1
|
Kim HY, Ha H. Distinct granzyme k expression in immune cells: a single-cell rna-seq meta-analysis. Genes Genomics 2024; 46:1097-1106. [PMID: 39115674 DOI: 10.1007/s13258-024-01555-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Granzymes are essential serine proteases in cytotoxic T cells and natural killer (NK) cells, with GZMK's expression being less understood. This study aims to uncover GZMK expression profiles across various immune cell types using single-cell RNA sequencing meta-analysis. OBJECTIVE This study aims to uncover GZMK expression profiles across various immune cell types using single-cell RNA sequencing meta-analysis. METHODS We conducted a meta-analysis using cellxgene, an interactive data exploration platform developed by the Chan Zuckerberg Initiative. We focused on mature T cells, NK cells, B cells, and NKT cells. We also checked transcription factor binding sites at the granzyme gene promoter regions using JASPAR. Comparative analysis was also done using mouse single-cell RNA sequencing data. RESULTS GZMK was the most lowly expressed in NK cells and mature NKT cells in most tissues except for colon and lymph nodes. In mature T cells, GZMK is similarly or more highly expressed than other granzymes. HBCA data revealed weak expression of GZMK in NK cells but strong expression in effector memory CD8-positive, alpha-beta T cells. Combined data shows no significant difference in GZMK expression between cell types. Subtype analysis shows that GZMK expression was higher in CD16-negative, CD56-bright NK cells when compared to CD16-positive, CD56-dim NK cells. We also identified unique transcription factor binding sites for GZMK. While this pattern in mouse data with low Gzmk expression in NK cells and higher T cells was repeated. CONCLUSION GZMK expression is distinctively regulated among immune cells and tissues, with unique promoter regions and transcription factor binding sites contributing to this differential expression. These insights into GZMK's role in immune function and regulation offer potential therapeutic targets.
Collapse
Affiliation(s)
- Hyeon-Young Kim
- Department of Molecular and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Hongseok Ha
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Aubert A, Jung K, Hiroyasu S, Pardo J, Granville DJ. Granzyme serine proteases in inflammation and rheumatic diseases. Nat Rev Rheumatol 2024; 20:361-376. [PMID: 38689140 DOI: 10.1038/s41584-024-01109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 05/02/2024]
Abstract
Granzymes (granule-secreted enzymes) are a family of serine proteases that have been viewed as redundant cytotoxic enzymes since their discovery more than 30 years ago. Predominantly produced by cytotoxic lymphocytes and natural killer cells, granzymes are delivered into the cytoplasm of target cells through immunological synapses in cooperation with the pore-forming protein perforin. After internalization, granzymes can initiate cell death through the cleavage of intracellular substrates. However, evidence now also demonstrates the existence of non-cytotoxic, pro-inflammatory, intracellular and extracellular functions that are granzyme specific. Under pathological conditions, granzymes can be produced and secreted extracellularly by immune cells as well as by non-immune cells. Depending on the granzyme, accumulation in the extracellular milieu might contribute to inflammation, tissue injury, impaired wound healing, barrier dysfunction, osteoclastogenesis and/or autoantigen generation.
