1
|
Sharifi-Azad M, Kaveh Zenjanab M, Shahpouri M, Adili-Aghdam MA, Fathi M, Jahanban-Esfahlan R. Codelivery of methotrexate and silibinin by niosome nanoparticles for enhanced chemotherapy of CT26 colon cancer cells. Biomed Mater 2024; 19:055015. [PMID: 38953496 DOI: 10.1088/1748-605x/ad5d9b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
Colon cancer (CC) is one of the most prevalent cancers in the world, and chemotherapy is widely applied to combat it. However, chemotherapy drugs have severe side effects and emergence of multi drug resistance (MDR) is common. This bottleneck can be overcome by niosome nanocarriers that minimize drug dose/toxicity meanwhile allow co-loading of incompatible drugs for combination therapy. In this research, silibinin (Sil) as a hydrophobic drug was loaded into the lipophilic part, and methotrexate (MTX) into the hydrophilic part of niosome by the thin film hydration (TFH) method to form Nio@MS NPs for CT26 colon cancer therapyin vitro. Our results indicated synthesis of ideal niosome nanoparticles (NPs) with spherical morphology, size of ∼100 nm, and a zeta potential of -10 mV. The IC50value for Nio@MS was determined ∼2.6 µg ml-1, which was significantly lower than MTX-Sil (∼6.86 µg ml-1), Sil (18.46 µg ml-1), and MTX (9.8 µg ml-1). Further, Nio@MS significantly reduced cell adhesion density, promoted apoptosis and increased gene expression level of caspase 3 and BAX while promoted significant downregulation of BCL2. In conclusion, the design and application of niosome to co-administer Sil and MTX can increase the drugs cytotoxicity, reduce their dose and improve anti-cancer potential by combating MDR.
Collapse
Affiliation(s)
- Masoumeh Sharifi-Azad
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Kaveh Zenjanab
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Shahpouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amin Adili-Aghdam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Kumar R, Jha K, Barman D. Nanotechnology in Oral Cancer Prevention and Therapeutics: A Literature Review. Indian J Med Paediatr Oncol 2021. [DOI: 10.1055/s-0041-1732856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
AbstractThe concept of nanotechnology revolves around the delivery of nano particle incorporated drugs which are originally engineered technology. Nanoparticles are used for targeted delivery and controlled release of a curative agents. Nanotechnology is gaining importance and is likely to be routine element of regular dental clinics. Nanomaterials are being incorporated in toothpastes, mouth rinses for improved efficiencies. It has found its use in restorative dental materials, anti-cariogenic enamel surface polishing agents, implant materials, etc. Few nanoparticles possess antimicrobial propertiesand intercepts bacterial activity. Nano dentistry is cost-effectiveness and timesaving compared to other techniques. Nano particles have also been beneficial to annihilate drug resistance, prevention of metastasis or lesion recurrence by earmarking malignant stem cells. Remarkable achievements were made in using nanoparticles for detecting and treating multiple variety of malignancies including colon cancer, prostate cancer, lung cancer, breast cancer, head and neck cancer, etc. This review was made to highlight the various clinical applications of nanotechnology in the diagnosis and curative care for oral cancer.
