1
|
Chu Yuan Kee MJ, Bharath SR, Wee S, Bowler MW, Gunaratne J, Pan S, Zhang L, Song H. Structural insights into the substrate-bound condensation domains of non-ribosomal peptide synthetase AmbB. Sci Rep 2022; 12:5353. [PMID: 35354859 PMCID: PMC8968710 DOI: 10.1038/s41598-022-09188-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/15/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractNon-ribosomal peptide synthetases (NRPS) are multi-modular/domain enzymes that catalyze the synthesis of bioactive peptides. A crucial step in the process is peptide elongation accomplished by the condensation (C) domain with the aid of a peptidyl carrier or thiolation (T) domain. Here, we examined condensation reaction carried out by NRPS AmbB involved in biosynthesis of l-2-amino-4-methoxy-trans-3-butenoic acid (AMB) in P. aeruginosa. We determined crystal structures of the truncated T–C bidomain of AmbB in three forms, the apo enzyme with disordered T domain, the holo form with serine linked phosphopantetheine (Ppant) and a holo form with substrate (l-alanine) loaded onto Ppant. The two holo forms feature the T domain in a substrate-donation conformation. Mutagenesis combined with functional assays identified residues essential for the attachment of Ppant, anchoring the Ppant-l-Ala in the donor catalytic channel and the role of the conserved His953 in condensation activity. Altogether, these results provide structural insights into the condensation reaction at the donor site with a substrate-bound C domain of AmbB and lay the foundation for understanding the molecular mechanism of condensation which is crucial for AMB synthesis.
Collapse
|
2
|
Chavan SP, Kawale SA, Patil NB, Kalbhor DB. Application of allylic amine formation from aziridine-2-ol under Appel reaction condition: Synthesis of N-(tert-butoxycarbonyl)-D-vinyl glycine methyl ester. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
3
|
Dekimpe S, Masschelein J. Beyond peptide bond formation: the versatile role of condensation domains in natural product biosynthesis. Nat Prod Rep 2021; 38:1910-1937. [DOI: 10.1039/d0np00098a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Condensation domains perform highly diverse functions during natural product biosynthesis and are capable of generating remarkable chemical diversity.
Collapse
Affiliation(s)
- Sofie Dekimpe
- Laboratory for Biomolecular Discovery & Engineering
- Department of Biology
- KU Leuven
- Leuven
- Belgium
| | - Joleen Masschelein
- Laboratory for Biomolecular Discovery & Engineering
- Department of Biology
- KU Leuven
- Leuven
- Belgium
| |
Collapse
|
4
|
Tao X, Chen Y, Guo J, Wang X, Gong H. Preparation of α-amino acids via Ni-catalyzed reductive vinylation and arylation of α-pivaloyloxy glycine. Chem Sci 2020; 12:220-226. [PMID: 34163591 PMCID: PMC8178948 DOI: 10.1039/d0sc05452f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This work emphasizes easy access to α-vinyl and aryl amino acids via Ni-catalyzed cross-electrophile coupling of bench-stable N-carbonyl-protected α-pivaloyloxy glycine with vinyl/aryl halides and triflates. The protocol permits the synthesis of α-amino acids bearing hindered branched vinyl groups, which remains a challenge using the current methods. On the basis of experimental and DFT studies, simultaneous addition of glycine α-carbon (Gly) radicals to Ni(0) and Ar–Ni(ii) may occur, with the former being more favored where oxidative addition of a C(sp2) electrophile to the resultant Gly–Ni(i) intermediate gives a key Gly–Ni(iii)–Ar intermediate. The auxiliary chelation of the N-carbonyl oxygen to the Ni center appears to be crucial to stabilize the Gly–Ni(i) intermediate. We have developed Ni-catalyzed reductive coupling of N-carbonyl protected α-pivaloyloxy glycine with Csp2-electrophiles that enabled facile preparation of α-amino acids, including those bearing hindered branched vinyl groups.![]()
Collapse
Affiliation(s)
- Xianghua Tao
- College of Materials Science and Engineering, Center for Supramolecular Materials and Catalysis, Department of Chemistry, Shanghai University 99 Shang-Da Road Shanghai 200444 China
| | - Yanchi Chen
- College of Materials Science and Engineering, Center for Supramolecular Materials and Catalysis, Department of Chemistry, Shanghai University 99 Shang-Da Road Shanghai 200444 China
