1
|
Ma Y, Du S, Wang S, Liu X, Cong L, Shen W, Ye K. Circ_0004674 regulation of glycolysis and proliferation mechanism of osteosarcoma through miR-140-3p/TCF4 pathway. J Biochem Mol Toxicol 2024; 38:e23846. [PMID: 39243204 DOI: 10.1002/jbt.23846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
As a subclass of noncoding RNAs, circular RNA play an important role in tumour development. The aim of this study was to investigate the role of circ_0004674 in osteosarcoma glycolysis and the molecular mechanism of its regulation. We examined the expression of circ_0004674, miR-140-3p, TCF4 and glycolysis-related proteins (including HK2, PKM2, GLUT1 and LDHA) in osteosarcoma cells and tissues by quantitative reverse transcription-polymerase chain reaction and immunoblotting (Western blot analysis). The role of circ_0004674, miR-140-3p and TCF4 in the proliferation, apoptosis, migration and invasion of OS cells was examined using CCK8 assay, Apoptosis assay, Wound healing assay, Transwell migration and Matrigel invasion assay. The interaction of circ_0004674/miR-140-3p and miR-1543/TCF4 was also analysed using a dual luciferase reporter assay. Finally, the glycolytic process was assessed by glucose uptake assays and lactate production measurements. The results showed that the expression of circ_0004674 and TCF4 was significantly higher in MG63 and U2OS cells compared to hFOB1.19 cells, while the expression of miR-140-3p was downregulated. Silencing of circ_0004674 gene significantly inhibited the proliferation, migration and invasion of cancer cells and promoted apoptosis of cancer cells. Experiments such as dual luciferase reporter analysis showed that circ_0004674 regulates the expression of glycolysis-related proteins through the miR-140-3p/TCF4 pathway, and inhibition of this gene attenuated the depletion of glucose content and the production of lactate in cancer cells. Furthermore, inhibition of miR-140-3p or overexpression of TCF could reverse the phenotypic changes in cancer cells induced by circ_0004674 silencing. In summary, this study elucidated the specific function and potential mechanisms of circ_0004674 in osteosarcoma glycolysis. The findings demonstrate that miR-140-3p and TCF4 function respectively as a tumor suppressor gene and an oncogene in osteosarcoma. Notably, they influence glycolysis and associated pathways, regulating osteosarcoma proliferation. Therefore, circ_0004674 promotes osteosarcoma glycolysis and proliferation through the miR-140-3p/TCF4 pathway, enhancing the malignant behaviour of tumours, and it is expected to be a potential molecular target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Yulong Ma
- Department of Orthopedic surgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Shaowen Du
- Department of Orthopedic surgery, Second Hospital of Lanzhou University, Lanzhou, China
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Shengdong Wang
- Department of Orthopedic surgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiang Liu
- Department of Orthopedic surgery, Second Hospital of Lanzhou University, Lanzhou, China
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Liming Cong
- Department of Orthopedic surgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Wenxiang Shen
- Department of Orthopedic surgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Kaishan Ye
- Department of Orthopedic surgery, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Walker RL, Hornicek FJ, Duan Z. Transcriptional regulation and therapeutic potential of cyclin-dependent kinase 9 (CDK9) in sarcoma. Biochem Pharmacol 2024; 226:116342. [PMID: 38848777 DOI: 10.1016/j.bcp.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Sarcomas include various subtypes comprising two significant groups - soft tissue and bone sarcomas. Although the survival rate for some sarcoma subtypes has improved over time, the current methods of treatment remain efficaciously limited, as recurrent, and metastatic diseases remain a major obstacle. There is a need for better options and therapeutic strategies in treating sarcoma. Cyclin dependent kinase 9 (CDK9) is a transcriptional kinase and has emerged as a promising target for treating various cancers. The aberrant expression and activation of CDK9 have been observed in several sarcoma subtypes, including rhabdomyosarcoma, synovial sarcoma, osteosarcoma, Ewing sarcoma, and chordoma. Enhanced CDK9 expression has also been correlated with poorer prognosis in sarcoma patients. As a master regulator of transcription, CDK9 promotes transcription elongation by phosphorylation and releasing RNA polymerase II (RNAPII) from its promoter proximal pause. Release of RNAPII from this pause induces transcription of critical genes in the tumor cell. Overexpression and activation of CDK9 have been observed to lead to the expression of oncogenes, including MYC and MCL-1, that aid sarcoma development and progression. Inhibition of CDK9 in sarcoma has been proven to reduce these oncogenes' expression and decrease proliferation and growth in different sarcoma cells. Currently, there are several CDK9 inhibitors in preclinical and clinical investigations. This review aims to highlight the recent discovery and results on the transcriptional role and therapeutic potential of CDK9 in sarcoma.
Collapse
Affiliation(s)
- Robert L Walker
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA.
| |
Collapse
|
3
|
Barba-Rosado LV, Carrascal-Hernández DC, Insuasty D, Grande-Tovar CD. Graphene Oxide (GO) for the Treatment of Bone Cancer: A Systematic Review and Bibliometric Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:186. [PMID: 38251150 PMCID: PMC10820493 DOI: 10.3390/nano14020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Cancer is a severe disease that, in 2022, caused more than 9.89 million deaths worldwide. One worrisome type of cancer is bone cancer, such as osteosarcoma and Ewing tumors, which occur more frequently in infants. This study shows an active interest in the use of graphene oxide and its derivatives in therapy against bone cancer. We present a systematic review analyzing the current state of the art related to the use of GO in treating osteosarcoma, through evaluating the existing literature. In this sense, studies focused on GO-based nanomaterials for potential applications against osteosarcoma were reviewed, which has revealed that there is an excellent trend toward the use of GO-based nanomaterials, based on their thermal and anti-cancer activities, for the treatment of osteosarcoma through various therapeutic approaches. However, more research is needed to develop highly efficient localized therapies. It is suggested, therefore, that photodynamic therapy, photothermal therapy, and the use of nanocarriers should be considered as non-invasive, more specific, and efficient alternatives in the treatment of osteosarcoma. These options present promising approaches to enhance the effectiveness of therapy while also seeking to reduce side effects and minimize the damage to surrounding healthy tissues. The bibliometric analysis of photothermal and photochemical treatments of graphene oxide and reduced graphene oxide from January 2004 to December 2022 extracted 948 documents with its search strategy, mainly related to research papers, review papers, and conference papers, demonstrating a high-impact field supported by the need for more selective and efficient bone cancer therapies. The central countries leading the research are the United States, Iran, Italy, Germany, China, South Korea, and Australia, with strong collaborations worldwide. At the same time, the most-cited papers were published in journals with impact factors of more than 6.0 (2021), with more than 290 citations. Additionally, the journals that published the most on the topic are high impact factor journals, according to the analysis performed, demonstrating the high impact of the research field.
Collapse
Affiliation(s)
- Lemy Vanessa Barba-Rosado
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia; (L.V.B.-R.); (D.C.C.-H.)
| | - Domingo César Carrascal-Hernández
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia; (L.V.B.-R.); (D.C.C.-H.)
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Daniel Insuasty
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Carlos David Grande-Tovar
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia; (L.V.B.-R.); (D.C.C.-H.)
| |
Collapse
|
4
|
Jun L, Xuhong L, Hui L. Circ_SIPA1L1 Promotes Osteosarcoma Progression Via miR-379-5p/MAP3K9 Axis. Cancer Biother Radiopharm 2023; 38:604-618. [PMID: 32897735 DOI: 10.1089/cbr.2020.3891] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background: Osteosarcoma (OS) is a common malignant bone tumor. Circular RNAs (circRNAs) exert important roles in the pathogenesis of human cancers, including OS. In this study, the authors focused on the role and mechanism of circRNA signal-induced proliferation-associated 1 like 1 (circ_SIPA1L1) in OS. Methods: The enrichment of SIPA1L1, circ_SIPA1L1, microRNA-379-5p (miR-379-5p), and mitogen-activated protein kinase kinase kinase 9 (MAP3K9) was assessed by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The colony formation capacity was assessed through colony formation assay. Transwell assays were used to detect the migration and invasion abilities. Western blot assay was used to measure the expression of metastasis-related proteins and MAP3K9. The target interactions between the genes in circ_SIPA1L1/miR-379-5p/MAP3K9 axis were predicted by StarBase and confirmed by dual-luciferase reporter assay. The in vivo role of circ_SIPA1L1 was verified by murine xenograft assay. Results: Circ_SIPA1L1 abundance was aberrantly elevated in OS tissues and cell lines. Circ_SIPA1L1 accelerated the proliferation and metastasis abilities of OS cells. Circ_SIPA1L1 promoted the malignant behaviors of OS cells through elevating MAP3K9 level. MiR-379-5p directly bound to circ_SIPA1L1 and MAP3K9. MiR-379-5p interference rescued the abilities of proliferation and metastasis in OS cells, which were suppressed by the silencing of circ_SIPA1L1. Circ_SIPA1L1 promoted the development of OS via miR-379-5p/MAP3K9 in vivo. Conclusion: Circ_SIPA1L1 promoted the progression of OS via miR-379-5p/MAP3K9 axis.
Collapse
Affiliation(s)
- Liu Jun
- Department of Traumatic Orthopedics II Ward and Weifang People's Hospital, Weifang, China
| | - Li Xuhong
- Department of Pharmacy Intravenous Admixture Service, Weifang People's Hospital, Weifang, China
| | - Liu Hui
- Department of Pharmacy Intravenous Admixture Service, Weifang People's Hospital, Weifang, China
| |
Collapse
|
5
|
Xu L, Duan J, Li M, Zhou C, Wang Q. Circ_0000253 promotes the progression of osteosarcoma via the miR-1236-3p/SP1 axis. J Pharm Pharmacol 2023; 75:227-235. [PMID: 36444162 DOI: 10.1093/jpp/rgac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Circular RNAs (circRNAs) play important roles in modulating tumour progression. This study investigated the role of circ_0000253 in osteosarcoma (OS). METHODS We downloaded the chip dataset GSE140256 from the Gene Expression Omnibus database and the circRNAs differentially expressed in OS tissue and normal tissue samples were analysed. Quantitative real-time PCR (qRT-PCR) was carried out to examine circ_0000253 expression in OS tissues and cells. Cell counting kit-8, BrdU and flow cytometry assays were performed to verify the effects of circ_0000253 on OS cell growth and apoptosis. Bioinformatics analysis was conducted to predict, and RNA immunoprecipitation assay and dual-luciferase reporter gene assay were performed to verify the targeted relationships of miR-1236-3p with circ_0000253 and Sp1 transcription factor (SP1) mRNA 3'UTR. The effects of miR-1236-3p and circ_0000253 on SP1 expression in OS cells were detected through Western blot. KEY FINDINGS Circ_0000253 was upregulated in OS tissues and cell lines. Circ_0000253 overexpression facilitated OS cell growth and suppressed apoptosis, whereas knocking down circ_0000253 inhibited OS cell growth and facilitated apoptosis. Circ_0000253 targeted miR-1236-3p directly and negatively modulated its expression. SP1 was miR-1236-3p's target gene and positively regulated by circ_0000253. CONCLUSION Circ_0000253 promotes OS cell proliferation and suppresses cell apoptosis via regulating the miR-1236-3p/SP1 molecular axis.
Collapse
Affiliation(s)
- Lijun Xu
- Department of Orthopedics, Huangshi Central Hospital, Edong Medical Group, Huangshi, Hubei, China.,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi, Hubei, China
| | - Jun Duan
- Department of Orthopedics, Huangshi Central Hospital, Edong Medical Group, Huangshi, Hubei, China.,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi, Hubei, China
| | - Mingwu Li
- Department of Orthopedics, Huangshi Central Hospital, Edong Medical Group, Huangshi, Hubei, China.,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi, Hubei, China
| | - Cong Zhou
- Department of Blood Transfusion, Huangshi Central Hospital, Edong Medical Group, Huangshi, Hubei, China
| | - Qinzhi Wang
- Department of Orthopedics, Huangshi Central Hospital, Edong Medical Group, Huangshi, Hubei, China.,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi, Hubei, China
| |
Collapse
|
6
|
Bai B, Wu Z, Weng S, Yang Q. Application of interpretable machine learning algorithms to predict distant metastasis in osteosarcoma. Cancer Med 2023; 12:5025-5034. [PMID: 36082478 PMCID: PMC9972029 DOI: 10.1002/cam4.5225] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/21/2022] [Accepted: 08/23/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Osteosarcoma is well-established as the most common bone cancer in children and adolescents. Patients with localized disease have different prognoses and management than those with metastasis at the time of diagnosis. The purpose of this study was to explore potential risk factors for metastatic disease. METHODS The Surveillance, Epidemiology, and End Results (SEER) Program database was used to identify patients diagnosed with osteosarcoma between 2004 and 2015. We developed prediction models for distant metastasis using six machine learning (ML) techniques, including logistic regression (LR), support vector machine (SVM), Gaussian Naive Bayes (GaussianNB), Extreme Gradient Boosting (XGBoost), random forest (RF), and k-nearest neighbor algorithm (kNN). The adaptive synthetic (ADASYN) technique was used to deal with imbalanced data. The Shapley Additive Explanation (SHAP) analysis generated visualized explanations for each patient. Finally, the average precision (AP), sensitivity, specificity, accuracy, F1 score, precision-recall curves, calibration plots, and decision curve analysis (DCA) were conducted to evaluate the models' effectiveness. RESULTS The six machine learning algorithms achieved AP of 0.661-0.781 for predicting distant metastasis. The RF model yielded the best performance with an accuracy of 71.8 percent and an AP of 0.781 and was highly dependent on tumor size, primary surgery, and age. SHAP analysis provided model-independent interpretation, highlighting significant clinical factors associated with the risk of metastasis in osteosarcoma patients. CONCLUSIONS An accurate machine learning-based prediction model was established for metastasis in osteosarcoma patients to help clinicians during clinical decision-making.
