1
|
Wang J, Wang Y, Jiang X. Targeting anticancer immunity in melanoma tumour microenvironment: unleashing the potential of adjuvants, drugs, and phytochemicals. J Drug Target 2024; 32:1052-1072. [PMID: 39041142 DOI: 10.1080/1061186x.2024.2384071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Melanoma poses a challenge in oncology because of its aggressive nature and limited treatment modalities. The tumour microenvironment (TME) in melanoma contains unique properties such as an immunosuppressive and high-density environment, unusual vasculature, and a high number of stromal and immunosuppressive cells. In recent years, numerous experiments have focused on boosting the immune system to effectively remove malignant cells. Adjuvants, consisting of phytochemicals, toll-like receptor (TLR) agonists, and cytokines, have shown encouraging results in triggering antitumor immunity and augmenting the therapeutic effectiveness of anticancer therapy. These adjuvants can stimulate the maturation of dendritic cells (DCs) and infiltration of cytotoxic CD8+ T lymphocytes (CTLs). Furthermore, nanocarriers can help to deliver immunomodulators and antigens directly to the tumour stroma, thereby improving their efficacy against malignant cells. The remodelling of melanoma TME utilising phytochemicals, agonists, and other adjuvants can be combined with current modalities for improving therapy outcomes. This review article explores the potential of adjuvants, drugs, and their nanoformulations in enhancing the anticancer potency of macrophages, CTLs, and natural killer (NK) cells. Additionally, the capacity of these agents to repress the function of immunosuppressive components of melanoma TME, such as immunosuppressive subsets of macrophages, stromal and myeloid cells will be discussed.
Collapse
Affiliation(s)
- Jingping Wang
- Emergency Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Yaping Wang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Xiaofang Jiang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| |
Collapse
|
2
|
Najdian A, Beiki D, Abbasi M, Gholamrezanezhad A, Ahmadzadehfar H, Amani AM, Ardestani MS, Assadi M. Exploring innovative strides in radiolabeled nanoparticle progress for multimodality cancer imaging and theranostic applications. Cancer Imaging 2024; 24:127. [PMID: 39304961 DOI: 10.1186/s40644-024-00762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/13/2024] [Indexed: 09/22/2024] Open
Abstract
Multimodal imaging unfolds as an innovative approach that synergistically employs a spectrum of imaging techniques either simultaneously or sequentially. The integration of computed tomography (CT), magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), positron emission tomography (PET), and optical imaging (OI) results in a comprehensive and complementary understanding of complex biological processes. This innovative approach combines the strengths of each method and overcoming their individual limitations. By harmoniously blending data from these modalities, it significantly improves the accuracy of cancer diagnosis and aids in treatment decision-making processes. Nanoparticles possess a high potential for facile functionalization with radioactive isotopes and a wide array of contrast agents. This strategic modification serves to augment signal amplification, significantly enhance image sensitivity, and elevate contrast indices. Such tailored nanoparticles constructs exhibit a promising avenue for advancing imaging modalities in both preclinical and clinical setting. Furthermore, nanoparticles function as a unified nanoplatform for the co-localization of imaging agents and therapeutic payloads, thereby optimizing the efficiency of cancer management strategies. Consequently, radiolabeled nanoparticles exhibit substantial potential in driving forward the realms of multimodal imaging and theranostic applications. This review discusses the potential applications of molecular imaging in cancer diagnosis, the utilization of nanotechnology-based radiolabeled materials in multimodal imaging and theranostic applications, as well as recent advancements in this field. It also highlights challenges including cytotoxicity and regulatory compliance, essential considerations for effective clinical translation of nanoradiopharmaceuticals in multimodal imaging and theranostic applications.
Collapse
Affiliation(s)
- Atena Najdian
- The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Davood Beiki
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), 1441 Eastlake Ave Ste 2315, Los Angeles, CA, 90089, USA
| | - Hojjat Ahmadzadehfar
- Department of Nuclear Medicine, Klinikum Westfalen, Dortmund, Germany
- Department of Nuclear Medicine, Institute of Radiology, Neuroradiology and Nuclear Medicine, University Hospital Knappschaftskrankenhaus, Bochum, Germany
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
3
|
Khan H, Shahab U, Alshammari A, Alyahyawi AR, Akasha R, Alharazi T, Ahmad R, Khanam A, Habib S, Kaur K, Ahmad S, Moinuddin. Nano-therapeutics: The upcoming nanomedicine to treat cancer. IUBMB Life 2024. [PMID: 38440959 DOI: 10.1002/iub.2814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024]
Abstract
Nanotechnology is considered a successful approach for cancer diagnosis and treatment. Preferentially, cancer cell recognition and drug targeting via nano-delivery system include the penetration of anticancer agents into the cell membrane to damage the cancer cell by protein modification, DNA oxidation, or mitochondrial dysfunction. The past research on nano-delivery systems and their target has proven the beneficial achievement in a malignant tumor. Modern perceptions using inventive nanomaterials for cancer management have been offered by a multifunctional platform based on various nano-carriers with the probability of imaging and cancer therapy simultaneously. Emerging nano-delivery systems in cancer therapy still lack knowledge of the biological functions behind the interaction between nanoparticles and cancer cells. Since the potential of engineered nanoparticles addresses the various challenges, limiting the success of cancer therapy subsequently, it is a must to review the molecular targeting of a nano-delivery system to enhance the therapeutic efficacy of cancer. This review focuses on using a nano-delivery system, an imaging system, and encapsulated nanoparticles for cancer therapy.
Collapse
Affiliation(s)
- Hamda Khan
- Department of Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Uzma Shahab
- Department of Biochemistry, King George Medical University, Lucknow, India
| | - Ahmed Alshammari
- Department of Internal Medicine, College of Medicine, University of Hail, Ha'il, Saudi Arabia
| | - Amjad R Alyahyawi
- Department of Diagnostic Radiology, College of Applied Medical Science, University of Hail, Ha'il, Saudi Arabia
- Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford, UK
| | - Rihab Akasha
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Ha'il, Saudi Arabia
| | - Talal Alharazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Ha'il, Saudi Arabia
| | - Rizwan Ahmad
- Department of Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Afreen Khanam
- Department of Biotechnology & Life Science, Institute of Biomedical Education & Research, Mangalayatan University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Kirtanjot Kaur
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Ha'il, Saudi Arabia
| | - Moinuddin
- Department of Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
4
|
Karageorgou MA, Apostolopoulou A, Tomazinaki ME, Stanković D, Stiliaris E, Bouziotis P, Stamopoulos D. Gamma-Camera Direct Imaging of the Plasma and On/Intra Cellular Distribution of the 99mTc-DPD-Fe 3O 4 Dual-Modality Contrast Agent in Peripheral Human Blood. MATERIALS (BASEL, SWITZERLAND) 2024; 17:335. [PMID: 38255503 PMCID: PMC10820996 DOI: 10.3390/ma17020335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/23/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024]
Abstract
The radiolabeled iron oxide nanoparticles constitute an attractive choice to be used as dual-modality contrast agents (DMCAs) in nuclear medical diagnosis, due to their ability to combine the benefits of two imaging modalities, for instance single photon emission computed tomography (SPECT) with magnetic resonance imaging (MRI). Before the use of any DMCA, the investigation of its plasma extra- and on/intra cellular distribution in peripheral human blood is of paramount importance. Here, we focus on the in vitro investigation of the distribution of 99mTc-DPD-Fe3O4 DMCA in donated peripheral human blood (the ligand 2-3-dicarboxypropane-1-1-diphosphonic-acid is denoted as DPD). Initially, we described the experimental methods we performed for the radiosynthesis of the 99mTc-DPD-Fe3O4, the preparation of whole blood and blood plasma samples, and their incubation conditions with 99mTc-DPD-Fe3O4. More importantly, we employed a gamma-camera apparatus for the direct imaging of the 99mTc-DPD-Fe3O4-loaded whole blood and blood plasma samples when subjected to specialized centrifugation protocols. The direct comparison of the gamma-camera data obtained at the exact same samples before and after their centrifugation enabled us to clearly identify the distribution of the 99mTc-DPD-Fe3O4 in the two components, plasma and cells, of peripheral human blood.
Collapse
Affiliation(s)
- Maria-Argyro Karageorgou
- Department of Physics, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.-E.T.); (E.S.)
| | - Adamantia Apostolopoulou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (A.A.); (P.B.)
- Laboratory of Biology, School of Medicine, Department of Basic Medical Sciences, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Mina-Ermioni Tomazinaki
- Department of Physics, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.-E.T.); (E.S.)
| | - Dragana Stanković
- Laboratory for Radioisotopes, “Vinča” Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia;
| | - Efstathios Stiliaris
- Department of Physics, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.-E.T.); (E.S.)
| | - Penelope Bouziotis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (A.A.); (P.B.)
| | - Dimosthenis Stamopoulos
- Department of Physics, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.-E.T.); (E.S.)
| |
Collapse
|
5
|
Çetin O, Güngör B, İçhedef Ç, Parlak Y, Bilgin ES, Üstün F, Durmuş Altun G, Başpınar Y, Teksöz S. Development of a Radiolabeled Folate-Mediated Drug Delivery System for Effective Delivery of Docetaxel. ACS OMEGA 2023; 8:25316-25325. [PMID: 37483227 PMCID: PMC10357535 DOI: 10.1021/acsomega.3c02656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023]
Abstract
Many preclinical studies are carried out with the aim of developing new formulations for the effective delivery of taxane class drugs, one of the most important anticancer drugs used clinically today. In this study, a radiolabeled folate-mediated solid lipid magnetic nanoparticle (SLMNP) system was developed by loading superparamagnetic iron oxide nanoparticles (MNP) and docetaxel (DTX) into the solid lipid nanoparticles as a drug delivery system that will function both in cancer treatment and diagnosis. For this purpose, first, SLMNP was synthesized by the hot homogenization method, and the surface of the particles was modified with a folate derivative to carry the particles to tissues with folate receptors. The synthesized magnetic solid lipid nanoparticles were loaded with DTX, and then radiolabeling was carried out with technetium-99 m (99mTc-DTX-SLMNP). Structural characteristics of these nanoparticles were determined by characterization methods. According to the TEM images of MNPs, SLN, and SLMNPs, MNPs were observed between 25and 35 nm, SLNs between 400 and 500 nm, and SLMNPs between 350 and 450 nm. The drug entrapment efficiency of SLMNPs loaded with DTX was found to be 19%, and the percentage efficiency of radiolabeling was found to be 98.0 ± 2.0%. The biological behavior of this radiolabeled system was investigated in vitro and in vivo. Folate receptor-positive SKOV-3 and folate receptor-negative A549 cancer cell lines were studied. The IC50 values of DTX-SLMNP in SKOV-3 and A549 cells were 50.21 and 172.27 μM at 48 h, respectively. Gamma camera imaging studies of 99mTc-DTX-SLMNP and magnetically applied 99mTc-DTX-SLMNP compounds were performed on tumor-bearing CD-1 nude mice. The uptake in the folate receptor-positive tumor region was higher than that in the folate receptor negative tumor region. We proposed that the drug delivery system we prepared in this study be evaluated for preclinical studies of new drug carrier formulations of the taxane class of anticancer drugs.
