1
|
Garcia-de la Cruz DD, Juarez-Rojop IE, Tovilla-Zarate CA, Nicolini H, Genis-Mendoza AD. Circulating Cell-Free Mitochondrial DNA in Plasma of Individuals with Schizophrenia and Cognitive Deficit in Mexican Population. Neuropsychiatr Dis Treat 2024; 20:1757-1765. [PMID: 39323935 PMCID: PMC11423824 DOI: 10.2147/ndt.s460554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Purpose Cognitive domains are affected in patients with schizophrenia. Mitochondrial dysfunction has been proposed as a possible origin of these symptoms. Cell-free mitochondrial DNA (cf-mtDNA) is an indicator of cellular stress, and it can be identified in individuals with age-associated disorders, this study aimed to explore the presence of cf-mtDNA in plasma of schizophrenia patients and its association with cognitive deficit. Patients and Methods Ninety-nine subjects were clinically evaluated; the case group included 60 patients diagnosed with schizophrenia and 39 randomly-individuals without psychiatric disorders were included in the comparison group. Cognitive status (MoCA scale) and cell-free mtDNA in blood plasma were assessed and quantified in both groups. Results From the original sample, cf-mtDNA was identified in 43 subjects, 40 patients with schizophrenia and 3 controls (Χ2 = 31.10, p-value < 0.0001). Thirty-nine out of forty patients with schizophrenia had a cognitive deficit. Conclusion According to our findings, cognitive impairment and presence of cf-mtDNA were related in subjects with schizophrenia. Thus, while the cognitive deficit might reflect an accelerated aging process, the cf-mtDNA plays a role as a potential biomarker in this mechanism.
Collapse
Affiliation(s)
- Dulce Dajheanne Garcia-de la Cruz
- Unidad de Enseñanza e Investigación, Hospital Regional de Alta Especialidad de Salud Mental Villahermosa, Tabasco, México
- Laboratorio de Metabolismo de Lípidos, Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias de la Salud, Villahermosa, Tabasco, México
| | - Isela Esther Juarez-Rojop
- Laboratorio de Metabolismo de Lípidos, Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias de la Salud, Villahermosa, Tabasco, México
| | | | - Humberto Nicolini
- Laboratorio de Genómica de las Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Alma Delia Genis-Mendoza
- Laboratorio de Genómica de las Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México, México
- Hospital Psiquiátrico Infantil, Dr. Juan N. Navarro, Ciudad de México, México
| |
Collapse
|
2
|
Ferreira T, Rodriguez S. Mitochondrial DNA: Inherent Complexities Relevant to Genetic Analyses. Genes (Basel) 2024; 15:617. [PMID: 38790246 PMCID: PMC11121663 DOI: 10.3390/genes15050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Mitochondrial DNA (mtDNA) exhibits distinct characteristics distinguishing it from the nuclear genome, necessitating specific analytical methods in genetic studies. This comprehensive review explores the complex role of mtDNA in a variety of genetic studies, including genome-wide, epigenome-wide, and phenome-wide association studies, with a focus on its implications for human traits and diseases. Here, we discuss the structure and gene-encoding properties of mtDNA, along with the influence of environmental factors and epigenetic modifications on its function and variability. Particularly significant are the challenges posed by mtDNA's high mutation rate, heteroplasmy, and copy number variations, and their impact on disease susceptibility and population genetic analyses. The review also highlights recent advances in methodological approaches that enhance our understanding of mtDNA associations, advocating for refined genetic research techniques that accommodate its complexities. By providing a comprehensive overview of the intricacies of mtDNA, this paper underscores the need for an integrated approach to genetic studies that considers the unique properties of mitochondrial genetics. Our findings aim to inform future research and encourage the development of innovative methodologies to better interpret the broad implications of mtDNA in human health and disease.
