1
|
Coppinger C, Pomales B, Movahed MR, Marefat M, Hashemzadeh M. Berberine: A Multi-Target Natural PCSK9 Inhibitor with the Potential to Treat Diabetes, Alzheimer's, Cancer and Cardiovascular Disease. Curr Rev Clin Exp Pharmacol 2024; 19:312-326. [PMID: 38361373 DOI: 10.2174/0127724328250471231222094648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 02/17/2024]
Abstract
Berberine is a natural product with a wide range of pharmacological effects. It has antimicrobial, anti-cancer, anti-inflammatory, anti-hyperlipidemic, neuroprotective, and cholesterollowering properties, among others. It has been used in traditional Chinese and Ayurvedic medicine for 3000 years and is generally well-tolerated with few side effects. Its main drawback is low oral bioavailability, which has hindered widespread clinical use. However, recent interest has surged with the emergence of evidence that berberine is effective in treating cancer, diabetes, Alzheimer's disease, and cardiovascular disease via multiple mechanisms. It enhances insulin sensitivity and secretion by pancreatic β-cells in Type 2 Diabetes Mellitus in addition to reducing pro-inflammatory cytokines such as IL-6, IL-1β, TLR4 and TNF-α. These cytokines are elevated in Alzheimer's disease, cardiovascular disease, and diabetes. Reductions in pro-inflammatory cytokine levels are associated with positive outcomes such as improved cognition, reduced cardiovascular events, and improved glucose metabolism and insulin sensitivity. Berberine is a natural PCSK9 inhibitor, which contributes to its hypolipidemic effects. It also increases low-density lipoprotein receptor expression, reduces intestinal cholesterol absorption, and promotes cholesterol excretion from the liver to the bile. This translates into a notable decrease in LDL cholesterol levels. High LDL cholesterol levels are associated with increased cardiovascular disease risk. Novel synthetic berberine derivatives are currently being developed that optimize LDL reduction, bioavailability, and other pharmacokinetic properties.
Collapse
Affiliation(s)
- Caroline Coppinger
- Department of Chemistry, Pima College, Tucson, AZ, USA
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Briana Pomales
- Department of Chemistry, Pima College, Tucson, AZ, USA
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Mohammad Reza Movahed
- Department of Medicine, University of Arizona, Tucson, AZ, USA
- Department of Medicine, University of Arizona College of Medicine, Phoenix, USA
| | | | - Mehrnoosh Hashemzadeh
- Department of Chemistry, Pima College, Tucson, AZ, USA
- Department of Medicine, University of Arizona College of Medicine, Phoenix, USA
| |
Collapse
|
2
|
Thongphichai W, Pongkittiphan V, Laorpaksa A, Wiwatcharakornkul W, Sukrong S. Antimicrobial Activity against Foodborne Pathogens and Antioxidant Activity of Plant Leaves Traditionally Used as Food Packaging. Foods 2023; 12:2409. [PMID: 37372620 DOI: 10.3390/foods12122409] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
In accordance with Thai wisdom, indigenous plant leaves have been used as food packaging to preserve freshness. Many studies have demonstrated that both antioxidant and antimicrobial activities contribute to protecting food from spoilage. Hence, the ethanolic extracts of leaves from selected plants traditionally used as food packaging, including Nelumbo nucifera (1), Cocos nucifera (2), Nypa fruticans (3), Nepenthes mirabilis (4), Dendrocalamus asper (5), Cephalostachyum pergracile (6), Musa balbisiana (7), and Piper sarmentosum (8), were investigated to determine whether they have antioxidant and antimicrobial activities against spoilage microorganisms and foodborne pathogens that might be beneficial for food quality. Extracts 1-4 exhibited high phenolic content at 82.18-115.15 mg GAE/g and high antioxidant capacity on DPPH, FRAP and SRSA assay at 14.71-34.28 μg/mL, 342.92-551.38 μmol Fe2+/g, and 11.19-38.97 μg/mL, respectively, while leaf extracts 5-8 showed lower phenolic content at 34.43-50.08 mg GAE/g and lower antioxidant capacity on DPPH, FRAP, and SRSA at 46.70-142.16 μg/mL, 54.57-191.78 μmol Fe2+/g, and 69.05->120 μg/mL, respectively. Extracts 1-4 possessed antimicrobial activities against food-relevant bacteria, including Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, and Escherichia coli. Only N. mirabilis extract (4) showed antimicrobial activities against Salmonella enterica subsp. enterica serovar Abony and Candida albicans. Extracts 5-8 showed slight antimicrobial activities against B. cereus and E. coli. As the growth and activity of microorganisms are the main cause of food spoilage, N. fruticans (3) was selected for bioassay-guided isolation to obtain 3-O-caffeoyl shikimic acid (I), isoorientin (II) and isovitexin (III), which are responsible for its antimicrobial activity against foodborne pathogens. N. fruticans was identified as a new source of natural antimicrobial compounds I-III, among which 3-O-caffeoyl shikimic acid was proven to show antimicrobial activity for the first time. These findings support the use of leaves for wrapping food and protecting food against oxidation and foodborne pathogens through their antioxidant and antimicrobial activities, respectively. Thus, leaves could be used as a natural packaging material and natural preservative.
Collapse
Affiliation(s)
- Wisuwat Thongphichai
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok 10330, Thailand
| | - Veerachai Pongkittiphan
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok 10330, Thailand
| | - Areerat Laorpaksa
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok 10330, Thailand
| | - Worakorn Wiwatcharakornkul
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suchada Sukrong
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Devarajan N, Nathan J, Mathangi R, Mahendra J, Ganesan SK. Pharmacotherapeutic values of berberine: A Chinese herbal medicine for the human cancer management. J Biochem Mol Toxicol 2023; 37:e23278. [PMID: 36588295 DOI: 10.1002/jbt.23278] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/27/2022] [Accepted: 12/02/2022] [Indexed: 01/03/2023]
Abstract
Berberine (BBR), a traditional Chinese phytomedicine extracted from various parts of Berberis plants, is an isoquinoline alkaloid used for centuries to treat diabetes, hypercholesterolemia, hypertension, and so forth. It has recently received immense attention worldwide to treat cancer due to its potent pro-apoptotic, antiproliferative, and anti-inflammatory properties. BBR efficiently induces tumor apoptosis, replicative quiescence and abrogates cell proliferation, epithelial-mesenchymal transition, tumor neovascularization, and metastasis by modulating diverse molecular and cell signaling pathways. Furthermore, BBR could also reverse drug resistance, make tumor cells sensitive to current cancer treatment and significantly minimize the harmful side effects of cytotoxic therapies. This review comprehensively analyzed the pharmacological effects of BBR against the development, growth, progression, metastasis, and therapy resistance in wide varieties of cancer. Also, it critically discusses the significant limitations behind the development of BBR into pharmaceuticals to treat cancer and the future research directions to overcome these limitations.