Collapse
Affiliation(s)
- Oğuz Çetin
- Department
of Nuclear Applications, Institute of Nuclear
Sciences, Ege University, Izmir 35100, Turkey
| | - Burcu Güngör
- Department
of Nuclear Applications, Institute of Nuclear
Sciences, Ege University, Izmir 35100, Turkey
| | - Çiğdem İçhedef
- Department
of Nuclear Applications, Institute of Nuclear
Sciences, Ege University, Izmir 35100, Turkey
| | - Yasemin Parlak
- Department
of Nuclear Medicine, School of Medicine, Celal Bayar University, Manisa 45040, Turkey
| | - Elvan Sayıt Bilgin
- Department
of Nuclear Medicine, School of Medicine, Celal Bayar University, Manisa 45040, Turkey
| | - Funda Üstün
- Department
of Nuclear Medicine, Faculty of Medicine, Trakya University, Edirne 22030, Turkey
| | - Gülay Durmuş Altun
- Department
of Nuclear Medicine, Faculty of Medicine, Trakya University, Edirne 22030, Turkey
| | - Yücel Başpınar
- Department
of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir 35040, Turkey
| | - Serap Teksöz
- Department
of Nuclear Applications, Institute of Nuclear
Sciences, Ege University, Izmir 35100, Turkey
| |
Collapse
|
6
|
Kheyrolahzadeh K, Tohidkia MR, Tarighatnia A, Shahabi P, Nader ND, Aghanejad A. Theranostic chimeric antigen receptor (CAR)-T cells: Insight into recent trends and challenges in solid tumors. Life Sci 2023; 328:121917. [PMID: 37422069 DOI: 10.1016/j.lfs.2023.121917] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/15/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Cell therapy has reached significant milestones in various life-threatening diseases, including cancer. Cell therapy using fluorescent and radiolabeled chimeric antigen receptor (CAR)-T cell is a successful strategy for diagnosing or treating malignancies. Since cell therapy approaches have different results in cancers, the success of hematological cancers has yet to transfer to solid tumor therapy, leading to more casualties. Therefore, there are many areas for improvement in the cell therapy platform. Understanding the therapeutic barriers associated with solid cancers through cell tracking and molecular imaging may provide a platform for effectively delivering CAR-T cells into solid tumors. This review describes CAR-T cells' role in treating solid and non-solid tumors and recent advances. Furthermore, we discuss the main obstacles, mechanism of action, novel strategies and solutions to overcome the challenges from molecular imaging and cell tracking perspectives.
Collapse
Affiliation(s)
- Keyvan Kheyrolahzadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarighatnia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader D Nader
- Department of Anesthesiology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, United States of America
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Coutinho Almeida-da-Silva CL, Cabido LF, Chin WC, Wang G, Ojcius DM, Li C. Interactions between silica and titanium nanoparticles and oral and gastrointestinal epithelia: Consequences for inflammatory diseases and cancer. Heliyon 2023; 9:e14022. [PMID: 36938417 PMCID: PMC10020104 DOI: 10.1016/j.heliyon.2023.e14022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 03/21/2023] Open
Abstract
Engineered nanoparticles (NPs) composed of elements such as silica and titanium, smaller than 100 nm in diameter and their aggregates, are found in consumer products such as cosmetics, food, antimicrobials and drug delivery systems, and oral health products such as toothpaste and dental materials. They may also interact accidently with epithelial tissues in the intestines and oral cavity, where they can aggregate into larger particles and induce inflammation through pathways such as inflammasome activation. Persistent inflammation can lead to precancerous lesions. Both the particles and lesions are difficult to detect in biopsies, especially in clinical settings that screen large numbers of patients. As diagnosis of early stages of disease can be lifesaving, there is growing interest in better understanding interactions between NPs and epithelium and developing rapid imaging techniques that could detect foreign particles and markers of inflammation in epithelial tissues. NPs can be labelled with fluorescence or radioactive isotopes, but it is challenging to detect unlabeled NPs with conventional imaging techniques. Different current imaging techniques such as synchrotron radiation X-ray fluorescence spectroscopy are discussed here. Improvements in imaging techniques, coupled with the use of machine learning tools, are needed before diagnosis of particles in biopsies by automated imaging could move usefully into the clinic.
Collapse
Affiliation(s)
| | - Leticia Ferreira Cabido
- Department of Oral and Maxillofacial Surgery, University of the Pacific, San Francisco, CA, USA
| | - Wei-Chun Chin
- Department of Bioengineering, University of California, Merced, CA, USA
| | - Ge Wang
- Department of Biomedical Engineering, Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, San Francisco, CA, USA
| | - Changqing Li
- Department of Bioengineering, University of California, Merced, CA, USA
| |
Collapse
|
8
|
Karageorgou MA, Bouziotis P, Stiliaris E, Stamopoulos D. Radiolabeled Iron Oxide Nanoparticles as Dual Modality Contrast Agents in SPECT/MRI and PET/MRI. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:503. [PMID: 36770463 PMCID: PMC9919131 DOI: 10.3390/nano13030503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
During the last decades, the utilization of imaging modalities such as single photon emission computed tomography (SPECT), positron emission tomography (PET), and magnetic resonance imaging (MRI) in every day clinical practice has enabled clinicians to diagnose diseases accurately at early stages. Radiolabeled iron oxide nanoparticles (RIONs) combine their intrinsic magnetic behavior with the extrinsic character of the radionuclide additive, so that they constitute a platform of multifaceted physical properties. Thus, at a practical level, RIONs serve as the physical parent of the so-called dual-modality contrast agents (DMCAs) utilized in SPECT/MRI and PET/MRI applications due to their ability to combine, at real time, the high sensitivity of SPECT or PET together with the high spatial resolution of MRI. This review focuses on the synthesis and in vivo investigation of both biodistribution and imaging efficacy of RIONs as potential SPECT/MRI or PET/MRI DMCAs.
Collapse
Affiliation(s)
| | - Penelope Bouziotis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece
| | - Efstathios Stiliaris
- Department of Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Dimosthenis Stamopoulos
- Department of Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece
- Institute of Nanoscience & Nanotechnology, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece
| |
Collapse
|
9
|
Wanek T, Mairinger S, Raabe M, Alam MNA, Filip T, Stanek J, Winter G, Xu L, Laube C, Weil T, Rasche V, Kuntner C. Synthesis, radiolabeling, and preclinical in vivo evaluation of 68Ga-radiolabelled nanodiamonds. Nucl Med Biol 2023; 116-117:108310. [PMID: 36565646 DOI: 10.1016/j.nucmedbio.2022.108310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Nanodiamonds (NDs) represent a new class of nanoparticles and have gained increasing interest in medical applications. Modifying the surface coating by attaching binding ligands or imaging probes can transform NDs into multi-modal targeting probes. This study evaluated the biokinetics and biodistribution of 68Ga-radiolabelled NDs in a xenograft model. PROCEDURES NDs were coated with an albumin-derived copolymer modified with desferrioxamine to provide a chelator for radiolabeling. In vivo studies were conducted in AR42J tumor-bearing CD1 mice to evaluate biodistribution and tumor accumulation of the NDs. RESULTS Coated NDs were successfully radiolabeled using 68Ga at room temperature with radiolabeling efficiencies up to 91.8 ± 3.2 % as assessed by radio-TLC. In vivo studies revealed the highest accumulation in the liver and spleen, whereas tumor radioactivity concentration was low. CONCLUSIONS Radiolabeling of coated NDs could be achieved. However, the obtained results indicate these coated NDs' limitations in their biodistribution within the conducted studies.
Collapse
Affiliation(s)
- Thomas Wanek
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Severin Mairinger
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Marco Raabe
- Max Planck Institute for Polymer Research, Synthesis of Macromolecules, Mainz, Germany; Institute of Inorganic Chemistry I, Ulm University, Ulm, Germany
| | - Md Noor A Alam
- Max Planck Institute for Polymer Research, Synthesis of Macromolecules, Mainz, Germany; Institute of Inorganic Chemistry I, Ulm University, Ulm, Germany
| | - Thomas Filip
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Johann Stanek
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Gordon Winter
- Department of Nuclear Medicine, Ulm University Medical Center, Ulm, Germany(.)
| | - Lujuan Xu
- Max Planck Institute for Polymer Research, Synthesis of Macromolecules, Mainz, Germany; Institute of Inorganic Chemistry I, Ulm University, Ulm, Germany
| | - Christian Laube
- Leibniz-Institute of Surface Engineering (IOM), Leipzig, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Synthesis of Macromolecules, Mainz, Germany; Institute of Inorganic Chemistry I, Ulm University, Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal Imaging, Ulm University, Ulm, Germany
| | - Claudia Kuntner
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria.
| |
Collapse
|
10
|
Nanoparticles for Therapy and Diagnostic Imaging Techniques in Cancer. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
11
|
Zhou M, Liang S, Liu D, Ma K, Peng Y, Wang Z. Engineered Nanoprobes for Immune Activation Monitoring. ACS NANO 2022; 16:19940-19958. [PMID: 36454191 DOI: 10.1021/acsnano.2c09743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The activation of the immune system is critical for cancer immunotherapy and treatments of inflammatory diseases. Non-invasive visualization of immunoactivation is designed to monitor the dynamic nature of the immune response and facilitate the assessment of therapeutic outcomes, which, however, remains challenging. Conventional imaging modalities, such as positron emission tomography, computed tomography, etc., were utilized for imaging immune-related biomarkers. To explore the dynamic immune monitoring, probes with signals correlated to biomarkers of immune activation or prognosis are urgently needed. These emerging molecular probes, which turn on the signal only in the presence of the intended biomarker, can improve the detection specificity. These probes with "turn on" signals enable non-invasive, dynamic, and real-time imaging with high sensitivity and efficiency, showing significance for multifunctionality/multimodality imaging. As a result, more and more innovative engineered nanoprobes combined with diverse imaging modalities were developed to assess the activation of the immune system. In this work, we comprehensively review the recent and emerging advances in engineered nanoprobes for monitoring immune activation in cancer or other immune-mediated inflammatory diseases and discuss the potential in predicting the efficacy following treatments. Research on real-time in vivo immunoimaging is still under exploration, and this review can provide guidance and facilitate the development and application of next-generation imaging technologies.