Collapse
Affiliation(s)
- Bing‐li Bai
- Department of Orthopedics SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zong‐yi Wu
- Department of Orthopedics SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - She‐ji Weng
- Department of Orthopedics SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Qing Yang
- Department of Breast SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
7
|
Feng W, Lin H, Rothzerg E, Song D, Zhao W, Ning T, Wei Q, Zhao J, Wood D, Liu Y, Xu J. RNA-seq and Single-Cell Transcriptome Analyses of TRAIL Receptors Gene Expression in Human Osteosarcoma Cells and Tissues. Cancer Inform 2023; 22:11769351231161478. [PMID: 37101729 PMCID: PMC10123892 DOI: 10.1177/11769351231161478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 04/28/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary cancer in the skeletal system, characterized by a high incidence of lung metastasis, local recurrence and death. Systemic treatment of this aggressive cancer has not improved significantly since the introduction of chemotherapy regimens, underscoring a critical need for new treatment strategies. TRAIL receptors have long been proposed to be therapeutic targets for cancer treatment, but their role in osteosarcoma remains unclear. In this study, we investigated the expression profile of four TRAIL receptors in human OS cells using total RNA-seq and single-cell RNA-seq (scRNA-seq). The results revealed that TNFRSF10B and TNFRSF10D but not TNFRSF10A and TNFRSF10C are differentially expressed in human OS cells as compared to normal cells. At the single cell level by scRNA-seq analyses, TNFRSF10B, TNFRSF10D, TNFRSF10A and TNFRSF10C are most abundantly expressed in endothelial cells of OS tissues among nine distinct cell clusters. Notably, in osteoblastic OS cells, TNFRSF10B is most abundantly expressed, followed by TNFRSF10D, TNFRSF10A and TNFRSF10C. Similarly, in an OS cell line U2-OS using RNA-seq, TNFRSF10B is most abundantly expressed, followed by TNFRSF10D, TNFRSF10A and TNFRSF10C. According to the TARGET online database, poor patient outcomes were associated with low expression of TNFRSF10C. These results could provide a new perspective to design novel therapeutic targets of TRAIL receptors for the diagnosis, prognosis and treatment of OS and other cancers.
Collapse
Affiliation(s)
- Wenyu Feng
- Department of Orthopaedics, the Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haiyingjie Lin
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Emel Rothzerg
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Dezhi Song
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Orthopaedics, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | | | | | - Qingjun Wei
- Department of Orthopaedics, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jinmin Zhao
- Department of Orthopaedics, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - David Wood
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Yun Liu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Orthopaedics, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Jiake Xu, School of Biomedical Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, WA 6009, Australia.
| |
Collapse
|
8
|
Proteasome Inhibitors and Their Potential Applicability in Osteosarcoma Treatment. Cancers (Basel) 2022; 14:cancers14194544. [PMID: 36230467 PMCID: PMC9559645 DOI: 10.3390/cancers14194544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Bone cancer has seen minimal benefits in therapeutic options in the past 30 years. Proteasome inhibitors present a new avenue of research for the treatment of bone cancer. Proteasome inhibitors impair the function of the proteasome, a structure within the cell that removes unwanted and misfolded proteins. Bone cancer cells heavily rely on the proteasome to properly function and survive. Impairing the proteasome function can have detrimental consequences and lead to cell death. This review provides a thorough summary of the in vitro, in vivo, and clinical research that has explored proteasome inhibitors for the treatment of bone cancer. Abstract Osteosarcoma (OS) is the most common type of bone cancer, with ~30% of patients developing secondary/metastatic tumors. The molecular complexity of tumor metastasis and the lack of effective therapies for OS has cultivated interest in exploiting the proteasome as a molecular target for anti-cancer therapy. As our understanding towards the behavior of malignant cells expands, it is evident that cancerous cells display a greater reliance on the proteasome to maintain homeostasis and sustain efficient biological activities. This led to the development and approval of first- and second-generation proteasome inhibitors (PIs), which have improved outcomes for patients with multiple myeloma and mantle cell lymphoma. Researchers have since postulated the therapeutic potential of PIs for the treatment of OS. As such, this review aims to summarize the biological effects and latest findings from clinical trials investigating PI-based treatments for OS. Integrating PIs into current treatment regimens may better outcomes for patients diagnosed with OS.
Collapse
|
9
|
Zhang H, Zhou Q, Shen W. Circ-FOXM1 promotes the proliferation, migration and EMT process of osteosarcoma cells through FOXM1-mediated Wnt pathway activation. J Orthop Surg Res 2022; 17:344. [PMID: 35799265 PMCID: PMC9261067 DOI: 10.1186/s13018-022-03207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteosarcoma (OS) is a malignant bone tumor that commonly occurs in adolescents with a high mortality rate and frequent pulmonary metastasis. Emerging evidence has suggested that circular RNAs (circRNAs) are important regulators in multiple biological activities of carcinomas. Nevertheless, the role of circRNAs derived from forkhead box M1 (FOXM1), a well-accepted modulator of OS progression, has not been discussed in OS. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to test circ-FOXM1 (hsa_circ_0025033) expression in OS cell lines. Cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), transwell assays and western blot analysis of epithelial-mesenchymal transition (EMT) markers were conducted to evaluate cell proliferation, apoptosis, migration, and EMT process. Luciferase reporter assay and RNA-binding protein immunoprecipitation (RIP) assay were utilized to detect the interaction of circ-FOXM1 and RNAs. RESULTS High expression of circ-FOXM1 was detected in OS cell lines. Functionally, circ-FOXM1 knockdown inhibited the proliferation, migration and EMT process, whereas induced the apoptosis of OS cells. From the aspect of molecular mechanism, circ-FOXM1 was discovered to upregulate FOXM1 expression via sponging miR-320a and miR-320b, therefore activating Wnt signaling pathway. Besides, rescue experiments elucidated that circ-FOXM1 regulated cellular activities of OS cells via FOXM1. Further, in vivo assays supported that loss of circ-FOXM1 restrained OS tumor growth. CONCLUSION Circ-FOXM1 facilitated the malignant phenotypes of OS cells through FOXM1-mediated Wnt pathway activation, revealing circ-FOXM1 as a potential biomarker for OS treatment.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Burn and Plastic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, Jiangsu, China
| | - Qiongqiong Zhou
- Department of Otolaryngology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Weimin Shen
- Department of Burn and Plastic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
10
|
Chitosan-based biomaterials for the treatment of bone disorders. Int J Biol Macromol 2022; 215:346-367. [PMID: 35718150 DOI: 10.1016/j.ijbiomac.2022.06.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 12/22/2022]
Abstract
Bone is an alive and dynamic organ that is well-differentiated and originated from mesenchymal tissues. Bone undergoes continuous remodeling during the lifetime of an individual. Although knowledge regarding bones and their disorders has been constantly growing, much attention has been devoted to effective treatments that can be used, both from materials and medical performance points of view. Polymers derived from natural sources, for example polysaccharides, are generally biocompatible and are therefore considered excellent candidates for various biomedical applications. This review outlines the development of chitosan-based biomaterials for the treatment of bone disorders including bone fracture, osteoporosis, osteoarthritis, arthritis rheumatoid, and osteosarcoma. Different examples of chitosan-based formulations in the form of gels, micro/nanoparticles, and films are discussed herein. The work also reviews recent patents and important developments related to the use of chitosan in the treatment of bone disorders. Although most of the cited research was accomplished before reaching the clinical application level, this manuscript summarizes the latest achievements within chitosan-based biomaterials used for the treatment of bone disorders and provides perspectives for future scientific activities.
Collapse
|
11
|
Tang J, Wang J, Pan X. A Web-Based Prediction Model for Overall Survival of Elderly Patients With Malignant Bone Tumors: A Population-Based Study. Front Public Health 2022; 9:812395. [PMID: 35087789 PMCID: PMC8787310 DOI: 10.3389/fpubh.2021.812395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/13/2021] [Indexed: 01/26/2023] Open
Abstract
Background: Malignant bone tumors (MBT) are one of the causes of death in elderly patients. The purpose of our study is to establish a nomogram to predict the overall survival (OS) of elderly patients with MBT. Methods: The clinicopathological data of all elderly patients with MBT from 2004 to 2018 were downloaded from the SEER database. They were randomly assigned to the training set (70%) and validation set (30%). Univariate and multivariate Cox regression analysis was used to identify independent risk factors for elderly patients with MBT. A nomogram was built based on these risk factors to predict the 1-, 3-, and 5-year OS of elderly patients with MBT. Then, used the consistency index (C-index), calibration curve, and the area under the receiver operating curve (AUC) to evaluate the accuracy and discrimination of the prediction model was. Decision curve analysis (DCA) was used to assess the clinical potential application value of the nomogram. Based on the scores on the nomogram, patients were divided into high- and low-risk groups. The Kaplan-Meier (K-M) curve was used to test the difference in survival between the two patients. Results: A total of 1,641 patients were included, and they were randomly assigned to the training set (N = 1,156) and the validation set (N = 485). The univariate and multivariate analysis of the training set suggested that age, sex, race, primary site, histologic type, grade, stage, M stage, surgery, and tumor size were independent risk factors for elderly patients with MBT. The C-index of the training set and the validation set were 0.779 [0.759–0.799] and 0.801 [0.772–0.830], respectively. The AUC of the training and validation sets also showed similar results. The calibration curves of the training and validation sets indicated that the observed and predicted values were highly consistent. DCA suggested that the nomogram had potential clinical value compared with traditional TNM staging. Conclusion: We had established a new nomogram to predict the 1-, 3-, 5-year OS of elderly patients with MBT. This predictive model can help doctors and patients develop treatment plans and follow-up strategies.
Collapse
Affiliation(s)
- Jie Tang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenyang Medical College, Shenyang, China
| | - JinKui Wang
- Department of Orthopedics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiudan Pan
- Department of Biostatistics and Epidemiology, School of Public Health, Shenyang Medical College, Shenyang, China
| |
Collapse
|
12
|
Correlation of nuclear pIGF-1R/IGF-1R and YAP/TAZ in a tissue microarray with outcomes in osteosarcoma patients. Oncotarget 2022; 13:521-533. [PMID: 35284040 PMCID: PMC8906536 DOI: 10.18632/oncotarget.28215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma (OS) is a genetically diverse bone cancer that lacks a consistent targetable mutation. Recent studies suggest the IGF/PI3K/mTOR pathway and YAP/TAZ paralogs regulate cell fate and proliferation in response to biomechanical cues within the tumor microenvironment. How this occurs and their implication upon osteosarcoma survival, remains poorly understood. Here, we show that IGF-1R can translocate into the nucleus, where it may act as part of a transcription factor complex. To explore the relationship between YAP/TAZ and total and nuclear phosphorylated IGF-1R (pIGF-1R), we evaluated sequential tumor sections from a 37-patient tissue microarray by confocal microscopy. Next, we examined the relationship between stained markers, clinical disease characteristics, and patient outcomes. The nuclear to cytoplasmic ratios (N:C ratio) of YAP and TAZ strongly correlated with nuclear pIGF-1R (r = 0.522, p = 0.001 for each pair). Kaplan-Meier analyses indicated that nuclear pIGF-1R predicted poor overall survival, a finding confirmed in the Cox proportional hazards model. Though additional investigation in a larger prospective study will be required to validate the prognostic accuracy of these markers, our results may have broad implications for the new class of YAP, TAZ, AXL, or TEAD inhibitors that have reached early phase clinical trials this year.
Collapse
|
13
|
Yu B, Liu L, Cai F, Peng Y, Tang X, Zeng D, Li T, Zhang F, Liang Y, Yuan X, Li J, Dai Z, Liao Q, Lv XB. The synergistic anticancer effect of the bromodomain inhibitor OTX015 and histone deacetylase 6 inhibitor WT-161 in osteosarcoma. Cancer Cell Int 2022; 22:64. [PMID: 35135529 PMCID: PMC8822767 DOI: 10.1186/s12935-022-02443-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 01/01/2022] [Indexed: 12/04/2022] Open
Abstract
Background Osteosarcoma (OS) is a tumour with a high malignancy level and a poor prognosis. First-line chemotherapy for OS has not been improved for many decades. Bromodomain and extraterminal domain (BET) and histone deacetylases (HDACs) regulate histone acetylation in tandem, and BET and HDACs have emerged as potential cancer therapeutic targets. Methods Cell proliferation, migration, invasion, colony formation, and sphere-forming assays were performed with the two inhibitors alone or in combination to evaluate their suppressive effect on the malignant properties of OS cells. Apoptosis and the cell cycle profile were measured by flow cytometry. The synergistic inhibitory effect of OTX015/WT-161 on tumours was also examined in a nude mouse xenograft model. Results The combined therapy of OTX015/WT-161 synergistically inhibited growth, migration, and invasion and induced apoptosis, resulting in G1/S arrest of OS cells. Additionally, OTX015/WT-161 inhibited the self-renewal ability of OS stem cells (OSCs) in a synergistic manner. Further mechanistic exploration revealed that the synergistic downregulation of β-catenin by OTX015-mediated suppression of FZD2 and WT-161-mediated upregulation of PTEN may be critical for the synergistic effect. Finally, the results of an in vivo assay showed that tumour xenografts were significantly decreased after treatment with the OTX015/WT-161 combination compared with OTX015 or WT-161 alone. Conclusions Our findings in this study demonstrated that OTX015 and WT-161 had synergistic anticancer efficacy against OS, and their combination might be a promising therapeutic strategy for OS. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02443-y.