Collapse
Affiliation(s)
- Ritwika Kumar
- School of Materials Science and Nano Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Kunal Jha
- Department of Public Health Dentistry, Kalinga Institute of Dental Sciences, KIIT University, BBSR, Bhubaneswar, Odisha, India
| | - Diplina Barman
- Private Dental Practitioner, Hooghly, West Bengal, India
| |
Collapse
|
3
|
Kakkar V, Verma MK, Saini K, Kaur IP. Nano Drug Delivery in Treatment of Oral Cancer, A Review of the Literature. Curr Drug Targets 2020; 20:1008-1017. [PMID: 30892161 DOI: 10.2174/1389450120666190319125734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 12/31/2018] [Accepted: 03/11/2019] [Indexed: 12/29/2022]
Abstract
Oral Cancer (OC) is a serious and growing problem which constitutes a huge burden on people in more and less economically developed countries alike. The scenario is clearly depicted from the increase in the expected number of new cases in the US diagnosed with OC from 49,670 people in 2016, to 49,750 cases in 2017. The situation is even more alarming in India, with 75,000 to 80,000 new cases being reported every year, thus making it the OC capital of the world. Leukoplakia, erythroplakia, oral lichen planus, oral submucous fibrosis, discoid lupus erythmatosus, hereditary disorders such as dyskeratosis congenital and epidermolisys bullosa are highlighted by WHO expert working group as the predisposing factors increasing the risk of OC. Consumption of tobacco and alcohol, genetic factors, and human papilloma virus are assigned as the factors contributing to the aetiology of OC. On the other hand, pathogenesis of OC involves not only apoptosis but also pain, inflammation and oxidative stress. Inspite of current treatment options (surgery, radiotherapy, and chemotherapy), OC is often associated with recurrence and formation of secondary primary tumours resulting in poor overall survival rates (∼50%). The intervention of nano technology-based drug delivery systems as therapeutics for cancers is often viewed as a cutting edge for technologists. Though ample literature on the usefulness of nano-coutured cancer therapeutics, rarely any product is in pipeline. Yet, despite all the hype about nanotechnology, there are few ongoing trials. This review discusses the current and future trends of nano-based drug delivery for the treatment of OC.
Collapse
Affiliation(s)
- Vandita Kakkar
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Manoj Kumar Verma
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Komal Saini
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Indu Pal Kaur
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
4
|
Yu S, Chen Z, Zeng X, Chen X, Gu Z. Advances in nanomedicine for cancer starvation therapy. Theranostics 2019; 9:8026-8047. [PMID: 31754379 PMCID: PMC6857045 DOI: 10.7150/thno.38261] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/25/2019] [Indexed: 12/24/2022] Open
Abstract
Abnormal cell metabolism with vigorous nutrition consumption is one of the major physiological characteristics of cancers. As such, the strategy of cancer starvation therapy through blocking the blood supply, depleting glucose/oxygen and other critical nutrients of tumors has been widely studied to be an attractive way for cancer treatment. However, several undesirable properties of these agents, such as low targeting efficacy, undesired systemic side effects, elevated tumor hypoxia, induced drug resistance, and increased tumor metastasis risk, limit their future applications. The recent development of starving-nanotherapeutics combined with other therapeutic methods displayed the promising potential for overcoming the above drawbacks. This review highlights the recent advances of nanotherapeutic-based cancer starvation therapy and discusses the challenges and future prospects of these anticancer strategies.
Collapse
Affiliation(s)
- Shuangjiang Yu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. E-mail:
| | - Zhaowei Chen
- Department of Bioengineering, Jonsson Comprehensive Cancer Center, California Nanosystems Institute (CNSI), and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Xuan Zeng
- Department of Bioengineering, Jonsson Comprehensive Cancer Center, California Nanosystems Institute (CNSI), and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. E-mail:
| | - Zhen Gu
- Department of Bioengineering, Jonsson Comprehensive Cancer Center, California Nanosystems Institute (CNSI), and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Jin BZ, Dong XQ, Xu X, Zhang FH. Development and in vitro evaluation of mucoadhesive patches of methotrexate for targeted delivery in oral cancer. Oncol Lett 2017; 15:2541-2549. [PMID: 29434971 DOI: 10.3892/ol.2017.7613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/15/2017] [Indexed: 11/06/2022] Open
Abstract
The present study focused on the development of a mucoadhesive patch of methotrexate (MTX) for targeted delivery in oral cancer. Initially, MTX-loaded liposomes were prepared using the thin film hydration method, and had a mean diameter of 105.7-137.4 nm and percentage entrapment efficiency of 54.6±3.5. These liposomes were cast in optimized mucoadhesive film. The film was characterized by its release pattern, thickness, weight and percentage swelling index and the sustained release profile of the optimized film was evaluated. The developed liposomes and liposomes cast in the film formulation were evaluated for cytotoxicity in HSC-3 cells using an MTT assay, and a significant decrease in the half maximal inhibitory concentration of MTX was identified with the MTX-entrapped liposomal film, M-LP-F7. The results of the mitochondria-dependent intrinsic pathway demonstrated that there was significant mitochondrial membrane potential disruption with M-LP-F7 compared with the plain drug. M-LP-F7 increased the rate of apoptosis in HSC-3 cells by almost 3-fold. Elevated levels of reactive oxygen species provided evidence that M-LP-F7 exerts a pro-oxidant effect in HSC-3 cells.