Collapse
Affiliation(s)
- Mengli Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Dan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Kongshuo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yuxuan Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| |
Collapse
|
12
|
Winter G, Eberhardt N, Löffler J, Raabe M, Alam MNA, Hao L, Abaei A, Herrmann H, Kuntner C, Glatting G, Solbach C, Jelezko F, Weil T, Beer AJ, Rasche V. Preclinical PET and MR Evaluation of 89Zr- and 68Ga-Labeled Nanodiamonds in Mice over Different Time Scales. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4471. [PMID: 36558325 PMCID: PMC9780863 DOI: 10.3390/nano12244471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Nanodiamonds (NDs) have high potential as a drug carrier and in combination with nitrogen vacancies (NV centers) for highly sensitive MR-imaging after hyperpolarization. However, little remains known about their physiological properties in vivo. PET imaging allows further evaluation due to its quantitative properties and high sensitivity. Thus, we aimed to create a preclinical platform for PET and MR evaluation of surface-modified NDs by radiolabeling with both short- and long-lived radiotracers. Serum albumin coated NDs, functionalized with PEG groups and the chelator deferoxamine, were labeled either with zirconium-89 or gallium-68. Their biodistribution was assessed in two different mouse strains. PET scans were performed at various time points up to 7 d after i.v. injection. Anatomical correlation was provided by additional MRI in a subset of animals. PET results were validated by ex vivo quantification of the excised organs using a gamma counter. Radiolabeled NDs accumulated rapidly in the liver and spleen with a slight increase over time, while rapid washout from the blood pool was observed. Significant differences between the investigated radionuclides were only observed for the spleen (1 h). In summary, we successfully created a preclinical PET and MR imaging platform for the evaluation of the biodistribution of NDs over different time scales.
Collapse
Affiliation(s)
- Gordon Winter
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Nina Eberhardt
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jessica Löffler
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
- Department of Internal Medicine II, Experimental Cardiovascular Imaging, Ulm University Medical Center, 89081 Ulm, Germany
| | - Marco Raabe
- Department of Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Md. Noor A. Alam
- Department of Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Li Hao
- Department of Internal Medicine II, Experimental Cardiovascular Imaging, Ulm University Medical Center, 89081 Ulm, Germany
| | - Alireza Abaei
- Department of Internal Medicine II, Experimental Cardiovascular Imaging, Ulm University Medical Center, 89081 Ulm, Germany
| | - Hendrik Herrmann
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Claudia Kuntner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, 1090 Vienna, Austria
| | - Gerhard Glatting
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Christoph Solbach
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Fedor Jelezko
- Institute for Quantum Optics, Ulm University, 89081 Ulm, Germany
| | - Tanja Weil
- Department of Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Ambros J. Beer
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Volker Rasche
- Department of Internal Medicine II, Experimental Cardiovascular Imaging, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
13
|
Liu X, Pan L, Wang K, Pan W, Li N, Tang B. Imaging strategies for monitoring the immune response. Chem Sci 2022; 13:12957-12970. [PMID: 36425502 PMCID: PMC9667917 DOI: 10.1039/d2sc03446h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/05/2022] [Indexed: 08/11/2023] Open
Abstract
Real-time monitoring of the immune response can be used to evaluate the immune status of the body and to distinguish immune responders and non-responders, so as to better guide immunotherapy. Through direct labelling of immune cells and imaging specific biomarkers of different cells, the activation status of immune cells and immunosuppressive status of tumor cells can be visualized. The immunotherapeutic regimen can then be adjusted accordingly in a timely manner to improve the efficacy of immunotherapy. In this review, various imaging methods, immune-related imaging probes, current challenges and opportunities are summarized and discussed.
Collapse
Affiliation(s)
- Xiaohan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Limeng Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Kaiye Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
14
|
Jarockyte G, Stasys M, Poderys V, Buivydaite K, Pleckaitis M, Bulotiene D, Matulionyte M, Karabanovas V, Rotomskis R. Biodistribution of Multimodal Gold Nanoclusters Designed for Photoluminescence-SPECT/CT Imaging and Diagnostic. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193259. [PMID: 36234387 PMCID: PMC9565908 DOI: 10.3390/nano12193259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 05/30/2023]
Abstract
Highly biocompatible nanostructures for multimodality imaging are critical for clinical diagnostics improvements in the future. Combining optical imaging with other techniques may lead to important advances in diagnostics. The purpose of such a system would be to combine the individual advantages of each imaging method to provide reliable and accurate information at the site of the disease bypassing the limitations of each. The aim of the presented study was to evaluate biodistribution of the biocompatible technetium-99m labelled bovine serum albumin-gold nanoclusters (99mTc-BSA-Au NCs) as photoluminescence-SPECT/CT agent in experimental animals. It was verified spectroscopically that radiolabelling with 99mTc does not influence the optical properties of BSA-Au NCs within the synthesized 99mTc-BSA-Au NCs bioconjugates. Biodistribution imaging of the 99mTc-BSA-Au NCs in Wistar rats was performed using a clinical SPECT/CT system. In vivo imaging of Wistar rats demonstrated intense cardiac blood pool activity, as well as rapid blood clearance and accumulation in the kidneys, liver, and urinary bladder. Confocal images of kidney, liver and spleen tissues revealed no visible uptake indicating that the circulation lifetime of 99mTc-BSA-Au NCs in the bloodstream might be too short for accumulation in these tissues. The cellular uptake of 99mTc-BSA-Au NCs in kidney cells was also delayed and substantial accumulation was observed only after 24-h incubation. Based on our experiments, it was concluded that 99mTc-BSA-Au NCs could be used as a contrast agent and shows promise as potential diagnostic agents for bloodstream imaging of the excretory organs in vivo.
Collapse
Affiliation(s)
- Greta Jarockyte
- Biomedical Physics Laboratory, National Cancer Institute, LT-08406 Vilnius, Lithuania
- Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Marius Stasys
- Biomedical Physics Laboratory, National Cancer Institute, LT-08406 Vilnius, Lithuania
| | - Vilius Poderys
- Biomedical Physics Laboratory, National Cancer Institute, LT-08406 Vilnius, Lithuania
| | - Kornelija Buivydaite
- Biomedical Physics Laboratory, National Cancer Institute, LT-08406 Vilnius, Lithuania
- Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Marijus Pleckaitis
- Biomedical Physics Laboratory, National Cancer Institute, LT-08406 Vilnius, Lithuania
- Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Danute Bulotiene
- Biomedical Physics Laboratory, National Cancer Institute, LT-08406 Vilnius, Lithuania
| | - Marija Matulionyte
- Biomedical Physics Laboratory, National Cancer Institute, LT-08406 Vilnius, Lithuania
| | - Vitalijus Karabanovas
- Biomedical Physics Laboratory, National Cancer Institute, LT-08406 Vilnius, Lithuania
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Ricardas Rotomskis
- Biomedical Physics Laboratory, National Cancer Institute, LT-08406 Vilnius, Lithuania
- Laser Research Center, Faculty of Physics, Vilnius University, LT-10223 Vilnius, Lithuania
| |
Collapse
|
15
|
Mosleh-Shirazi S, Abbasi M, Moaddeli MR, Vaez A, Shafiee M, Kasaee SR, Amani AM, Hatam S. Nanotechnology Advances in the Detection and Treatment of Cancer: An Overview. Nanotheranostics 2022; 6:400-423. [PMID: 36051855 PMCID: PMC9428923 DOI: 10.7150/ntno.74613] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022] Open
Abstract
Over the last few years, progress has been made across the nanomedicine landscape, in particular, the invention of contemporary nanostructures for cancer diagnosis and overcoming complexities in the clinical treatment of cancerous tissues. Thanks to their small diameter and large surface-to-volume proportions, nanomaterials have special physicochemical properties that empower them to bind, absorb and transport high-efficiency substances, such as small molecular drugs, DNA, proteins, RNAs, and probes. They also have excellent durability, high carrier potential, the ability to integrate both hydrophobic and hydrophilic compounds, and compatibility with various transport routes, making them especially appealing over a wide range of oncology fields. This is also due to their configurable scale, structure, and surface properties. This review paper discusses how nanostructures can function as therapeutic vectors to enhance the therapeutic value of molecules; how nanomaterials can be used as medicinal products in gene therapy, photodynamics, and thermal treatment; and finally, the application of nanomaterials in the form of molecular imaging agents to diagnose and map tumor growth.
Collapse
Affiliation(s)
- Sareh Mosleh-Shirazi
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad reza Moaddeli
- Assistant Professor, Department of Oral and Maxillofacial Surgery, School of Dentistry, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Shafiee
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Reza Kasaee
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Hatam
- Assistant Lecturer, Azad University, Zarghan Branch, Shiraz, Iran
- ExirBitanic, Science and Technology Park of Fars, Shiraz, Iran
| |
Collapse
|
16
|
Wheeler TT, Cao P, Ghouri MD, Ji T, Nie G, Zhao Y. Nanotechnological strategies for prostate cancer imaging and diagnosis. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1271-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022; 14:pharmaceutics14061132. [PMID: 35745705 PMCID: PMC9230665 DOI: 10.3390/pharmaceutics14061132] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023] Open
Abstract
Targeted delivery of pharmaceuticals is promising for efficient disease treatment and reduction in adverse effects. Nano or microstructured magnetic materials with strong magnetic momentum can be noninvasively controlled via magnetic forces within living beings. These magnetic carriers open perspectives in controlling the delivery of different types of bioagents in humans, including small molecules, nucleic acids, and cells. In the present review, we describe different types of magnetic carriers that can serve as drug delivery platforms, and we show different ways to apply them to magnetic targeted delivery of bioagents. We discuss the magnetic guidance of nano/microsystems or labeled cells upon injection into the systemic circulation or in the tissue; we then highlight emergent applications in tissue engineering, and finally, we show how magnetic targeting can integrate with imaging technologies that serve to assist drug delivery.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy;
| | - Yulia Svenskaya
- Science Medical Center, Saratov State University, 410012 Saratov, Russia;
| | - Bogdan Parakhonskiy
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Miriam Filippi
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
18
|
Ebrahimi F, Hosseinimehr SJ. Homomultimer strategy for improvement of radiolabeled peptides and antibody fragments in tumor targeting. Curr Med Chem 2022; 29:4923-4957. [PMID: 35450521 DOI: 10.2174/0929867329666220420131836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022]
Abstract
A homomultimeric radioligand is composed of multiple identical ligands connected to the linker and radionuclide to detect a variety of overexpressed receptors on cancer cells. Multimer strategy holds great potential for introducing new radiotracers based on peptide and monoclonal antibody (mAb) derivatives in molecular imaging and therapy. It offers a reliable procedure for the preparation of biological-based targeting with diverse affinities and pharmacokinetics. In this context, we provide a useful summary and interpretation of the main results by a comprehensive look at multimeric radiopharmaceuticals in nuclear oncology. Therefore, there will be explanations for the strategy mechanisms and the main variables affecting the biodistribution results. The discussion is followed by highlights of recent work in the targeting of various types of receptors. The consequences are expressed based on comparing some parameters between monomer and multimer counterparts in each relevant section.