Collapse
Affiliation(s)
- Alexandre Aubert
- International Collaboration on Repair Discoveries (ICORD) Centre; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD) Centre; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sho Hiroyasu
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Julian Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA); Department of Microbiology, Radiology, Paediatrics and Public Health, University of Zaragoza, Zaragoza, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD) Centre; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- Centre for Heart Lung Innovation, Providence Research, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
3
|
Senan-Salinas A, Comas L, Esteban P, Garzón-Tituaña M, Cheng Z, Santiago L, Domingo MP, Ramírez-Labrada A, Paño-Pardo JR, Vendrell M, Pardo J, Arias MA, Galvez EM. Selective Detection of Active Extracellular Granzyme A by Using a Novel Fluorescent Immunoprobe with Application to Inflammatory Diseases. ACS Pharmacol Transl Sci 2024; 7:1474-1484. [PMID: 38751645 PMCID: PMC11092195 DOI: 10.1021/acsptsci.4c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
Granzymes (Gzms), a family of serine proteases, expressed by immune and nonimmune cells, present perforin-dependent and independent intracellular and extracellular functions. When released in the extracellular space, GzmA, with trypsin-like activity, is involved in the pathophysiology of different inflammatory diseases. However, there are no validated specific systems to detect active forms of extracellular GzmA, making it difficult to assess its biological relevance and potential use as a biomarker. Here, we have developed fluorescence-energy resonance-transfer (FRET)-based peptide probes (FAM-peptide-DABCYL) to specifically detect GzmA activity in tissue samples and biological fluids in both mouse and human samples during inflammatory diseases. An initial probe was developed and incubated with GzmA and different proteases like GzmB and others with similar cleavage specificity as GzmA like GzmK, thrombin, trypsin, kallikrein, or plasmin. After measuring fluorescence, the probe showed very good specificity and sensitivity for human and mouse GzmA when compared to GzmB, its closest homologue GzmK, and with thrombin. The specificity of this probe was further refined by incubating the samples in a coated plate with a GzmA-specific antibody before adding the probe. The results show a high specific detection of soluble GzmA even when compared with other soluble proteases with very similar cleavage specificity like thrombin, GzmK, trypsin, kallikrein, or plasmin, which shows nearly no fluorescence signal. The high specific detection of GzmA was validated, showing that using pure proteins and serum and tissue samples from GzmA-deficient mice presented a significant reduction in the signal compared with WT mice. The utility of this system in humans was confirmed, showing that GzmA activity was significantly higher in serum samples from septic patients in comparison with healthy donors. Our results present a new immunoprobe with utility to detect extracellular GzmA activity in different biological fluids, confirming the presence of active forms of the soluble protease in vivo during inflammatory and infectious diseases.
Collapse
Affiliation(s)
| | - Laura Comas
- Instituto
de Carboquímica ICB-CSIC, 50018 Zaragoza, Spain
| | - Patricia Esteban
- Fundación
Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
| | - Marcela Garzón-Tituaña
- Dept.
Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009 Zaragoza, Spain
- CIBERINFEC,
ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029Madrid, Spain
| | - Zhiming Cheng
- Centre for
Inflammation Research, The University of
Edinburgh, EH164UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| | | | | | - Ariel Ramírez-Labrada
- Fundación
Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
- CIBERINFEC,
ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029Madrid, Spain
- Unidad
de Nanotoxicología e Inmunotoxicología (UNATI), Centro
de Investigación Biomédica de Aragón (CIBA),
Aragón Health Research Institute (IIS Aragón), 50009Zaragoza, Spain
| | - José Ramón Paño-Pardo
- CIBERINFEC,
ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029Madrid, Spain
- Servicio
de Enfermedades Infecciosas, Hospital Clinico
Universitario Lozano Blesa, 50009 Zaragoza, Spain
| | - Marc Vendrell
- Centre for
Inflammation Research, The University of
Edinburgh, EH164UU Edinburgh, U.K.
| | - Julián Pardo
- Fundación
Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
- Dept.
Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009 Zaragoza, Spain
- CIBERINFEC,
ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029Madrid, Spain
| | - Maykel A. Arias
- Fundación
Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
- CIBERINFEC,
ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029Madrid, Spain
| | - Eva M. Galvez
- Instituto
de Carboquímica ICB-CSIC, 50018 Zaragoza, Spain
- CIBERINFEC,
ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029Madrid, Spain
| |
Collapse
|
4
|
Rasi V, Phelps KR, Paulson KR, Eickhoff CS, Chinnaraj M, Pozzi N, Di Gioia M, Zanoni I, Shakya S, Carlson HL, Ford DA, Kolar GR, Hoft DF. Homodimeric Granzyme A Opsonizes Mycobacterium tuberculosis and Inhibits Its Intracellular Growth in Human Monocytes via Toll-Like Receptor 4 and CD14. J Infect Dis 2024; 229:876-887. [PMID: 37671668 PMCID: PMC10938207 DOI: 10.1093/infdis/jiad378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 09/07/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb)-specific γ9δ2 T cells secrete granzyme A (GzmA) protective against intracellular Mtb growth. However, GzmA-enzymatic activity is unnecessary for pathogen inhibition, and the mechanisms of GzmA-mediated protection remain unknown. We show that GzmA homodimerization is essential for opsonization of mycobacteria, altered uptake into human monocytes, and subsequent pathogen clearance within the phagolysosome. Although monomeric and homodimeric GzmA bind mycobacteria, only homodimers also bind cluster of differentiation 14 (CD14) and Toll-like receptor 4 (TLR4). Without access to surface-expressed CD14 and TLR4, GzmA fails to inhibit intracellular Mtb. Upregulation of Rab11FIP1 was associated with inhibitory activity. Furthermore, GzmA colocalized with and was regulated by protein disulfide isomerase AI (PDIA1), which cleaves GzmA homodimers into monomers and prevents Mtb inhibitory activity. These studies identify a previously unrecognized role for homodimeric GzmA structure in opsonization, phagocytosis, and elimination of Mtb in human monocytes, and they highlight PDIA1 as a potential host-directed therapy for prevention and treatment of tuberculosis, a major human disease.
Collapse
Affiliation(s)
- Valerio Rasi
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Kathleen R Phelps
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Keegan R Paulson
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Christopher S Eickhoff
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Mathivanan Chinnaraj
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Nicola Pozzi
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Marco Di Gioia
- Harvard Medical School and Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Ivan Zanoni
- Harvard Medical School and Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Shubha Shakya
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Haley L Carlson
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - David A Ford
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Grant R Kolar
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Daniel F Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Cheng Z, Thompson EJ, Mendive‐Tapia L, Scott JI, Benson S, Kitamura T, Senan‐Salinas A, Samarakoon Y, Roberts EW, Arias MA, Pardo J, Galvez EM, Vendrell M. Fluorogenic Granzyme A Substrates Enable Real-Time Imaging of Adaptive Immune Cell Activity. Angew Chem Int Ed Engl 2023; 62:e202216142. [PMID: 36562327 PMCID: PMC10108010 DOI: 10.1002/anie.202216142] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Cytotoxic immune cells, including T lymphocytes (CTLs) and natural killer (NK) cells, are essential components of the host response against tumors. CTLs and NK cells secrete granzyme A (GzmA) upon recognition of cancer cells; however, there are very few tools that can detect physiological levels of active GzmA with high spatiotemporal resolution. Herein, we report the rational design of the near-infrared fluorogenic substrates for human GzmA and mouse GzmA. These activity-based probes display very high catalytic efficiency and selectivity over other granzymes, as shown in tissue lysates from wild-type and GzmA knock-out mice. Furthermore, we demonstrate that the probes can image how adaptive immune cells respond to antigen-driven recognition of cancer cells in real time.