| | - Jiandong Guo
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic 7098 Liuxian Boulevard, Nanshan District Shenzhen 518055 P. R. China
| | - Xiaotai Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic 7098 Liuxian Boulevard, Nanshan District Shenzhen 518055 P. R. China.,Department of Chemistry, University of Colorado Denver Campus Box 194, P. O. Box 173364 Denver Colorado 80217-3364 USA
| | - Hegui Gong
- College of Materials Science and Engineering, Center for Supramolecular Materials and Catalysis, Department of Chemistry, Shanghai University 99 Shang-Da Road Shanghai 200444 China
| |
Collapse
|
5
|
Nascimento FX, Rossi MJ, Glick BR. Ethylene and 1-Aminocyclopropane-1-carboxylate (ACC) in Plant-Bacterial Interactions. FRONTIERS IN PLANT SCIENCE 2018; 9:114. [PMID: 29520283 PMCID: PMC5827301 DOI: 10.3389/fpls.2018.00114] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/22/2018] [Indexed: 05/18/2023]
Abstract
Ethylene and its precursor 1-aminocyclopropane-1-carboxylate (ACC) actively participate in plant developmental, defense and symbiotic programs. In this sense, ethylene and ACC play a central role in the regulation of bacterial colonization (rhizospheric, endophytic, and phyllospheric) by the modulation of plant immune responses and symbiotic programs, as well as by modulating several developmental processes, such as root elongation. Plant-associated bacterial communities impact plant growth and development, both negatively (pathogens) and positively (plant-growth promoting and symbiotic bacteria). Some members of the plant-associated bacterial community possess the ability to modulate plant ACC and ethylene levels and, subsequently, modify plant defense responses, symbiotic programs and overall plant development. In this work, we review and discuss the role of ethylene and ACC in several aspects of plant-bacterial interactions. Understanding the impact of ethylene and ACC in both the plant host and its associated bacterial community is key to the development of new strategies aimed at increased plant growth and protection.
Collapse
Affiliation(s)
- Francisco X. Nascimento
- Departamento de Microbiologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Márcio J. Rossi
- Departamento de Microbiologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
6
|
Rojas Murcia N, Lee X, Waridel P, Maspoli A, Imker HJ, Chai T, Walsh CT, Reimmann C. The Pseudomonas aeruginosa antimetabolite L -2-amino-4-methoxy-trans-3-butenoic acid (AMB) is made from glutamate and two alanine residues via a thiotemplate-linked tripeptide precursor. Front Microbiol 2015; 6:170. [PMID: 25814981 PMCID: PMC4357302 DOI: 10.3389/fmicb.2015.00170] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/13/2015] [Indexed: 11/25/2022] Open
Abstract
The Pseudomonas aeruginosa toxin L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) is a non-proteinogenic amino acid which is toxic for prokaryotes and eukaryotes. Production of AMB requires a five-gene cluster encoding a putative LysE-type transporter (AmbA), two non-ribosomal peptide synthetases (AmbB and AmbE), and two iron(II)/α-ketoglutarate-dependent oxygenases (AmbC and AmbD). Bioinformatics analysis predicts one thiolation (T) domain for AmbB and two T domains (T1 and T2) for AmbE, suggesting that AMB is generated by a processing step from a precursor tripeptide assembled on a thiotemplate. Using a combination of ATP-PPi exchange assays, aminoacylation assays, and mass spectrometry-based analysis of enzyme-bound substrates and pathway intermediates, the AmbB substrate was identified to be L-alanine (L-Ala), while the T1 and T2 domains of AmbE were loaded with L-glutamate (L-Glu) and L-Ala, respectively. Loading of L-Ala at T2 of AmbE occurred only in the presence of AmbB, indicative of a trans loading mechanism. In vitro assays performed with AmbB and AmbE revealed the dipeptide L-Glu-L-Ala at T1 and the tripeptide L-Ala-L-Glu-L-Ala attached at T2. When AmbC and AmbD were included in the assay, these peptides were no longer detected. Instead, an L-Ala-AMB-L-Ala tripeptide was found at T2. These data are in agreement with a biosynthetic model in which L-Glu is converted into AMB by the action of AmbC, AmbD, and tailoring domains of AmbE. The importance of the flanking L-Ala residues in the precursor tripeptide is discussed.