Collapse
Affiliation(s)
- Bao-Zhong Jin
- Department of Oral Surgery, Stomatological Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiao-Qi Dong
- Department of Oral Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xin Xu
- Department of Oral Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Feng-He Zhang
- Department of Oral Surgery, Stomatological Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
6
|
Nanomedicine, an emerging therapeutic strategy for oral cancer therapy. Oral Oncol 2017; 76:1-7. [PMID: 29290280 DOI: 10.1016/j.oraloncology.2017.11.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/06/2017] [Accepted: 11/12/2017] [Indexed: 01/12/2023]
Abstract
Oral cavity and oropharyngeal carcinomas (oral cancer) represents a significant cause of morbidity and mortality. Despite efforts in improving early diagnosis and treatment, the 5-year survival rate of advanced stage of the disease is less than 63%. The field of nanomedicine has offered promising diagnostic and therapeutic advances in cancer. Indeed, several platforms have been clinically approved for cancer therapy, while other promising systems are undergoing exploration in clinical trials. With its ability to deliver drugs, nucleic acids, and MRI contrast agents with high efficiency, nanomedicine platforms offer the potential to improve drug efficacy and tolerability. The aim of the present mini-review is to summarize the current preclinical status of nanotechnology systems for oral cancer therapy. The nanoplatforms for delivery of chemopreventive agents presented herein resulted in significantly higher anti-tumor activity than free forms of the drug, even against a chemo-resistant cell line. Impressive results have also been obtained using nanoparticles to deliver chemotherapeutics, resulting in reduced toxicity both in vitro and in vivo. Nanoparticles have also led to improvements in efficacy of photodynamic therapies through the development of targeted magnetic nanoparticles. Finally, gene therapy using nanoparticles demonstrated promising results specifically with regards to inhibition of gene expression. Of the few in vivo studies that have been reported, many of these used animal models with several limitations, which will be discussed herein. Lastly, we will discuss several future perspectives in oral cancer nanoparticle-based therapy and the development of appropriate animal models, distinguishing between oral cavity and oropharyngeal carcinoma.
Collapse
|
7
|
Jahanban-Esfahlan R, Seidi K, Banimohamad-Shotorbani B, Jahanban-Esfahlan A, Yousefi B. Combination of nanotechnology with vascular targeting agents for effective cancer therapy. J Cell Physiol 2017; 233:2982-2992. [PMID: 28608554 DOI: 10.1002/jcp.26051] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/12/2017] [Indexed: 12/28/2022]
Abstract
As a young science, nanotechnology promptly integrated into the current oncology practice. Accordingly, various nanostructure particles were developed to reduce drug toxicity and allow the targeted delivery of various diagnostic and therapeutic compounds to the cancer cells. New sophisticated nanosystems constantly emerge to improve the performance of current anticancer modalities. Targeting tumor vasculature is an attractive strategy to fight cancer. Though the idea was swiftly furthered from basic science to the clinic, targeting tumor vasculature had a limited potential in patients, where tumors relapse due to the development of multiple drug resistance and metastasis. The aim of this review is to discuss the advantages of nanosystem incorporation with various vascular targeting agents, including (i) endogen anti-angiogenic agents; (ii) inhibitors of angiogenesis-related growth factors; (iii) inhibitors of tyrosine kinase receptors; (iv) inhibitors of angiogenesis-related signaling pathways; (v) inhibitors of tumor endothelial cell-associated markers; and (vi) tumor vascular disrupting agents. We also review the efficacy of nanostructures as natural vascular targeting agents. The efficacy of each approach in cancer therapy is further discussed.