Collapse
Affiliation(s)
- Zhiming Cheng
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| | - Emily J Thompson
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| | | | - Jamie I Scott
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| | - Sam Benson
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| | - Takanori Kitamura
- MRC Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | | | | | | | - Maykel A Arias
- CIBERINFECInstituto de Salud Carlos IIIZaragozaSpain
- Aragón Health Research InstituteBiomedical Research Centre of Aragón and Dpt of MicrobiologyPreventive Medicine and Public HealthZaragozaSpain
| | - Julian Pardo
- CIBERINFECInstituto de Salud Carlos IIIZaragozaSpain
- Aragón Health Research InstituteBiomedical Research Centre of Aragón and Dpt of MicrobiologyPreventive Medicine and Public HealthZaragozaSpain
| | - Eva M Galvez
- Instituto de CarboquimicaCSICZaragozaSpain
- CIBERINFECInstituto de Salud Carlos IIIZaragozaSpain
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| |
Collapse
|
6
|
Cheng Z, Thompson EJ, Mendive‐Tapia L, Scott JI, Benson S, Kitamura T, Senan‐Salinas A, Samarakoon Y, Roberts EW, Arias MA, Pardo J, Galvez EM, Vendrell M. Fluorogenic Granzyme A Substrates Enable Real-Time Imaging of Adaptive Immune Cell Activity. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202216142. [PMID: 38515764 PMCID: PMC10953043 DOI: 10.1002/ange.202216142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 12/24/2022]
Abstract
Cytotoxic immune cells, including T lymphocytes (CTLs) and natural killer (NK) cells, are essential components of the host response against tumors. CTLs and NK cells secrete granzyme A (GzmA) upon recognition of cancer cells; however, there are very few tools that can detect physiological levels of active GzmA with high spatiotemporal resolution. Herein, we report the rational design of the near-infrared fluorogenic substrates for human GzmA and mouse GzmA. These activity-based probes display very high catalytic efficiency and selectivity over other granzymes, as shown in tissue lysates from wild-type and GzmA knock-out mice. Furthermore, we demonstrate that the probes can image how adaptive immune cells respond to antigen-driven recognition of cancer cells in real time.
Collapse
Affiliation(s)
- Zhiming Cheng
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| | - Emily J Thompson
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| | | | - Jamie I Scott
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| | - Sam Benson
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| | - Takanori Kitamura
- MRC Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | | | | | | | - Maykel A Arias
- CIBERINFECInstituto de Salud Carlos IIIZaragozaSpain
- Aragón Health Research InstituteBiomedical Research Centre of Aragón and Dpt of MicrobiologyPreventive Medicine and Public HealthZaragozaSpain
| | - Julian Pardo
- CIBERINFECInstituto de Salud Carlos IIIZaragozaSpain
- Aragón Health Research InstituteBiomedical Research Centre of Aragón and Dpt of MicrobiologyPreventive Medicine and Public HealthZaragozaSpain
| | - Eva M Galvez
- Instituto de CarboquimicaCSICZaragozaSpain
- CIBERINFECInstituto de Salud Carlos IIIZaragozaSpain
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| |
Collapse
|
7
|
Vintrych P, Al-Obeidallah M, Horák J, Chvojka J, Valešová L, Nalos L, Jarkovská D, Matějovič M, Štengl M. Modeling sepsis, with a special focus on large animal models of porcine peritonitis and bacteremia. Front Physiol 2023; 13:1094199. [PMID: 36703923 PMCID: PMC9871395 DOI: 10.3389/fphys.2022.1094199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Infectious diseases, which often result in deadly sepsis or septic shock, represent a major global health problem. For understanding the pathophysiology of sepsis and developing new treatment strategies, reliable and clinically relevant animal models of the disease are necessary. In this review, two large animal (porcine) models of sepsis induced by either peritonitis or bacteremia are introduced and their strong and weak points are discussed in the context of clinical relevance and other animal models of sepsis, with a special focus on cardiovascular and immune systems, experimental design, and monitoring. Especially for testing new therapeutic strategies, the large animal (porcine) models represent a more clinically relevant alternative to small animal models, and the findings obtained in small animal (transgenic) models should be verified in these clinically relevant large animal models before translation to the clinical level.
Collapse
Affiliation(s)
- Pavel Vintrych
- Department of Cardiology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Mahmoud Al-Obeidallah
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Jan Horák
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Jiří Chvojka
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Lenka Valešová
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Lukáš Nalos
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Dagmar Jarkovská
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Martin Matějovič
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Milan Štengl
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,*Correspondence: Milan Štengl,
| |
Collapse
|
8
|
Richardson KC, Jung K, Pardo J, Turner CT, Granville DJ. Noncytotoxic Roles of Granzymes in Health and Disease. Physiology (Bethesda) 2022; 37:323-348. [PMID: 35820180 DOI: 10.1152/physiol.00011.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Granzymes are serine proteases previously believed to play exclusive and somewhat redundant roles in lymphocyte-mediated target cell death. However, recent studies have challenged this paradigm. Distinct substrate profiles and functions have since emerged for each granzyme while their dysregulated proteolytic activities have been linked to diverse pathologies.