Collapse
Affiliation(s)
- Tomas Ferreira
- Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SL, UK
| | - Santiago Rodriguez
- Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| |
Collapse
|
3
|
Panagopoulou M, Karaglani M, Tzitzikou K, Kessari N, Arvanitidis K, Amarantidis K, Drosos GI, Gerou S, Papanas N, Papazoglou D, Baritaki S, Constantinidis TC, Chatzaki E. Mitochondrial Fraction of Circulating Cell-Free DNA as an Indicator of Human Pathology. Int J Mol Sci 2024; 25:4199. [PMID: 38673785 PMCID: PMC11050675 DOI: 10.3390/ijms25084199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Circulating cell-free DNA (ccfDNA) of mitochondrial origin (ccf-mtDNA) consists of a minor fraction of total ccfDNA in blood or in other biological fluids. Aberrant levels of ccf-mtDNA have been observed in many pathologies. Here, we introduce a simple and effective standardized Taqman probe-based dual-qPCR assay for the simultaneous detection and relative quantification of nuclear and mitochondrial fragments of ccfDNA. Three pathologies of major burden, one malignancy (Breast Cancer, BrCa), one inflammatory (Osteoarthritis, OA) and one metabolic (Type 2 Diabetes, T2D), were studied. Higher levels of ccf-mtDNA were detected both in BrCa and T2D in relation to health, but not in OA. In BrCa, hormonal receptor status was associated with ccf-mtDNA levels. Machine learning analysis of ccf-mtDNA datasets was used to build biosignatures of clinical relevance. (A) a three-feature biosignature discriminating between health and BrCa (AUC: 0.887) and a five-feature biosignature for predicting the overall survival of BrCa patients (Concordance Index: 0.756). (B) a five-feature biosignature stratifying among T2D, prediabetes and health (AUC: 0.772); a five-feature biosignature discriminating between T2D and health (AUC: 0.797); and a four-feature biosignature identifying prediabetes from health (AUC: 0.795). (C) a biosignature including total plasma ccfDNA with very high performance in discriminating OA from health (AUC: 0.934). Aberrant ccf-mtDNA levels could have diagnostic/prognostic potential in BrCa and Diabetes, while the developed multiparameter biosignatures can add value to their clinical management.
Collapse
Affiliation(s)
- Maria Panagopoulou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece (K.T.)
- Institute of Agri-Food and Life Sciences, University Research and Innovation Centre, Hellenic Mediterranean University, 71003 Heraklion, Greece
| | - Makrina Karaglani
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece (K.T.)
- Institute of Agri-Food and Life Sciences, University Research and Innovation Centre, Hellenic Mediterranean University, 71003 Heraklion, Greece
| | - Konstantina Tzitzikou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece (K.T.)
| | - Nikoleta Kessari
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece (K.T.)
| | - Konstantinos Arvanitidis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece (K.T.)
- Institute of Agri-Food and Life Sciences, University Research and Innovation Centre, Hellenic Mediterranean University, 71003 Heraklion, Greece
| | - Kyriakos Amarantidis
- Clinic of Medical Oncology, Department of Medicine, Democritus University of Thrace, University General Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - George I. Drosos
- Clinic of Orthopaedic Surgery, Department of Medicine, Democritus University of Thrace, University General Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - Spyros Gerou
- Analysis Biopathological Diagnostic Research Laboratories, 54623 Thessaloniki, Greece
| | - Nikolaos Papanas
- Diabetes Centre, 2nd Department of Internal Medicine, University Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - Dimitrios Papazoglou
- Diabetes Centre, 2nd Department of Internal Medicine, University Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece
| | - Theodoros C. Constantinidis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece (K.T.)
- Institute of Agri-Food and Life Sciences, University Research and Innovation Centre, Hellenic Mediterranean University, 71003 Heraklion, Greece
| |
Collapse
|
4
|
Lei T, Rui Y, Xiaoshuang Z, Jinglan Z, Jihong Z. Mitochondria transcription and cancer. Cell Death Discov 2024; 10:168. [PMID: 38589371 PMCID: PMC11001877 DOI: 10.1038/s41420-024-01926-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Mitochondria are major organelles involved in several processes related to energy supply, metabolism, and cell proliferation. The mitochondria function is transcriptionally regulated by mitochondria DNA (mtDNA), which encodes the key proteins in the electron transport chain that is indispensable for oxidative phosphorylation (OXPHOS). Mitochondrial transcriptional abnormalities are closely related to a variety of human diseases, such as cardiovascular diseases, and diabetes. The mitochondria transcription is regulated by the mtDNA, mitochondrial RNA polymerase (POLRMT), two transcription factors (TFAM and TF2BM), one transcription elongation (TEFM), and one known transcription termination factor (mTERFs). Dysregulation of these factors directly leads to altered expression of mtDNA in tumor cells, resulting in cellular metabolic reprogramming and mitochondrial dysfunction. This dysregulation plays a role in modulating tumor progression. Therefore, understanding the role of mitochondrial transcription in cancer can have implications for cancer diagnosis, prognosis, and treatment. Targeting mitochondrial transcription or related pathways may provide potential therapeutic strategies for cancer treatment. Additionally, assessing mitochondrial transcriptional profiles or biomarkers in cancer cells or patient samples may offer diagnostic or prognostic information.