Collapse
Affiliation(s)
- Bo Yu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Lang Liu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Feng Cai
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Yuanxiang Peng
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Xiaofeng Tang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Duo Zeng
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Teng Li
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Feifei Zhang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Yiping Liang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Xuhui Yuan
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Jiayu Li
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Zhengzai Dai
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Qi Liao
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China. .,Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.
| | - Xiao-Bin Lv
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.
| |
Collapse
|
14
|
Xu L, Tan Y, Xu F, Zhang Y. Long noncoding RNA ADIRF antisense RNA 1 upregulates insulin receptor substrate 1 to decrease the aggressiveness of osteosarcoma by sponging microRNA-761. Bioengineered 2022; 13:2028-2043. [PMID: 35030964 PMCID: PMC8973676 DOI: 10.1080/21655979.2021.2019872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
An increasing number of studies have supported the critical regulatory actions of long noncoding RNAs (lncRNAs) in osteosarcoma (OS). However, the detailed roles of adipogenesis regulatory factor-antisense RNA 1 (ADIRF-AS1) in OS have not been comprehensively described. Hence, we first detected ADIRF-AS1 expression in OS and evaluated its clinical significance. Functional experiments were then performed to determine the modulatory role of ADIRF-AS1 in OS progression. ADIRF-AS1 was found to be overexpressed in OS, and the overall survival of patients with OS who had high ADIRF-AS1 levels was shorter than that of those with low levels. ADIRF-AS1 knockdown led to restricted proliferation, migration, and invasiveness of OS cells and increased apoptosis. Additionally, ADIRF-AS1 downregulation impeded tumor growth in vivo. Mechanistically, ADIRF-AS1 acted as a competitive endogenous RNA for microRNA-761 (miR-761) that siphoned miR-761 away from its target, namely insulin receptor substrate 1 (IRS1), leading to IRS1 overexpression. Rescue experiments showed that low levels of miR-761 or restoration of IRS1 could neutralize the effects of ADIRF-AS1 ablation in OS cells. In summary, ADIRF-AS1 exacerbates the oncogenicity of the OS cells by targeting the miR-761/IRS1 axis. Our findings may aid in the advancement of lncRNA-directed therapeutics for OS.
Collapse
Affiliation(s)
- Lingling Xu
- Department of Oncology, Weifang Yidu Central Hospital, Weifang, Shandong China
| | - Yinling Tan
- Department of Orthopedics, Weifang Yidu Central Hospital, Weifang, Shandong China
| | - Fengxia Xu
- Department of Orthopedics, Weifang Yidu Central Hospital, Weifang, Shandong China
| | - Yong Zhang
- Department of Orthopedics, The Fifth People's Hospital of Jinan, Shandong China
| |
Collapse
|
15
|
Chitooligosaccharides inhibit tumor progression and induce autophagy through the activation of the p53/mTOR pathway in osteosarcoma. Carbohydr Polym 2021; 258:117596. [DOI: 10.1016/j.carbpol.2020.117596] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
|
16
|
Osteosarcoma Cell-Derived Exosomal miR-1307 Promotes Tumorgenesis via Targeting AGAP1. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7358153. [PMID: 33834074 PMCID: PMC8016573 DOI: 10.1155/2021/7358153] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 01/03/2023]
Abstract
The occurrence of osteosarcoma (OS) is associated with abnormal expression of many microRNAs (miRNAs). Exosomal miRNAs get much more attentions in intracellular communications. miR-1307 has been studied in many cancers, but its effects in OS have not been studied. We hypothesized that OS-derived exosomal miR-1307 regulates OS tumorigenesis. First, we found OS cell-derived exosomes (Exos) significantly promoted the proliferation, migration, and invasion of OS cells. Secondly, we found miR-1307 was highly expressed in OS cell-derived exosomes (OS-Exos), human OS tissues, and OS cell lines. Then, OS-Exos were extracted after OS cells were cultured and transfected with miR-1307 inhibitor, and the level of miR-1307 in OS-Exos was significantly reduced. When the level of miR-1307 in OS-Exos was significantly reduced, the effects of OS-Exos on migration, invasion, and proliferation of OS cells were also significantly weakened. Furthermore, using TargetScan, miRDB, and mirDIP databases, we identified that AGAP1 was a target gene of miR-1307. Overexpression of miR-1307 could inhibit the expression of AGAP1 gene. We also found AGAP1 was lower expressed in human OS tissues and OS cell lines. Luciferase gene indicated that miR-1307 directly bound the 3'-UTR of AGAP1. miR-1307 was negatively correlated with AGAP1 in clinical study. miR-1307 could significantly promote the proliferation, migration, and invasion of OS cells. In addition, upregulation of AGAP1 could significantly inhibit the role of miR-1307 in OS. In conclusion, our study suggests that OS cell-derived exosomal miR-1307 promotes the proliferation, migration, and invasion of OS cells via targeting AGAP1, and miR-1307-AGAP1 axis may play an important role in the future treatment of OS.
Collapse
|
17
|
Shan HJ, Zhu LQ, Yao C, Zhang ZQ, Liu YY, Jiang Q, Zhou XZ, Wang XD, Cao C. MAFG-driven osteosarcoma cell progression is inhibited by a novel miRNA miR-4660. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:385-402. [PMID: 33868783 PMCID: PMC8039776 DOI: 10.1016/j.omtn.2021.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/10/2021] [Indexed: 12/23/2022]
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy in the adolescent population. MAFG (v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog G) forms a heterodimer with Nrf2 (NF-E2-related factor 2), binding to antioxidant response element (ARE), which is required for Nrf2 signaling activation. We found that MAFG mRNA and protein expression is significantly elevated in human OS tissues as well as in established and primary human OS cells. In human OS cells, MAGF silencing or knockout (KO) largely inhibited OS cell growth, proliferation, and migration, simultaneously inducing oxidative injury and apoptosis activation. Conversely, ectopic overexpression of MAFG augmented OS cell progression in vitro. MicroRNA-4660 (miR-4660) directly binds the 3′ untranslated region (UTR) of MAFG mRNA in the cytoplasm of OS cells. MAFG 3′ UTR luciferase activity and expression as well as OS cell growth were largely inhibited with forced miR-4660 overexpression but augmented with miR-4660 inhibition. In vivo, MAGF short hairpin RNA (shRNA) or forced overexpression of miR-4660 inhibited subcutaneous OS xenograft growth in severe combined immunodeficient mice. Furthermore, MAFG silencing or miR-4660 overexpression inhibited OS xenograft in situ growth in proximal tibia of the nude mice. In summary, MAFG overexpression-driven OS cell progression is inhibited by miR-4660. The miR-4660-MAFG axis could be novel therapeutic target for human OS.
Collapse
Affiliation(s)
- Hua-Jian Shan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215003, China
| | - Lun-Qing Zhu
- Department of Pediatric Orthopedics, The Children's Hospital of Soochow University, Suzhou 215100, China
| | - Chen Yao
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of TCM, Nanjing, China
| | - Zhi-Qing Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Yuan-Yuan Liu
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xiao-Zhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215003, China
| | - Xiao-Dong Wang
- Department of Pediatric Orthopedics, The Children's Hospital of Soochow University, Suzhou 215100, China
| | - Cong Cao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China.,The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| |
Collapse
|
18
|
Liu S, Zhang J, Zheng T, Mou X, Xin W. Circ_WWC3 overexpression decelerates the progression of osteosarcoma by regulating miR-421/PDE7B axis. Open Life Sci 2021; 16:229-241. [PMID: 33817314 PMCID: PMC7968534 DOI: 10.1515/biol-2021-0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/04/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022] Open
Abstract
Background Emerging evidence has shown that circular RNAs (circRNAs) are vital regulators in osteosarcoma (OS) progression. However, the effects of circ_WWC3 in OS have not been explored. In this research, the functions and mechanisms of circ_WWC3 in OS were investigated. Methods Quantitative reverse trancription polymerase chain reaction (qRT-PCR) was adopted to determine the levels of circ_WWC3, WW and WWC3 mRNA, miR-421, and phosphodiesterase 7B (PDE7B) mRNA. RNase R assay was used to determine the characteristic of circ_WWC3. Colony formation assay and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay were applied for cell growth. Transwell assay was performed for cell migration and invasion. Flow cytometry analysis was utilized for cell apoptosis. Western blot assay was conducted for the levels of apoptosis-related proteins and PDE7B protein. Dual-luciferase reporter assay was carried out to analyze the targeting relationship between miR-421 and circ_WWC3 or PDE7B. The murine xenograft model was established to explore the effect of circ_WWC3 in vivo. Results Compared to normal tissues and cells, circ_WWC3 and PDE7B were downregulated in OS tissues and cells. Overexpression of circ_WWC3 or PDE7B suppressed OS cell growth, migration, and invasion and promoted apoptosis in vitro. Regarding the mechanism analysis, circ_WWC3 positively modulated PDE7B expression by targeting miR-421. MiR-421 overexpression restored the impacts of circ_WWC3 on OS cell growth, metastasis, and apoptosis. Inhibition of miR-421 repressed the malignant behaviors of OS cells by targeting PDE7B. In addition, circ_WWC3 inhibited the tumorigenicity of OS in vivo. Conclusion Circ_WWC3 overexpression slowed the development of OS by elevating PDE7B via sponging miR-421.
Collapse
Affiliation(s)
- Sihai Liu
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Jing Zhang
- Taizhou Vocational and Technical College, Taizhou, Zhejiang, 318000, China
| | - Ting Zheng
- Department Emergency, Taizhou First People’s Hospital, No. 218 Hengjie Road, Huangyan District, Taizhou, Zhejiang, 318020, China
| | - Xiongneng Mou
- Department Emergency, Taizhou First People’s Hospital, No. 218 Hengjie Road, Huangyan District, Taizhou, Zhejiang, 318020, China
| | - Wenwei Xin
- Department Emergency, Taizhou First People’s Hospital, No. 218 Hengjie Road, Huangyan District, Taizhou, Zhejiang, 318020, China
| |
Collapse
|
19
|
Wan J, Liu Y, Long F, Tian J, Zhang C. circPVT1 promotes osteosarcoma glycolysis and metastasis by sponging miR-423-5p to activate Wnt5a/Ror2 signaling. Cancer Sci 2021; 112:1707-1722. [PMID: 33369809 PMCID: PMC8088910 DOI: 10.1111/cas.14787] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma (OS) is the most prevalent form of bone cancer. It has a high metastatic potential and progresses rapidly. The molecular mechanisms of OS remain unclear and this study aims to examine the functional role of circPVT1 and miR‐423‐5p in OS. Quantitative RT‐PCR (qRT‐PCR) and western blotting were used to examine levels of miR‐423‐5p, circPVT1, Wnt5a, Ror2, and glycolysis‐related proteins, including HK2, PKM2, GLUT1, and LDHA. Colony formation and transwell assays were used to test the roles of miR‐423‐5p, circPVT1, and Wnt5a/Ror2 in OS cell proliferation, migration, and invasion. Dual luciferase assay and Ago2‐RIP were used to validate the interactions of miR‐423‐5p/Wnt5a, miR‐423‐5p/Ror2, and circPVT1/miR‐423‐5p. Glucose uptake assay and measurement of lactate production were performed to assess the glycolysis process. A nude mouse xenograft model was used to evaluate the effects of sh‐circPVT1 and miR‐423‐5p mimics on tumor growth and metastasis in vivo. miR‐423‐5p was reduced in both OS tissues and OS cell lines, while Wnt5a/Ror2 and circPVT1 were elevated. miR‐423‐5p bound to 3′‐UTR of Wnt5a and Ror2 mRNA, and inhibited glycolysis and OS cell proliferation, migration, and invasion by targeting Wnt5a and Ror2. circPVT1 interacted with miR‐423‐5p and activated Wnt5a/Ror2 signaling by sponging miR‐423‐5p. Knockdown of circPVT1 or overexpression of miR‐423‐5p suppressed OS tumor growth and metastasis in vivo. miR‐423‐5p inhibited OS glycolysis, proliferation, migration, and metastasis by targeting and suppressing Wnt5a/Ror2 signaling pathway, while circPVT1 promoted those processes by acting as a sponge of miR‐423‐5p.