Collapse
Affiliation(s)
- Nalini Devarajan
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research - MAHER (Deemed to be University), Chennai, Tamilnadu, India
| | - Jhansi Nathan
- Zebrafish Developmental Biology Laboratory, AUKBC Research Centre for Emerging Technologies, Anna University, Chennai, Tamil Nadu, India
| | - Ramalingam Mathangi
- Department of Biochemistry, Sree Balaji Dental College and Hospital, BIHER, Chennai, Tamil Nadu, India
| | - Jaideep Mahendra
- Department of Periodontology, Meenakshi Ammal Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Senthil Kumar Ganesan
- Laboratory of Functional Genomics, Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| |
Collapse
|
4
|
Berberine: An Important Emphasis on Its Anticancer Effects through Modulation of Various Cell Signaling Pathways. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185889. [PMID: 36144625 PMCID: PMC9505063 DOI: 10.3390/molecules27185889] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022]
Abstract
Cancer is the most commonly diagnosed type of disease and a major cause of death worldwide. Despite advancement in various treatment modules, there has been little improvement in survival rates and side effects associated with this disease. Medicinal plants or their bioactive compounds have been extensively studied for their anticancer potential. Novel drugs based on natural products are urgently needed to manage cancer through attenuation of different cell signaling pathways. In this regard, berberine is a bioactive alkaloid that is found in variety of plants, and an inverse association has been revealed between its consumption and cancer. Berberine exhibits an anticancer role through scavenging free radicals, induction of apoptosis, cell cycle arrest, inhibition of angiogenesis, inflammation, PI3K/AKT/mammalian target of rapamycin (mTOR), Wnt/β-catenin, and the MAPK/ERK signaling pathway. In addition, synergistic effects of berberine with anticancer drugs or natural compounds have been proven in several cancers. This review outlines the anticancer effects and mechanisms of action of berberine in different cancers through modulation of various cell signaling pathways. Moreover, the recent developments in the drug delivery systems and synergistic effect of berberine are explained.
Collapse
|
5
|
Alorabi M, Cavalu S, Al-Kuraishy HM, Al-Gareeb AI, Mostafa-Hedeab G, Negm WA, Youssef A, El-Kadem AH, Saad HM, Batiha GES. Pentoxifylline and berberine mitigate diclofenac-induced acute nephrotoxicity in male rats via modulation of inflammation and oxidative stress. Biomed Pharmacother 2022; 152:113225. [PMID: 35671584 DOI: 10.1016/j.biopha.2022.113225] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/24/2022] Open
Abstract
Nephrotoxicity (NT) is a renal-specific situation caused by different toxins and drugs like non-steroidal anti-inflammatory drugs (NSAIDs). NSAIDs like diclofenac (DCF) lead to glomerular dysfunction. Pentoxifylline (PTX) and berberine (BER) have antioxidant and anti-inflammatory properties. Thus, the objective of the present study was to investigate the ameliorative effect of PTX, BER and their combination against DCF-mediated acute NT. Induction of acute NT was done via DCF injection (150 mg/kg I.P, for 6 days) in rats. PTX 200 mg/kg, BER 200 mg/kg and their combination were administrated for 6 days prior to DCF injection and concurrently with DCF for additional 6 days. Acute NT was evaluated biochemically and histopathologically by measuring blood urea (BU), serum creatinine (SCr), kidney injury molecule-1(KIM-1), integrin (ITG), and vitronectin (VTN), interleukin (IL)-18, Neutrophil gelatinase-associated lipocalin (NGAL), glomerular filtration rate (GFR), superoxide dismutase (SOD) and glutathione (GSH) and malondialdehyde (MDA) with the scoring of histopathological alterations. PTX, BER and their combination significantly (P < 0.05) attenuated biochemical and histopathological changes in DCF-mediated acute NT by amelioration of BU, SCr, KIM-1, ITG, VTN, IL-18, NGAL, GFR, SOD, GSH, MDA and scoring of histopathological alterations. The combined effects of PTX and BER produced more significant effects (P < 0.05) than either PTX or BER when used alone against DCF-induced acute NT. In conclusion, BER and BTX were found to have potential renoprotective effects against DCF-induced NT in rats by inhibiting inflammatory reactions and oxidative stress.
Collapse
Affiliation(s)
- Mohammed Alorabi
- Department of Biotechnology, College of Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia.
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania.
| | - Hayder M Al-Kuraishy
- Pharmacology and Therapeutic Medicine Department, Faculty of Medicine, Al-Mustansiriyah University, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Pharmacology and Therapeutic Medicine Department, Faculty of Medicine, Al-Mustansiriyah University, Baghdad, Iraq.
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department & Health Research Unit, Medical College, Jouf University, Jouf, Saudi Arabia; Pharmacology Department, Faculty of Medicine, Beni-Suef University, Egypt.
| | - Walaa A Negm
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt.
| | - Amal Youssef
- Medical Pharmacology Department, Faculty of Medicine, Cairo University, Egypt.
| | - Aya H El-Kadem
- Pharmacology Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51744, Matrouh, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| |
Collapse
|
6
|
Yang S, Cao S, Li C, Zhang J, Liu C, Qiu F, Kang N. Berberrubine, a Main Metabolite of Berberine, Alleviates Non-Alcoholic Fatty Liver Disease via Modulating Glucose and Lipid Metabolism and Restoring Gut Microbiota. Front Pharmacol 2022; 13:913378. [PMID: 35873595 PMCID: PMC9304582 DOI: 10.3389/fphar.2022.913378] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major public health problem in many countries. Berberine (BBR) is an effective therapeutic agent in alleviating NAFLD. Berberrubine (BRB) is one of the main active metabolites of BBR, which shows significant anti-obesity and antihypoglycemic effects. However, whether BRB is responsible for the in vivo therapeutic effect and the underlying mechanism of BRB on NAFLD have not been elucidated. In this study, the ability of BRB to ameliorate NAFLD, together with its molecular mechanism, was investigated. The results showed that BRB treatments could significantly improve hepatic steatosis and insulin resistance in high-fat diet (HFD)–fed mice and oleic acid (OA)–treated HepG2 cells. Meanwhile, BBR and BRB treatment similarly prevented lipid accumulation by regulating the protein expression of ATGL, GK, PPARα, CPT-1, ACC1, FAS, and CD36. In addition, compared with BBR, BRB could maintain glucose homeostasis via GLUT2, GSK3β, and G6Pase in HFD-fed mice. Furthermore, the components of the gut microbiota in mice were analyzed by 16S rRNA gene sequencing. BBR and BRB treatment could greatly modify the structure and composition of gut microbiota. At the genus level, BBR and BRB treatment decreased Lactobacillus and Romboutsia, while BBR increased beneficial bacteria, such as Akkermansia and Bacteroides, and BRB increased beneficial bacteria, such as Ileibacterium and Mucispirillum. Altogether, both BRB and BBR were active in alleviating NAFLD in vivo and BRB might be used as a functional material to treat NAFLD clinically.
Collapse
Affiliation(s)
- Sa Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shijie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Congyu Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jichao Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Feng Qiu, ; Ning Kang,
| | - Ning Kang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Feng Qiu, ; Ning Kang,
| |
Collapse
|
7
|
Shen CH, Wu JY, Wang SC, Wang CH, Hong CT, Liu PY, Wu SR, Liu YW. The suppressive role of phytochemical-induced glutathione S-transferase Mu 2 in human urothelial carcinoma cells. Biomed Pharmacother 2022; 151:113102. [PMID: 35594716 DOI: 10.1016/j.biopha.2022.113102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/18/2022] Open
Abstract
Glutathione S-transferases (GSTs) belong to one class of phase 2 detoxification enzymes which are important in metabolism and/or detoxification of various electrophilic endogenous metabolites and xenobiotics. From the available database, we found that GSTM2 gene expression is lower in high stages of bladder urothelial carcinoma than in stage 1 and normal bladder tissue. GSTM2 overexpression retards invasion, migration and tumor sphere formation of bladder cancer cells. Analysis of GSTM2 promoter activity shows that one SP1 site located at - 48 to - 40 bp is important for GSTM2 gene expression in BFTC 905 cells. An SP1 inhibitor, mithramycin A, inhibits GSTM2 promoter activity and protein expression. SP1 overexpression also increases GSTM2 expression in BFTC 905 and 5637 cells. Eight potential phytochemicals were analyzed for GSTM2 promoter activation, and results indicated that baicalein, berberrubine, chalcone, curcumin, resveratrol, and wogonin can increase promoter activity. In endogenous GSTM2 expression, berberrubine and resveratrol activated GSTM2 mRNA and protein expression the most. A DNA methylation inhibitor, 5-aza-deoxycytidine, can decrease GSTM2 gene methylation level and then increase its gene expression; 50 μM berberrubine decreased the GSTM2 gene methylation level, providing a mechanism for activating GSTM2 gene expression. Berberrubine and resveratrol also increased SP1 protein expression as one of the mechanisms for GSTM2 gene expression. In summary, berberrubine and resveratrol activates GSTM2 expression which inhibits cell proliferation, migration, and invasion of bladder cancer cells. The GSTM2 expression mechanism is partially via SP1 activation, and the effect of berberrubine is also partly via DNA CpG demethylation.