Collapse
Affiliation(s)
- Tang Lei
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yu Rui
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhou Xiaoshuang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhang Jinglan
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhang Jihong
- Medical School, Kunming University of Science and Technology, Kunming, China.
- Yunnan Province Clinical Research Center for Hematologic Disease, Kunming, China.
| |
Collapse
|
5
|
Chen C, Feng L, Chen J, Shen J, Lin L. Ribosomal DNA copy number alteration in blood sample from gastric cancer patients. Mol Biol Rep 2023; 50:7155-7160. [PMID: 37407803 DOI: 10.1007/s11033-023-08630-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Ribosomal DNA (rDNA) is the most abundant and important housekeeping gene in the cell. It usually acted as DNA damage sensor in DNA damage reaction. Gastric cancer (GC) as a tumor with high morbidity and mortality, it is hard to diagnosis in an early stage. METHODS In this study, we collected and test the copy number of rDNA in blood sample of 42 GC patients and 56 healthy controls (HC) to explore the relationship between rDNA and GC. Besides, we make a correlation between the copy number of rDNA and ten biomarkers (CYFR21-1, CA15-3, CA72-4, NSE, CEA, CA125, ProGRP, AFP, SCC, CA19-9). RESULTS The copy number of 18 S, 5.8 S, 28 S rDNA in GC is less than HC and 5 S is more than HC in their blood sample. And the expression of H-cox-1 and ND1 in GC is higher than HC in blood sample. it shows the expression of CA15-3 is related to ND1 and H-cox-1. CONCLUSION We found for the first time the changes of rDNA and mtDNA expression in the blood of patients with gastric cancer. All these finding suggests rDNA may have potential in diagnosing GC.
Collapse
Affiliation(s)
- Changchang Chen
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lingfang Feng
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Junfei Chen
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jian Shen
- Department of Medical Administration, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lijun Lin
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Lehle S, Emons J, Hack CC, Heindl F, Hein A, Preuß C, Seitz K, Zahn AL, Beckmann MW, Fasching PA, Ruebner M, Huebner H. Evaluation of automated techniques for extraction of circulating cell-free DNA for implementation in standardized high-throughput workflows. Sci Rep 2023; 13:373. [PMID: 36611077 PMCID: PMC9825368 DOI: 10.1038/s41598-022-27216-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023] Open
Abstract
Analysis of circulating cell-free DNA (ccfDNA) is a suitable tool for detecting somatic mutations for the purpose of making decisions on treatment, monitoring treatment response, and predicting survival. High-throughput techniques for ccfDNA extraction are essential to implementing ccfDNA testing in the clinical setting. We set out to compare two automated techniques with regard to hands-on time, ccfDNA output and integrity, and circulating mitochondrial DNA (mtDNA). CcfDNA was isolated using the EZ1&2 ccfDNA field test kit (EZ2 kit, QIAGEN) and the Maxwell RSC ccfDNA plasma kit (Maxwell kit, Promega). DNA was extracted from plasma of 30 breast cancer patients enrolled in the iMODE-B (#325_19B; 12.10.2020) study. Real-time PCR, fluorescence-based detection and automated electrophoresis were used to assess ccfDNA concentrations. The ccfDNA yield was significantly higher when extracted with the EZ2 kit. The EZ2 kit enabled the isolation of a higher proportion of short fragments and a lower proportion of long fragments, resulting in lower DNA integrity. Significantly lower mtDNA quantities were detected in the Maxwell eluate than in the EZ2 eluate. Thus, decisions on which extraction method to use should proceed on the basis of the required input for downstream applications, the anticipated fragment size and minimum hands-on time.