Collapse
Affiliation(s)
- Rana Jahanban-Esfahlan
- Faculty of Advanced Medical Sciences, Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khaled Seidi
- Faculty of Advanced Medical Sciences, Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Banimohamad-Shotorbani
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran.,Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Molecular Targeting Therapy Research Group, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Irimie AI, Sonea L, Jurj A, Mehterov N, Zimta AA, Budisan L, Braicu C, Berindan-Neagoe I. Future trends and emerging issues for nanodelivery systems in oral and oropharyngeal cancer. Int J Nanomedicine 2017; 12:4593-4606. [PMID: 28721037 PMCID: PMC5500515 DOI: 10.2147/ijn.s133219] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Oral cancer is a prevalent cancer type on a global scale, whose traditional treatment strategies have several drawbacks that could in the near future be overcome through the development of novel therapeutic and prognostic strategies. Nanotechnology provides an alternative to traditional therapy that leads to enhanced efficiency and less toxicity. Various nanosystems have been developed for the treatment of oral cancer, including polymeric, metallic, and lipid-based formulations that incorporate chemotherapeutics, natural compounds, siRNA, or other molecules. This review summarizes the main benefits of using these nanosystems, in parallel with a particular focus on the issues encountered in medical practice. These novel strategies have provided encouraging results in both in vitro and in vivo studies, but few have entered clinical trials. The use of nanosystems in oral cancer has the potential of becoming a valid therapeutic option for patients suffering from this malignancy, considering that clinical trials have already been completed and others are currently being developed.
Collapse
Affiliation(s)
| | - Laura Sonea
- MedFuture Research Center for Advanced Medicine
| | - Ancuta Jurj
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Nikolay Mehterov
- Department of Medical Biology, Medical University of Plovdiv.,Technological Center for Emergency Medicine, Plovdiv, Bulgaria
| | - Alina Andreea Zimta
- MedFuture Research Center for Advanced Medicine.,Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Liviuta Budisan
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- MedFuture Research Center for Advanced Medicine.,Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, Ion Chiricuta Oncology Institute, Cluj-Napoca, Romania
| |
Collapse
|
9
|
Jahanban-Esfahlan R, de la Guardia M, Ahmadi D, Yousefi B. Modulating tumor hypoxia by nanomedicine for effective cancer therapy. J Cell Physiol 2017; 233:2019-2031. [PMID: 28198007 DOI: 10.1002/jcp.25859] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022]
Abstract
Hypoxia, a characteristic feature of tumors, is indispensable to tumor angiogenesis, metastasis, and multi drug resistance. Hypoxic avascular regions, deeply embedded inside the tumors significantly hinder delivery of therapeutic agents. The low oxygen tension results in resistance to the current applied anti-cancer therapeutics including radiotherapy, chemotherapy, and photodynamic therapy, the efficacy of which is firmly tied to the level of tumor oxygen supply. However, emerging data indicate that nanocarriers/nanodrugs can offer substantial benefits to improve the efficacy of current therapeutics, through modulation of tumor hypoxia. This review aims to introduce the most recent advances made in nanocarrier mediated targeting of tumor hypoxia. The first part is dedicated to the approaches by which nanocarriers could be designed to target/leverage hypoxia. These approaches include i) inhibiting Hypoxia Inducer Factor (HIF-1α); ii) hypoxia activated prodrugs/linkers; and iii) obligate anaerobe mediated targeting of tumor hypoxia. The second part, details novel nanosystems proposed to modulate tumor hypoxia through tumor oxygenation. These methods seek to lessen tumor hypoxia through vascular normalization, or reoxygenation therapy. The reoxygenation of tumor could be accomplished by: i) generation of oxygen filled nanocarriers; ii) natural/artificial oxygen nanocarriers; and iii) oxygen generators. The efficacy of each approach and their potential in cancer therapy is further discussed.