Collapse
Affiliation(s)
- Cheng-Huang Shen
- Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan
| | - Jin-Yi Wu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan
| | - Shou-Chieh Wang
- Division of Nephrology, Department of Internal Medicine, Kuang Tien General Hospital, Taichung 437, Taiwan
| | - Chi-Hung Wang
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan
| | - Chen-Tai Hong
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan
| | - Pei-Yu Liu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan
| | - Sin-Rong Wu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan
| | - Yi-Wen Liu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan.
| |
Collapse
|
8
|
Anti-Inflammatory and Antioxidant Chinese Herbal Medicines: Links between Traditional Characters and the Skin Lipoperoxidation “Western” Model. Antioxidants (Basel) 2022; 11:antiox11040611. [PMID: 35453296 PMCID: PMC9030610 DOI: 10.3390/antiox11040611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
The relationship between lipid peroxidation and inflammation has been accepted as a paradigm in the field of topical inflammation. The underlying biochemical mechanisms may be summarised as unspecific oxidative damage followed by specific oxidative processes as the physio pathological response in skin tissues. In this experimental review we hypothesise that the characteristics attributed by Traditional Chinese Medicine (TCM) to herbal drugs can be linked to their biomolecular activities within the framework of the above paradigm. To this end, we review and collect experimental data from several TCM herbal drugs to create 2D-3D pharmacological and biochemical spaces that are further reduced to a bidimensional combined space. When multivariate analysis is applied to the latter, it unveils a series of links between TCM herbal characters and the skin lipoperoxidation “Western” model. With the help of these patterns and a focused review on their chemical, pharmacological and antioxidant properties we show that cleansing herbs of bitter and cold nature acting through removal of toxins—including P. amurense, Coptis chinensis, S. baicalensis and F. suspensa—are highly correlated with strong inhibition of both lipid peroxidation and eicosanoids production. Sweet drugs—such as A. membranaceus, A. sinensis and P. cocos—act through a specific inhibition of the eicosanoids production. The therapeutic value of the remaining drugs—with low antioxidant or anti-inflammatory activity—seems to be based on their actions on the Qi with the exception of furanocoumarin containing herbs—A. dahurica and A. pubescens—which “expel wind”. A further observation from our results is that the drugs present in the highly active “Cleansing herbs” cluster are commonly used and may be interchangeable. Our work may pave the way to a translation between two medical systems with radically different philosophies and help the prioritisation of active ingredients with specific biomolecular activities of interest for the treatment of skin conditions.
Collapse
|
9
|
Filli MS, Ibrahim AA, Kesse S, Aquib M, Boakye-Yiadom KO, Farooq MA, Raza F, Zhang Y, Wang B. Synthetic berberine derivatives as potential new drugs. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902020000318835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | - Md Aquib
- China Pharmaceutical University, China
| | | | | | | | | | - Bo Wang
- China Pharmaceutical University, China
| |
Collapse
|
10
|
Ibrahim Fouad G, Ahmed KA. The protective impact of berberine against doxorubicin-induced nephrotoxicity in rats. Tissue Cell 2021; 73:101612. [PMID: 34371291 DOI: 10.1016/j.tice.2021.101612] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/29/2021] [Indexed: 01/23/2023]
Abstract
Doxorubicin (DOX) is a well-known anti-neoplastic agent that is widely employed to treat several types of malignancies. The current study was designed to investigate the renoprotective potential of berberine (BEB) on the doxorubicin (DOX)-induced nephrotoxicity and renal fibrosis. Rats were allocated into four groups; Negative Control, DOX nephrotoxic-induced group received a single dose of DOX (20 mg/kg, i.p.), BEB-group received (50 mg/kg, p.o.) for 14 days, and co-treatment group BEB + DOX where rats were pre-treated with BEB for 10 successive days, then received a single dose of DOX on the 11th day, followed by 4 days of receiving BEB. DOX resulted in nephrotoxicity manifested by significant increments in urea, creatinine, and kidney injury molecule (KIM-1), these biochemical findings were supported with the histopathological lesions in renal tissues. Moreover, DOX provoked oxidative stress through enhancing renal malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents, and decreased renal catalase (CAT) activity. DOX triggered renal fibrosis represented by increased transforming growth factor beta-1 (TGF-β1) and elevated collagen deposition. DOX stimulated apoptosis and inflammation in renal tissues as confirmed by increased immunoexpression of caspase-3 and NF-κB, respectively. These effects were alleviated by BEB co-treatment. Co-treatment with BEB markedly prohibited DOX-induced oxidative damage, inflammation, apoptosis, and fibrosis in renal tissue. Histopathological and immunohistochemical investigations showed the nephroprotective potential of BEB on renal injury, which was consistent with the biochemical findings. Accordingly, it could be concluded that the nephroprotective potential of BEB against DOX-induced kidney injury and fibrosis might be mediated by the anti-oxidant, anti-inflammatory and anti-fibrosis activities.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
11
|
Sobolova K, Hrabinova M, Hepnarova V, Kucera T, Kobrlova T, Benkova M, Janockova J, Dolezal R, Prchal L, Benek O, Mezeiova E, Jun D, Soukup O, Korabecny J. Discovery of novel berberine derivatives with balanced cholinesterase and prolyl oligopeptidase inhibition profile. Eur J Med Chem 2020; 203:112593. [PMID: 32688201 DOI: 10.1016/j.ejmech.2020.112593] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
Abstract
Berberine, a naturally occurring compound, possesses an interesting multipotent pharmacological profile potentially applicable for Alzheimer's disease (AD) treatment. In this study, a series of novel 22 berberine derivatives was developed and tested in vitro. Berberine core was substituted at position 9-O of its aromatic ring region. All the hybrids under the study revealed multi-targeted profile inhibiting prolyl oligopeptidase, acetylcholinesterase and butyrylcholinesterase highlighting 4a, 4g, 4j, 4l and 4s possessing balanced activities in the micromolar range. The top-ranked candidates in terms of the most pronounced potency against POP, AChE and BChE can be classified as 4d, 4u and 4v, bearing 4-methylbenzyl, (naphthalen-2-yl)methylene and 1-phenoxyethyl moieties, respectively. In vitro data were corroborated by detailed kinetic analysis of the selected lead molecules. 4d, 4u and 4v were also inspected for their potential to inhibit aggregation of two abberant proteins in AD, namely amyloid beta and tau, indicating their potential disease-modifying properties. To explain the results of our study, we carried out docking simulation to the active sites of the respective enzyme with the best berberine derivatives, along with QSAR study. We also investigated compounds' potential permeability through blood-brain barrier by applying parallel artificial membrane permeation assay and addressed their cytotoxicity profile.