Collapse
Affiliation(s)
- Fatemeh Ebrahimi
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
19
|
Shalaby N, Kelly J, Martinez F, Fox M, Qi Q, Thiessen J, Hicks J, Scholl TJ, Ronald JA. A Human-derived Dual MRI/PET Reporter Gene System with High Translational Potential for Cell Tracking. Mol Imaging Biol 2022; 24:341-351. [PMID: 35146614 PMCID: PMC9235057 DOI: 10.1007/s11307-021-01697-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Reporter gene imaging has been extensively used to longitudinally report on whole-body distribution and viability of transplanted engineered cells. Multi-modal cell tracking can provide complementary information on cell fate. Typical multi-modal reporter gene systems often combine clinical and preclinical modalities. A multi-modal reporter gene system for magnetic resonance imaging (MRI) and positron emission tomography (PET), two clinical modalities, would be advantageous by combining the sensitivity of PET with the high-resolution morphology and non-ionizing nature of MRI. PROCEDURES We developed and evaluated a dual MRI/PET reporter gene system composed of two human-derived reporter genes that utilize clinical reporter probes for engineered cell detection. As a proof-of-concept, breast cancer cells were engineered to co-express the human organic anion transporter polypeptide 1B3 (OATP1B3) that uptakes the clinical MRI contrast agent gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA), and the human sodium iodide symporter (NIS) which uptakes the PET tracer, [18F] tetrafluoroborate ([18F] TFB). RESULTS T1-weighted MRI results in mice exhibited significantly higher MRI signals in reporter-gene-engineered mammary fat pad tumors versus contralateral naïve tumors (p < 0.05). No differences in contrast enhancement were observed at 5 h after Gd-EOB-DTPA administration using either intravenous or intraperitoneal injection. We also found significantly higher standard uptake values (SUV) in engineered tumors in comparison to the naïve tumors in [18F]TFB PET images (p < 0.001). Intratumoral heterogeneity in signal enhancement was more conspicuous in relatively higher resolution MR images compared to PET images. CONCLUSIONS Our study demonstrates the ability to noninvasively track cells engineered with our human-derived dual MRI/PET reporter system, enabling a more comprehensive evaluation of transplanted cells. Future work is focused on applying this tool to track therapeutic cells, which may one day enable the broader application of cell tracking within the healthcare system.
Collapse
Affiliation(s)
- Nourhan Shalaby
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada.
| | - John Kelly
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Francisco Martinez
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Mathew Fox
- Lawson Health Research Institute, London, Canada
- Saint Joseph's Health Care, Toronto, Canada
| | - Qi Qi
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Jonathan Thiessen
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Saint Joseph's Health Care, Toronto, Canada
- Lawson Cyclotron and Radiochemistry Facility, London, Canada
| | - Justin Hicks
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Lawson Health Research Institute, London, Canada
- Lawson Cyclotron and Radiochemistry Facility, London, Canada
| | - Timothy J Scholl
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Ontario Institute for Cancer Research, Toronto, Canada
| | - John A Ronald
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Lawson Health Research Institute, London, Canada
| |
Collapse
|
20
|
Chi G, Lv Y, Chao S, Hou C, Pei Y, Pei Z. Glyconanoparticles with Activatable Near-Infrared Probes for Tumor-Cell Imaging and Targeted Drug Delivery. Int J Nanomedicine 2022; 17:1567-1575. [PMID: 35401000 PMCID: PMC8985912 DOI: 10.2147/ijn.s337082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/17/2022] [Indexed: 12/03/2022] Open
Abstract
Background Multifunctional nanocarriers based on tumor targeting and intracellular monitoring have received much attention and been a subject of intensive study by researchers in recent years. In this study, we report multifunctional glyconanoparticles with activatable near-infrared probes for tumor imaging and targeted drug delivery. Methods Disulfide-functionalized dicyanomethylene-4H-pyran (DCM-SS-NH2) and amino-functionalized lactose were modified and loaded onto the surfaces of polydopamine nanoparticles (NPs) by Michael addition or Schiff-base reaction as GSH stimulation–responsive fluorescent probes and tumor-targeting moieties, respectively. Doxorubicin (DOX), a model anticancer drug, was loaded onto polydopamine through π–π interactions directly to prepare multifunctional PLDD (PDA@Lac/DCM/DOX) NPs. Results Experimental results showed that PLDD NPs had been successfully prepared. DCM, the fluorescence of which was quenched in PLDD NPs, was able to restore red fluorescence in a solution with a GSH concentration of 5 mM. The amount of DOX released from PLDD NPs was 44% over 72 hours in a weak-acid environment (pH 5). The results of CLSM and flow cytometry indicated that the PLDD NPs had good HepG2-targeting ability due to the special recognition between lactose derivative of NPs and overexpressed asialoglycoprotein receptors on HepG2 cell membrane. More importantly, the disulfide bond of DCM-SS-NH2 was broken by the high concentration of GSH inside cancer cells, activating the near-infrared fluorescence probe DCM for cancer-cell imaging. MTT assays indicated that PLDD NPs exhibited higher anticancer efficiency for HepG2 cells and had reduced side effects on normal cells compared with free DOX. Conclusion The fluorescence of modified DCM loaded onto PLDD NPs is able to be restored in the high-concentration GSH environment within cancer cells, while improving the effectiveness of chemotherapy with reduced side effects. It provides a good example of integration of tumor imaging and targeted drug delivery.
Collapse
Affiliation(s)
- Guanyu Chi
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People’s Republic of China
| | - Yinghua Lv
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People’s Republic of China
| | - Shuang Chao
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People’s Republic of China
| | - Chenxi Hou
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People’s Republic of China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People’s Republic of China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People’s Republic of China
- Correspondence: Zhichao Pei, Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi712100, People’s Republic of China, Tel/Fax +86 29 8709-2769, Email
| |
Collapse
|
21
|
Liang R, Liao Z, Li F, Ma H, Liu W, Chen X, Lan T, Yang Y, Liao J, Yang J, Liu N. In Vitro Anticancer Ability of Nano Fluorescent
111
In‐MIL‐68/PEG‐FA on Hela Cells. Chemistry 2022; 28:e202104589. [PMID: 35174917 DOI: 10.1002/chem.202104589] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 11/07/2022]
Abstract
In past decades, nanoscale metal-organic frameworks (NMOFs) have drawn more and more attention in multimodal imaging and targeting therapy of various malignant cancers. Here, we proposed to dope 111 In into fluorescent In-based NMOFs (In-MIL-68-NH2 ), with an attempt to prepare a new nanomedicine with great anticancer potential. As a proof of concept, the obtained NMOF (In-MIL-68/PEG-FA) with targeting motifs is able to act as a fluorescent probe to achieve Hela cell imaging. Moreover, the Auger electron emitter 111 In built in corresponding radioactive NMOF (111 In-MIL-68/PEG-FA) can bring clear damage to cancer cells, leading to a high cell killing rate of 59.3 % within 48 h. In addition, the cell cycle presented a significant dose-dependent G2/M inhibiting mode, which indicates that 111 In-MIL-68/PEG-FA has the ability to facilitate the cancer cells to enter apoptotic program. This work demonstrated the potential of 111 In-labelled NMOFs in specific killings of cancer cells, providing a new approach to develop nanomedicines with theranostic function.
Collapse
Affiliation(s)
- Ranxi Liang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhonghui Liao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Huan Ma
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Weihao Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Xijian Chen
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Tu Lan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Jijun Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
22
|
Chen X, Niu W, Du Z, Zhang Y, Su D, Gao X. 64Cu radiolabeled nanomaterials for positron emission tomography (PET) imaging. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
23
|
A promising radiolabeled drug delivery system for methotrexate: synthesis and in vitro evaluation of 99mTc labeled drug loaded uniform mesoporous silica nanoparticles. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-08028-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Li M, Zhao Y, Zhang W, Zhang S, Zhang S. Multiple-therapy strategies via polysaccharides-based nano-systems in fighting cancer. Carbohydr Polym 2021; 269:118323. [PMID: 34294335 DOI: 10.1016/j.carbpol.2021.118323] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022]
Abstract
Polysaccharide-based biomaterials (e.g., chitosan, dextran, hyaluronic acid, chondroitin sulfate and heparin) have received great attention in healthcare, particularly in drug delivery for tumor therapy. They are naturally abundant and available, outstandingly biodegradable and biocompatible, and they generally have negligible toxicity and low immunogenicity. In addition, they are easily chemically or physically modified. Therefore, PSs-based nanoparticles (NPs) have been extensively investigated for the enhancement of tumor treatment. In this review, we introduce the synthetic pathways of amphiphilic PS derivatives, which allow the constructs to self-assemble into NPs with various structures. We especially offer an overview of the emerging applications of self-assembled PSs-based NPs in tumor chemotherapy, photothermal therapy (PTT), photodynamic therapy (PDT), gene therapy and immunotherapy. We believe that this review can provide criteria for a rational and molecular level-based design of PS-based NPs, and comprehensive insight into the potential of PS-based NPs used in multiple cancer therapies.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China
| | - Wenjun Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China.
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China.
| |
Collapse
|
25
|
Jiang B, Jia X, Ji T, Zhou M, He J, Wang K, Tian J, Yan X, Fan K. Ferritin nanocages for early theranostics of tumors via inflammation-enhanced active targeting. SCIENCE CHINA-LIFE SCIENCES 2021; 65:328-340. [PMID: 34482518 DOI: 10.1007/s11427-021-1976-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/02/2021] [Indexed: 01/10/2023]
Abstract
Engineered nanocarriers have been widely developed for tumor theranostics. However, the delivery of imaging probes or therapeutic drugs to the tumor pre-formation site for early and accurate detection and therapy remains a major challenge. Here, by using tailor-functionalized human H-ferritin (HFn), we developed a triple-modality nanoprobe IRdye800-M-HFn and achieved the early imaging of tumor cells before the formation of solid tumor tissues. Then, we developed an HFn-doxorubicin (Dox) drug delivery system by loading Dox into the HFn protein cage and achieved early-stage tumor therapy. The intravenous injection of HFn nanoprobes enabled the imaging of tumor cells as early as two days after tumor implantation, and the triple-modality imaging techniques, namely, near-infrared fluorescence molecular imaging (NIR-FMI), magnetic resonance imaging (MRI), and photoacoustic imaging (PAI), ensured the accuracy of detection. Further exploration indicated that HFn could specifically penetrate into pre-solid tumor sites by tumor-associated inflammation-mediated blood vessel leakage, followed by effective accumulation in tumor cells by the specific targeting property of HFn to transferrin receptor 1. Thus, the HFn-Dox drug delivery system delivered Dox into the tumor pre-formation site and effectively killed tumor cells at early stage. IRDye800-M-HFn nanoprobes and HFn-Dox provide promising strategies for early-stage tumor diagnosis and constructive implications for early-stage tumor treatment.