Collapse
Affiliation(s)
- Sarah Lehle
- grid.411668.c0000 0000 9935 6525Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstrasse 21-23, 91054 Erlangen, Germany
| | - Julius Emons
- grid.411668.c0000 0000 9935 6525Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstrasse 21-23, 91054 Erlangen, Germany
| | - Carolin C. Hack
- grid.411668.c0000 0000 9935 6525Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstrasse 21-23, 91054 Erlangen, Germany
| | - Felix Heindl
- grid.411668.c0000 0000 9935 6525Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstrasse 21-23, 91054 Erlangen, Germany
| | - Alexander Hein
- grid.411668.c0000 0000 9935 6525Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstrasse 21-23, 91054 Erlangen, Germany
| | - Caroline Preuß
- grid.411668.c0000 0000 9935 6525Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstrasse 21-23, 91054 Erlangen, Germany
| | - Katharina Seitz
- grid.411668.c0000 0000 9935 6525Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstrasse 21-23, 91054 Erlangen, Germany
| | - Anna L. Zahn
- grid.411668.c0000 0000 9935 6525Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstrasse 21-23, 91054 Erlangen, Germany
| | - Matthias W. Beckmann
- grid.411668.c0000 0000 9935 6525Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstrasse 21-23, 91054 Erlangen, Germany
| | - Peter A. Fasching
- grid.411668.c0000 0000 9935 6525Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstrasse 21-23, 91054 Erlangen, Germany
| | - Matthias Ruebner
- grid.411668.c0000 0000 9935 6525Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstrasse 21-23, 91054 Erlangen, Germany
| | - Hanna Huebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany.
| |
Collapse
|
7
|
Gayan S, Joshi G, Dey T. Biomarkers of mitochondrial origin: a futuristic cancer diagnostic. Integr Biol (Camb) 2022; 14:77-88. [PMID: 35780307 DOI: 10.1093/intbio/zyac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 11/12/2022]
Abstract
Cancer is a highly fatal disease without effective early-stage diagnosis and proper treatment. Along with the oncoproteins and oncometabolites, several organelles from cancerous cells are also emerging as potential biomarkers. Mitochondria isolated from cancer cells are one such biomarker candidates. Cancerous mitochondria exhibit different profiles compared with normal ones in morphology, genomic, transcriptomic, proteomic and metabolic landscape. Here, the possibilities of exploring such characteristics as potential biomarkers through single-cell omics and Artificial Intelligence (AI) are discussed. Furthermore, the prospects of exploiting the biomarker-based diagnosis and its futuristic utilization through circulatory tumor cell technology are analyzed. A successful alliance of circulatory tumor cell isolation protocols and a single-cell omics platform can emerge as a next-generation diagnosis and personalized treatment procedure.
Collapse
Affiliation(s)
- Sukanya Gayan
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Gargee Joshi
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Tuli Dey
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
8
|
Stawski R, Nowak D, Perdas E. Cell-Free DNA: Potential Application in COVID-19 Diagnostics and Management. Viruses 2022; 14:321. [PMID: 35215914 PMCID: PMC8880801 DOI: 10.3390/v14020321] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 12/04/2022] Open
Abstract
WHO has declared COVID-19 as a worldwide, public health emergency. The elderly, pregnant women, and people with associated co-morbidities, including pulmonary disease, heart failure, diabetes, and cancer are the most predisposed population groups to infection. Cell-free DNA is a very commonly applied marker, which is elevated in various pathological conditions. However, it has a much higher sensitivity than standard biochemical markers. cfDNA appears to be an effective marker of COVID-19 complications, and also serves as a marker of certain underlying health conditions and risk factors of severe illness during COVID-19 infection. We aimed to present the possible mechanisms and sources of cfDNA released during moderate and severe infections. Moreover, we attempt to verify how efficiently cfDNA increase could be applied in COVID-19 risk assessment and how it corresponds with epidemiological data.