Collapse
Affiliation(s)
- Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Delshad Ahmadi
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Targeting Therapy Research Group, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Abbasi MM, Mehdipour M, Monfaredan A, Jahanban-Esfahlan R. Hesa-A Down-Regulates erb/b2 Oncogene Expression and Improves Outcome of Oral Carcinoma in a Rat Model. Asian Pac J Cancer Prev 2016; 16:6947-51. [PMID: 26514473 DOI: 10.7314/apjcp.2015.16.16.6947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oral carcinoma (OC) remains one of the most difficult malignancies to cure. Hesa-A is an Iranian herbal-marine compound that has shown promising anti-tumor properties against various human tumors. However, its mechanism of action remains to be addressed. The present study was conducted to evaluate the effect of two doses of Hesa-A on mRNA expression of erb\b2 as a main prognosticator tumor marker for OC in an animal model. MATERIALS AND METHODS A total of 60 rats were randomly divided into 5 groups of 12 animals each. Rats in carcinoma groups received 0, 250 and 500 mg/kg body weight doses of Hesa-A 3 times a day. The other two groups were considered as treated and untreated control groups. At the end of the experiment, animals were sacrificed and tongue tissues subjected to H and E staining and real time PCR. RESULTS Our results showed that compared to the control group, erb\ b2 was over-expressed ~ 30% in the carcinoma group. After treatment with 250 mg/kg and 500 mg/kg body weight of Hesa-A , erb\b2 levels dropped by 24.1% and 3.4 % respectively compared to the control carcinoma group (p<0.01, p<0.0001). Moreover, there was a significant relation between erb\ b2 mRNA content and observed pathological changes in studied groups (p<0.05). CONCLUSIONS These data provide insight into mechanism(s) by which Hesa-A may improve clinical outcome of oral carcinoma by affecting oncogene erb\b2 expression and suggest Hesa-A as an effective chemotherapeutic agent in treatment of HER+ tumors.
Collapse
Affiliation(s)
- Mehran Mesgari Abbasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran E-mail :
| | | | | | | |
Collapse
|
11
|
Jahanban-Esfahlan A, Modaeinama S, Abasi M, Abbasi MM, Jahanban-Esfahlan R. Anti Proliferative Properties of Melissa officinalis in Different Human Cancer Cells. Asian Pac J Cancer Prev 2016; 16:5703-7. [PMID: 26320439 DOI: 10.7314/apjcp.2015.16.14.5703] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Medicinal plants, especially examples rich in polyphenolic compounds, have been suggested to be chemopreventive on account of their antioxidative properties. Melissa officinalis L. (MO), an aromatic and medicinal plant, is well known in thios context. However, toxicity against cancer cells has not been fully studied. Here, we investigated the selective anticancer effects of an MO extract (MOE) in different human cancer cells. MATERIALS AND METHODS a hydro-alcoholic extract of MO was prepared and total phenolic content (TPC) and total flavonoid content (TFC) were determined by colorimetric assays. Antioxidant activity was determined by DPPH radical scavenging activity. MTT assays were used to evaluate cytotoxicity of different doses of MOE (0, 5, 20, 100, 250, 500, 1000 μg/ml) towards A549 (lung non small cell cancer cells), MCF-7 (breast adenocarcinoma), SKOV3 (ovarian cancer cells), and PC-3 (prostate adenocarcinoma) cells. RESULTS Significant (P<0.01) or very significant (P<0.0001) differences were observed in comparison to negative controls at all tested doses (5-1000 μg/ml). In all cancer cells, MOE reduced the cell viability to values below 33%, even at the lowest doses. In all cases, IC50 values were below 5μg/ml. The mean growth inhibition was 73.1%, 86.7%, 79.9% and 77.8% in SKOV3, MCF-7 and PC-3 and A549 cells, respectively. CONCLUSIONS Our results indicate that a hydro-alcoholic extract of MO possess a high potency to inhibit proliferation of different tumor cells in a dose independent manner, suggesting that an optimal biological dose is more important than a maximally tolerated one. Moreover, the antiprolifreative effect of MO seems to be tumor type specific, as hormone dependant cancers were more sensitive to antitumoral effects of MOE.