Collapse
Affiliation(s)
- Nelson Rojas Murcia
- Department of Fundamental Microbiology, University of Lausanne, Lausanne Switzerland
| | - Xiaoyun Lee
- Department of Fundamental Microbiology, University of Lausanne, Lausanne Switzerland
| | - Patrice Waridel
- Protein Analysis Facility, University of Lausanne, Lausanne Switzerland
| | - Alessandro Maspoli
- Department of Fundamental Microbiology, University of Lausanne, Lausanne Switzerland
| | - Heidi J Imker
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA USA
| | - Tiancong Chai
- Department of Fundamental Microbiology, University of Lausanne, Lausanne Switzerland
| | - Christopher T Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA USA
| | - Cornelia Reimmann
- Department of Fundamental Microbiology, University of Lausanne, Lausanne Switzerland
| |
Collapse
|
7
|
Wang Y, Li D, Huan X, Zhang L, Song H. Crystallization and preliminary X-ray crystallographic analysis of a putative nonribosomal peptide synthase AmbB from Pseudomonas aeruginosa. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:339-42. [PMID: 24598922 DOI: 10.1107/s2053230x14001782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/24/2014] [Indexed: 11/10/2022]
Abstract
AmbB is a putative nonribosomal peptide synthase from Pseudomonas aeruginosa, which is involved in the production of IQS, a potent cell-cell communication signal molecule that integrates the quorum-sensing mechanism and stress response. It consists of 1249 amino acids and contains an AMP-binding domain, a phosphopantetheine-binding (PB) domain and a condensation (C) domain. In this report, a truncated form of AmbB that contains the PB domain and the condensation domain was overexpressed with an N-terminal GST tag in Escherichia coli and purified as a monomer using affinity and size-exclusion chromatography. The recombinant AmbBc (comprising residues 727-1249 of full-length AmbB) was crystallized using the hanging-drop vapour-diffusion method and a full data set was collected to 2.45 Å resolution using a synchrotron-radiation source. The crystals belonged to space group P6122 or P6522, with unit-cell parameters a = b = 87.81, c = 286.8 Å, α = 90, β = 90, γ = 120°, and contained one molecule per asymmetric unit.
Collapse
Affiliation(s)
- Yiwen Wang
- Life Sciences Institute, Zhejiang University, 388 Yuhangtang Road, Hangzhou, People's Republic of China
| | - Dewang Li
- Life Sciences Institute, Zhejiang University, 388 Yuhangtang Road, Hangzhou, People's Republic of China
| | - Xuelu Huan
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Lianhui Zhang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Haiwei Song
- Life Sciences Institute, Zhejiang University, 388 Yuhangtang Road, Hangzhou, People's Republic of China
| |
Collapse
|
8
|
Stefani HA, Khan AN, Manarin F, Vendramini PH, Eberlin MN. Synthesis of α-alkenyl-α-amino esters via addition of potassium Alkenyltrifluoroborate salts to imine in the presence of Yb(OTf)3. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.08.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Walsh CT, O'Brien RV, Khosla C. Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds. Angew Chem Int Ed Engl 2013; 52:7098-124. [PMID: 23729217 PMCID: PMC4634941 DOI: 10.1002/anie.201208344] [Citation(s) in RCA: 277] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Indexed: 12/24/2022]
Abstract
Freestanding nonproteinogenic amino acids have long been recognized for their antimetabolite properties and tendency to be uncovered to reactive functionalities by the catalytic action of target enzymes. By installing them regiospecifically into biogenic peptides and proteins, it may be possible to usher a new era at the interface between small molecule and large molecule medicinal chemistry. Site-selective protein functionalization offers uniquely attractive strategies for posttranslational modification of proteins. Last, but not least, many of the amino acids not selected by nature for protein incorporation offer rich architectural possibilities in the context of ribosomally derived polypeptides. This Review summarizes the biosynthetic routes to and metabolic logic for the major classes of the noncanonical amino acid building blocks that end up in both nonribosomal peptide frameworks and in hybrid nonribosomal peptide-polyketide scaffolds.