Collapse
Affiliation(s)
- Katlyn C Richardson
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julian Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain.,Department of Microbiology, Radiology, Pediatrics and Public Health, University of Zaragoza, Zaragoza, Spain.,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Zaragoza, Spain
| | - Christopher T Turner
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Screening of Sepsis Biomarkers Based on Bioinformatics Data Analysis. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6788569. [PMID: 36199375 PMCID: PMC9529510 DOI: 10.1155/2022/6788569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
Methods Gene expression profiles of GSE13904, GSE26378, GSE26440, GSE65682, and GSE69528 were obtained from the National Center for Biotechnology Information (NCBI). The differentially expressed genes (DEGs) were searched using limma software package. Gene Ontology (GO) functional analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and protein-protein interaction (PPI) network analysis were performed to elucidate molecular mechanisms of DEGs and screen hub genes. Results A total of 108 DEGs were identified in the study, of which 67 were upregulated and 41 were downregulated. 15 superlative diagnostic biomarkers (CCL5, CCR7, CD2, CD27, CD274, CD3D, GNLY, GZMA, GZMH, GZMK, IL2RB, IL7R, ITK, KLRB1, and PRF1) for sepsis were identified by bioinformatics analysis. Conclusion 15 hub genes (CCL5, CCR7, CD2, CD27, CD274, CD3D, GNLY, GZMA, GZMH, GZMK, IL2RB, IL7R, ITK, KLRB1, and PRF1) have been elucidated in this study, and these biomarkers may be helpful in the diagnosis and therapy of patients with sepsis.
Collapse
|
10
|
Rasi V, Hameed OA, Matthey P, Bera S, Grandgenett DP, Salentinig S, Walch M, Hoft DF. Improved Purification of Human Granzyme A/B and Granulysin Using a Mammalian Expression System. Front Immunol 2022; 13:830290. [PMID: 35300343 PMCID: PMC8921980 DOI: 10.3389/fimmu.2022.830290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/08/2022] [Indexed: 01/14/2023] Open
Abstract
Cytotoxic lymphocytes release proteins contained within the cytoplasmic cytolytic granules after recognition of infected or tumor target cells. These cytotoxic granular proteins (namely granzymes, granulysin, and perforin) are key immunological mediators within human cellular immunity. The availability of highly purified cytotoxic proteins has been fundamental for understanding their function in immunity and mechanistic involvement in sepsis and autoimmunity. Methods for recovery of native cytotoxic proteins can be problematic leading to: 1) the co-purification of additional proteins, confounding interpretation of function, and 2) low yields of highly purified proteins. Recombinant protein expression of individual cytolytic components can overcome these challenges. The use of mammalian expression systems is preferred for optimal post-translational modifications and avoidance of endotoxin contamination. Some of these proteins have been proposed for host directed human therapies (e.g. - granzyme A), or treatment of systemic infections or tumors as in granulysin. We report here a novel expression system using HEK293T cells for cost-effective purification of high yields of human granzymes (granzyme A and granzyme B) and granulysin with enhanced biological activity than previous reports. The resulting proteins are free of native contaminants, fold correctly, and remain enzymatically active. Importantly, these improvements have also led to the first purification of biologically active recombinant human granulysin in high yields from a mammalian system. This method can be used as a template for purification of many other secreted cellular proteins and may lead to advances for human medicine.
Collapse
Affiliation(s)
- Valerio Rasi
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States,Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Owais Abdul Hameed
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland,Department of Chemistry, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Patricia Matthey
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Sibes Bera
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Duane P. Grandgenett
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Stefan Salentinig
- Department of Chemistry, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael Walch
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland,*Correspondence: Daniel F. Hoft, ; Michael Walch,
| | - Daniel F. Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States,Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States,*Correspondence: Daniel F. Hoft, ; Michael Walch,
| |
Collapse
|