Collapse
|
12
|
Modaeinama S, Abasi M, Abbasi MM, Jahanban-Esfahlan R. Anti Tumoral Properties of Punica Granatum (Pomegranate) Peel Extract on Different Human Cancer Cells. Asian Pac J Cancer Prev 2016; 16:5697-701. [PMID: 26320438 DOI: 10.7314/apjcp.2015.16.14.5697] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Medicinal plants, especially examples rich in polyphenolic compounds, have been suggested to be chemopreventive on account of antioxidative properties. Punica granatum (PG) (pomegranate) is a well known fruit in this context, but its cytotoxicity in cancer cells has not been extensively studied. Here, we investigated the antiproliferative properties of a peel extract of PG from Iran in different human cancer cells. MATERIALS AND METHODS A methanolic extract of pomegranate peel (PPE) was prepared. Total phenolic content(TPC) and total flavonoid conetnt (TFC) were determined by colorimetric assays. Antioxidant activity was determined by DPPH radical scavenging activity. The cytotoxicity of different doses of PPE (0, 5, 20, 100, 250, 500, 1000 μg/ml) was evaluated by MTT assays with A549 (lung non small cell cancer), MCF-7 (breast adenocarcinoma), SKOV3 (ovarian cancer), and PC-3 (prostate adenocarcinoma) cells. RESULTS Significant (P<0.01) or very significant (P<0.0001) differences were observed in comparison with negative controls at all tested doses (5-1000 μg/ml). In all studied cancer cells, PPE reduced the cell viability to values below 40%, even at the lowest doses. In all cases, IC50 was determined at doses below 5μg/ml. In this regard, MCF-7 breast adenocarcinoma cells were the most responsive cells to antiprolifreative effects of PPE with a maximum mean growth inhibition of 81.0% vs. 69.4%, 79.3% and 77.5% in SKOV3, PC-3 and A549 cells, respectively. CONCLUSIONS Low doses of PPE exert potent anti-proliferative effects in different human cancer cells and it seems that MCF-7 breast adenocarcinoma cells are the most cells and SKOV3 ovarian cancer cells the least responsive in this regard. However, the mechanisms of action need to be addressed.
Collapse
Affiliation(s)
- Sina Modaeinama
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran E-mail :
| | | | | | | |
Collapse
|
13
|
Abbasi MM, Helli S, Monfaredan A, Jahanban-Esfahlan R. Hesa-A Improves Clinical Outcome of Oral Carcinoma by Affecting p53 Gene Expression in vivo. Asian Pac J Cancer Prev 2016; 16:4169-72. [PMID: 26028067 DOI: 10.7314/apjcp.2015.16.10.4169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oral carcinoma (OC) remains as one of the most difficult malignancies to cure. Hesa-A is an Iranian herbal-marine compound that has shown promising anti-tumor properties on various human cancer cells, although the mechanisms of action remain to be addressed. This study was conducted to evaluate the effect of two doses of Hesa-A on mRNA expression of p53 as a main prognosticator of OC. MATERIALS AND METHODS 60 rats were randomly divided into 5 groups of 12 animals each. Rats in carcinoma groups received 0, 250 and 500 mg/kg body weight of Hesa-A three times a day. The two other groups considered as treated and untreated healthy groups. At the end of experiment, animals were sacrificed and tongue tissues subjected to H and E staining and real time PCR. RESULTS Our results indicated that compared to healthy group, p53 over expressed ~ 40% in untreated carcinoma group. After treatment with 250 mg/kg and 500 mg/kg body weights of Hesa-A , p53 level dropped by 53.4% and 13.6 %, respectively, compared to untreated carcinoma group (p<0.05, p<0.0001). Moreover, there was a significant relation between p53 mRNA content and observed pathological changes in studied groups (p<0.05). CONCLUSIONS These data provide insights into the mechanism(s) by which Hesa-A improves clinical outcome of oral carcinoma by modulation of p53 expression.