Collapse
Affiliation(s)
- Christopher T Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
10
|
Walsh CT, O'Brien RV, Khosla C. Nichtproteinogene Aminosäurebausteine für Peptidgerüste aus nichtribosomalen Peptiden und hybriden Polyketiden. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208344] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Trippe K, McPhail K, Armstrong D, Azevedo M, Banowetz G. Pseudomonas fluorescens SBW25 produces furanomycin, a non-proteinogenic amino acid with selective antimicrobial properties. BMC Microbiol 2013; 13:111. [PMID: 23688329 PMCID: PMC3662646 DOI: 10.1186/1471-2180-13-111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 05/07/2013] [Indexed: 11/10/2022] Open
Abstract
Background Pseudomonas fluorescens SBW25 has been extensively studied because of its plant growth promoting properties and potential as a biocontrol agent. The genome of SBW25 has been sequenced, and among sequenced strains of pseudomonads, SBW25 appears to be most closely related to P. fluorescens WH6. In the authors’ laboratories, WH6 was previously shown to produce and secrete 4-formylaminooxyvinylglycine (FVG), a non-proteinogenic amino acid with selective herbicidal and antimicrobial activity. Although SBW25 does not have the genetic capacity to produce FVG, we were interested in determining whether this pseudomonad might produce some other type of non-proteinogenic amino acid. Results P. fluorescens SBW25 was found to produce and secrete a ninhydrin-reactive compound with selective antimicrobial properties. This compound was purified from SBW25 culture filtrate and identified as the non-proteinogenic amino acid L-furanomycin [2S,2′R,5′S)-2-amino-2-(5′methyl-2′,5′-dihydrofuran-2′-yl)acetic acid]. Conclusions The identification of furanomycin as a secondary metabolite of SBW25 is the first report of the production of furanomycin by a pseudomonad. This compound was known previously only as a natural product produced by a strain of Streptomyces. This report adds furanomycin to the small list of non-proteinogenic amino acids that have been identified as secondary products of pseudomonads. This study also extends the list of bacteria that are inhibited by furanomycin to include several plant pathogenic bacteria.
Collapse
Affiliation(s)
- Kristin Trippe
- USDA-ARS National Forage Seed Production Research Center, Corvallis, OR 97331, USA
| | | | | | | | | |
Collapse
|
12
|
Kand D, Chauhan DP, Lahiri M, Talukdar P. δ-Unsaturated γ-amino acids: enantiodivergent synthesis and cell imaging studies. Chem Commun (Camb) 2013; 49:3591-3. [DOI: 10.1039/c3cc40824h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Li Y, Xu MH. Lewis acid promoted highly diastereoselective Petasis Borono-Mannich reaction: efficient synthesis of optically active β,γ-unsaturated α-amino acids. Org Lett 2012; 14:2062-5. [PMID: 22480132 DOI: 10.1021/ol300581n] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient and straightforward method for the preparation of highly enantiomerically enriched β,γ-unsaturated α-amino acid derivatives by a Lewis acid promoted diastereoselective Petasis reaction of vinylboronic acid, N-tert-butanesulfinamide, and glyoxylic acid has been developed. The synthetic utilities of the approach were demonstrated by the rapid and convenient construction of challenging cyclopenta[c]proline derivatives.