Collapse
Affiliation(s)
- Jun Wan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yupeng Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Feng Long
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Tian
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Can Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Wang Q, Liu MJ, Bu J, Deng JL, Jiang BY, Jiang LD, He XJ. miR-485-3p regulated by MALAT1 inhibits osteosarcoma glycolysis and metastasis by directly suppressing c-MET and AKT3/mTOR signalling. Life Sci 2021; 268:118925. [PMID: 33358903 DOI: 10.1016/j.lfs.2020.118925] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/25/2022]
Abstract
AIMS Osteosarcoma (OS) is an extremely malignant bone cancer with high incidence and rapid progression. This study aims to investigate the role and underlying mechanisms of MALAT1 and miR-485-3p in OS. MATERIALS AND METHODS qRT-PCR and Western blotting were utilized to measure the levels of miR-485-3p, MALAT1, c-MET, AKT3, p-mTOR, mTOR, glycolysis-related proteins or migration-related proteins. Colony formation and transwell assay were used to test the roles of miR-485-3p, MALAT1, c-MET and AKT3 in cancer cell proliferation, migration and invasion. Dual luciferase assay was used to validate the interactions of miR-485-3p/c-MET, miR-485-3p/AKT3, and MALAT1/miR-485-3p. Glucose uptake assay and measurement of lactate production were employed to determine the glycolysis process. Mouse tumour xenograft model was used to determine the effect of shMALAT1 and miR-485-3p mimics on tumour growth and metastasis in vivo. KEY FINDINGS miR-485-3p was decreased while c-MET, AKT3, and MALAT1 were increased in human OS tissues and cells. miR-485-3p bound directly to c-MET and AKT3 mRNAs and repressed OS cell glycolysis, proliferation, migration, and invasion through decreasing glycolysis-related proteins and migration-related proteins via inhibiting c-MET and AKT3/mTOR pathway. In addition, MALAT1 interacted with miR-485-3p and disinhibited c-MET and AKT3/mTOR signalling. Knockdown MALAT1 or overexpression of miR-485-3p restrained OS tumour growth and lung metastasis in vivo. SIGNIFICANCE miR-485-3p suppresses OS glycolysis, proliferation, and metastasis via inhibiting c-MET and AKT3/mTOR signalling and MALAT1 acts as a sponge of miR-485-3p. MALAT1 and miR-485-3p may be the key regulators in OS progression, and potential molecular targets for future OS therapy.
Collapse
Affiliation(s)
- Qing Wang
- Department of Respiratory and Critical Care Medicine, Changsha Central Hospital (University of South China Affiliated Changsha Central Hospital), Changsha 410004, Hunan Province, PR China
| | - Ming-Jiang Liu
- Department of Orthopaedics, Changsha Central Hospital (University of South China Affiliated Changsha Central Hospital), Changsha 410004, Hunan Province, PR China
| | - Jie Bu
- Orthopedics & Soft Tissue Department, Hunan Cancer Hospital, Changsha 410013, Hunan Province, PR China
| | - Jian-Liang Deng
- Department of Orthopaedics, Changsha Central Hospital (University of South China Affiliated Changsha Central Hospital), Changsha 410004, Hunan Province, PR China
| | - Bin-Yuan Jiang
- Central Laboratory, Changsha Central Hospital (University of South China Affiliated Changsha Central Hospital), Changsha 410004, Hunan Province, PR China
| | - Liang-Dong Jiang
- Department of Orthopaedics, Changsha Central Hospital (University of South China Affiliated Changsha Central Hospital), Changsha 410004, Hunan Province, PR China.
| | - Xiao-Jie He
- Laboratory of Pediatric Nephrology, Institute of Pediatrics, Central South University, Changsha 410011, Hunan Province, PR China.
| |
Collapse
|
21
|
Mechanisms of Resistance to Conventional Therapies for Osteosarcoma. Cancers (Basel) 2021; 13:cancers13040683. [PMID: 33567616 PMCID: PMC7915189 DOI: 10.3390/cancers13040683] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor, mainly occurring in children and adolescents. Current standard therapy includes tumor resection associated with multidrug chemotherapy. However, patient survival has not evolved for the past decades. Since the 1970s, the 5-year survival rate is around 75% for patients with localized OS but dramatically drops to 20% for bad responders to chemotherapy or patients with metastases. Resistance is one of the biological processes at the origin of therapeutic failure. Therefore, it is necessary to better understand and decipher molecular mechanisms of resistance to conventional chemotherapy in order to develop new strategies and to adapt treatments for patients, thus improving the survival rate. This review will describe most of the molecular mechanisms involved in OS chemoresistance, such as a decrease in intracellular accumulation of drugs, inactivation of drugs, improved DNA repair, modulations of signaling pathways, resistance linked to autophagy, disruption in genes expression linked to the cell cycle, or even implication of the micro-environment. We will also give an overview of potential therapeutic strategies to circumvent resistance development.
Collapse
|
22
|
Shi C, Cheng WN, Wang Y, Li DZ, Zhou LN, Zhu YC, Zhou XZ. p38γ overexpression promotes osteosarcoma cell progression. Aging (Albany NY) 2020; 12:18384-18395. [PMID: 32970611 PMCID: PMC7585114 DOI: 10.18632/aging.103708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/29/2020] [Indexed: 01/24/2023]
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy in the adolescent population. Recent studies demonstrate that p38 gamma (p38γ) phosphorylates retinoblastoma (Rb) to promote cyclin expression, cell-cycle entry and tumorigenesis. Studying the potential function of p38γ in human OS, we show that p38γ mRNA and protein expression are significantly elevated in OS tissues and OS cells, whereas its expression is relatively low in normal bone tissue and in human osteoblasts/osteoblastic cells. Knockdown of p38γ in established (U2OS) and primary human OS cells potently inhibited cell growth, proliferation, migration and invasion, while promoting cell apoptosis. Furthermore, CRISPR/Cas9-induced p38γ knockout inhibited human OS cell progression in vitro. Conversely, ectopic overexpression of p38γ in primary human OS cells augmented cell growth, proliferation and migration. Signaling studies show that retinoblastoma (Rb) phosphorylation and cyclin E1/cyclin A expression were decreased following p38γ shRNA knockdown and knockout, but increased after ectopic p38γ overexpression. Collectively, these results show that p38γ overexpression promotes human OS cell progression.
Collapse
Affiliation(s)
- Ce Shi
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Orthopedics, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Wei-Nan Cheng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yin Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Da-Zhuang Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Li-Na Zhou
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yu-Cheng Zhu
- Department of Orthopedics, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Xiao-Zhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
23
|
Bone Microenvironment and Osteosarcoma Metastasis. Int J Mol Sci 2020; 21:ijms21196985. [PMID: 32977425 PMCID: PMC7582690 DOI: 10.3390/ijms21196985] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023] Open
Abstract
The bone microenvironment is an ideal fertile soil for both primary and secondary tumors to seed. The occurrence and development of osteosarcoma, as a primary bone tumor, is closely related to the bone microenvironment. Especially, the metastasis of osteosarcoma is the remaining challenge of therapy and poor prognosis. Increasing evidence focuses on the relationship between the bone microenvironment and osteosarcoma metastasis. Many elements exist in the bone microenvironment, such as acids, hypoxia, and chemokines, which have been verified to affect the progression and malignance of osteosarcoma through various signaling pathways. We thoroughly summarized all these regulators in the bone microenvironment and the transmission cascades, accordingly, attempting to furnish hints for inhibiting osteosarcoma metastasis via the amelioration of the bone microenvironment. In addition, analysis of the cross-talk between the bone microenvironment and osteosarcoma will help us to deeply understand the development of osteosarcoma. The cellular and molecular protagonists presented in the bone microenvironment promoting osteosarcoma metastasis will accelerate the exploration of novel therapeutic strategies towards osteosarcoma.
Collapse
|
24
|
Li S, Zeng M, Yang L, Tan J, Yang J, Guan H, Kuang M, Li J. Hsa_circ_0008934 promotes the proliferation and migration of osteosarcoma cells by targeting miR-145-5p to enhance E2F3 expression. Int J Biochem Cell Biol 2020; 127:105826. [PMID: 32822848 DOI: 10.1016/j.biocel.2020.105826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To investigate the role of hsa_circ_0008934 in osteosarcoma and the molecular mechanism involved in the regulation of the occurrence and development of osteosarcoma METHODS: Differentially expressed circRNAs in the osteosarcoma cell lines SaOS2 and MG63 and in the normal human osteoblast cell line hFOB1.19 were identified via next-generation RNA sequencing. The expression and circular morphology of hsa_circ_0008934 were analyzed via quantitative real-time polymerase chain reaction (qRT-PCR) and RT-PCR analysis, respectively. Proliferation, apoptosis, cell cycle progression, migration, and invasion of SaOS2 and MG63 cells with hsa_circ_0008934 silencing or overexpression were assessed using the MTS method, colony formation assay, flow cytometry, and the transwell system, respectively. The subcellular distribution of hsa_circ_0008934 was revealed via fluorescence in situ hybridization. The binding of hsa_circ_0008934 with microRNAs was confirmed using the dual-luciferase reporter assay. The oncogenic roles of hsa_circ_0008934 in osteosarcoma were determined using an in vivo tumorigenesis assay with nude mice. qRT-PCR, western blotting, TUNEL assay, and immunohistochemistry (IHC) were used to detect the tumorigenicity of hsa_circ_0008934 in osteosarcoma cells. RESULTS Many circRNAs were differentially expressed in SaOS2 and MG63 cells than in hFOB1.19 cells. Hsa_circ_0008934 expression was significantly elevated in SaOS2 and MG63 cells. Hsa_circ_0008934 silencing significantly reduced proliferation, enhanced apoptosis, blocked cell cycle progression, and impaired migration and invasion capacities of SaOS2 cells. Opposite cellular alterations were achieved by overexpressing hsa_circ_0008934 in MG63 cells. Hsa_circ_0008934 was mainly distributed in the cytosol and positively regulated E2F3 expression in osteosarcoma cells. In addition, it directly bound with miR-145-5p to repress E2F3 expression and enhanced the tumorigenesis of MG63 cells in nude mice. qRT-PCR revealed that the intracellular injection of hsa_circ_0008934 lentivirus resulted in hsa_circ_0008934 overexpression and miR-145-5p downregulation. Western blotting confirmed that E2F3 was upregulated. Moreover, the TUNEL assay showed that hsa_circ_0008934 overexpression inhibited the apoptosis of tumor cells. IHC detection revealed that the hsa_circ_0008934 overexpression could promote the expression of Ki67 and PCNA. CONCLUSION Elevated hsa_circ_0008934 expression promotes the proliferation and migration of osteosarcoma cells by sponging miR-145-5p to enhance E2F3 expression.
Collapse
Affiliation(s)
- Shiyuan Li
- Department of Spinal Surgery, the First People's Hospital of Foshan, Foshan 528000, Guangdong, China.
| | - Ming Zeng
- Department of Spinal Surgery, the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Lin Yang
- Department of Spinal Surgery, the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Jianshao Tan
- Department of Spinal Surgery, the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Jianqi Yang
- Department of Spinal Surgery, the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Hongye Guan
- Department of Spinal Surgery, the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Manyuan Kuang
- Department of Spinal Surgery, the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Jiaying Li
- Department of Spinal Surgery, the First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| |
Collapse
|
25
|
Zhai Q, Qin J, Jin X, Sun X, Wang L, Du W, Li T, Xiang X. PADI4 modulates the invasion and migration of osteosarcoma cells by down-regulation of epithelial-mesenchymal transition. Life Sci 2020; 256:117968. [PMID: 32544462 DOI: 10.1016/j.lfs.2020.117968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
Osteosarcoma (OS) is the most common type of primary bone malignancy with high recurrence and metastasis. Peptidylarginine deiminase 4 (PADI4), as an important protein post-translational modification enzyme, has been identified as a potential regulator in the invasion and migration in several types of tumors. The role of PADI4 in osteosarcoma metastasis remains unknown. In this study, we revealed significant positive correlation between PADI4 and pulmonary metastasis of osteosarcoma. Wound-healing and transwell assay indicated that PADI4 induced invasion and migration of osteosarcoma cell in vitro while PADI4 inhibitor has repressive effect. PADI4 mutation with no deimination activity exhibited no significant effect on invasion and migration of osteosarcoma cells. Moreover, we evaluated the effect of PADI4 on expression of the markers of epithelial-mesenchymal transition and results showed that PADI4 promoted EMT while PADI4 inhibitor suppressed EMT in osteosarcoma cells. We also detected the expression of PADI4 and E-Cadherin in the tissues of osteosarcoma patients with or without pulmonary metastasis. Results showed positive relationship between the expression of PADI4 and osteosarcoma metastasis. In contrast, the expression of E-Cadherin exhibited negative correlation with PADI4 and osteosarcoma metastasis. Our research offered a novel link between PADI4 and osteosarcoma metastasis and demonstrated PADI4 as a promising target for treatment of osteosarcoma metastasis.