Collapse
|
14
|
Jahanban-Esfahlan R, Abasi M, Sani HM, Abbasi MM, Akbarzadeh A. Anti-Proliferative Effects of Hesa-A on Human Cancer Cells with Different Metastatic Potential. Asian Pac J Cancer Prev 2015; 16:6963-6. [PMID: 26514475 DOI: 10.7314/apjcp.2015.16.16.6963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During the past few years, Hesa-A, a herbal-marine mixture, has been used to treat cancer as an alternative medicine in Iran. Based on a series of studies, it is speculated that Hesa-A possesses special cytotoxic effects on invasive tumors. To test this hypothesis, we investigated the selective anticancer effects of Hesa-A on several cancer cell lines with different metastatic potential. MATERIALS AND METHODS Hesa-A was prepared in normal saline as a stock solution of 10 mg/ml and further diluted to final concentrations of 100 μg/ml, 200 μg/ ml, 300 μg/ml and 400 μg/ml. MTT-based cytotoxicity assays were performed with A549 (lung non small cancer), MCF-7 (breast adenocarcinoma), SKOV3 (ovarian cancer), and PC-3 (prostate adenocarcinoma) cells. RESULTS All treated cancer cells showed significant (P<0.01) or very significant (P<0.0001) differences in comparison to negative control at almost all of the tested doses (100-400 μg/ml). At the lower dose (100 μg/ml), Hesa-A reduced cell viability to 66%, 45.3%, 35.5%, 33.2% in SKOV3, A549, PC-3 and MCF-7 cells, respectively. Moreover, at the highest dose (400 μg/ml), Hesa-A resulted in 88.5%, 86.6% , 84.9% and 79.3% growth inhibition in A549, MCF-7, PC-3 and SKOV3 cells, respectively. CONCLUSIONS Hesa-A exert potent cytotoxic effects on different human cancer cells, especially those with a high metastatic potential.
Collapse
Affiliation(s)
- Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran E-mail :
| | | | | | | | | |
Collapse
|
15
|
Abbasi MM, Jahanban-Esfahlan R, Monfaredan A, Seidi K, Hamishehkar H, Khiavi MM. Oral and IV dosages of doxorubicin-methotrexate loaded- nanoparticles inhibit progression of oral cancer by down- regulation of matrix Methaloproteinase 2 expression in vivo. Asian Pac J Cancer Prev 2015; 15:10705-11. [PMID: 25605162 DOI: 10.7314/apjcp.2014.15.24.10705] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Oral cancer is one of the most common and lethal cancers in the world. Combination chemotherapy coupled with nanoparticle drug delivery holds substantial promise in cancer therapy. This study aimed to evaluate the efficacy and safety of two dosages of our novel pH and temperature sensitive doxorubicin-methotrexate-loaded nanoparticles (DOX-MTX NPs) with attention to the MMP-2 mRNA profile in a 4-nitroquinoline-1-oxide induced oral squamous cell carcinoma (OSCC) model in the rat. Our results showed that both IV and oral dosages of DOX-MTX NP caused significant decrease in mRNA levels of MMP-2 compared to the untreated group (p<0.003). Surprisingly, MMP-2 mRNA was not affected in DOX treated compared to cancer group (p>0.05). Our results indicated that IV dosage of MTX-DOX is more effective than free DOX (12 fold) in inhibiting the activity of MMP-2 in OSCCs (P<0.001). Furthermore, MMP-2 mRNA expression in the DOX-MTX treated group showed a significant relation with histopathological changes (P=0.011). Compared to the untreated cancer group, we observed no pathological changes and neither a significant alteration in MMP-2 amount in either of healthy controls that were treated with oral and IV dosages of DOX-MTX NPs whilst cancer group showed a high level of MMP-2 expression compared to healthy controls (p<0.001).Taking together our results indicate that DOX- MTX NPs is a safe chemotherapeutic nanodrug that its oral and IV forms possess potent anti-cancer properties on aggressive tumors like OSCC, possibly by affecting the expression of genes that drive tumor invasion and metastasis.