Collapse
Affiliation(s)
- Katerina Sobolova
- Department of Toxicology and Military Pharmacy, Department of Military Medical Service Organisation and Management, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic
| | - Martina Hrabinova
- Department of Toxicology and Military Pharmacy, Department of Military Medical Service Organisation and Management, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Vendula Hepnarova
- Department of Toxicology and Military Pharmacy, Department of Military Medical Service Organisation and Management, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic
| | - Tomas Kucera
- Department of Toxicology and Military Pharmacy, Department of Military Medical Service Organisation and Management, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic
| | - Tereza Kobrlova
- Department of Toxicology and Military Pharmacy, Department of Military Medical Service Organisation and Management, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Marketa Benkova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Jana Janockova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Rafael Dolezal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Ondrej Benek
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Department of Military Medical Service Organisation and Management, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Department of Toxicology and Military Pharmacy, Department of Military Medical Service Organisation and Management, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Jan Korabecny
- Department of Toxicology and Military Pharmacy, Department of Military Medical Service Organisation and Management, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
12
|
Kumar R, Sharma N, Rolta R, Lal UR, Sourirajan A, Dev K, Kumar V. Thalictrum foliolosum DC: An unexplored medicinal herb from north western Himalayas with potential against fungal pathogens and scavenger of reactive oxygen species. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Pretreatment with berberine protects against cisplatin-induced renal injury in male Wistar rats. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1825-1833. [PMID: 32410067 DOI: 10.1007/s00210-020-01877-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
Berberine (BBR), an isoquinoline alkaloid, has been reported to be an antioxidant agent. This study was conducted to investigate the effect of BBR against nephrotoxicity induced by cisplatin (Cis) in male rats. In this experimental study, 28 Wistar male rats were randomly divided into four groups. Rats were pretreated with BBR (100 mg/kg/day, p.o.) for 7 consecutive days and Cis (7.5 mg/kg, i.p.) was administrated on the 7th day, 1 h after the last dose of BBR. Blood samples were collected to determine blood urea nitrogen (BUN) and creatinine (Cr) levels. Malondialdehyde (MDA), glutathione (GSH), protein carbonyl (PC), and nitric oxide (NO) levels and the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and myeloperoxidase (MPO) were assessed in the left renal tissue. Also, the mRNA expression of SOD2 and PGx1 was measured in the left renal tissue. The right kidney was used for histopathological evaluation. Our results revealed that the levels of Cr, BUN, MDA, NO, and PC and the MPO activity increased by Cis administration. Also, we found that Cis decreased renal GSH level and SOD, GPx, and CAT activities. Pretreatment with BBR for 7 consecutive days significantly attenuated the Cis-induced nephrotoxicity via increasing the antioxidant capacity and reducing the oxidative stress indices in the renal tissue. Moreover, the renoprotective effect of BBR was confirmed by the histopathological evaluation of the kidneys. Our results indicated that BBR has produced amelioration in biochemical indices and oxidative stress parameters against Cis-induced nephrotoxicity.
Collapse
|
14
|
Tobore TO. Towards a comprehensive etiopathogenetic and pathophysiological theory of multiple sclerosis. Int J Neurosci 2019; 130:279-300. [PMID: 31588832 DOI: 10.1080/00207454.2019.1677648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Multiple sclerosis (MS) is a neurodegenerative disease caused by dysfunction of the immune system that affects the central nervous system (CNS). It is characterized by demyelination, chronic inflammation, neuronal and oligodendrocyte loss and reactive astrogliosis. It can result in physical disability and acute neurological and cognitive problems. Despite the gains in knowledge of immunology, cell biology, and genetics in the last five decades, the ultimate etiology or specific elements that trigger MS remain unknown. The objective of this review is to propose a theoretical basis for MS etiopathogenesis.Methods: Search was done by accessing PubMed/Medline, EBSCO, and PsycINFO databases. The search string used was "(multiple sclerosis* OR EAE) AND (pathophysiology* OR etiopathogenesis)". The electronic databases were searched for titles or abstracts containing these terms in all published articles between January 1, 1960, and June 30, 2019. The search was filtered down to 362 articles which were included in this review.Results: A framework to better understand the etiopathogenesis and pathophysiology of MS can be derived from four essential factors; mitochondria dysfunction (MtD) & oxidative stress (OS), vitamin D (VD), sex hormones and thyroid hormones. These factors play a direct role in MS etiopathogenesis and have a modulatory effect on many other factors involved in the disease.Conclusions: For better MS prevention and treatment outcomes, efforts should be geared towards treating thyroid problems, sex hormone alterations, VD deficiency, sleep problems and melatonin alterations. MS patients should be encouraged to engage in activities that boost total antioxidant capacity (TAC) including diet and regular exercise and discouraged from activities that promote OS including smoking and alcohol consumption.
Collapse
|
15
|
Tobore TO. On elucidation of the role of mitochondria dysfunction and oxidative stress in multiple sclerosis. ACTA ACUST UNITED AC 2019. [DOI: 10.1111/ncn3.12335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Takahara M, Takaki A, Hiraoka S, Adachi T, Shimomura Y, Matsushita H, Nguyen TTT, Koike K, Ikeda A, Takashima S, Yamasaki Y, Inokuchi T, Kinugasa H, Sugihara Y, Harada K, Eikawa S, Morita H, Udono H, Okada H. Berberine improved experimental chronic colitis by regulating interferon-γ- and IL-17A-producing lamina propria CD4 + T cells through AMPK activation. Sci Rep 2019; 9:11934. [PMID: 31417110 PMCID: PMC6695484 DOI: 10.1038/s41598-019-48331-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/02/2019] [Indexed: 01/04/2023] Open
Abstract
The herbal medicine berberine (BBR) has been recently shown to be an AMP-activated protein kinase (AMPK) productive activator with various properties that induce anti-inflammatory responses. We investigated the effects of BBR on the mechanisms of mucosal CD4+T cell activation in vitro and on the inflammatory responses in T cell transfer mouse models of inflammatory bowel disease (IBD). We examined the favorable effects of BBR in vitro, using lamina propria (LP) CD4+ T cells in T cell transfer IBD models in which SCID mice had been injected with CD4+CD45RBhigh T cells. BBR suppressed the frequency of IFN-γ- and Il-17A-producing LP CD4+ T cells. This effect was found to be regulated by AMPK activation possibly induced by oxidative phosphorylation inhibition. We then examined the effects of BBR on the same IBD models in vivo. BBR-fed mice showed AMPK activation in the LPCD4+ T cells and an improvement of colitis. Our study newly showed that the BBR-induced AMPK activation of mucosal CD4+ T cells resulted in an improvement of IBD and underscored the importance of AMPK activity in colonic inflammation.
