Affiliation(s)
- Xiaozhou Mou
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Qingyuan Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zheao Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Yunhang Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jungang Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Chengwu Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Xiaoyi Chen
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
43
|
Fu X, Yu X, Jiang J, Yang J, Chen L, Yang Z, Yu C. Small molecule-assisted assembly of multifunctional ceria nanozymes for synergistic treatment of atherosclerosis. Nat Commun 2022; 13:6528. [PMID: 36319632 PMCID: PMC9626479 DOI: 10.1038/s41467-022-34248-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
Abstract
Considering that intravascular reactive oxygen species (ROS) and inflammation are two characteristic features of the atherosclerotic microenvironment, developing an appropriate strategy to treat atherosclerosis by synergistically regulating ROS and inflammation has attracted widespread attention. Herein, a special molecule, zoledronic acid, containing imidazole and bisphosphonate groups, was selected for the first time to assist the assembly of cerium ions and produce functionalized ceria-zoledronic acid nanocomposites (CZ NCs). It not only serves as a new carrier for different kinds of drugs (e.g. probucol, PB) but also exerts an efficient multienzyme activity to achieve collaborative therapy. More importantly, platelet membrane-coated biomimetic nanoplatform (PCZ@PB NCs) specifically accumulate at inflammatory atherosclerotic lesions, synergistically regulate ROS levels and inflammation, and efficiently inhibit foam cell formation. This novel assembly method can also be applied in the treatment of many other diseases associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
- Xiaoxue Fu
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, 400016 Chongqing, P. R. China
| | - Xiaojuan Yu
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, 400016 Chongqing, P. R. China
| | - Junhao Jiang
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, 400016 Chongqing, P. R. China
| | - Jiaxin Yang
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, 400016 Chongqing, P. R. China
| | - Lu Chen
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, 400016 Chongqing, P. R. China
| | - Zhangyou Yang
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, 400016 Chongqing, P. R. China
| | - Chao Yu
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, 400016 Chongqing, P. R. China
| |
Collapse
|
44
|
Wang M, He H, Liu D, Ma M, Zhang Y. Preparation, Characterization and Multiple Biological Properties of Peptide-Modified Cerium Oxide Nanoparticles. Biomolecules 2022; 12:biom12091277. [PMID: 36139116 PMCID: PMC9496055 DOI: 10.3390/biom12091277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Although cerium oxide nanoparticles are attracting much attention in the biomedical field due to their unique physicochemical and biological functions, the cerium oxide nanoparticles greatly suffer from several unmet physicochemical challenges, including loss of enzymatic activity during the storage, non-specific cellular uptake, off-target toxicities, etc. Herein, in order to improve the targeting property of cerium oxide nanoparticles, we first modified cerium oxide nanoparticles (CeO2) with polyacrylic acid (PAA) and then conjugated with an endothelium-targeting peptide glycine-arginine-aspartic acid (cRGD) to construct CeO2@PAA@RGD. The physiochemical characterization results showed that the surface modifications did not impact the intrinsic enzymatic properties of CeO2, including catalase-like (CAT) and superoxide dismutase-like (SOD) activities. Moreover, the cellular assay data showed that CeO2@PAA@RGD exhibited a good biocompatibility and a higher cellular uptake due to the presence of RGD targeting peptide on its surface. CeO2@PAA@RGD effectively scavenged reactive oxygen species (ROS) to protect cells from oxidative-stress-induced damage. Additionally, it was found that the CeO2@PAA@RGD converted the phenotype of macrophages from proinflammatory (M1) to anti-inflammatory (M2) phenotype, inhibiting the occurrence of inflammation. Furthermore, the CeO2@PAA@RGD also promoted endothelial cell-mediated migration and angiogenesis. Collectively, our results successfully demonstrate the promising application of CeO2@PAA@RGD in the future biomedical field.
Collapse
Affiliation(s)
| | | | | | - Ming Ma
- Correspondence: (M.M.); (Y.Z.)
| | | |
Collapse
|
45
|
Liu XH, Ding JY, Zhu ZH, Wu XC, Song YJ, Xu XL, Ding DF. Recent advances in enzyme-related biomaterials for arthritis treatment. Front Chem 2022; 10:988051. [PMID: 36051622 PMCID: PMC9424673 DOI: 10.3389/fchem.2022.988051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 12/27/2022] Open
Abstract
Arthritis is a group of highly prevalent joint disorders, and osteoarthritis (OA) and rheumatoid arthritis are the two most common types. The high prevalence of arthritis causes severe burdens on individuals, society and the economy. Currently, the primary treatment of arthritis is to relieve symptoms, but the development of arthritis cannot be effectively prevented. Studies have revealed that the disrupted balance of enzymes determines the pathological changes in arthritis. In particular, the increased levels of matrix metalloproteinases and the decreased expression of endogenous antioxidant enzymes promote the progression of arthritis. New therapeutic strategies have been developed based on the expression characteristics of these enzymes. Biomaterials have been designed that are responsive when the destructive enzymes MMPs are increased or have the activities of the antioxidant enzymes that play a protective role in arthritis. Here, we summarize recent studies on biomaterials associated with MMPs and antioxidant enzymes involved in the pathological process of arthritis. These enzyme-related biomaterials have been shown to be beneficial for arthritis treatment, but there are still some problems that need to be solved to improve efficacy, especially penetrating the deeper layer of articular cartilage and targeting osteoclasts in subchondral bone. In conclusion, enzyme-related nano-therapy is challenging and promising for arthritis treatment.