Collapse
Affiliation(s)
- Yi Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | | |
Collapse
|
14
|
Lee X, Reimmann C, Greub G, Sufrin J, Croxatto A. The Pseudomonas aeruginosa toxin L-2-amino-4-methoxy-trans-3-butenoic acid inhibits growth and induces encystment in Acanthamoeba castellanii. Microbes Infect 2012; 14:268-72. [DOI: 10.1016/j.micinf.2011.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/18/2011] [Accepted: 10/17/2011] [Indexed: 11/29/2022]
|
15
|
Identification of the biosynthetic gene cluster for the Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid. J Bacteriol 2010; 192:4251-5. [PMID: 20543073 DOI: 10.1128/jb.00492-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) is a potent antibiotic and toxin produced by Pseudomonas aeruginosa. Using a novel biochemical assay combined with site-directed mutagenesis in strain PAO1, we have identified a five-gene cluster specifying AMB biosynthesis, probably involving a thiotemplate mechanism. Overexpression of this cluster in strain PA7, a natural AMB-negative isolate, led to AMB overproduction.
Collapse
|
16
|
Hang J, Deng L. Asymmetric synthesis of beta,gamma-unsaturated alpha-amino acids via efficient kinetic resolution with cinchona alkaloids. Bioorg Med Chem Lett 2009; 19:3856-8. [PMID: 19398202 DOI: 10.1016/j.bmcl.2009.03.152] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/30/2009] [Accepted: 03/31/2009] [Indexed: 11/18/2022]
Abstract
The beta,gamma-unsaturated amino acids are versatile chiral building blocks and biologically interesting compounds. The asymmetric synthesis of beta,gamma-unsaturated amino acids presents a challenging task as these compounds are labile toward racemization as well as the undesirable double bond isomerization. An efficient, general and mild kinetic resolution with readily accessible and fully recyclable cinchona alkaloid catalysts has been developed to provide a reliably useful approach toward optically active beta,gamma-unsaturated amino acids.
Collapse
Affiliation(s)
- Jianfeng Hang
- Department of Chemistry, Brandeis University, Waltham, MA 02454-9110, USA
| | | |
Collapse
|
17
|
Berkowitz DB, Charette BD, Karukurichi KR, McFadden JM. α-Vinylic Amino Acids: Occurrence, Asymmetric Synthesis and Biochemical Mechanisms. TETRAHEDRON, ASYMMETRY 2006; 17:869-882. [PMID: 29977107 PMCID: PMC6029878 DOI: 10.1016/j.tetasy.2006.02.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This report presents an overview of the family of naturally occurring 'vinylic' amino acids, namely those that feature a C-C double bond directly attached to the α-carbon, along the side chain. Strategies that have been brought to bear on the stereocontrolled synthesis of these olefinic amino acids are surveyed. The mechanistic diversity by which such 'vinylic triggers' can be actuated in a PLP (pyridoxal phosphate) enzyme active site is then highlighted by discussions of vinylglycine (VG), its substituted congeners, particularly AVG [4E-(2'-aminoethoxy)vinylglycine], and a naturally occurring VG-progenitor, SMM (S-methylmethionine).
Collapse
Affiliation(s)
- David B Berkowitz
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304
| | | | | | - Jill M McFadden
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304
| |
Collapse
|
18
|
Alexander PA, Marsden SP, Muñoz Subtil DM, Reader JC. Deconjugation of Dehydroamino Acids: Stereoselective Synthesis of Racemic (E)-Vinylglycines. Org Lett 2005; 7:5433-6. [PMID: 16288524 DOI: 10.1021/ol052139q] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[reaction: see text] A practical and general two-step synthesis of carbamate-protected (E)-vinylglycines from aliphatic aldehydes is reported. The key step involves the kinetic alpha-protonation of dianionic dienolates derived from dehydroamino acids.