Collapse
Affiliation(s)
- Masahiro Takahara
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Sakiko Hiraoka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Takuya Adachi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yasuyuki Shimomura
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroshi Matsushita
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Tien Thi Thuy Nguyen
- Department of Animal Applied Microbiology, Okayama University Graduate School of Environmental and Life Science, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.,College of Agriculture and Forestry, Hue University, 3 Le Loi, Hue City, Vietnam
| | - Kazuko Koike
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Airi Ikeda
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shiho Takashima
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yasushi Yamasaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Toshihiro Inokuchi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hideaki Kinugasa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yusaku Sugihara
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Keita Harada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shingo Eikawa
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hidetoshi Morita
- Department of Animal Applied Microbiology, Okayama University Graduate School of Environmental and Life Science, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Heiichiro Udono
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
17
|
Ahmad S, Hussain A, Hussain A, Abdullah I, Ali MS, Froeyen M, Mirza MU. Quantification of Berberine in Berberis vulgaris L. Root Extract and Its Curative and Prophylactic Role in Cisplatin-Induced In Vivo Toxicity and In Vitro Cytotoxicity. Antioxidants (Basel) 2019; 8:E185. [PMID: 31248160 PMCID: PMC6616455 DOI: 10.3390/antiox8060185] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 01/16/2023] Open
Abstract
Cisplatin is amongst the most potent chemotherapeutic drugs with applications in more than 50% of cancer treatments, but dose-dependent side effects limit its usefulness. Berberis vulgaris L. (B. vulgaris) has a proven role in several therapeutic applications in the traditional medicinal system. High-performance liquid chromatography was used to quantify berberine, a potent alkaloid in the methanolic root extract of B. vulgaris (BvRE). Berberine chloride in BvRE was found to be 10.29% w/w. To assess the prophylactic and curative protective effects of BvRE on cisplatin-induced nephrotoxicity, hepatotoxicity, and hyperlipidemia, in vivo toxicity trials were carried out on 25 healthy male albino Wistar rats (130-180 g). Both prophylactic and curative trials included a single dose of cisplatin (4 mg/kg, i.p.) and nine doses of BvRE (500 mg/kg/day, orally). An array of marked toxicity effects appeared in response to cisplatin dosage evident by morphological condition, biochemical analysis of serum (urea, creatinine, total protein, alanine transaminase, aspartate transaminase, total cholesterol, and triglyceride), and organ tissue homogenates (malondialdehyde and catalase). Statistically-significant (p < 0.05) variations were observed in various parameters. Moreover, histological studies of liver and kidney tissues revealed that the protective effect of BvRE effectively minimized and reversed nephrotoxic, hepatotoxic, and hyperlipidemic effects caused by cisplatin in both prophylactic and curative groups with relatively promising ameliorative effects in the prophylactic regimen. The in vitro cell viability effect of cisplatin, BvRE, and their combination was determined on HeLa cells using the tetrazolium (MTT) assay. MTT clearly corroborated that HeLa cells appeared to be less sensitive to cisplatin and berberine individually, while the combination of both at the same concentrations resulted in growth inhibition of HeLa cells in a remarkable synergistic way. The present study validated the use of BvRE as a protective agent in combination therapy with cisplatin.
Collapse
Affiliation(s)
- Sarfraz Ahmad
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Amina Hussain
- Department of Biochemistry, Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, Lahore 54000, Pakistan.
| | - Aroosha Hussain
- Department of Biochemistry, Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, Lahore 54000, Pakistan.
| | - Iskandar Abdullah
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Muhammad Sajjad Ali
- Department of Biochemistry, Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, Lahore 54000, Pakistan.
| | - Matheus Froeyen
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000 Leuven, Belgium.
| | - Muhammad Usman Mirza
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
18
|
Macáková K, Afonso R, Saso L, Mladěnka P. The influence of alkaloids on oxidative stress and related signaling pathways. Free Radic Biol Med 2019; 134:429-444. [PMID: 30703480 DOI: 10.1016/j.freeradbiomed.2019.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/19/2022]
Abstract
Alkaloids have always attracted scientific interest due to either their positive or negative effects on human beings. This review aims to summarize their antioxidant effects by both classical in vitro scavenging assay and at the cellular level. Since most in vitro studies used the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay, the results from those studies are summed up in the first part of the article. In the second part, available data on the effect of alkaloids on NADPH-oxidase, the key enzyme for reactive oxygen species production, at the cellular level, are summarized. More than 130 alkaloids were tested by DPPH assay. However, due to methodological differences, a direct comparison is hardly possible. It can be at least concluded that some of them were either similar to or even more active than standard antioxidants and the number of aromatic hydroxyl groups seems to be the major determinant for the activity. The data on inhibition of NADPH-oxidase activity by alkaloids demonstrated that there is little relationship to the DPPH assay. The mechanism seems to be based on inhibition of synthesis, activation or translocation of NADPH-oxidase subunits. In some alkaloids, activation of the nuclear factor Nrf2 pathway was documented to be the grounds for inhibition of NADPH-oxidase. Interestingly, many alkaloids can behave both as anti-oxidants and pro-oxidants depending on conditions and pro-oxidation might be the reason for activation of Nrf2. Available data on other "antioxidant" transcription factors FOXOs and PPARs are also mentioned.
Collapse
Affiliation(s)
- Kateřina Macáková
- Department of Pharmaceutical Botany, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Rita Afonso
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, Italy.
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
19
|
Feng X, Sureda A, Jafari S, Memariani Z, Tewari D, Annunziata G, Barrea L, Hassan ST, Šmejkal K, Malaník M, Sychrová A, Barreca D, Ziberna L, Mahomoodally MF, Zengin G, Xu S, Nabavi SM, Shen AZ. Berberine in Cardiovascular and Metabolic Diseases: From Mechanisms to Therapeutics. Theranostics 2019; 9:1923-1951. [PMID: 31037148 PMCID: PMC6485276 DOI: 10.7150/thno.30787] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular and metabolic diseases (CVMD) are the leading causes of death worldwide, underscoring the urgent necessity to develop new pharmacotherapies. Berberine (BBR) is an eminent component of traditional Chinese and Ayurvedic medicine for more than 2000 years. Recently, BBR has attracted much interest for its pharmacological actions in treating and/or managing CVMD. Recent discoveries of basic, translational and clinical studies have identified many novel molecular targets of BBR (such as AMPK, SIRT1, LDLR, PCSK9, and PTP1B) and provided novel evidences supporting the promising therapeutic potential of BBR to combat CVMD. Thus, this review provides a timely overview of the pharmacological properties and therapeutic application of BBR in CVMD, and underlines recent pharmacological advances which validate BBR as a promising lead drug against CVMD.
Collapse
|
20
|
Bouchmaa N, Ben Mrid R, Boukharsa Y, Nhiri M, Ait Mouse H, Taoufik J, Ansar M, Zyad A. Cytotoxicity of new pyridazin-3(2H)-one derivatives orchestrating oxidative stress in human triple-negative breast cancer (MDA-MB-468). Arch Pharm (Weinheim) 2018; 351:e1800128. [DOI: 10.1002/ardp.201800128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Najat Bouchmaa
- Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immuno-pharmacology, Faculty of Sciences and Techniques; Sultan Moulay Slimane University; Beni-Mellal Morocco
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy; Mohammed V University; Rabat Morocco
| | - Reda Ben Mrid
- Laboratory of Biochemistry and Molecular Genetics; Faculty of Sciences and Techniques; Tangier Morocco
| | - Youness Boukharsa
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy; Mohammed V University; Rabat Morocco
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics; Faculty of Sciences and Techniques; Tangier Morocco
| | - Hassan Ait Mouse
- Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immuno-pharmacology, Faculty of Sciences and Techniques; Sultan Moulay Slimane University; Beni-Mellal Morocco
| | - Jamal Taoufik
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy; Mohammed V University; Rabat Morocco
| | - M'hammed Ansar
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy; Mohammed V University; Rabat Morocco
| | - Abdelmajid Zyad
- Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immuno-pharmacology, Faculty of Sciences and Techniques; Sultan Moulay Slimane University; Beni-Mellal Morocco
| |
Collapse
|
21
|
Dong H, Yan G, Wang Z, Wu C, Cui B, Ren Y, Yang C. Liquid Chromatography-Tandem Mass Spectrometry Simultaneous Determination and Pharmacokinetic Study of Fourteen Alkaloid Components in Dog Plasma after Oral Administration of Corydalis bungeana Turcz Extract. Molecules 2018; 23:molecules23081927. [PMID: 30072612 PMCID: PMC6222357 DOI: 10.3390/molecules23081927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 12/25/2022] Open
Abstract
A rapid and sensitive Ultra high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed for the simultaneous determination of fourteen alkaloids in beagle dog plasma after a single oral dose of the Corydalis bungeana Turcz (C. bungeana) extract selected bifendate as the internal standard (IS). The plasma samples were preprocessed by liquid-liquid extraction (LLE) with aether before separation on an Agilent SB-C18 column (1.8 µm, 150 × 2.1 mm) using a gradient elution program. The mobile phase consists of 0.2% acetic acid and acetonitrile at the flow rate of 0.3 mL/min. In the positive ion mode, the analytes were detected by multiple reaction monitoring (MRM). The results indicated that calibration curves for fourteen analytes have good linearity (R2 = 0.9904). The lower limits of quantification (LLOQ) of fourteen alkaloids and IS were all over 4.87 ng/mL and the matrix effects ranged from 94.08% to 102.76%. The mean extraction recoveries of Quality control samples at low (LQC), medium (MQC) and high (HQC) and IS were all more than 78.03%. The intra- and inter-day precision (R.S.D.%) also met the criterion, at the same time the deviation of assay accuracies (R.E) ranged from −13.70% to 14.40%. The Tmax values of fourteen alkaloids were no more than 1 h. The range of Cmax was from 74.16 ± 8.71 to 2256 ± 255.9 ng/mL. The assay was validated in the light of the regulatory bioanalytical guidelines and proved acceptable, which was successfully applied to a pharmacokinetic study of these compounds in beagle dogs after oral administration of Corydalis bungeana Turcz extract.