Collapse
Affiliation(s)
- Bing Jiang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaohua Jia
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Zhou
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiuyang He
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kun Wang
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, China.
| | - Xiyun Yan
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Kelong Fan
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
26
|
Theranostic Applications of Nanoparticle-Mediated Photoactivated Therapies. JOURNAL OF NANOTHERANOSTICS 2021. [DOI: 10.3390/jnt2030009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nanoparticle-mediated light-activated therapies, such as photodynamic therapy and photothermal therapy, are earnestly being viewed as efficient interventional strategies against several cancer types. Theranostics is a key hallmark of cancer nanomedicine since it allows diagnosis and therapy of both primary and metastatic cancer using a single nanoprobe. Advanced in vivo diagnostic imaging using theranostic nanoparticles not only provides precise information about the location of tumor/s but also outlines the narrow time window corresponding to the maximum tumor-specific drug accumulation. Such information plays a critical role in guiding light-activated therapies with high spatio-temporal accuracy. Furthermore, theranostics facilitates monitoring the progression of therapy in real time. Herein, we provide a general review of the application of theranostic nanoparticles for in vivo image-guided light-activated therapy in cancer. The imaging modalities considered here include fluorescence imaging, photoacoustic imaging, thermal imaging, magnetic resonance imaging, X-ray computed tomography, positron emission tomography, and single-photon emission computed tomography. The review concludes with a brief discussion about the broad scope of theranostic light-activated nanomedicine.
Collapse
|
27
|
Augustine R, Mamun AA, Hasan A, Salam SA, Chandrasekaran R, Ahmed R, Thakor AS. Imaging cancer cells with nanostructures: Prospects of nanotechnology driven non-invasive cancer diagnosis. Adv Colloid Interface Sci 2021; 294:102457. [PMID: 34144344 DOI: 10.1016/j.cis.2021.102457] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/25/2021] [Accepted: 06/01/2021] [Indexed: 12/17/2022]
Abstract
The application of nanostructured materials in medicine is a rapidly evolving area of research that includes both the diagnosis and treatment of various diseases. Metals, metal oxides and carbon-based nanomaterials have shown much promise in medical technological advancements due to their tunable physical, chemical and biological properties. The nanoscale properties, especially the size, shape, surface chemistry and stability makes them highly desirable for diagnosing and treating various diseases, including cancers. Major applications of nanomaterials in cancer diagnosis include in vivo bioimaging and molecular marker detection, mainly as image contrast agents using modalities such as radio, magnetic resonance, and ultrasound imaging. When a suitable targeting ligand is attached on the nanomaterial surface, it can help pinpoint the disease site during imaging. The application of nanostructured materials in cancer diagnosis can help in the early detection, treatment and patient follow-up . This review aims to gather and present the information regarding the application of nanotechnology in cancer diagnosis. We also discuss the challenges and prospects regarding the application of nanomaterials as cancer diagnostic tools.
Collapse
|
28
|
Suman SK, Subramanian S, Mukherjee A. Combination radionuclide therapy: A new paradigm. Nucl Med Biol 2021; 98-99:40-58. [PMID: 34029984 DOI: 10.1016/j.nucmedbio.2021.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/23/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022]
Abstract
Targeted molecular radionuclide therapy (MRT) has shown its potential for the treatment of cancers of multiple origins. A combination therapy strategy employing two or more distinct therapeutic approaches in cancer management is aimed at circumventing tumor resistance by simultaneously targeting compensatory signaling pathways or bypassing survival selection mutations acquired in response to individual monotherapies. Combination radionuclide therapy (CRT) is a newer application of the concept, utilizing a combination of radiolabeled molecular targeting agents with chemotherapy and beam radiation therapy for enhanced therapeutic index. Encouraging results are reported with chemotherapeutic agents in combination with radiolabeled targeting molecules for cancer therapy. With increasing awareness of the various survival and stress response pathways activated after radionuclide therapy, different holistic combinations of MRT agents with radiosensitizers targeting such pathways have also been explored. MRT has also been studied in combination with beam radiotherapy modalities such as external beam radiation therapy and carbon ion radiation therapy to enhance the anti-tumor response. Nanotechnology aids in CRT by bringing together multiple monotherapies on a single nanostructure platform for treating cancers in a more precise or personalized way. CRT will be a key player in managing cancers if correctly tailored to the individual patient profile. The success of CRT lies in an in-depth understanding of the radiobiological principles and pathways activated in response.
Collapse
Affiliation(s)
- Shishu Kant Suman
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre; Homi Bhabha National Institute, Mumbai 400094, India
| | - Suresh Subramanian
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre; Homi Bhabha National Institute, Mumbai 400094, India
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre; Homi Bhabha National Institute, Mumbai 400094, India.
| |
Collapse
|
29
|
Rumanti AP, Maruf A, Liu H, Ge S, Lei D, Wang G. Engineered bioresponsive nanotherapeutics: recent advances in the treatment of atherosclerosis and ischemic-related disease. J Mater Chem B 2021; 9:4804-4825. [PMID: 34085084 DOI: 10.1039/d1tb00330e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Biological stimuli that are present during the pathogenesis of disease have gained considerable interest as a critical element for the design of smart drug delivery systems. Recently, the utilization of biological stimuli-responsive (bioresponsive) nanotheranostic agents to treat atherosclerosis and ischemic-related diseases has demonstrated significant outcomes in preclinical studies. Those diseases share similar hallmarks, including high levels of endogenous reactive oxygen species (ROS), low pH, and high enzyme activity. Interestingly, other relevant biological stimuli such as shear stress, cholesterol, and glutathione have recently been explored as internal stimuli to trigger drug release and some particular actions. In addition, a number of strategies can be proposed to enhance their targeting efficiency, diagnostic properties, and efficacy rate. This review discusses recent advancements in the preclinical studies of bioresponsive nanotherapeutics as diagnostic and therapeutic agents against atherosclerosis and ischemic-related diseases as well as some potential strategies to overcome the current limitations.
Collapse
Affiliation(s)
- Ayu Pratiwi Rumanti
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China.
| | | | | | | | | | | |
Collapse
|
30
|
Xuan Y, Guan M, Zhang S. Tumor immunotherapy and multi-mode therapies mediated by medical imaging of nanoprobes. Theranostics 2021; 11:7360-7378. [PMID: 34158855 PMCID: PMC8210602 DOI: 10.7150/thno.58413] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy is an effective tumor treatment strategy that has several advantages over conventional methods such as surgery, radiotherapy and chemotherapy. Studies show that multifunctional nanoprobes can achieve multi-mode image-guided multiple tumor treatment modes. The tumor cells killed by chemotherapies or phototherapies release antigens that trigger an immune response and augment the effects of tumor immunotherapy. Thus, combining immunotherapy and multifunctional nanoprobes can achieve early cancer diagnosis and treatment. In this review, we have summarized the current research on the applications of multifunctional nanoprobes in image-guided immunotherapy. In addition, image-guided synergistic chemotherapy/photothermal therapy/photodynamic therapy and immunotherapy have also been discussed. Furthermore, the application potential and clinical prospects of multifunctional nanoprobes in combination with immunotherapy have been assessed.
Collapse
Affiliation(s)
| | | | - Shubiao Zhang
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, 116600, China
| |
Collapse
|
31
|
D'Acunto M, Cioni P, Gabellieri E, Presciuttini G. Exploiting gold nanoparticles for diagnosis and cancer treatments. NANOTECHNOLOGY 2021; 32:192001. [PMID: 33524960 DOI: 10.1088/1361-6528/abe1ed] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gold nanoparticles (AuNPs) represent a relatively simple nanosystem to be synthesised and functionalized. AuNPs offer numerous advantages over different nanomaterials, primarily due to highly optimized protocols for their production with sizes in the range 1-150 nm and shapes, spherical, nanorods (AuNRs), nanocages, nanostars or nanoshells (AuNSs), just to name a few. AuNPs possess unique properties both from the optical and chemical point of view. AuNPs can absorb and scatter light with remarkable efficiency. Their outstanding interaction with light is due to the conduction electrons on the metal surface undergoing a collective oscillation when they are excited by light at specific wavelengths. This oscillation, known as a localized surface plasmon resonance, causes the absorption and scattering intensities of AuNPs to be significantly higher than identically sized non-plasmonic nanoparticles. In addition, AuNP absorption and scattering properties can be tuned by controlling the particle size, shape, and the local refractive index near the particle surface. By the chemical side, AuNPs offer the advantage of functionalization with therapeutic agents through covalent and ionic binding, which can be useful for biomedical applications, with particular emphasis on cancer treatments. Functionalized AuNPs exhibit good biocompatibility and controllable distribution patterns when delivered in cells and tissues, which make them particularly fine candidates for the basis of innovative therapies. Currently, major available AuNP-based cancer therapeutic approaches are the photothermal therapy (PTT) or photodynamic therapy (PDT). PTT and PDT rely upon irradiation of surface plasmon resonant AuNPs (previously delivered in cancer cells) by light, in particular, in the near-infrared range. Under irradiation, AuNPs surface electrons are excited and resonate intensely, and fast conversion of light into heat takes place in about 1 ps. The cancer cells are destroyed by the induced hyperthermia, i.e. the condition under which cells are subject to temperature in the range of 41 °C-47 °C for tens of minutes. The review is focused on the description of the optical and thermal properties of AuNPs that underlie their continuous and progressive exploitation for diagnosis and cancer therapy.