Collapse
Affiliation(s)
- Qiaoli Zhai
- Center of Translational Medicine, Zibo Central Hospital, Zibo 255036, China
| | - Jie Qin
- Department of Oncology, Gaoqing People's Hospital, Zibo 256300, China
| | - Xiaodong Jin
- Department of Geriatrics, Zibo Central Hospital, Zibo 255036, China
| | - Xiaoyu Sun
- Department of Pathology, Zibo Central Hospital, Zibo 255036, China
| | - Linping Wang
- Center of Translational Medicine, Zibo Central Hospital, Zibo 255036, China
| | - Wenyan Du
- Center of Translational Medicine, Zibo Central Hospital, Zibo 255036, China
| | - Tao Li
- Center of Translational Medicine, Zibo Central Hospital, Zibo 255036, China.
| | - Xinxin Xiang
- Center of Translational Medicine, Zibo Central Hospital, Zibo 255036, China.
| |
Collapse
|
26
|
Molina ER, Chim LK, Barrios S, Ludwig JA, Mikos AG. Modeling the Tumor Microenvironment and Pathogenic Signaling in Bone Sarcoma. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:249-271. [PMID: 32057288 PMCID: PMC7310212 DOI: 10.1089/ten.teb.2019.0302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
Investigations of cancer biology and screening of potential therapeutics for efficacy and safety begin in the preclinical laboratory setting. A staple of most basic research in cancer involves the use of tissue culture plates, on which immortalized cell lines are grown in monolayers. However, this practice has been in use for over six decades and does not account for vital elements of the tumor microenvironment that are thought to aid in initiation, propagation, and ultimately, metastasis of cancer. Furthermore, information gleaned from these techniques does not always translate to animal models or, more crucially, clinical trials in cancer patients. Osteosarcoma (OS) and Ewing sarcoma (ES) are the most common primary tumors of bone, but outcomes for patients with metastatic or recurrent disease have stagnated in recent decades. The unique elements of the bone tumor microenvironment have been shown to play critical roles in the pathogenesis of these tumors and thus should be incorporated in the preclinical models of these diseases. In recent years, the field of tissue engineering has leveraged techniques used in designing scaffolds for regenerative medicine to engineer preclinical tumor models that incorporate spatiotemporal control of physical and biological elements. We herein review the clinical aspects of OS and ES, critical elements present in the sarcoma microenvironment, and engineering approaches to model the bone tumor microenvironment. Impact statement The current paradigm of cancer biology investigation and therapeutic testing relies heavily on monolayer, monoculture methods developed over half a century ago. However, these methods often lack essential hallmarks of the cancer microenvironment that contribute to tumor pathogenesis. Tissue engineers incorporate scaffolds, mechanical forces, cells, and bioactive signals into biological environments to drive cell phenotype. Investigators of bone sarcomas, aggressive tumors that often rob patients of decades of life, have begun to use tissue engineering techniques to devise in vitro models for these diseases. Their efforts highlight how critical elements of the cancer microenvironment directly affect tumor signaling and pathogenesis.
Collapse
Affiliation(s)
- Eric R. Molina
- Department of Bioengineering, Rice University, Houston, Texas
| | - Letitia K. Chim
- Department of Bioengineering, Rice University, Houston, Texas
| | - Sergio Barrios
- Department of Bioengineering, Rice University, Houston, Texas
| | - Joseph A. Ludwig
- Division of Cancer Medicine, Department of Sarcoma Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | | |
Collapse
|
27
|
Wang Y, Gao Y, Guo S, Chen Z. Integrated analysis of lncRNA-associated ceRNA network identified potential regulatory interactions in osteosarcoma. Genet Mol Biol 2020; 43:e20190090. [PMID: 32453338 PMCID: PMC7252519 DOI: 10.1590/1678-4685-gmb-2019-0090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/05/2020] [Indexed: 12/24/2022] Open
Abstract
This study aimed to identify potential therapeutic targets in osteosarcoma (OS) through the network analysis of competing endogenous RNAs (ceRNAs). The differentially expressed miRNAs (DEMIs) and mRNAs (DEMs) were identified between OS cell lines and human mesenchymal stem cells (hMSCs) from the data deposited under GSE70415 using limma package. Functional analysis of DEMs was performed using DAVID and clusterProfiler to identify significantly enriched Gene Ontology biological processes and KEGG pathways, respectively. The DEMI-DEM interaction network was constructed using Cytoscape. LncRNA-miRNA interactions were predicted using starBase database. The ceRNA regulatory network was constructed by integrating mRNAs, miRNAs, and lncRNAs, and functional enrichment analysis was performed for the genes involved. The analysis revealed a total of 326 DEMs and 54 DEMIs between OS cells and hMSCs. We identified several novel therapeutic targets involved in the progression and metastasis of OS, such as CBX7, RAD9A, SNHG7 and miR-34a-5p. The miRNA, miR-543 (target gene: CBX7) was found to be associated with the pathway Mucin type O-glycan biosynthesis. Using the ceRNA network, we established the following regulatory interactions: NEAT1/miR-543/CBX7, SNHG7/miR-34a-5p/RAD9A, and XIST/miR-34a-5p/RAD9A. CBX7, RAD9A, lncRNA SNHG7, miR-543, and miR-34a-5p may be explored as novel therapeutic targets for treatment of OS.
Collapse
Affiliation(s)
- Yongwei Wang
- Department of Anatomy, Basic Medical Institute, Chengde Medical
College, Chengde 067000, Hebei, China
| | - Yaxian Gao
- Department of Immunology, Basic Medical Institute, Chengde Medical
College, Chengde 067000, Hebei, China
| | - Sen Guo
- Department of Anatomy, Basic Medical Institute, Chengde Medical
College, Chengde 067000, Hebei, China
| | - Zhihong Chen
- Department of Anatomy, Basic Medical Institute, Chengde Medical
College, Chengde 067000, Hebei, China
| |
Collapse
|
28
|
Cao J, Liu XS. Circular RNA 0060428 sponges miR-375 to promote osteosarcoma cell proliferation by upregulating the expression of RPBJ. Gene 2020; 740:144520. [DOI: 10.1016/j.gene.2020.144520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/08/2020] [Accepted: 02/29/2020] [Indexed: 01/02/2023]
|
29
|
Yang S, Chen J, Tan T, Wang N, Huang Y, Wang Y, Yuan X, Zhang P, Luo J, Luo X. Evodiamine Exerts Anticancer Effects Against 143B and MG63 Cells Through the Wnt/β-Catenin Signaling Pathway. Cancer Manag Res 2020; 12:2875-2888. [PMID: 32425601 PMCID: PMC7196244 DOI: 10.2147/cmar.s238093] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Background Osteosarcoma is the most common primary malignant bone neoplasm and is associated with abysmal prognosis. There are limitations of current treatment methods. Therefore, developing new agents to treat osteosarcoma is exceptionally urgent. Aim This study aimed to evaluate the anticancer effects of evodiamine (EVO) on osteosarcoma cells and, meanwhile, to investigate the underlying mechanisms involved. Materials and Methods The effect of EVO on the proliferation of osteosarcoma was detected by MTT assay, crystal violet assay and colony formation assay. The effects of EVO on the migration and invasion of osteosarcoma were detected by wound-healing assay and transwell assay. The effect of EVO on apoptosis of osteosarcoma was measured by Hoechst 33258 staining and cell cycle assay. The protein expression levels were detected by Western blotting assay. The activity of Wnt/β-Catenin signaling pathway was detected by luciferase reporter assay and Western blotting assay. Results According to MTT, crystal violet and colony formation assay results, EVO significantly inhibited the cell proliferation in a dose-dependent manner. Hoechst 33258 staining assay revealed that EVO induced cell apoptosis in a concentration-dependent manner. Moreover, EVO inhibited the migration and invasion of the osteosarcoma cells. Mechanistic studies revealed that EVO suppresses metastatic through suppressing epithelial–mesenchymal transition (EMT) as indicated by elevating the expression of epithelial marker E‐cadherin and reducing the expression of mesenchymal markers N‐cadherin and vimentin, as well as EMT transcription factors Snail and MMPs. Subsequently, EVO induced cell cycle arrest at the G2/M phase that correlated with reduced levels of cyclin D1 protein, while the apoptotic effects of EVO were associated with the upregulation of Bax and Bad and a decrease in Bcl-2 protein levels. Furthermore, EVO exerted the anticancer effects by suppressing Wnt/β-catenin signal pathway in osteosarcoma cells. Conclusion In summary, EVO exhibited potent anticancer effects against human osteosarcoma cells and promoted apoptosis through suppressing Wnt/β-catenin signaling pathway. These results indicated that EVO may be regarded as a new approach for osteosarcoma treatment.
Collapse
Affiliation(s)
- Shengdong Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jin Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Tao Tan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Nan Wang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yanran Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yuping Wang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xiaohui Yuan
- Key Laboratory of Clinical Diagnosis of Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Ping Zhang
- Key Laboratory of Clinical Diagnosis of Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jinyong Luo
- Key Laboratory of Clinical Diagnosis of Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xiaoji Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| |
Collapse
|
30
|
Yin R, Liu J, Zhao D, Wang F. Long Non-Coding RNA ASB16-AS1 Functions as a miR-760 Sponge to Facilitate the Malignant Phenotype of Osteosarcoma by Increasing HDGF Expression. Onco Targets Ther 2020; 13:2261-2274. [PMID: 32214826 PMCID: PMC7081065 DOI: 10.2147/ott.s240022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose ASB16 antisense RNA 1 (ASB16-AS1) is a cancer-associated long non-coding RNA that contributes to tumorigenesis and tumor development. Nevertheless, to the best of our knowledge, whether and how ASB16-AS1 is implicated in osteosarcoma (OS) malignancy remains unclear and therefore warrants exploration. Our current study focused on making in-depth investigation of ASB16-AS1 in OS. In the present study, the expression pattern of ASB16-AS1 in OS tissues and cell lines was analyzed. In addition, we examined the clinical value of ASB16-AS1 for OS patients. Furthermore, we explored the impacts of ASB16-AS1 on the malignant phenotype of OS cells in vitro and in vivo as well as the underlying mechanism. Methods ASB16-AS1, microRNA-760 (miR-760) and hepatoma-derived growth factor (HDGF) expressions were measured using reverse transcription-quantitative PCR. Cell proliferation and apoptosis were evaluated using CCK-8 and flow cytometry analyses, respectively, and cell migration and invasion were determined via cell migration and invasion assays. Results ASB16-AS1 expression was significantly elevated in OS tissues and cell lines, and increased ASB16-AS1 expression was related to patients' tumor size, TNM stage, and distant metastasis. The overall survival rate of OS patients presenting high ASB16-AS1 expression was shorter than that of patients presenting low ASB16-AS1 expression. Reduced ASB16-AS1 expression inhibited OS cell proliferation, migration, and invasion; promoted cell apoptosis; and impaired tumor growth in vivo. Mechanistically, ASB16-AS1 served as a sponge for miR-760 and positively modulated the expression of its target HDGF. Finally, inhibiting miR-760 and restoring HDGF expression abolished the impacts of ASB16-AS1 knockdown on the malignant characteristics of OS cells. Conclusion ASB16-AS1 is a novel oncogenic lncRNA in OS cells. ASB16-AS1 increased HDGF expression by sponging miR-760, thereby conferring cancer-promoting roles in OS. ASB16-AS1 is a potential early diagnostic and therapeutic target in OS.
Collapse
Affiliation(s)
- Ruofeng Yin
- Department of Orthopedics, China-Japan Union Hospital Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Junzhi Liu
- Department of Quality Control, China-Japan Union Hospital Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Dongxu Zhao
- Department of Orthopedics, China-Japan Union Hospital Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Fei Wang
- Department of Orthopedics, China-Japan Union Hospital Jilin University, Changchun, Jilin 130033, People's Republic of China
| |
Collapse
|
31
|
Moukengue B, Brown HK, Charrier C, Battaglia S, Baud'huin M, Quillard T, Pham TM, Pateras IS, Gorgoulis VG, Helleday T, Heymann D, Berglund UW, Ory B, Lamoureux F. TH1579, MTH1 inhibitor, delays tumour growth and inhibits metastases development in osteosarcoma model. EBioMedicine 2020; 53:102704. [PMID: 32151797 PMCID: PMC7063190 DOI: 10.1016/j.ebiom.2020.102704] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/22/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023] Open
Abstract
Background Osteosarcoma (OS) is the most common primary malignant bone tumour. Unfortunately, no new treatments are approved and over the last 30 years the survival rate remains only 30% at 5 years for poor responders justifying an urgent need of new therapies. The Mutt homolog 1 (MTH1) enzyme prevents incorporation of oxidized nucleotides into DNA and recently developed MTH1 inhibitors may offer therapeutic potential as MTH1 is overexpressed in various cancers. Methods The aim of this study was to evaluate the therapeutic benefits of targeting MTH1 with two chemical inhibitors, TH588 and TH1579 on human osteosarcoma cells. Preclinical efficacy of TH1579 was assessed in human osteosarcoma xenograft model on tumour growth and development of pulmonary metastases. Findings MTH1 is overexpressed in OS patients and tumour cell lines, compared to mesenchymal stem cells. In vitro, chemical inhibition of MTH1 by TH588 and TH1579 decreases OS cells viability, impairs their cell cycle and increases apoptosis in OS cells. TH1579 was confirmed to bind MTH1 by CETSA in OS model. Moreover, 90 mg/kg of TH1579 reduces in vivo tumour growth by 80.5% compared to non-treated group at day 48. This result was associated with the increase in 8-oxo-dG integration into tumour cells DNA and the increase of apoptosis. Additionally, TH1579 also reduces the number of pulmonary metastases. Interpretation All these results strongly provide a pre-clinical proof-of-principle that TH1579 could be a therapeutic option for patients with osteosarcoma. Funding This study was supported by La Ligue Contre le Cancer, la SFCE and Enfants Cancers Santé.