Collapse
Affiliation(s)
- Hongrui Dong
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, China.
| | - Guanyun Yan
- Department of Pharmacy Management Harbin Medical University, Harbin 150086, Heilongjiang, China.
| | - Zhibin Wang
- Key Laboratory of Chinese Materia Medical (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China.
| | - Chengcui Wu
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, China.
| | - Binbin Cui
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, China.
| | - Yixuan Ren
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, China.
| | - Chunjuan Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, China.
| |
Collapse
|
22
|
Shukla R, Banerjee S, Tripathi YB. Antioxidant and Antiapoptotic effect of aqueous extract of Pueraria tuberosa (Roxb. Ex Willd.) DC. On streptozotocin-induced diabetic nephropathy in rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:156. [PMID: 29751837 PMCID: PMC5948837 DOI: 10.1186/s12906-018-2221-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/26/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Oxidative stress and renal apoptosis play a significant role in the progression of diabetic nephropathy. The tubers of Pueraria tuberosa (Roxb. ex Willd.) DC. has been traditionally used as anti-ageing and health promotive tonic. The purpose of this study was to investigate its nephroprotective effect and mechanism via antioxidant and antiapoptotic potential in Streptozotocin-induced diabetic nephropathy (DN) in rats. METHODS The chemical composition of aqueous extract of Pueraria tuberosa (PTY-2r) was analyzed by gas chromatography-mass spectrometry (GC-MS). Diabetes was induced by intraperitoneal injection of streptozotocin (STZ) (55 mg/kg body weight) in rats. After 60 days, the rats were randomly divided into 3 groups (n = 6/each group), namely DN control (DN) group-2, DN rats treated with PTY-2r at the dose of 50 mg/100 g, group-3 and 100 mg/100 g, group-4 p.o. for 20 days. The normal rats were chosen as a normal control (NC) group-1. PTY-2r was orally given to the rats for 20 days. Reactive oxygen species (ROS), lipid peroxidation (LPO) and the activity of ROS-scavenging enzymes - superoxide dismutase (SOD), catalase (CAT) & glutathione peroxidase (GPx) were determined in the kidney tissue of DN rats. The expression of apoptosis-related proteins was measured by immunofluorescence. RESULTS GC-MS analysis of PTY-2r indicated the presence of 37 compounds among them 5-Hydroxymethylfurfural (17.80%), 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (17.03%), n-Hexadecanoic acid (5.18%) and 9-Octadecenoic acid (Z) - (6.69%) were found in the higher amount. A significant increase in ROS and LPO was observed along with the decreased activity of antioxidant enzymes, responsible for oxidative stress in the kidney of DN rats. Since, high oxidative stress induces apoptosis in target cells, as shown by significantly decreased expression of Bcl-2 along with increased expression of Bax, active Caspase-3 & cleaved PARP-1 in DN control rats, suggesting apoptosis. The PTY-2r treatment significantly raised the activity of antioxidant enzymes, suppressed oxidative stress and apoptosis thus, prevented urinary albumin excretion in a dose-dependent manner. CONCLUSIONS The findings suggest that PTY-2r exerted the nephroprotective potential against STZ induced DN rats via suppressing oxidative stress and apoptosis due to the presence of different bioactive compounds. ᅟ.
Collapse
|
23
|
The Ameliorating Effect of Berberine-Rich Fraction against Gossypol-Induced Testicular Inflammation and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1056173. [PMID: 29849861 PMCID: PMC5903196 DOI: 10.1155/2018/1056173] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/17/2018] [Indexed: 01/07/2023]
Abstract
This study was aimed at evaluating the efficacy of berberine-rich fraction (BF) as a protective and/or a therapeutic agent against inflammation and oxidative stress during male infertility. Sexually mature Sprague-Dawley male rats were divided into five groups treated with either corn oil, BF (100 mg/kg BW, orally, daily for 30 days), gossypol acetate (5 mg/kg BW, i.p.) eight times for 16 days, BF alone for 14 days then coadministered with gossypol acetate for the next 16 days (protected group), or gossypol acetate for 16 days then treated with BF for 30 days (treated group). All animals completed the experimental period (46 days) without obtaining any treatments in the gap period. Sperm parameters, oxidative index, and inflammatory markers were measured. Gossypol injection significantly decreased the semen quality and testosterone level that resulted from the elevation of testicular reactive oxygen and nitrogen species (TBARS and NO), TNF-α, TNF-α-converting enzyme, and interleukins (IL-1β, IL-6, and IL-18) by 230, 180, 12.5, 97.9, and 300%, respectively, while interleukin-12 and tissue inhibitors of metalloproteinases-3 were significantly decreased by 59 and 66%, respectively. BF (protected and treated groups) significantly improved the semen quality, oxidative stress, and inflammation associated with male infertility. It is suitable to use more advanced studies to validate these findings.