Collapse
Affiliation(s)
- Mario D'Acunto
- Institute of Biophysics, Italian National Research Council, CNR-IBF, via Moruzzi 1,I- 56124, Pisa, Italy
| | - Patrizia Cioni
- Institute of Biophysics, Italian National Research Council, CNR-IBF, via Moruzzi 1,I- 56124, Pisa, Italy
| | - Edi Gabellieri
- Institute of Biophysics, Italian National Research Council, CNR-IBF, via Moruzzi 1,I- 56124, Pisa, Italy
| | - Gianluca Presciuttini
- Institute of Biophysics, Italian National Research Council, CNR-IBF, via Moruzzi 1,I- 56124, Pisa, Italy
| |
Collapse
|
32
|
Bayoumi NA, Emam AN. 99mTc radiolabeling of polyethylenimine capped carbon dots for tumor targeting: synthesis, characterization and biodistribution. Int J Radiat Biol 2021; 97:977-985. [PMID: 33900891 DOI: 10.1080/09553002.2021.1919781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/21/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE Due to the favorable physicochemical properties and the biocompatibility, carbon dots (CDs) have gained a great attention as a tumor targeting agent. This study investigates polyethylenimine capped CDs (PEI capped CDs) as a prospective nanocarrier of technetium-99m (99mTc) for tumor targeting. Technetium-labeled CDs could be introduced as a promising candidate for single photon emission tomography (SPECT) imaging. MATERIALS AND METHODS Polyethylenimine capped CDs were prepared by hydrothermal method using hyperbranched PEI and citric acid. For a purpose of comparison, citrate capped CDs were also prepared by microwave irradiation. Both types of CDs were characterized and radiolabeled with 99mTc using sodium borohydride (NaBH4) as a reducing agent. Biodistribution and tumor targeting efficiency of the produced radiolabeled CDs have been studied in Earlich ascites tumor mice model. RESULTS Citrate capped CDs and PEI capped CDs have been synthesized successfully and characterized. High radiochemical yield of 99mTc-citrate capped CDs 99mTc-PEI capped CDs was obtained (97 ± 0.7 and 90 ± 0.2, respectively). Biodistribution studies of 99mTc-labeled PEI capped CDs have shown a potential tumor uptake (10 ± 0.5% Radioactivity/gram tumor) with high target to non-target ratio (T/NT) around 7 at 1-h post injection. 99mTc-citrate capped CDs have achieved a lower tumor uptake level (3.8 ± 0.3% Radioactivity/gram tumor 1 h post injection). CONCLUSION This study introduces PEI capped CDs as a promising nanocarrier of 99mTc for efficient tumor targeting. Technetium-labeled PEI capped CDs could be utilized as a potential SPECT tumor imaging agent.
Collapse
Affiliation(s)
- Noha A Bayoumi
- Department of Radiolabeled Compounds, Hot Lab Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ahmed N Emam
- Refractories, Ceramics and Building Materials Department, National Research Centre, Cairo, Egypt
- Nanomedicine and Tissue Engineering Lab, Medical Research Center of Excellence National Research Centre, Cairo, Egypt
- Faculty of Postgraduate studies for Nanotechnology, Cairo University, Zayed, Egypt
| |
Collapse
|
33
|
Shao F, Long Y, Ji H, Jiang D, Lei P, Lan X. Radionuclide-based molecular imaging allows CAR-T cellular visualization and therapeutic monitoring. Am J Cancer Res 2021; 11:6800-6817. [PMID: 34093854 PMCID: PMC8171102 DOI: 10.7150/thno.56989] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy is a new and effective form of adoptive cell therapy that is rapidly entering the mainstream for the treatment of CD19-positive hematological cancers because of its impressive effect and durable responses. Huge challenges remain in achieving similar success in patients with solid tumors. The current methods of monitoring CAR-T, including morphological imaging (CT and MRI), blood tests, and biopsy, have limitations to assess whether CAR-T cells are homing to tumor sites and infiltrating into tumor bed, or to assess the survival, proliferation, and persistence of CAR-T cells in solid tumors associated with an immunosuppressive microenvironment. Radionuclide-based molecular imaging affords improved CAR-T cellular visualization and therapeutic monitoring through either a direct cellular radiolabeling approach or a reporter gene imaging strategy, and endogenous cell imaging is beneficial to reflect functional information and immune status of T cells. Focusing on the dynamic monitoring and precise assessment of CAR-T therapy, this review summarizes the current applications of radionuclide-based noninvasive imaging in CAR-T cells visualization and monitoring and presents current challenges and strategic choices.
Collapse
|
34
|
Omabe K, Paris C, Lannes F, Taïeb D, Rocchi P. Nanovectorization of Prostate Cancer Treatment Strategies: A New Approach to Improved Outcomes. Pharmaceutics 2021; 13:591. [PMID: 33919150 PMCID: PMC8143094 DOI: 10.3390/pharmaceutics13050591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer (PC) is the most frequent male cancer in the Western world. Progression to Castration Resistant Prostate Cancer (CRPC) is a known consequence of androgen withdrawal therapy, making CRPC an end-stage disease. Combination of cytotoxic drugs and hormonal therapy/or genotherapy is a recognized modality for the treatment of advanced PC. However, this strategy is limited by poor bio-accessibility of the chemotherapy to tumor sites, resulting in an increased rate of collateral toxicity and incidence of multidrug resistance (MDR). Nanovectorization of these strategies has evolved to an effective approach to efficacious therapeutic outcomes. It offers the possibility to consolidate their antitumor activity through enhanced specific and less toxic active or passive targeting mechanisms, as well as enabling diagnostic imaging through theranostics. While studies on nanomedicine are common in other cancer types, only a few have focused on prostate cancer. This review provides an in-depth knowledge of the principles of nanotherapeutics and nanotheranostics, and how the application of this rapidly evolving technology can clinically impact CRPC treatment. With particular reference to respective nanovectors, we draw clinical and preclinical evidence, demonstrating the potentials and prospects of homing nanovectorization into CRPC treatment strategies.
Collapse
Affiliation(s)
- Kenneth Omabe
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
- Department of Biochemistry & Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, PMB 1010, Abakaliki 84001, Nigeria
| | - Clément Paris
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
| | - François Lannes
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
| | - David Taïeb
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
- Biophysics and Nuclear Medicine, La Timone University Hospital, European Center for Research in Medical Imaging, Aix-Marseille University, 13005 Marseille, France
| | - Palma Rocchi
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
| |
Collapse
|
35
|
Lai LY, Jiang Y, Su GP, Wu M, Lu XF, Fu SZ, Yang L, Shu J. Gadolinium-chelate functionalized magnetic CuFeSe 2 ternary nanocrystals for T1-T2 dual MRI and CT imaging in vitro and in vivo. MATERIALS RESEARCH EXPRESS 2021; 8:045001. [DOI: 10.1088/2053-1591/abf1a2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
CuFeSe2 nanomaterial with high thermal conversion efficiency, well superparamagnetism, effective x-ray attenuation ability, multifunctional groups and excellent biocompatibility is beneficial to the construction of multimodal imaging probes which can combine various imaging modes to provide a synergistic advantage over a single imaging mode. This study aimed to develop a novel multimodal nanocontrast agent CuFeSe2@diethylenetriaminepentaacetic acid (DTPA)-Gd to obtain imaging information with high specificity, high sensitivity and high contrast. The morphology and physical characteristics of CuFeSe2@DTPA-Gd were detected by transmission electron microscope, scanning electron microscope, x-ray single crystal diffraction, vibrating sample magnetometer and fourier transform infrared spectrometer. The toxicity of CuFeSe2@DTPA-Gd in vivo was evaluated by hematoxylin-eosin staining. The imaging capability of CuFeSe2@DTPA-Gd in vitro and in vivo was evaluated by magnetic resonance imaging (MRI) and computed tomography (CT). This study successfully prepared nanoparticles CuFeSe2@DTPA-Gd, and experimental results in this study demonstrated CuFeSe2@DTPA-Gd is expected to be a useful CT and MRI T1-weighted imaging/T2-weighted imaging three-modal contrast agent in clinic.
Collapse
|
36
|
Homogeneous Incorporation of Gallium into Layered Double Hydroxide Lattice for Potential Radiodiagnostics: Proof-of-Concept. NANOMATERIALS 2020; 11:nano11010044. [PMID: 33375387 PMCID: PMC7824364 DOI: 10.3390/nano11010044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 01/18/2023]
Abstract
Trivalent gallium ion was successfully incorporated into chemically well-defined MgAl-layered double hydroxide (LDH) frameworks through postsynthetic hydrothermal treatment. Quantitative analysis with inductively coupled plasma-mass spectroscopy exhibited that Ga3+ was first incorporated into LDH through partial dissolution-precipitation at the edge of LDH particle and homogeneously distributed throughout the particle by substitution of Ga3+ for Al3+ in LDH frame works. The powder X-ray diffraction patterns showed that the Ga3+ incorporation did not affect the crystal structure without evolution of unexpected impurities. The morphology and surface property of LDH evaluated by scanning electron microscopy and light scattering showed the preservation of physicochemical properties throughout 24 h of hydrothermal reaction. The distribution of incorporated Ga3+ was visualized with energy dispersive spectroscopy-assisted transmission electron microscopy, suggesting the homogeneous location of Ga3+ in an LDH particle. The X-ray absorption near-edge structure and extended X-ray absorption fine structure suggested that the Ga moiety was immobilized in LDH from 0.5 h and readily crystallized upon reaction time.
Collapse
|
37
|
Zhou T, Liang X, Wang P, Hu Y, Qi Y, Jin Y, Du Y, Fang C, Tian J. A Hepatocellular Carcinoma Targeting Nanostrategy with Hypoxia-Ameliorating and Photothermal Abilities that, Combined with Immunotherapy, Inhibits Metastasis and Recurrence. ACS NANO 2020; 14:12679-12696. [PMID: 32909732 DOI: 10.1021/acsnano.0c01453] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common and highly malignant tumor that is prone to recurrence and metastasis and has no effective treatment. Unsurprisingly, its prognosis is quite poor; early detection methods and effective low-toxicity treatments are urgently needed. To achieve these goals, we designed a multifunctional, U.S. Food and Drug Administration-approved Prussian blue (PB) nanoparticle (NP) with a porous metal organic frame loaded with sorafenib (SF), conjugated with HCC-specific targeting peptide SP94 and the near-infrared dye cyanine (Cy)5.5. These NPs are amenable to multimodal imaging for dynamic monitoring of their biodistribution and tumor-targeting effects. The SP94-PB-SF-Cy5.5 NPs achieved targeted delivery and controlled SF release and exhibited good photothermal effects. In this strategy, photothermal therapy and SF treatment complement each other, reducing the side effects of SF and achieving a therapeutic effect without local tumor recurrence. In addition, the catalase-like ability of the NPs alleviates tumor hypoxia, and their photothermal effects induce immunogenic cell death, leading to the release of tumor-associated antigens. These effects combine to trigger an antitumor immune response; the NPs also displayed promising inhibitory effects on tumor metastasis and recurrence and produced an abscopal effect and long-term immunological memory when combined with antiprogrammed death-ligand 1 (PD-L1) immunotherapy. These safe, multifunctional NPs represent a valuable treatment option for HCC. In addition, this next-generation treatment model may provide some ideas for the management of HCC and other cancers.