Collapse
Affiliation(s)
- Brice Moukengue
- Université de Nantes, INSERM, U1238, Sarcomes osseux et remodelage des tissus calcifiés, Team 3, Epistress, Rue Gaston Veil, 44035 Nantes cedex, France
| | - Hannah K Brown
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK; University of Sheffield, INSERM, European Associated Laboratory "Sarcoma Research Unit", Medical School, S10 2RX, Sheffield, UK
| | - Céline Charrier
- Université de Nantes, INSERM, U1238, Sarcomes osseux et remodelage des tissus calcifiés, Team 3, Epistress, Rue Gaston Veil, 44035 Nantes cedex, France
| | - Séverine Battaglia
- Université de Nantes, INSERM, U1238, Sarcomes osseux et remodelage des tissus calcifiés, Team 3, Epistress, Rue Gaston Veil, 44035 Nantes cedex, France
| | - Marc Baud'huin
- Université de Nantes, INSERM, U1238, Sarcomes osseux et remodelage des tissus calcifiés, Team 3, Epistress, Rue Gaston Veil, 44035 Nantes cedex, France; CHU de Nantes, Nantes, France
| | - Thibaut Quillard
- Université de Nantes, INSERM, U1238, Sarcomes osseux et remodelage des tissus calcifiés, Team 3, Epistress, Rue Gaston Veil, 44035 Nantes cedex, France
| | - Therese M Pham
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Ioannis S Pateras
- Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - Vassilis G Gorgoulis
- Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, Athens, Greece; Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Faculty of Biology, Medicine and Health Manchester Cancer Research Centre, Manchester Academic Health Centre, The University of Manchester, Manchester, UK
| | - Thomas Helleday
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Dominique Heymann
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK; University of Sheffield, INSERM, European Associated Laboratory "Sarcoma Research Unit", Medical School, S10 2RX, Sheffield, UK; INSERM, U1232, CRCINA, Institut de Cancérologie de l'Ouest, University of Nantes, Université d'Angers, Blvd Jacques Monod, 44805 Saint-Herblain, France
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Benjamin Ory
- Université de Nantes, INSERM, U1238, Sarcomes osseux et remodelage des tissus calcifiés, Team 3, Epistress, Rue Gaston Veil, 44035 Nantes cedex, France
| | - Francois Lamoureux
- Université de Nantes, INSERM, U1238, Sarcomes osseux et remodelage des tissus calcifiés, Team 3, Epistress, Rue Gaston Veil, 44035 Nantes cedex, France.
| |
Collapse
|
32
|
Hypoxia-Inducible Factor 1A Upregulates HMGN5 by Increasing the Expression of GATA1 and Plays a Role in Osteosarcoma Metastasis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5630124. [PMID: 31930127 PMCID: PMC6942741 DOI: 10.1155/2019/5630124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/10/2019] [Indexed: 11/17/2022]
Abstract
Osteosarcoma is one of the most common malignant tumors in children and adolescents and is characterized by early metastasis. High-mobility group N (HMGN) domains are involved in the development of several tumors. Our previous study found that HMGN5 is highly expressed in osteosarcoma tissues and knockdown of HMGN5 inhibits migration and invasion of U-2 OS and Saos-2 cells. A hypoxic environment is commonly found in solid tumors such as osteosarcoma and is likely to be associated with tumor metastasis, so we further explored the relationship between HMGN5 and the hypoxic environment. Hypoxia-inducible factor 1A (HIF1A) is an adaptive factor in the hypoxic environment. We found that HIF1A and HMGN5 were upregulated in osteosarcoma (OS) cells cultured in the hypoxic environment, and the results of overexpression and knockdown experiments showed that HIF1A upregulated the transcription factor GATA1 and further promoted the expression of HMGN5. In addition, MMP2 and MMP9 were subsequently upregulated through the c-jun pathway, and finally, this promoted the migration and invasion of OS cells. It is suggested that HMGN5 may be an important downstream factor for HIF1A to promote osteosarcoma metastasis. It has an important clinical significance for the selection of therapeutic targets for osteosarcoma.
Collapse
|
33
|
Guo Y, Zhu J, Wang X, Li R, Jiang K, Chen S, Fan J, Xue L, Hao D. Orai1 Promotes Osteosarcoma Metastasis by Activating the Ras-Rac1-WAVE2 Signaling Pathway. Med Sci Monit 2019; 25:9227-9236. [PMID: 31796725 PMCID: PMC6909920 DOI: 10.12659/msm.919594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background The purpose of this study was to investigate whether Orai1 plays a role in the metastasis of osteosarcoma. Material/Methods The expression of Orai1 was silenced by small interfering RNAs against Orai1 (Orai1 siRNA) in osteosarcoma MG-63 cells. Various experiments were carried out to detect the changes in migration, invasion, and adhesion ability of these osteosarcoma cells. Furthermore, the activity of Rac1, Wave2, and Ras was detected using Western blot analysis. Moreover, the Rac1 and Ras inhibitors were used to confirm whether the Ras-Rac1-WAVE2 signaling pathway was involved in osteosarcoma metastasis promoted by Orai1. Results We found that the migration, invasion, and adhesion ability of MG-63 cells were significantly reduced after silencing Orai1 expression (p<0.05). Moreover, the activity of the Rac1-WAVE2 signaling pathway was significantly inhibited after silencing of Orai1 expression (p<0.05). After the Rac1 inhibitor was added, Orai1 siRNA could not further inhibit migration, invasion, and adhesion of the osteosarcoma cells. Further experiments showed that Ras activity was significantly inhibited after silencing Orai1 expression (p<0.05). Moreover, Orai1 siRNA did not further inhibit the activity of the Rac1-WAVE2 signaling pathway nor did it further inhibit the migration, invasion, and adhesion ability of osteosarcoma cells following the addition of Ras inhibitors. Conclusions Orai1 activates the Ras-Rac1-WAVE2 signaling pathway to promote metastasis of osteosarcoma. Abnormal expression or function of Orai1 may be an important cause of osteosarcoma metastasis.
Collapse
Affiliation(s)
- Yunshan Guo
- Department of Spinal Surgery, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Jinwen Zhu
- Department of Spinal Surgery, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Xiaodong Wang
- Department of Spinal Surgery, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Ruoyu Li
- Department of Spinal Surgery, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Kuo Jiang
- Department of Spinal Surgery, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Shi Chen
- Department of Emergency Medicine, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Jinzhu Fan
- Department of Orthopedics, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Liujie Xue
- Department of Spinal Surgery, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Dingjun Hao
- Department of Spinal Surgery, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
34
|
Wu B, Xing C, Tao J. Upregulation of microRNA-23b-3p induced by farnesoid X receptor regulates the proliferation and apoptosis of osteosarcoma cells. J Orthop Surg Res 2019; 14:398. [PMID: 31779647 PMCID: PMC6883581 DOI: 10.1186/s13018-019-1404-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The downstream targets of farnesoid X receptor (FXR) such as miRNAs have a potent effect on the progression of many types of cancer. We aim to study the effects of FXR on osteosarcoma (OS) development and the potential role of microRNA-23b-3p. METHODS The expressions of FXR and miR-23b-3p in normal osteoblasts and five osteosarcoma cell lines were measured. Their correlations were analyzed by Pearson's test and verified by the introduction of FXR agonist, GW4064. TargetScan predicted that cyclin G1 (CCNG1) was a target for miR-23b-3p. The transfection of FXR siRNA was performed to confirm the correlation between FXR and miR-23b-3p. We further transfected miR-23b-3p inhibitor into MG-63 cells, and the transfected cells were treated with 5 μM GW4064 for 48 h. Quantitative PCR (qPCR) and Western blot were performed for expression analysis. Cell proliferation, cell apoptosis rate, and cell cycle distribution were assessed by clone formation assay and flow cytometry. RESULTS Scatter plot showed a positive correlation between FXR and miR-23b-3p (Pearson's coefficient test R2 = 1.00, P = 0.0028). As CCNG1 is a target for miR-23b-3p, the treatment of GW4064 induced the downregulation of CCNG1 through upregulating miR-23b-3p. The inhibition of miR-23b-3p obviously promoted cell viability, proliferation, and cell cycle progression but reduced apoptosis rate of MG-63 cells; however, the treatment of GW4064 could partially reverse the effects of the inhibition of miR-23b-3p on OS cells. CONCLUSIONS Upregulated FXR by GW4064 can obviously suppress OS cell development, and the suppressive effects may rely on miR-23b-3p/CCNG1 pathway.
Collapse
Affiliation(s)
- Bin Wu
- Department of Thyroid Breast Surgery, Zhongshan Hospital Affiliated to Dalian University, Dalian, China
| | - Chengjuan Xing
- Department of Pathology, Second Hospital Affiliated to Dalian Medical University, No.467 Zhongshan Road, Shahekou District, Dalian, 116027, Liaoning Province, China
| | - Juan Tao
- Department of Pathology, Second Hospital Affiliated to Dalian Medical University, No.467 Zhongshan Road, Shahekou District, Dalian, 116027, Liaoning Province, China.
| |
Collapse
|
35
|
Li S, Yang F, Yang YK, Zhou Y. Increased expression of ecotropic viral integration site 2A indicates a poor prognosis and promotes osteosarcoma evolution through activating MEK/ERK pathway. J Recept Signal Transduct Res 2019; 39:368-372. [PMID: 31774019 DOI: 10.1080/10799893.2019.1669182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although ecotropic viral integration site 2 A (EVI2A) plays key roles in several cancers, the expression and function of EVI2A in osteosarcoma (OS) have not been investigated. Hence, we explored the expression of EVI2A and its clinical significance of EVI2A of OS. Firstly, we investigated the expression of EVI2A in OS tissues. The relationship of EVI2A expression and survival time was analyzed using Kaplan-Meier plotter. Then, we used quantitative reverse transcription PCR (qRT-PCR) to confirm the expression level of EVI2A in OS cell lines. Cell proliferation, and wound-healing experiments were used to identify the biological function of EVI2A. Moreover, EVI2A-mediated MEK/ERK signaling pathway was evaluated using western blotting. Data suggested that EVI2A was highly expressed in OS tissues, and high-expression of EVI2A was associated with worse overall survival in OS patients. Moreover, the up-regulation of it was observed in OS cell lines (Saos2, and MG63). Knockdown of EVI2A suppressed cell proliferation and migration of OS. Western blotting revealed that the inactivation of MEK/ERK pathway was found in OS cells after EVI2A knockdown. Our data implicated the crucial role of EVI2A in the progression of OS, demonstrating that expression of EVI2A may offer an attractive novel prognostic signature for OS.
Collapse
Affiliation(s)
- Shuo Li
- Department of Orthopaedics, Suzhou Municipal Hospital, Suzhou, Anhui, P.R. China
| | - Feng Yang
- Department of Orthopaedics, Suzhou Municipal Hospital, Suzhou, Anhui, P.R. China
| | - Yao-Kun Yang
- Department of Orthopaedics, Suzhou Municipal Hospital, Suzhou, Anhui, P.R. China
| | - Yun Zhou
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| |
Collapse
|
36
|
Pan G, Hu T, Chen X, Zhang C. Upregulation Of circMMP9 Promotes Osteosarcoma Progression Via Targeting miR-1265/CHI3L1 Axis. Cancer Manag Res 2019; 11:9225-9231. [PMID: 31754311 PMCID: PMC6825504 DOI: 10.2147/cmar.s226264] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/05/2019] [Indexed: 12/14/2022] Open
Abstract
Background Osteosarcoma (OS) is a very aggressive cancer. Nevertheless, how circular RNA (circRNA) contributes to OS progression remains unclear. Here, we aimed to research the functions of circMMP9 in OS progression. Methods Gene expression was determined via qRT-PCR. siRNA was used to knock down circMMP9. Proliferation was analyzed using CCK8 and colony formation assays. Migration and invasion were measured using Transwell assay. Results circMMP9 was overexpressed in cancer tissues. Overexpressed circMMP9 was correlated with advanced tumor stage and predicted poor prognosis. circMMP9 knockdown exhibited a tumor-suppressive phenotype via suppressing proliferation, migration and invasion. Besides, decreased circMMP9 level promoted OS cellular apoptosis. Mechanistically, circMMP9 was shown to be located in the cytoplasm and sponge miR-1265. Furthermore, miR-1265 directly targeted CHI3L1. CHI3L1 levels were modulated by circMMP9/miR-1265 axis. Rescue experiments indicated that circMMP9 contributes to OS development through the miR-1265/CHI3L1 pathway. Conclusion Our findings provide a novel insight about how circRNA regulates OS progression.
Collapse
Affiliation(s)
- Guangjie Pan
- Department of Orthopedics, Wenzhou Central Hospital, Wenzhou 325000, People's Republic of China
| | - Ting Hu
- Department of Orthopedics, Wenzhou Central Hospital, Wenzhou 325000, People's Republic of China
| | - Xuewu Chen
- Department of Orthopedics, Wenzhou Central Hospital, Wenzhou 325000, People's Republic of China
| | - Chao Zhang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| |
Collapse
|
37
|
Zhang Y, Zhang Q, Bao J, Huang J, Zhang H. Apiosporamide, A 4-hydroxy-2-pyridone Alkaloid, Induces Apoptosis Via PI3K/Akt Signaling Pathway In Osteosarcoma Cells. Onco Targets Ther 2019; 12:8611-8620. [PMID: 31695421 PMCID: PMC6814361 DOI: 10.2147/ott.s218692] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/20/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Osteosarcoma (OS) is a common primary malignant bone tumour in children and young adults. Apiosporamide, a 4-hydroxy-2-pyridone alkaloid from a deep-sea-derived fungus, Arthrinium sp. UJNMF0008, showed anti-proliferative effects toward a panel of human cancer cell lines, and the molecular mechanism in MG63 cells was then investigated in the current work. METHODS Cell viability was determined with MTT method. Cell proliferation was detected using colony-formation assay. Screening electron microscope was used for morphology observation. Cell cycle and apoptosis was analysed via flow cytometry. Real-time PCR was conducted to evaluate the mRNA expression related with cell apoptosis. The expression levels of proteins related to capase-mediated apoptotic pathway and PI3K/Akt signalling pathway were detected by Western blotting. RESULTS Apiosporamide significantly decreased cell viability in cancer cells, and also exhibited excellent anti-proliferative effect. Apiosporamide caused cell cycle arrests at G0/G1 phase in MG63 cells. Moreover, apiosporamide induced apoptosis, activated caspase-3, caspase-8 and caspase-9, and regulated expression of Bax and Bcl-2 in MG63 cells. In addition, apiosporamide also attenuated PI3K/Akt signaling pathway. CONCLUSION Apiosporamide effectively suppressed MG63 cells proliferation by inducing apoptosis through PI3K/Akt and caspase-associated apoptotic pathway.