Collapse
Affiliation(s)
- Xin-Hao Liu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Ying Ding
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi-Heng Zhu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xi-Chen Wu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jia Song
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- *Correspondence: Xiao-Ling Xu, ; Dao-Fang Ding,
| | - Dao-Fang Ding
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xiao-Ling Xu, ; Dao-Fang Ding,
| |
Collapse
|
46
|
Zhao C, Deng H, Chen X. Harnessing immune response using reactive oxygen Species-Generating/Eliminating inorganic biomaterials for disease treatment. Adv Drug Deliv Rev 2022; 188:114456. [PMID: 35843505 DOI: 10.1016/j.addr.2022.114456] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/27/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
With the increasing understanding of various biological functions mediated by reactive oxygen species (ROS) in the immune system, a number of studies have been designed to develop ROS-generating/eliminating strategies to selectively modulate immunogenicity for disease treatment. These strategies potentially exploit ROS-modulating inorganic biomaterials to harness host immunity to maximize the therapeutic potency by eliciting a favorable immune response. Inorganic biomaterial-guided in vivo ROS scavenging can exhibit several effects to: i) reduce the secretion of pro-inflammatory factors, ii) induce the phenotypic transition of macrophages from inflammatory M1 to immunosuppressive M2 phase, iii) minimize the recruitment and infiltration of immune cells. and/or iv) suppress the activation of nuclear factor kappa-B (NF-κB) pathway. Inversely, ROS-generating inorganic biomaterials have been found to be capable of: i) inducing immunogenic cell death (ICD), ii) reprograming tumor-associated macrophages from M2 to M1 phenotypes, iii) activating inflammasomes to stimulate tumor immunogenicity, and/or iv) recruiting phagocytes for antimicrobial therapy. This review provides a systematic and up-to-date overview on the progress related to ROS-nanotechnology mediated immunomodulation. We highlight how the ROS-generating/eliminating inorganic biomaterials can converge with immunomodulation and ultimately elicit an effective immune response against inflammation, autoimmune diseases, and/or cancers. We expect that contents presented in this review will be beneficial for the future advancements of ROS-based nanotechnology and its potential applications in this evolving field.
Collapse
Affiliation(s)
- Caiyan Zhao
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Hongzhang Deng
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore; Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
47
|
Self-therapeutic metal-based nanoparticles for treating inflammatory diseases. Acta Pharm Sin B 2022; 13:1847-1865. [DOI: 10.1016/j.apsb.2022.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 02/07/2023] Open
|
48
|
Li C, Zheng X, Hu M, Jia M, Jin R, Nie Y. Recent progress in therapeutic strategies and biomimetic nanomedicines for rheumatoid arthritis treatment. Expert Opin Drug Deliv 2022; 19:883-898. [PMID: 35760767 DOI: 10.1080/17425247.2022.2094364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is an autoimmune systemic disease in which inflammatory and immune cells accumulate in inflamed joints. Researchers aimed at the characteristics of RA to achieve the effect of treating RA through different therapeutic strategies, and have used various endogenous materials to design drug-loaded nanoparticles that can target RA by binding to cell adhesion molecules or chemokines. In some cases, the nanoparticles can respond to the characteristics of the microenvironment. AREAS COVERED This article reviews the recent advances in the treatment of RA from two aspects of therapeutic strategies and delivery strategies. Therapeutic strategies mainly include neutralization of inflammatory factors, promotion of inflammatory cell apoptosis, ROS scavenger, immunosuppression, and bone tissue repair. The drug delivery strategy is mainly described from two aspects: chemically functionalized biomimetic nanoparticles and endogenous nanoparticles. EXPERT OPINION Biomimetic NPs may be effective drug carriers for targeted RA treatment. NPs can reduce the clearance of mononuclear phagocytes, prolong the blood circulation time, and improve the targeting ability. With the deepening of research, more and more biomimetic NPs have entered the clinical trial stage. However, safe and scalable preparation methods are needed to improve their clinical applicability.
Collapse
Affiliation(s)
- Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiu Zheng
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Mei Hu
- Pharmacy Laboratory, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Ming Jia
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
49
|
Wang X, Fan D, Cao X, Ye Q, Wang Q, Zhang M, Xiao C. The Role of Reactive Oxygen Species in the Rheumatoid Arthritis-Associated Synovial Microenvironment. Antioxidants (Basel) 2022; 11:antiox11061153. [PMID: 35740050 PMCID: PMC9220354 DOI: 10.3390/antiox11061153] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease that begins with a loss of tolerance to modified self-antigens and immune system abnormalities, eventually leading to synovitis and bone and cartilage degradation. Reactive oxygen species (ROS) are commonly used as destructive or modifying agents of cellular components or they act as signaling molecules in the immune system. During the development of RA, a hypoxic and inflammatory situation in the synovium maintains ROS generation, which can be sustained by increased DNA damage and malfunctioning mitochondria in a feedback loop. Oxidative stress caused by abundant ROS production has also been shown to be associated with synovitis in RA. The goal of this review is to examine the functions of ROS and related molecular mechanisms in diverse cells in the synovial microenvironment of RA. The strategies relying on regulating ROS to treat RA are also reviewed.