Collapse
Affiliation(s)
- Tianjun Zhou
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Peifeng Wang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Yueyang Hu
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Yafei Qi
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yushen Jin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, 100013, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chihua Fang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, China
| |
Collapse
|
38
|
Drug delivery systems based on CD44-targeted glycosaminoglycans for cancer therapy. Carbohydr Polym 2020; 251:117103. [PMID: 33142641 DOI: 10.1016/j.carbpol.2020.117103] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/29/2020] [Accepted: 09/12/2020] [Indexed: 12/14/2022]
Abstract
The polysaccharide-based biomaterials hyaluronic acid (HA) and chondroitin sulfate (CS) have aroused great interest for use in drug delivery systems for tumor therapy, as they have outstanding biocompatibility and great targeting ability for cluster determinant 44 (CD44). In addition, modified HA and CS can self-assemble into micelles or micellar nanoparticles (NPs) for targeted drug delivery. This review discusses the formation of HA- and CS-based NPs, and various types of CS-based NPs including CS-drug conjugates, CS-polymer NPs, CS-small molecule NPs, polyelectrolyte nanocomplexes (PECs), CS-metal NPs, and nanogels. We then focus on the applications of HA- and CS-based NPs in tumor chemotherapy, gene therapy, photothermal therapy (PTT), photodynamic therapy (PDT), sonodynamic therapy (SDT), and immunotherapy. Finally, this review is expected to provide guidelines for the development of various HA- and CS-based NPs used in multiple cancer therapies.
Collapse
|
39
|
Novy Z, Lobaz V, Vlk M, Kozempel J, Stepanek P, Popper M, Vrbkova J, Hajduch M, Hruby M, Petrik M. Head-To-Head Comparison of Biological Behavior of Biocompatible Polymers Poly(Ethylene Oxide), Poly(2-Ethyl-2-Oxazoline) and Poly[N-(2-Hydroxypropyl)Methacrylamide] as Coating Materials for Hydroxyapatite Nanoparticles in Animal Solid Tumor Model. NANOMATERIALS 2020; 10:nano10091690. [PMID: 32867391 PMCID: PMC7558523 DOI: 10.3390/nano10091690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 01/10/2023]
Abstract
Nanoparticles (NPs) represent an emerging platform for diagnosis and treatment of various diseases such as cancer, where they can take advantage of enhanced permeability and retention (EPR) effect for solid tumor accumulation. To improve their colloidal stability, prolong their blood circulation time and avoid premature entrapment into reticuloendothelial system, coating with hydrophilic biocompatible polymers is often essential. Most studies, however, employ just one type of coating polymer. The main purpose of this study is to head-to-head compare biological behavior of three leading polymers commonly used as “stealth” coating materials for biocompatibilization of NPs poly(ethylene oxide), poly(2-ethyl-2-oxazoline) and poly[N-(2-hydroxypropyl)methacrylamide] in an in vivo animal solid tumor model. We used radiolabeled biodegradable hydroxyapatite NPs as a model nanoparticle core within this study and we anchored the polymers to the NPs core by hydroxybisphosphonate end groups. The general suitability of polymers for coating of NPs intended for solid tumor accumulation is that poly(2-ethyl-2-oxazoline) and poly(ethylene oxide) gave comparably similar very good results, while poly[N-(2-hydroxypropyl)methacrylamide] was significantly worse. We did not observe a strong effect of molecular weight of the coating polymers on tumor and organ accumulation, blood circulation time, biodistribution and biodegradation of the NPs.
Collapse
Affiliation(s)
- Zbynek Novy
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 5, 779 00 Olomouc, Czech Republic; (Z.N.); (M.P.); (J.V.); (M.H.)
| | - Volodymyr Lobaz
- Institute of Macromolecular Chemistry AS CR, Heyrovskeho namesti 1888/2, 162 06 Prague 6, Czech Republic; (V.L.); (P.S.)
| | - Martin Vlk
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Brehova 7, 115 19 Prague 1, Czech Republic; (M.V.); (J.K.)
| | - Jan Kozempel
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Brehova 7, 115 19 Prague 1, Czech Republic; (M.V.); (J.K.)
| | - Petr Stepanek
- Institute of Macromolecular Chemistry AS CR, Heyrovskeho namesti 1888/2, 162 06 Prague 6, Czech Republic; (V.L.); (P.S.)
| | - Miroslav Popper
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 5, 779 00 Olomouc, Czech Republic; (Z.N.); (M.P.); (J.V.); (M.H.)
| | - Jana Vrbkova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 5, 779 00 Olomouc, Czech Republic; (Z.N.); (M.P.); (J.V.); (M.H.)
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 5, 779 00 Olomouc, Czech Republic; (Z.N.); (M.P.); (J.V.); (M.H.)
| | - Martin Hruby
- Institute of Macromolecular Chemistry AS CR, Heyrovskeho namesti 1888/2, 162 06 Prague 6, Czech Republic; (V.L.); (P.S.)
- Correspondence: (M.H.); (M.P.); Tel.: + 420-296-809-130 (M.H.); + 420-585-632-126 (M.P.)
| | - Milos Petrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 5, 779 00 Olomouc, Czech Republic; (Z.N.); (M.P.); (J.V.); (M.H.)
- Correspondence: (M.H.); (M.P.); Tel.: + 420-296-809-130 (M.H.); + 420-585-632-126 (M.P.)
| |
Collapse
|
40
|
99mTc-citrate-gold nanoparticles as a tumor tracer: synthesis, characterization, radiolabeling and in-vivo studies. RADIOCHIM ACTA 2020. [DOI: 10.1515/ract-2019-3208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Targeted drug delivery system can reduce the side effects of high drug concentration by improving drug pharmacokinetics at lower doses. Citrate-gold nanoparticles (AuNPs) as a drug delivery system were synthesized via green nanotechnology technique to be used as a new imaging platform for tumor targeting. Citrate-AuNPs were synthesized with core size of 10 nm. Citrate-AuNPs were labeled with technetium-99m (99mTc) with radiochemical yield of 95.20 ± 2.70% with good in-vitro stability in both saline and human serum and well in-vivo studied in both normal and solid tumor bearing mice. The in-vivo biodistribution study of [99mTc]Tc-citrate-AuNPs in solid tumor bearing mice (as preliminary study) showed a high accumulation in tumor site with tumor/muscle of 4.35 ± 0.22 after 30 min post injection. The direct intratumoral (I.T) injection of [99mTc]Tc-citrate-AuNPs showed that this complex was retained in the tumor up to 77.86 ± 1.90 % at 5 min and still around 50.00 ± 1.42 % after 30 min post injection (p.i.). The newly presented nano-platform could be presented as a new potential radiopharmaceutical tumor imaging probe.
Collapse
|
41
|
El-Ghareb WI, Swidan MM, Ibrahim IT, Abd El-Bary A, Tadros MI, Sakr TM. 99mTc-doxorubicin-loaded gallic acid-gold nanoparticles ( 99mTc-DOX-loaded GA-Au NPs) as a multifunctional theranostic agent. Int J Pharm 2020; 586:119514. [PMID: 32565281 DOI: 10.1016/j.ijpharm.2020.119514] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022]
Abstract
The development of cancer theranostic nanomedicines is recommended to concurrently achieve and evaluate the therapeutic benefit and progress. The current work aims to develop gallic acid-gold nanoparticles (GA-Au NPs) as a theranostic probe for 99mTc-Doxorubicin (99mTc-DOX) based on the spatiotemporal release pattern induced intra-tumoral (IT) delivery. DOX-loaded GA-Au NPs were developed and identified via UV-Vis spectroscopy. The system was characterized for drug loading efficiency%, particle size, zeta potential, topography, in vitro DOX release and anti-proliferative activity against the MCF-7 cell-line. The factors influencing radiolabeling efficiency of DOX with 99mTc (DOX concentration, stannous chloride concentration, reaction time and pH) were optimized. The in vitro stability in mice serum and in vivo distribution studies in mice of 99mTc-DOX-loaded GA-Au NPs were investigated following IV and IT administration. Dox-loaded GA-Au NPs had a loading efficiency of 91%, a small particle size (≈50 nm), a promising zeta potential (-20 mV) and a sustained drug release profile at pH 5.3. GA-Au NPs exhibited increased anti-proliferative activity, with approximately a four-fold lower IC50 value (0.15 μg/ml) than free DOX. The optimized radiolabeling efficiency of 99mTc-DOX was ≈93%. It showed good physiological stability in mice serum for at least 8 h. The IT delivery of 99mTc-DOX-loaded GA-Au NPs in tumor-induced mice showed dramatic tumor accumulation. A maximum magnitude of 86.73%ID/g was achieved, at 15 min post-injection, with a target/non-target ratio of ≈56. 99mTc-DOX-loaded GA-Au NPs could be used for the selective IT delivery of a chemotherapeutic agent and an imaging agent to a target organ.
Collapse
Affiliation(s)
- Walaa I El-Ghareb
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| | - Mohamed M Swidan
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| | - Ismail T Ibrahim
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt; Pharmacology Department, College of Pharmacy, Al-Bayan University, 10006 Baghdad, Iraq
| | - Ahmed Abd El-Bary
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| | - Mina Ibrahim Tadros
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt.
| | - Tamer M Sakr
- Radioactive Isotopes and Generator Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt; Radioisotopes Production Facility, Second Egyptian Research Reactor Complex, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| |
Collapse
|
42
|
Xie J, Bi Y, Zhang H, Dong S, Teng L, Lee RJ, Yang Z. Cell-Penetrating Peptides in Diagnosis and Treatment of Human Diseases: From Preclinical Research to Clinical Application. Front Pharmacol 2020; 11:697. [PMID: 32508641 PMCID: PMC7251059 DOI: 10.3389/fphar.2020.00697] [Citation(s) in RCA: 263] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
Cell-penetrating peptides (CPPs) are short peptides (fewer than 30 amino acids) that have been predominantly used in basic and preclinical research during the last 30 years. Since they are not only capable of translocating themselves into cells but also facilitate drug or CPP/cargo complexes to translocate across the plasma membrane, they have potential applications in the disease diagnosis and therapy, including cancer, inflammation, central nervous system disorders, otologic and ocular disorders, and diabetes. However, no CPPs or CPP/cargo complexes have been approved by the US Food and Drug Administration (FDA). Many issues should be addressed before translating CPPs into clinics. In this review, we summarize recent developments and innovations in preclinical studies and clinical trials based on using CPP for improved delivery, which have revealed that CPPs or CPP-based delivery systems present outstanding diagnostic therapeutic delivery potential.