Collapse
|
24
|
McCubrey JA, Lertpiriyapong K, Steelman LS, Abrams SL, Yang LV, Murata RM, Rosalen PL, Scalisi A, Neri LM, Cocco L, Ratti S, Martelli AM, Laidler P, Dulińska-Litewka J, Rakus D, Gizak A, Lombardi P, Nicoletti F, Candido S, Libra M, Montalto G, Cervello M. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging (Albany NY) 2018; 9:1477-1536. [PMID: 28611316 PMCID: PMC5509453 DOI: 10.18632/aging.101250] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023]
Abstract
Natural products or nutraceuticals have been shown to elicit anti-aging, anti-cancer and other health-enhancing effects. A key target of the effects of natural products may be the regulation of microRNA (miR) expression which results in cell death or prevents aging, diabetes, cardiovascular and other diseases. This review will focus on a few natural products, especially on resveratrol (RES), curcumin (CUR) and berberine (BBR). RES is obtained from the skins of grapes and other fruits and berries. RES may extend human lifespan by activating the sirtuins and SIRT1 molecules. CUR is isolated from the root of turmeric (Curcuma longa). CUR is currently used in the treatment of many disorders, especially in those involving an inflammatory process. CUR and modified derivatives have been shown to have potent anti-cancer effects, especially on cancer stem cells (CSC). BBR is also isolated from various plants (e.g., Coptis chinensis) and has been used for centuries in traditional medicine to treat diseases such as adult- onset diabetes. Understanding the benefits of these and other nutraceuticals may result in approaches to improve human health.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Ramiro M Murata
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.,Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Piotr Laidler
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | | | - Dariusz Rakus
- Department of Animal Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | | | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| |
Collapse
|
25
|
Yu XT, Xu YF, Huang YF, Qu C, Xu LQ, Su ZR, Zeng HF, Zheng L, Yi TG, Li HL, Chen JP, Zhang XJ. Berberrubine attenuates mucosal lesions and inflammation in dextran sodium sulfate-induced colitis in mice. PLoS One 2018; 13:e0194069. [PMID: 29538417 PMCID: PMC5851626 DOI: 10.1371/journal.pone.0194069] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 02/25/2018] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic relapsing disease without satisfactory treatments, in which intestinal inflammation and disrupted intestinal epithelial barrier are two main pathogeneses triggering UC. Berberrubine (BB) is deemed as one of the major active metabolite of berberine (BBR), a naturally-occurring isoquinoline alkaloid with appreciable anti-UC effect. This study aimed to comparatively investigate the therapeutic effects of BB and BBR on dextran sodium sulfate (DSS)-induced mouse colitis model, and explore the potential underlying mechanism. Results revealed that BB (20 mg/kg) produced a comparable therapeutic effect as BBR (50 mg/kg) and positive control sulfasalazine (200 mg/kg) by significantly reducing the disease activity index (DAI) with prolonged colon length and increased bodyweight as compared with the DSS group. BB treatment was shown to significantly ameliorate the DSS-induced colonic pathological alternations and decreased histological scores. In addition, BB markedly attenuated colonic inflammation by alleviating inflammatory cell infiltration and inhibiting myeloperoxidase (MPO) and cytokines (TNF-α, IFN-γ, IL-1β, IL-6, IL-4 and IL-10) productions in DSS mice. Furthermore, BB treatment substantially upregulated the expression of tight junction (TJ) proteins (zonula occludens-1, zonula occludens-2, claudin-1, occludin) and mRNA expression of mucins (mucin-1 and mucin-2), and decreased the Bax/Bcl-2 ratio. In summary, BB exerted similar effect to its analogue BBR and positive control in attenuating DSS-induced UC with much lower dosage and similar mechanism. The protective effect observed may be intimately associated with maintaining the integrity of the intestinal mucosal barrier and mitigating intestinal inflammation, which were mediated at least partially, via favorable modulation of TJ proteins and mucins and inhibition of inflammatory mediators productions in the colonic tissue. This is the first report to demonstrate that BB possesses pronounced anti-UC effect similar to BBR and sulfasalazine with much smaller dosage. BB might have the potential to be further developed into a promising therapeutic option in the treatment of UC.
Collapse
Affiliation(s)
- Xiu-Ting Yu
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yi-Fei Xu
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yan-Feng Huang
- Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Chang Qu
- Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Lie-Qiang Xu
- Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Zi-Ren Su
- Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
- Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan, Guangdong, PR China
| | - Hui-Fang Zeng
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Lin Zheng
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Tie-Gang Yi
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Hui-Lin Li
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Jian-Ping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Xiao-Jun Zhang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| |
Collapse
|
26
|
Hasanein P, Riahi H. Preventive use of berberine in inhibition of lead-induced renal injury in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4896-4903. [PMID: 29204934 DOI: 10.1007/s11356-017-0702-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
The kidney is one of the main organs affected by lead toxicity. We investigated the effects of berberine on lead-induced nephrotoxicity in adult male Wistar rats. Animals received an aqueous solution of lead acetate (500 mg Pb/L in the drinking water) and/or berberine (50 mg/kg, i.g.) for 8 weeks. Lead caused an increase in malondialdehyde (P < 0.001) and total oxidant status (P < 0.01), and a decrease in reduced glutathione (P < 0.001), catalase (P < 0.01), superoxide dismutase (P < 0.001), and total antioxidant capacity (P < 0.05). Berberine prevented the prooxidant and antioxidant imbalance induced by lead (P < 0.001). Berberine corrected the increased relative kidney weight (P < 0.05) and biomarkers of renal function (creatinine (P < 0.001), urea (P < 0.05), uric acid (P < 0.001), albumin (P < 0.01), and total protein (P < 0.05)) in lead group. It also attenuated lead-induced abnormal renal structure. The results confirmed renoprotective effects of berberine in an animal model of lead-induced nephrotoxicity by molecular, biochemical, and histopathological analysis through inhibiting lipid peroxidation and enhancing antioxidant defense system mechanisms. Therefore, berberine makes a good candidate to protect against the deleterious effect of chronic lead intoxication.
Collapse
Affiliation(s)
- Parisa Hasanein
- Department of Biology, School of Basic Sciences, University of Zabol, Zabol, 9861335856, Iran.
| | - Hassan Riahi
- Department of Biology, School of Basic Sciences, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
27
|
Caliceti C, Rizzo P, Ferrari R, Fortini F, Aquila G, Leoncini E, Zambonin L, Rizzo B, Calabria D, Simoni P, Mirasoli M, Guardigli M, Hrelia S, Roda A, Cicero AFG. Novel role of the nutraceutical bioactive compound berberine in lectin-like OxLDL receptor 1-mediated endothelial dysfunction in comparison to lovastatin. Nutr Metab Cardiovasc Dis 2017; 27:552-563. [PMID: 28511903 DOI: 10.1016/j.numecd.2017.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/31/2017] [Accepted: 04/10/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS Oxidized LDL (oxLDL) or pro-inflammatory stimuli lead to increased oxidative stress linked to endothelial dysfunction and atherosclerosis. The oxLDL receptor-1 (LOX1) is elevated within atheromas and cholesterol-lowering statins inhibit LOX1 expression. Berberine (BBR), an alkaloid extracted from plants of gender Berberis, has lipid-lowering and anti-inflammatory activity. However, its role in regulating LOX1-mediated signaling is still unknown. The aim of this study was to investigate the effect of BBR on oxLDL- and TNFα-induced endothelial dysfunction in human umbilical vein endothelial cells (HUVECs) and to compare it with that of lovastatin (LOVA). METHODS AND RESULTS Cytotoxicity was determined by lactate dehydrogenase assay. Antioxidant capacity was measured with chemiluminescent and fluorescent method and intracellular ROS levels through a fluorescent dye. Gene and protein expression levels were assayed by qRT-PCR and western blot, respectively. HUVECs exposure to oxLDL (30 μg/ml) or TNFα (10 ng/ml) for 24 h led to a significant increase in LOX1 expression, effect abrogated by BBR (5 μM) and LOVA (5 μM). BBR but not LOVA treatment abolished the TNFα-induced cytotoxicity and restored the activation of Akt signaling. In spite of a low direct antioxidant capacity, both compounds reduced intracellular ROS levels generated by treatment of TNFα but only BBR inhibited NOX2 expression, MAPK/Erk1/2 signaling and subsequent NF-κB target genes VCAM and ICAM expression, induced by TNFα. CONCLUSIONS These findings demonstrated for the first time that BBR could prevent the oxLDL and TNFα - induced LOX1 expression and oxidative stress, key events that lead to NOX, MAPK/Erk1/2 and NF-κB activation linked to endothelial dysfunction. CHEMICAL COMPOUNDS STUDIED IN THIS ARTICLE Berberine (PubChem CID: 2353); Lovastatin (PubChem CID: 53232).