Collapse
Affiliation(s)
- Yuying Zhang
- Department of Biotechnology, School of Biological Science and Technology, University of Jinan, Jinan250022, People’s Republic of China
| | - Qianqian Zhang
- Department of Biotechnology, School of Biological Science and Technology, University of Jinan, Jinan250022, People’s Republic of China
| | - Jie Bao
- Department of Biotechnology, School of Biological Science and Technology, University of Jinan, Jinan250022, People’s Republic of China
| | - Jintian Huang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan250021, People’s Republic of China
| | - Hua Zhang
- Department of Biotechnology, School of Biological Science and Technology, University of Jinan, Jinan250022, People’s Republic of China
| |
Collapse
|
38
|
Liu Q, Wang Z, Zhou X, Tang M, Tan W, Sun T, Deng Y. miR-342-5p inhibits osteosarcoma cell growth, migration, invasion, and sensitivity to Doxorubicin through targeting Wnt7b. Cell Cycle 2019; 18:3325-3336. [PMID: 31601147 DOI: 10.1080/15384101.2019.1676087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma (OS) accounts for 9 percent of cancer-related deaths in young people. The PI3K/Akt signaling, a well-known carcinogenic signaling pathway in human cancer, cooperates with other signaling pathways such as Wnt signaling to promote cancer progression. Wnt7b, as a transforming member of the Wnt family, could activate mTORC1 through PI3K-AKT signaling and is upregulated in OS. In the present study, we found that miR-342-5p inhibits Wnt7b expression via direct binding to Wnt7b 3'-UTR. miR-342-5p overexpression remarkably suppressed the viability and invasion while enhanced the apoptosis of OS cells; meanwhile, Wnt7b, β-catenin, c-myc, and cyclin D1 proteins were reduced while E-cadherin protein showed to be increased. Consistent with its expression pattern, Wnt7b exerted oncogenic effects on OS cells. Wnt7b could significantly attenuate the impacts of miR-342-5p. In conclusion, we demonstrated a miR-342-5p/Wnt7b axis that regulates the capacity of OS cells to proliferate and to invade through Wnt/β-catenin signaling. The miR-342-5p/Wnt7b axis might be novel targets for OS targeted therapy, which needs further in vivo and clinical investigations.
Collapse
Affiliation(s)
- Qing Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenting Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaohua Zhou
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingying Tang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Tan
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tianshi Sun
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Youwen Deng
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
39
|
Pu F, Chen F, Zhang Z, Qing X, Lin H, Zhao L, Xia P, Shao Z. TIM-3 expression and its association with overall survival in primary osteosarcoma. Oncol Lett 2019; 18:5294-5300. [PMID: 31612039 PMCID: PMC6781498 DOI: 10.3892/ol.2019.10855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 04/15/2019] [Indexed: 12/20/2022] Open
Abstract
T-cell immunoglobulin and mucin domain-containing-3 (TIM-3) performs a critical function in immune tolerance by suppressing the activation and proliferation of T cells. TIM-3 serves an important role in tumor progression in a number of carcinomas, including non-small cell lung cancer, hepatitis B virus-associated hepatocellular carcinoma, Langerhans cell sarcoma, head and neck cancer and follicular B cell non-Hodgkin lymphoma. The aim of the present study was to evaluate the possible association of TIM-3 with the prognosis of osteosarcoma. TIM-3 expression was assessed by immunohistochemical analysis in osteosarcoma tissues. The association between TIM-3 expression and prognosis was examined. To assess the association between TIM-3 expression levels and clinicopathological features, a Fisher's exact test was used. TIM-3 overexpression was indicated to be associated with surgical treatment and survival. Kaplan-Meier analysis indicated that TIM-3 is an independent predictor of overall survival, and its overexpression was indicated to be associated with poor prognosis in patients with osteosarcoma. Additionally, reverse transcription-quantitative polymerase chain reaction and western blot analysis were carried out to evaluate TIM-3 expression levels in fresh tumor tissue samples, adjacent-tissue samples, osteosarcoma cell lines, and in an osteoblastic cell line. TIM-3 was indicated to be overexpressed in fresh osteosarcoma tissue samples and in osteosarcoma cell lines. In conclusion, TIM-3 overexpression is associated with poor survival among patients with osteosarcoma and may be a possible therapeutic target in these types of tumors.
Collapse
Affiliation(s)
- Feifei Pu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Fengxia Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Hubei Cancer Clinical Study Centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiangcheng Qing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hui Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lei Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ping Xia
- Department of Orthopedics, Wuhan Integrated Traditional Chinese Medicine and Western Medicine Hospital, Wuhan, Hubei 430071, P.R. China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
40
|
The tetraspanin CD81 mediates the growth and metastases of human osteosarcoma. Cell Oncol (Dordr) 2019; 42:861-871. [PMID: 31494861 DOI: 10.1007/s13402-019-00472-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2019] [Indexed: 10/26/2022] Open
Abstract
PURPOSE CD81 is a member of the tetraspanin family of membrane proteins. Recently, it has been shown that CD81 may be involved in cancer cell proliferation and metastasis. As yet, however, there have been few reports on the expression and role of CD81 in osteosarcoma. METHODS The expression of CD81 was investigated in human osteoblast cell line hFOB1.19 and in human osteosarcoma cell lines Saos2, MG63 and 143B. The expression of CD81 was inhibited in osteosarcoma cells using siRNA after which cell proliferation, migration and invasion were assessed. We also used Western blotting to investigate the phosphorylation status of Akt, Erk, JNK and p38, and measured the expression of MMP-2, MMP-9 and MT1-MMP. In addition, we used a CRISPR/Cas9 system to stably knock out CD81 expression in 143B cells, transplanted the cells into mice, and assessed tumor formation and lung metastasis in these mice compared to those in the control group. RESULTS We found that CD81 was expressed in the human osteoblast cell line and in all osteosarcoma cell lines tested. The osteosarcoma cell line 143B exhibited a particularly high level of expression. In addition, we found that osteosarcoma cell proliferation, migration and invasion were decreased after CD81 inhibition, and that the phosphorylation of Akt and Erk was suppressed. Also, the expression levels of MMP-2, MMP-9 and MT1-MMP were found to be suppressed, with MMP-9 showing the greatest suppression. In vivo, we found that mice transplanted with CD81 knockout 143B cells exhibited significantly less tumor formation and lung metastasis than mice in the control group. CONCLUSION Based on our findings we conclude that inhibition of CD81 suppresses intracellular signaling and reduces tumorigenesis and lung metastasis in osteosarcoma cells.
Collapse
|
41
|
Ye F, Tian L, Zhou Q, Feng D. LncRNA FER1L4 induces apoptosis and suppresses EMT and the activation of PI3K/AKT pathway in osteosarcoma cells via inhibiting miR-18a-5p to promote SOCS5. Gene 2019; 721:144093. [PMID: 31473323 DOI: 10.1016/j.gene.2019.144093] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 07/24/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022]
Abstract
Previous studies have determined that long non-coding RNA (lncRNA) Fer-1-like protein 4 (FER1L4) is suppressed in osteosarcoma (OS) and inhibits the tumorigenesis in a variety of cancer. However, the precise biological of FER1L4 in OS has not been cleared. The aim of this study is to investigate the roles and potential mechanisms of FER1L4 in apoptosis and epithelial-mesenchymal transition (EMT) in OS. In the present study, the levels of FER1L4 were decreased significantly in OS tissues and cell lines compared with non-tumorous tissues or hFOB1.19. Knockdown of FER1L4 in OS cells decreased the apoptosis rate, but increased the OS cell proliferation, upregulated the expression levels of CD133 and Nanog, as well as promoted Twist1 expression, increased the N-cadherin and Vimentin expression. In turn, the opposite trends were observed upon overexpression of FER1L4. In addition, the expression of PI3K, p-AKT (Ser470) and p-AKT (Thr308) was upregulated by siFER1L4, while decreased upon overexpression of FER1L4. MicroRNA (miRNA) -18a-5p, an osteosarcoma-promoting miRNA which was suggested a target of FER1L4 in osteosarcoma, was identified to be a functional target of FER1L4 on the regulating of cell apoptosis and EMT, presently. The effects of FER1L4 overexpression on the markers of cell apoptosis, proliferation, EMT, and stemness and PI3K/AKT signaling were all reversed by miR-18a-5p upregulation. Furthermore, the suppressor of cytokine signaling 5 (SOCS5) was confirmed a target gene of miR-18a-5p by luciferase gene reporter assay and SOCS5 suppression by miR-18a-5p attenuated the effects of FER1L4 overexpression on the OS cells apoptosis and the expressed levels of PI3K, AKT, Twist1, N-cadherin and Vimentin. In conclusion, our data indicated thatthe overexpression of FER1L4 promoted apoptosis and inhibited the EMT markers expression and PI3K/AKT signaling pathway activation in OS cells via downregulating miR-18a-5p to promote SOCS5.
Collapse
Affiliation(s)
- Fei Ye
- Department of Orthopaedic, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Long Tian
- Department of Orthopaedic, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Qingzhong Zhou
- Department of Orthopaedic, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Daxiong Feng
- Department of Orthopaedic, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China.
| |
Collapse
|
42
|
Liang X, Zhang L, Ji Q, Wang B, Wei D, Cheng D. miR-421 promotes apoptosis and suppresses metastasis of osteosarcoma cells via targeting LTBP2. J Cell Biochem 2019; 120:10978-10987. [PMID: 30924175 DOI: 10.1002/jcb.28144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/31/2018] [Indexed: 01/24/2023]
Abstract
Increasing evidence has confirmed that microRNAs (miRs) are involved in tumor development and progression. A previous study reported that miR-421 could serve as a diagnostic marker in patients with osteosarcoma (OS). The present study explored the potential roles of miR-421 in the regulation of cell proliferation, apoptosis, migration, invasion, and epithelial-mesenchymal transition of OS cells. Our results showed that miR-421 was upregulated in OS tissues and cell lines (MG63, U2OS, HOS, and Saos-2) compared with the corresponding adjacent tissues or human osteoblast cells hFOB1.19, while the latent transforming growth factor β-binding protein 2 (LTBP2) expression was reduced. In MG63 and U2OS cells, CCK8 assay displayed that cell proliferation was repressed by the miR-421 inhibitor, conversely increased by miR-421 mimics. Inhibition of miR-421 promoted cell apoptosis rate, caspase 3 activity, cleaved-caspase 3 (c-caspase 3) expression, and Bax/Bcl-2 ratio, restoration of miR-421 showed the opposite functions. Suppression of miR-421 blocked migration and invasion, whereas miR-421 overexpression promoted the migration and invasion of MG63 and U2OS cells. In addition, real-time polymerase chain reaction and Western blot analysis revealed that miR-421 negatively regulated E-cadherin expression, and positively regulated the expression of N-cadherin and vimentin. The luciferase reporter assay determined that miR-421 could target LTBP2-3'-UTR, and LTBP2 expression was regulated negatively by miR-421 both in mRNA and protein levels. Depletion of LTBP2 partly abolished the biological functions of miR-421 inhibitor in OS. In conclusion, miR-421 plays an oncogenic role in OS via targeting LTBP2, suggesting that miR-421 may be a potential therapeutic target against OS.
Collapse
Affiliation(s)
- Xiaoju Liang
- Department of Pediatric Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Lijun Zhang
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qiang Ji
- Department of Pediatric Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Bing Wang
- Department of Pediatric Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Dengke Wei
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Deliang Cheng
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
43
|
Silencing microRNA-27a inhibits proliferation and invasion of human osteosarcoma cells through the SFRP1-dependent Wnt/β-catenin signaling pathway. Biosci Rep 2019; 39:BSR20182366. [PMID: 31072914 PMCID: PMC6549093 DOI: 10.1042/bsr20182366] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma is the most common malignant tumor of bone with a high potential for metastasis. Importantly, microRNA-27a (miR-27a) is involved in the progression of osteosarcoma. The present study aims to discuss the effects of miR-27a and its target gene secreted frizzled related protein 1 (SFRP1) on proliferation and invasion of human osteosarcoma cells via Wnt/β-catenin signaling pathway. The expression of miR-27a and SFRP1 in osteosarcoma tissues and cells was detected, followed by identification of their relations. Subsequently, miR-27a mimic, miR-27a inhibitor, or siRNA against SFRP1 were introduced into cells (HOS and U2OS) to investigate their role in cell proliferation and invasion. The expression of Wnt/β-catenin signaling pathway-related gene was analyzed to further uncover the regulatory mechanism of miR-27a. The osteosarcoma tissues and cells exhibited elevated miR-27 expression and reduced SFRP1 expression. SFRP1 was verified to be a target gene of miR-27a. Meanwhile, silenced miR-27a inhibited proliferation and invasion of human osteosarcoma cells. Finally, silencing miR-27a inhibited the activation of Wnt/β-catenin signaling pathway, evidenced by reduced β-catenin expression. Our study draws a conclusion that silencing miR-27a dampens osteosarcoma progression, which might be achieved through the inactivation of the Wnt/β-catenin signaling pathway by up-regulating SFRP1.