Collapse
Affiliation(s)
- Jing Xie
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Ye Bi
- Practice Training Center, Changchun University of Chinese Medicine, Changchun, China
| | - Huan Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Shiyan Dong
- School of Life Sciences, Jilin University, Changchun, China
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, China
| | - Robert J. Lee
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, United States
| | - Zhaogang Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
43
|
Nagachinta S, Becker G, Dammicco S, Serrano ME, Leroi N, Bahri MA, Plenevaux A, Lemaire C, Lopez R, Luxen A, de la Fuente M. Radiolabelling of lipid-based nanocarriers with fluorine-18 for in vivo tracking by PET. Colloids Surf B Biointerfaces 2020; 188:110793. [DOI: 10.1016/j.colsurfb.2020.110793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/14/2019] [Accepted: 01/10/2020] [Indexed: 12/31/2022]
|
44
|
Paiva I, Mattingly S, Wuest M, Leier S, Vakili MR, Weinfeld M, Lavasanifar A, Wuest F. Synthesis and Analysis of 64Cu-Labeled GE11-Modified Polymeric Micellar Nanoparticles for EGFR-Targeted Molecular Imaging in a Colorectal Cancer Model. Mol Pharm 2020; 17:1470-1481. [DOI: 10.1021/acs.molpharmaceut.9b01043] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Igor Paiva
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Stephanie Mattingly
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Melinda Wuest
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Canada
| | - Samantha Leier
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Mohammad Reza Vakili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Michael Weinfeld
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Frank Wuest
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Canada
| |
Collapse
|
45
|
Hedhli J, Kim M, Knox HJ, Cole JA, Huynh T, Schuelke M, Dobrucki IT, Kalinowski L, Chan J, Sinusas AJ, Insana MF, Dobrucki LW. Imaging the Landmarks of Vascular Recovery. Am J Cancer Res 2020; 10:1733-1745. [PMID: 32042333 PMCID: PMC6993245 DOI: 10.7150/thno.36022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/31/2019] [Indexed: 12/25/2022] Open
Abstract
Background: Peripheral arterial disease (PAD) is a major worldwide health concern. Since the late 1990s therapeutic angiogenesis has been investigated as an alternative to traditional PAD treatments. Although positive preclinical results abound in the literature, the outcomes of human clinical trials have been discouraging. Among the challenges the field has faced has been a lack of standardization of the timings and measures used to validate new treatment approaches. Methods: In order to study the spatiotemporal dynamics of both perfusion and neovascularization in mice subjected to surgically-induced hindlimb ischemia (n= 30), we employed three label-free imaging modalities (a novel high-sensitivity ultrasonic Power Doppler methodology, laser speckle contrast, and photoacoustic imaging), as well as a tandem of radio-labeled molecular probes, 99mTc-NC100692 and 99mTc-BRU-5921 respectively, designed to detect two key modulators of angiogenic activity, αVβ3 and HIF-1α , via scintigraphic imaging. Results: The multimodal imaging strategy reveals a set of “landmarks”—key physiological and molecular events in the healing process—that can serve as a standardized framework for describing the impact of emerging PAD treatments. These landmarks span the entire process of neovascularization, beginning with the rapid decreases in perfusion and oxygenation associated with ligation surgery, extending through pro-angiogenic changes in gene expression driven by the master regulator HIF-1α , and ultimately leading to complete functional revascularization of the affected tissues. Conclusions: This study represents an important step in the development of multimodal non-invasive imaging strategies for vascular research; the combined results offer more insight than can be gleaned through any of the individual imaging methods alone. Researchers adopting similar imaging strategies and will be better able to describe changes in the onset, duration, and strength of each of the landmarks of vascular recovery, yielding greater biological insight, and enabling more comprehensive cross-study comparisons. Perhaps most important, this study paves the road for more efficient translation of PAD research; emerging experimental treatments can be more effectively assessed and refined at the preclinical stage, ultimately leading to better next-generation therapies.
Collapse
|
46
|
Development of Ga-68 labeled, biotinylated thiosemicarbazone dextran-coated iron oxide nanoparticles as multimodal PET/MRI probe. Int J Biol Macromol 2020; 148:932-941. [PMID: 31981670 DOI: 10.1016/j.ijbiomac.2020.01.208] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 02/08/2023]
Abstract
Bifunctional biotinylated thiosemicarbazone dextran-coated iron oxide Nanoparticles (NPs) were fabricated. Aldehyde groups of the oxidized dextran-coating layer were utilized to conjugate biotin as a tumor-targeting agent and thiosemicarbazide as a cation chelator on the surface of NPs. The final product was characterized for physicochemical and biological properties. It was compatible with red blood cells and did not change the blood coagulation time. It also showed a significantly enhanced affinity to biotin receptor-positive 4T1 cells compared to non-biotinylated ones. The r2 relaxivity coefficient value of the final product was 110.2 mM-1 s-1. Although biotinylated NPs were easily radiolabeled with Ga-68 at room temperature, the stable radiolabeled NPs were achieved at a higher temperature (60 °C). The radiolabeled NPs were majorly accumulated in the liver and spleen. However, about 5.4% ID/g of the radiolabeled NPs was accumulated within the 4T1 tumor site. Blocking studies was performed by the biotin molecules pre-injection showed uptake reduction in the 4T1 tumor (about 1.1% ID/g). The radiolabeled NPs could be used for the early detection of biotin receptor-positive tumors via PET-MRI.
Collapse
|
47
|
Pérez-Medina C, Teunissen AJ, Kluza E, Mulder WJ, van der Meel R. Nuclear imaging approaches facilitating nanomedicine translation. Adv Drug Deliv Rev 2020; 154-155:123-141. [PMID: 32721459 DOI: 10.1016/j.addr.2020.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/08/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
Nanomedicine approaches can effectively modulate the biodistribution and bioavailability of therapeutic agents, improving their therapeutic index. However, despite the ever-increasing amount of literature reporting on preclinical nanomedicine, the number of nanotherapeutics receiving FDA approval remains relatively low. Several barriers exist that hamper the effective preclinical evaluation and clinical translation of nanotherapeutics. Key barriers include insufficient understanding of nanomedicines' in vivo behavior, inadequate translation from murine models to larger animals, and a lack of patient stratification strategies. Integrating quantitative non-invasive imaging techniques in nanomedicine development offers attractive possibilities to address these issues. Among the available imaging techniques, nuclear imaging by positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are highly attractive in this context owing to their quantitative nature and uncontested sensitivity. In basic and translational research, nuclear imaging techniques can provide critical quantitative information about pharmacokinetic parameters, biodistribution profiles or target site accumulation of nanocarriers and their associated payload. During clinical evaluation, nuclear imaging can be used to select patients amenable to nanomedicine treatment. Here, we review how nuclear imaging-based approaches are increasingly being integrated into nanomedicine development and discuss future developments that will accelerate their clinical translation.
Collapse
|
48
|
Radiolabeled PET/MRI Nanoparticles for Tumor Imaging. J Clin Med 2019; 9:jcm9010089. [PMID: 31905769 PMCID: PMC7019574 DOI: 10.3390/jcm9010089] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023] Open
Abstract
The development of integrated positron emission tomography (PET)/magnetic resonance imaging (MRI) scanners opened a new scenario for cancer diagnosis, treatment, and follow-up. Multimodal imaging combines functional and morphological information from different modalities, which, singularly, cannot provide a comprehensive pathophysiological overview. Molecular imaging exploits multimodal imaging in order to obtain information at a biological and cellular level; in this way, it is possible to track biological pathways and discover many typical tumoral features. In this context, nanoparticle-based contrast agents (CAs) can improve probe biocompatibility and biodistribution, prolonging blood half-life to achieve specific target accumulation and non-toxicity. In addition, CAs can be simultaneously delivered with drugs or, in general, therapeutic agents gathering a dual diagnostic and therapeutic effect in order to perform cancer diagnosis and treatment simultaneous. The way for personalized medicine is not so far. Herein, we report principles, characteristics, applications, and concerns of nanoparticle (NP)-based PET/MRI CAs.
Collapse
|
49
|
Lu L, Chen H, Hao D, Zhang X, Wang F. The functions and applications of A7R in anti-angiogenic therapy, imaging and drug delivery systems. Asian J Pharm Sci 2019; 14:595-608. [PMID: 32104486 PMCID: PMC7032227 DOI: 10.1016/j.ajps.2019.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 03/31/2019] [Accepted: 04/24/2019] [Indexed: 12/26/2022] Open
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR-2) and neuropilin-1 (NRP-1) are two prominent antiangiogenic targets. They are highly expressed on vascular endothelial cells and some tumor cells. Therefore, targeting VEGFR-2 and NRP-1 may be a potential antiangiogenic and antitumor strategy. A7R, a peptide with sequence of Ala-Thr-Trp-Leu-Pro-Pro-Arg that was found by phage display of peptide libraries, can preferentially target VEGFR-2 and NRP-1 and destroy the binding between vascular endothelial growth factor 165 (VEGF165) and VEGFR-2 or NRP-1. This peptide is a new potent inhibitor of tumor angiogenesis and a targeting ligand for cancer therapy. This review describes the discovery, function and mechanism of the action of A7R, and further introduces the applications of A7R in antitumor angiogenic treatments, tumor angiogenesis imaging and targeted drug delivery systems. In this review, strategies to deliver different drugs by A7R-modified liposomes and nanoparticles are highlighted. A7R, a new dual targeting ligand of VEGFR-2 and NRP-1, is expected to have efficient therapeutic or targeting roles in tumor drug delivery.
Collapse
Affiliation(s)
- Lu Lu
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Hongyuan Chen
- Department of General Surgery, Shandong University Affiliated Shandong Provincial Hospital, Jinan 250021, China
| | - Dake Hao
- Department of Surgery, UC Davis Health Medical Center, Sacramento 95817, USA
| | - Xinke Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
50
|
Liu M, Anderson RC, Lan X, Conti PS, Chen K. Recent advances in the development of nanoparticles for multimodality imaging and therapy of cancer. Med Res Rev 2019; 40:909-930. [PMID: 31650619 DOI: 10.1002/med.21642] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/27/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022]
Abstract
This review explores recent work directed toward the development of nanoparticles (NPs) for multimodality cancer imaging and targeted cancer therapy. In the growing era of precision medicine, theranostics, or the combined use of targeted molecular probes in diagnosing and treating diseases is playing a particularly powerful role. There is a growing interest, particularly over the past few decades, in the use of NPs as theranostic tools due to their excellent performance in receptor target specificity and reduction in off-target effects when used as therapeutic agents. This review discusses recent advances, as well as the advantages and challenges of the application of NPs in cancer imaging and therapy.
Collapse
Affiliation(s)
- Mei Liu
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Redmond-Craig Anderson
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peter S Conti
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kai Chen
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|