Collapse
Affiliation(s)
- Paul A Alexander
- School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | |
Collapse
|
19
|
Production of useful compounds from alkane media in Japan. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005. [DOI: 10.1007/3-540-09955-7_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
20
|
The first simple and efficient synthesis of the unusual dipeptide part of Phomopsin A. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.tetasy.2005.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
|
22
|
Kobayashi K, Irisawa S, Akamatsu H, Takahashi M, Kitamura T, Tanmatsu M, Morikawa O, Konishi H. A Convenient Synthesis of (E)-4-Alkoxy-2-amino-3-butenoic Acid Derivatives. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1999. [DOI: 10.1246/bcsj.72.2307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Kobayashi K, Akamatsu H, Irisawa S, Takahashi M, Morikawa O, Konishi H. A New Synthesis of (E)-4-Alkoxy-2-formylamino-3-butenoic Acid Derivatives Utilizing 3-Alkoxy-1-isocyano-1-lithiopropenes. CHEM LETT 1997. [DOI: 10.1246/cl.1997.503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Asymmetric syntheses of α-amino acids. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1874-5148(06)80005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
25
|
Daumas M, Vo-Quang L, Le Goffic F. New non-proteogenic aminoacids bearing an enol aryl-ether moiety. Tetrahedron 1992. [DOI: 10.1016/s0040-4020(01)88758-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Alks V, Sufrin JR. Improved synthetic access to the β,γ-enol ether amino acids, L-2-amino-4-methoxy-trans-but-3-enoic acid and l-2-amino-4-methoxy--but-3-enoic acid. Tetrahedron Lett 1990. [DOI: 10.1016/s0040-4039(00)98044-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Sasaki N, Hashimoto C, Pauly R. Stereoselective synthesis of optically pure β,γ-unsaturated α-amino acids in both L and D configurations. Tetrahedron Lett 1989. [DOI: 10.1016/s0040-4039(00)99620-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Unsaturated amino acids: Synthesis of trans-3,4-didehydro analogues of L-ornithine and L-arginine. Tetrahedron Lett 1988. [DOI: 10.1016/s0040-4039(00)82302-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
|
30
|
Fitzner JN, Pratt DV, Hopkins PB. Synthesis of protected racemic β,γ-unsaturated-α-amino acids via γ-phenylseleno-α,β-unsaturated esters. Tetrahedron Lett 1985. [DOI: 10.1016/s0040-4039(00)98351-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Fisher GH, Berryer P, Ryan JW, Chauhan V, Stammer CH. Dehydrophenylalanyl analogs of bradykinin: synthesis and biological activities. Arch Biochem Biophys 1981; 211:269-75. [PMID: 7305370 DOI: 10.1016/0003-9861(81)90454-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
32
|
Tisdale MJ. The effect of L-2-amino-4-methoxy-trans-3-butenoic acid on serine hydroxymethyl transferase. Chem Biol Interact 1981; 34:75-83. [PMID: 7460079 DOI: 10.1016/0009-2797(81)90092-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The tumour growth inhibitor L-2-amino-4-methoxy-trans-3-butenoic acid (Ro07-7957) inhibits serine hydroxymethyltransferase in cytosolic extracts of Walker carcinoma non-competitively with respect to L-serine with an apparent inhibition constant similar to the Km-value for L-serine. The kinetics of inactivation suggest that it reacts as an irreversible substrate analogue. Incubation of Walker cells with Ro07-7957 causes an increase in serine hydroxymethyltransferase activity which is most pronounced at concentrations less than or equal to LD50. This increase in enzyme activity does not occur in the presence of cycloheximide. These results suggest that inhibition of serine hydroxymethyltransferase in intact cells is accompanied by an increase in enzyme biosynthesis and that the growth inhibitory property or Ro07-7957 does not involve interference with the conversion of serine to glycine.
Collapse
|
33
|
Tisdale MJ. The effect of the methionine antagonist L-2-amino-4-methoxy-trans-3-butenoic acid on the growth and metabolism of Walker carcinosarcoma in vitro. Biochem Pharmacol 1980; 29:501-8. [PMID: 7370047 DOI: 10.1016/0006-2952(80)90369-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
34
|
|