Collapse
Affiliation(s)
- C Caliceti
- Department of Chemistry "Giacomo Ciamician" - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Centro Interdipartimentale di Ricerca Industriale Energia e Ambiente (CIRI EA) - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Roma, Italy.
| | - P Rizzo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy; Maria Cecilia Hospital, GVM Care&Research, E.S: Health Science Foundation, Cotignola, Italy
| | - R Ferrari
- Department of Medical Sciences, Cardiology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy; Maria Cecilia Hospital, GVM Care&Research, E.S: Health Science Foundation, Cotignola, Italy
| | - F Fortini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - G Aquila
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - E Leoncini
- Department for Life Quality Studies - Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - L Zambonin
- Department of Pharmacy and Biotechnology - Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - B Rizzo
- Department for Life Quality Studies - Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - D Calabria
- Centro Interdipartimentale di Ricerca Industriale Energia e Ambiente (CIRI EA) - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Roma, Italy
| | - P Simoni
- Department of Medical and Surgical Sciences-DIMEC, Sant'Orsola Malpighi Hospital, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - M Mirasoli
- Department of Chemistry "Giacomo Ciamician" - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Centro Interdipartimentale di Ricerca Industriale Energia e Ambiente (CIRI EA) - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Roma, Italy
| | - M Guardigli
- Department of Chemistry "Giacomo Ciamician" - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Roma, Italy
| | - S Hrelia
- Department for Life Quality Studies - Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - A Roda
- Department of Chemistry "Giacomo Ciamician" - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Centro Interdipartimentale di Ricerca Industriale Energia e Ambiente (CIRI EA) - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Roma, Italy
| | - A F G Cicero
- Department of Medical and Surgical Sciences-DIMEC, Sant'Orsola Malpighi Hospital, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
28
|
Yang N, Sun RB, Chen XL, Zhen L, Ge C, Zhao YQ, He J, Geng JL, Guo JH, Yu XY, Fei F, Feng SQ, Zhu XX, Wang HB, Fu FH, Aa JY, Wang GJ. In vitro assessment of the glucose-lowering effects of berberrubine-9-O-β-D-glucuronide, an active metabolite of berberrubine. Acta Pharmacol Sin 2017; 38:351-361. [PMID: 28042874 DOI: 10.1038/aps.2016.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/27/2016] [Indexed: 12/12/2022] Open
Abstract
Berberrubine (BRB) is the primary metabolite of berberine (BBR) that has shown a stronger glucose-lowering effect than BBR in vivo. On the other hand, BRB is quickly and extensively metabolized into berberrubine-9-O-β-D-glucuronide (BRBG) in rats after oral administration. In this study we compared the pharmacokinetic properties of BRB and BRBG in rats, and explored the mechanisms underlying their glucose-lowering activities. C57BL/6 mice with HFD-induced hyperglycemia were administered BRB (50 mg·kg-1·d-1, ig) for 6 weeks, which caused greater reduction in the plasma glucose levels than those caused by BBR (120 mg·kg-1·d-1) or BRB (25 mg·kg-1·d-1). In addition, BRB dose-dependently decreased the activity of α-glucosidase in gut of the mice. After oral administration of BRB in rats, the exposures of BRBG in plasma at 3 different dosages (10, 40, 80 mg/kg) and in urine at different time intervals (0-4, 4-10, 10-24 h) were dramatically greater than those of BRB. In order to determine the effectiveness of BRBG in reducing glucose levels, we prepared BRBG from the urine pool of rats, and identified and confirmed it through LC-MS-IT-TOF and NMR spectra. In human normal liver cell line L-O2 in vitro, treatment with BRB or BRBG (5, 20, 50 μmol/L) increased glucose consumption, enhanced glycogenesis, stimulated the uptake of the glucose analog 2-NBDG, and modulated the mRNA levels of glucose-6-phosphatase and hexokinase. However, both BBR and BRB improved 2-NBDG uptake in insulin-resistant L-O2 cells, while BRBG has no effect. In conclusion, BRB exerts a stronger glucose-lowering effect than BBR in HFD-induced hyperglycemia mice. Although BRB significantly stimulated the insulin sensitivity and glycolysis in vitro, BRBG may have a greater contribution to the glucose-lowering effect because it has much greater system exposure than BRB after oral administration of BRB. The results suggest that BRBG is a potential agent for reducing glucose levels.
Collapse
|
29
|
Naveen CR, Gaikwad S, Agrawal-Rajput R. Berberine induces neuronal differentiation through inhibition of cancer stemness and epithelial-mesenchymal transition in neuroblastoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:736-744. [PMID: 27235712 DOI: 10.1016/j.phymed.2016.03.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/12/2016] [Accepted: 03/19/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Berberine, a plant alkaloid, has been used since many years for treatment of gastrointestinal disorders. It also shows promising medicinal use against metabolic disorders, neurodegenerative disorders and cancer; however its efficacy in neuroblastoma (NB) is poorly explored. HYPOTHESIS EMT is important in cancer stemness and metastasis resulting in failure to differentiate; thus targeting EMT and related pathways can have clinical benefits. STUDY DESIGN Potential of berberine was investigated for (i) neuronal differentiation and cancer stemness inhibition, (ii) underlying molecular mechanisms regulating cancer-stemness and (iii) EMT reversal. METHODS Using neuro2a (N2a) neuroblastoma cells (NB); we investigated effect of berberine on neuronal differentiation, cancer-stemness, EMT and underlying signalling by immunofluorescence, RT-PCR, Western blot. High glucose-induced TGF-β mediated EMT model was used to test EMT reversal potential by Western blot and RT-PCR. STRING analysis was done to determine and validate functional protein-interaction networks. RESULTS We demonstrate berberine induces neuronal differentiation accompanying increased neuronal differentiation markers like MAP2, β-III tubulin and NCAM; generated neurons were viable. Berberine attenuated cancer stemness markers CD133, β-catenin, n-myc, sox2, notch2 and nestin. Berberine potentiated G0/G1 cell cycle arrest by inhibiting proliferation, cyclin dependent kinases and cyclins resulting in apoptosis through increased bax/bcl-2 ratio. Restoration of tumor suppressor proteins, p27 and p53, indicate promising anti-cancer property. The induction of NCAM and reduction in its polysialylation indicates anti-migratory potential which is supported by down regulation of MMP-2/9. It increased epithelial marker laminin and smad and increased Hsp70 levels also suggest its protective role. Molecular insights revealed that berberine regulates EMT via downregulation of PI3/Akt and Ras-Raf-ERK signalling and subsequent upregulation of p38-MAPK. TGF-β secretion from N2a cells was potentiated by high glucose and negatively regulated by berberine through modulation of TGF-β receptors II and III. Berberine reverted mesenchymal markers, vimentin and fibronectin, with restoration of epithelial marker E-cadherin, highlighting the role of berberine in reversal of EMT. CONCLUSION Collectively, the study demonstrates prospective use of berberine against neuroblastoma as elucidated through inhibition of fundamental characteristics of cancer stem cells: tumorigenicity and failure to differentiation and instigates reversal in the EMT.
Collapse
Affiliation(s)
- C R Naveen
- Laboratory of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar (382 007), Gujarat, India
| | - Sagar Gaikwad
- Laboratory of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar (382 007), Gujarat, India
| | - Reena Agrawal-Rajput
- Laboratory of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar (382 007), Gujarat, India..
| |
Collapse
|