Collapse
|
44
|
Abstract
The aim of this study was to develop nomograms to predict long-term overall survival and cancer-specific survival of patients with osteosarcoma.We carried out univariate and multivariate analyses and set up nomograms predicting survival outcome using osteosarcoma patient data collected from the Surveillance, Epidemiology and End Results (SEER) program of the National Cancer Institute (2004-2011, n = 1426). The patients were divided into a training cohort (2004-2008, n = 863) and a validation cohort (2009-2011, n = 563), and the mean follow-up was 55 months.In the training cohort, 304 patients (35.2%) died from osteosarcoma and 91 (10.5%) died from other causes. In the validation cohort, 155 patients (27.5%) died from osteosarcoma and (12.3%) died from other causes. Nomograms predicting overall survival (OS) and cancer-specific survival (CSS) were developed according to 6 clinicopathologic factors (age, tumor site, historic grade, surgery, AJCC T/N, and M), with concordance indexes (C-index) of 0.725 (OS) and 0.718 (CSS), respectively. The validation C-indexes were 0.775 and 0.742 for OS and CSS, respectively.Our results suggest that we have successfully developed highly accurate nomograms for predicting 5-year OS and CSS for osteosarcoma patients. These nomograms will help surgeons customize treatment and monitoring strategies for osteosarcoma patients.
Collapse
Affiliation(s)
- Wenhao Chen
- Affiliated Union Hospital, Fujian Medical University, Department of Orthopedics
| | - Yuxiang Lin
- Affiliated Union Hospital, Fujian Medical University, Department of Breast Surgery, Fuzhou, China
| |
Collapse
|
45
|
Zhao W, Chen Z, Guan M. Polydatin enhances the chemosensitivity of osteosarcoma cells to paclitaxel. J Cell Biochem 2019; 120:17481-17490. [PMID: 31106479 DOI: 10.1002/jcb.29012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Weijia Zhao
- Department of Dermatology First Affiliated Hospital of Kunming Medical University Kunming Yunnan China
| | - Zonghan Chen
- Office of Educational Administration Yunnan University of Traditional Chinese Medicine Kunming Yunnan China
| | - Meng Guan
- Department of Ophthalmology First Affiliated Hospital of Kunming Medical University Kunming Yunnan China
| |
Collapse
|
46
|
Circ_ORC2 enhances the regulatory effect of miR-19a on its target gene PTEN to affect osteosarcoma cell growth. Biochem Biophys Res Commun 2019; 514:1172-1178. [PMID: 31103262 DOI: 10.1016/j.bbrc.2019.04.188] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023]
Abstract
Osteosarcoma is a highly malignant and aggressive bone tumor. Its occurrence and development involve many factors and multiple signaling pathways. Some studies have shown that circular RNAs (circRNAs) play important roles in the development of various tumors. This research showed that circ_ORC2 was generally up-regulated in various osteosarcoma cell lines, and mainly distributed in the cytoplasm. Circ_ORC2 had the binding site of miR-19a, and its expression was positively correlated with miR-19a expression. RIP experiments showed that circ_ORC2 could bind to Ago2 protein. RNA pull-down using biotinylated circ_ORC2 or miR-19a showed that circ_ORC2 could directly interact with miR-19a, and dual luciferase reporter gene assay also confirmed that miR-19a could bind to circ_ORC2. After circ_ORC2 knockdown, miR-19a expression was down-regulated, but the downstream target gene PTEN expression was up-regulated, and the phosphorylation level of Akt was reduced, which indicated that circ_ORC2 enhanced the inhibition of miR-19a on PTEN expression by combining miR-19a. Further functional experiments showed that after circ_ORC2 knockdown, cell proliferation and invasion decreased, while the apoptosis level increased. When co-transfected with circ_ORC2 siRNA and miR-19a mimics or PTEN siRNA, the above cell biological behaviors did not change significantly. Therefore, circ_ORC2 binds with miR-19a and enhances its expression, thereby inhibiting downstream PTEN expression and activating Akt pathway to promote osteosarcoma cell growth and invasion. These findings enrich the circRNA molecular regulation mechanism, and provide more reference ideas for the research and application of circRNAs in tumors and other diseases.
Collapse
|
47
|
Zhang S, Ding L, Li X, Fan H. Identification of biomarkers associated with the recurrence of osteosarcoma using ceRNA regulatory network analysis. Int J Mol Med 2019; 43:1723-1733. [PMID: 30816442 PMCID: PMC6414158 DOI: 10.3892/ijmm.2019.4108] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 12/07/2018] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to identify the important mRNAs, micro (mi)RNAs and long non‑coding (lnc)RNAs that are associated with osteosarcoma recurrence. The GSE3905 dataset, which contains two sub‑datasets (GSE39040 and GSE39055), was downloaded from the Gene Expression Omnibus (GEO). Prognosis‑associated RNAs were identified by performing Cox regression univariate analysis and were subsequently used to construct a competing endogenous (ce)RNA regulatory network for Gene Set Enrichment Analysis (GSEA). Kaplan‑Meier survival analysis was used to determine the associations between expression levels and survival prognosis. In addition, another independent miRNA profile, GSE79181, was downloaded from GEO for validation. Among the differentially expressed RNAs, 417 RNAs (5 lncRNAs, 19 miRNAs, and 393 mRNAs) were observed to be associated with prognosis. The GSEA for the ceRNA regulatory network revealed that 'Mitogen‑activated protein kinase (MAPK) signaling pathway', 'Chemokine signaling pathway' and 'Spliceosome' were markedly associated with osteosarcoma. In addition, three lncRNAs [long intergenic non‑protein coding RNA 28 (LINC00028), LINC00323, and small nucleolar RNA host gene 1 (SNHG1)] and two miRNAs (hsa‑miR‑124 and hsa‑miR‑7) regulating three mRNAs [Ras‑related protein Rap‑1b (RAP1B), activating transcription factor 2 (ATF2) and protein phosphatase Mg2+/Mn2+ dependent 1B (PPM1B)] participated in the MAPK signaling pathway. The Kaplan‑Meier survival analysis also demonstrated that samples with lower expression levels of LINC00323 and SNHG1 had better prognosis, and samples with increased expression levels of LINC00028, hsa‑miR‑124 and hsa‑miR‑7 had better prognosis. Overexpression of RAP1B, ATF2 and PPM1B was positively associated with osteosarcoma recurrence. The roles of hsa‑miR‑124 and hsa‑miR‑7 in osteosarcoma recurrence were also validated using GSE79181. Thus, in conclusions, the three lncRNAs (LINC00028, LINC00323 and SNHG1), two miRNAs (hsa‑miR‑124 and hsa‑miR‑7) and three mRNAs (RAP1B, ATF2, and PPM1B) were associated with osteosarcoma recurrence.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cluster Analysis
- Gene Expression Regulation, Neoplastic
- Gene Ontology
- Gene Regulatory Networks
- Humans
- Kaplan-Meier Estimate
- MAP Kinase Signaling System/genetics
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Osteosarcoma/genetics
- Osteosarcoma/pathology
- Prognosis
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Reproducibility of Results
Collapse
Affiliation(s)
| | | | - Xin Li
- Joint Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041
| | - Hongwu Fan
- Department of Orthopedics, China Japan Union Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
48
|
Zhu K, Niu L, Wang J, Wang Y, Zhou J, Wang F, Cheng Y, Zhang Q, Li H. Circular RNA hsa_circ_0000885 Levels are Increased in Tissue and Serum Samples from Patients with Osteosarcoma. Med Sci Monit 2019; 25:1499-1505. [PMID: 30802235 PMCID: PMC6400018 DOI: 10.12659/msm.914899] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Circular RNAs (circRNAs) are novel non-coding RNAs that have important roles in tumor progression. This study aimed to measure the levels of hsa_circ_0000885 in serum samples and tumor tissue from patients with osteosarcoma compared with controls and to evaluate the findings with disease-free survival and overall survival. Material/Methods Fifty pairs of osteosarcoma tissues and matched adjacent normal tissue were obtained from patients who underwent the same chemotherapy regimen before surgery. Blood samples were obtained from 30 patients with osteosarcoma before and after chemotherapy, 25 patients with osteosarcoma before and after surgery, 27 patients with benign bone tumors, and 25 age-matched and sex-matched healthy controls. Circular RNA sequencing and quantitative real-time polymerase chain reaction (qRT-PCR) were used to analyze hsa_circ_0000885 expression. Results Hsa_circ_0000885 expression was significantly increased in tissue and serum samples from patients with osteosarcoma, compared with controls, with significantly increased expression levels in patients with Enneking stage IIB and III osteosarcoma, compared with early-stage osteosarcoma. Patients with high serum and tumor levels of hsa_circ_0000885 had lower rates of disease-free survival and overall survival. The serum expression levels of hsa_circ_0000885 were significantly higher in patients with osteosarcoma compared with patients with benign bone tumors or healthy controls. Conclusions Hsa_circ_0000885 was upregulated in osteosarcoma, and it could serve as a good prognostic biomarker indicating poor clinical outcomes of osteosarcoma. Hsa_circ_0000885 was upregulated in serum of osteosarcoma patients and could serve as a good diagnostic biomarker for osteosarcoma.
Collapse
Affiliation(s)
- Kai Zhu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Liang Niu
- Department of Anesthesiology, The Qingdao Women and Children's Hospital, Qingdao, Shandong, China (mainland)
| | - Jun Wang
- Supply Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Yan Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Jianrui Zhou
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Fang Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Yanqin Cheng
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Qian Zhang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Haiyan Li
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|
49
|
Shen B, Zhou N, Hu T, Zhao W, Wu D, Wang S. LncRNA MEG3 negatively modified osteosarcoma development through regulation of miR‐361‐5p and FoxM1. J Cell Physiol 2019; 234:13464-13480. [PMID: 30624782 DOI: 10.1002/jcp.28026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Bin Shen
- Department of Spinal Surgery Shanghai East Hospital, Tongji University School of Medicine Shanghai China
| | - Ningfeng Zhou
- Department of Spinal Surgery Shanghai East Hospital, Tongji University School of Medicine Shanghai China
| | - Tao Hu
- Department of Spinal Surgery Shanghai East Hospital, Tongji University School of Medicine Shanghai China
| | - Weidong Zhao
- Department of Spinal Surgery Shanghai East Hospital, Tongji University School of Medicine Shanghai China
| | - Desheng Wu
- Department of Spinal Surgery Shanghai East Hospital, Tongji University School of Medicine Shanghai China
| | - Shanjin Wang
- Department of Spinal Surgery Shanghai East Hospital, Tongji University School of Medicine Shanghai China
| |
Collapse
|
50
|
Ma H, Seebacher NA, Hornicek FJ, Duan Z. Cyclin-dependent kinase 9 (CDK9) is a novel prognostic marker and therapeutic target in osteosarcoma. EBioMedicine 2018; 39:182-193. [PMID: 30579871 PMCID: PMC6355967 DOI: 10.1016/j.ebiom.2018.12.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022] Open
Abstract
Background Cyclin-dependent protein kinase 9 (CDK9) has been shown to play an important role in the pathogenesis of malignant tumors. However, the expression and function of CDK9 remain unknown in osteosarcomas. The purpose of this study is to assess the expression, function and clinical prognostic relationship of CDK9 in osteosarcomas. Methods A tissue microarray of 70 patient specimens was analyzed by immunohistochemistry to measure CDK9 expression, which was further investigated for correlation with patient clinical characteristics. CDK9 expression in osteosarcoma cell lines and patient tissues was also evaluated by Western blotting. CDK9-specific siRNA and the CDK9 inhibitor were applied to determine the effect of CDK9 inhibition on osteosarcoma cell proliferation and anti-apoptotic activity. The clonogenicity and migration activity were also examined using clonogenic and wound healing assays. A 3D cell culture model was performed to mimic the in vivo osteosarcoma environment to further validate the effect of CDK9 inhibition on osteosarcoma cells. Findings We demonstrated that higher CDK9-expression is associated with significantly shortened patient survival by immunohistochemistry. Expression of CDK9 is inversely correlated to the percent of tumor necrosis post-neoadjuvant chemotherapy, which is the most important predictive factor of disease outcome for osteosarcoma patients. Knockdown of CDK9 with siRNA and inhibition of CDK9 activity with inhibitor decreased cell proliferation and induced apoptosis in osteosarcoma. Interpretation High expression of CDK9 is an independent predictor of poor prognosis in osteosarcoma patients. Our results suggest that CDK9 is a novel prognostic marker and a promising therapeutic target for osteosarcomas.
Collapse
Affiliation(s)
- Hangzhan Ma
- Department of Orthopaedics, Panyu Hospital of Chinese Medicine, Guangzhou, Guangdong 511400, China; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Nicole A Seebacher
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|