Collapse
Affiliation(s)
- Xing Wang
- School of Clinical Medicine, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing 100029, China; (X.W.); (Q.Y.); (Q.W.)
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Danping Fan
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Qinbin Ye
- School of Clinical Medicine, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing 100029, China; (X.W.); (Q.Y.); (Q.W.)
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Qiong Wang
- School of Clinical Medicine, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing 100029, China; (X.W.); (Q.Y.); (Q.W.)
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
- Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China
- Correspondence: or
| |
Collapse
|
50
|
Fu S, Chen H, Yang W, Xia X, Zhao S, Xu X, Ai P, Cai Q, Li X, Wang Y, Zhu J, Zhang B, Zheng JC. ROS-Targeted Depression Therapy via BSA-Incubated Ceria Nanoclusters. NANO LETTERS 2022; 22:4519-4527. [PMID: 35583518 PMCID: PMC9185743 DOI: 10.1021/acs.nanolett.2c01334] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/12/2022] [Indexed: 05/23/2023]
Abstract
Depression is one of the most fatal mental diseases, and there is currently a lack of efficient drugs for the treatment of depression. Emerging evidence has indicated oxidative stress as a key pathological feature of depression. We targeted reactive oxygen species (ROS) and synthesized CeO2@BSA nanoclusters as a novel antidepression nanodrug via a convenient, green, and highly effective bovine serum albumin (BSA) incubation strategy. CeO2@BSA has ultrasmall size (2 nm) with outstanding ROS scavenging and blood-brain barrier crossing capacity, rapid metabolism, and negligible adverse effects in vitro and in vivo. CeO2@BSA administration alleviates depressive behaviors and depression-related pathological changes of the chronic restraint stress-induced depressive model, suggesting promising therapeutic effects of CeO2@BSA for the treatment of depression. Our study proved the validity by directly using nanodrugs as antidepression drugs instead of using them as a nanocarrier, which greatly expands the application of nanomaterials in depression treatment.
Collapse
Affiliation(s)
- Shengyang Fu
- Center
for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School
of Medicine, Shanghai 200065, China
| | - Huili Chen
- Center
for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School
of Medicine, Shanghai 200065, China
| | - Weitao Yang
- The
Institute for Translational Nanomedicine, Shanghai East Hospital, Shanghai 200120, China
- The
Institute for Biomedical Engineering & Nano Science, School of
Medicine, Tongji University, Shanghai 200092, China
- Shanghai
Frontiers Science Center of Nanocatalytic Medicine, Tongji University School of Medicine, Shanghai 200331, China
| | - Xiaohuan Xia
- Center
for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School
of Medicine, Shanghai 200065, China
- Shanghai
Frontiers Science Center of Nanocatalytic Medicine, Tongji University School of Medicine, Shanghai 200331, China
- Translational
Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital affiliated
to Tongji University School of Medicine, Shanghai 200434, China
| | - Shu Zhao
- Center
for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School
of Medicine, Shanghai 200065, China
| | - Xiaonan Xu
- Center
for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School
of Medicine, Shanghai 200065, China
| | - Pu Ai
- Center
for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School
of Medicine, Shanghai 200065, China
- Wuxi
Clinical College of Anhui Medical University, Hefei 230022, China
| | - Qingyuan Cai
- Center
for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School
of Medicine, Shanghai 200065, China
- Franklin
& Marshall College, Lancaster, Pennsylvania 17603, United States
| | - Xiangyu Li
- Center
for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School
of Medicine, Shanghai 200065, China
| | - Yi Wang
- Center
for Translational Neurodegeneration and Regenerative Therapy, Yangzhi Rehabilitation Hospital affiliated to Tongji
University, Shanghai 200065, China
| | - Jie Zhu
- Center
for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated
to Tongji University School of Medicine, Shanghai 200065, China
| | - Bingbo Zhang
- The
Institute for Translational Nanomedicine, Shanghai East Hospital, Shanghai 200120, China
- The
Institute for Biomedical Engineering & Nano Science, School of
Medicine, Tongji University, Shanghai 200092, China
- Shanghai
Frontiers Science Center of Nanocatalytic Medicine, Tongji University School of Medicine, Shanghai 200331, China
| | - Jialin C. Zheng
- Center
for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School
of Medicine, Shanghai 200065, China
- The
Institute for Biomedical Engineering & Nano Science, School of
Medicine, Tongji University, Shanghai 200092, China
- Shanghai
Frontiers Science Center of Nanocatalytic Medicine, Tongji University School of Medicine, Shanghai 200331, China
| |
Collapse
|