Collapse
Affiliation(s)
- Mehran Mesgari Abbasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran E-mail :
| | | | | | | | | | | |
Collapse
|
16
|
Abbasi MM, Monfaredan A, Hamishehkar H, Jahanban-Esfahlan R. New formulated "DOX-MTX-loaded nanoparticles" down- regulate HER2 gene expression and improve the clinical outcome in OSCCs model in rat: the effect of IV and oral modalities. Asian Pac J Cancer Prev 2015; 15:9355-60. [PMID: 25422224 DOI: 10.7314/apjcp.2014.15.21.9355] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) remains as one of the most difficult malignancies to control because of its high propensity for local invasion and cervical lymph node dissemination. In this study, we evaluate the efficacy of our novel pH and temperature sensitive doxorubicin-methotrexate-loaded nanoparticles (DOX-MTX NP) in affecting HER2 expression profile in OSCC model in rat. RESULTS DOX-MTX- nanoparticle complexes caused significant decrease in mRNA level of HER2 compared to untreated cancers (p<0.05) and this finding was more pronounced with the IV mode (p<0.000). Surprisingly, HER2 mRNA was not affected in DOX treated as compared to the control group (p>0.05). On the other hand, in the DOX-MTX NP treated group, fewer tumors characterized with advanced stage and decreased HER2 paralleled improved clinical outcome (P<0.05). Moreover, the effectiveness of the oral route in the group treated with nanodrug accounted for the enhanced bioavailability of nanoparticulated DOX-MTX compared to free DOX. Furthermore, there was no significant difference in mRNA level of HER2 (p>0.05). CONCLUSIONS Influence of HER2 gene expression is a new feature and mechanism of action observed only in dual action DOX-MTX-NPs treated groups. Down-regulation of HER2 mRNA as a promising marker and prognosticator of OSCC adds to the cytotoxic benefits of DOX in its new formulation. Both oral and IV application of this nanodrug could be used, with no preferences in term of their safety or toxicity. As HER2 is expressed abundantly by a wide spectrum of tumors, i DOX-MTX NPs may be useful for a wide-spectrum of lesions. However, molecular mechanisms underlying HER2 down regulation induced by DOX-MTX NPs remain to be addressed.
Collapse
Affiliation(s)
- Mehran Mesgari Abbasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran E-mail :
| | | | | | | |
Collapse
|
17
|
Abbasi MM, Khiavi MM, Monfaredan A, Hamishehkar H, Seidi K, Jahanban-Esfahlan R. DOX-MTX-NPs augment p53 mRNA expression in OSCC model in rat: effects of IV and oral routes. Asian Pac J Cancer Prev 2015; 15:8377-82. [PMID: 25339032 DOI: 10.7314/apjcp.2014.15.19.8377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the sixth most common malignancy worldwide. Cancer development and progression require inactivation of tumor suppressor genes and activation of proto-oncogenes. The well recognized mechanism of action demonstrated for chemotherapeutic agents is induction of apoptosis via reactivation of p53. In this context, we evaluate the efficacy of IV and oral routes of our novel PH and temperature sensitive doxorubicin-methotrexate-loaded nanoparticles (DOX-MTX NP) in affecting p53 profile in an OSCC rat model. METHODS In this study, 120 male rats were divided into 8 groups of 15 animals each. The new formulated DOX-MTX NP and free doxorubicin were IV and orally given to rats with 4-nitroquinoline-1- oxide induced OSCC. RESULTS RESULTS showed that both DOX and DOX-MTX-NP caused significant increase in mRNA levels of P53 compared to the untreated group (p<0.000). With both DOX and DOX-MTX NP, the IV mode was more effective than the oral (gavage) route (p<0.000). Surprisingly, in oral mode, p53 mRNA was not affected in DOX treated groups (p>0.05), Nonetheless, both IV and oral administration of MTX-DOX NP showed superior activity (~3 fold) over free DOX in reactivation of p53 in OSCC (p<0.000). The effectiveness of oral route in group treated with nanodrug accounts for the enhanced bioavailability of nanoparticulated DOX- MTX compared to free DOX. Moreover, in treated groups, tumor stage was markedly related to the amount of p53 mRNA (p<0.05). CONCLUSION Both oral and IV application of our novel nanodrug possesses superior activity over free DOX-in up-regulation of p53 in a OSCC model and this increase in p53 level associated with less aggressive tumors in our study. Although, impressive results obtained with IV form of nanodrug (-21 fold increase in p53 mRNA level) but both forms of nanodrug are effective in OSCC, with less toxicity normal cells.
Collapse
|
18
|
OSAWA YUKI, YOKOYAMA YOSHIHITO, SHIGETO TATSUHIKO, FUTAGAMI MASAYUKI, MIZUNUMA HIDEKI. Decreased expression of carbonyl reductase 1 promotes ovarian cancer growth and proliferation. Int J Oncol 2014; 46:1252-8. [DOI: 10.3892/ijo.2014.2810] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/03/2014] [Indexed: 11/05/2022] Open
|