Collapse
Affiliation(s)
- Robert Stawski
- Department of Clinical Physiology, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Dariusz Nowak
- Department of Clinical Physiology, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Ewelina Perdas
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
9
|
Duque G, Manterola C, Otzen T, Arias C, Galindo B, Mora M, Guerrero E, García N. Clinical utility of liquid biopsy in breast cancer: A systematic review. Clin Genet 2021; 101:285-295. [PMID: 34687555 DOI: 10.1111/cge.14077] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022]
Abstract
Advancements in genetic sequencing techniques along with the identification of specific mutations and structural changes in multiple cancer genes, make it possible to identify circulating tumor cells and cell free nucleic acids as blood-based biomarkers, serving as a liquid biopsy (LB) with great utility for the diagnosis, treatment and follow-up of patients with neoplasms. This systematic review focuses on the clinical utility of LB in patients with breast cancer (BC). Articles published between 1990 and 2021 were included. Databases searched: Trip Database, WoS, EMBASE, PubMed, SCOPUS, and Clinical Keys. Variables studied: Publication year, country, number of cases, primary study design, LB detection methods, genes found, overall survival, disease-free survival, stage, response to treatment, clinical utility, BC molecular type, systemic treatment and methodological quality of primary studies. Of 2619 articles, 74 were retained representing 12 658 patients, mainly cohort studies (66.2%), the majority were from China (15%) and Japan (12.2%). All primary studies described clinical stage and type of systemic treatment used. Most used biomarker detection method: DNA (52.7%) and type of analysis: quantification of total cfDNA (35.1%). PIK3CA mutation was most frequent (62.9%). Evidence suggests clinically useful applications of BC. Though heterogeneous, publications suggest that LB will constitute part of the standard diagnostic-therapeutic process of BC.
Collapse
Affiliation(s)
- Galo Duque
- PhD Program in Medical Sciences, Universidad de La Frontera, Temuco, Chile.,Faculty of Medicine, Universidad del Azuay, Cuenca, Ecuador
| | - Carlos Manterola
- PhD Program in Medical Sciences, Universidad de La Frontera, Temuco, Chile.,Center of Excellence in Morphological and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco, Chile
| | - Tamara Otzen
- PhD Program in Medical Sciences, Universidad de La Frontera, Temuco, Chile.,Center of Excellence in Morphological and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco, Chile
| | - Cristina Arias
- Faculty of Medicine, Universidad del Azuay, Cuenca, Ecuador
| | - Bryan Galindo
- Faculty of Medicine, Universidad del Azuay, Cuenca, Ecuador
| | - Miriann Mora
- PhD Program in Medical Sciences, Universidad de La Frontera, Temuco, Chile.,Faculty of Medicine, Universidad del Azuay, Cuenca, Ecuador
| | - Enmanuel Guerrero
- PhD Program in Medical Sciences, Universidad de La Frontera, Temuco, Chile.,Solca Cancer Institute, Sociedad de Lucha Contra el Cáncer, Cuenca, Ecuador
| | - Nayeli García
- PhD Program in Medical Sciences, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
10
|
Zhou G, Li Y, Li S, Liu H, Xu F, Lai X, Zhang Q, Xu J, Wan S. Circulating Cell-Free mtDNA Content as a Non-invasive Prognostic Biomarker in HCC Patients Receiving TACE and Traditional Chinese Medicine. Front Genet 2021; 12:719451. [PMID: 34603382 PMCID: PMC8481798 DOI: 10.3389/fgene.2021.719451] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for 70-85% of liver cancer, and about 85% of HCC are hepatitis B virus-related (HBV-HCC) in China. Transarterial chemoembolization (TACE) combined with traditional Chinese medicine (TCM) has been reported as an effective treatment. Potential biomarkers to stratify patients who may benefit from this treatment are needed. In this study, we aimed to evaluate whether circulating cell-free mitochondrial DNA (ccf-mtDNA) content was associated with the outcome of HCC patients, especially of those who received the combination treatment of TACE and TCM. Univariate and multivariate Cox analyses were conducted to evaluate the association between ccf-mtDNA content and the overall survival of HBV-HCC patients. Kaplan-Meier analysis was used to compare the survival differences between patients with low and high ccf-mtDNA content. In a hospital-based cohort with 141 HBV-HCC patients, there was no statistically significant association between the ccf-mtDNA content and the overall survival of HBV-HCC patients in the univariate analysis, but a borderline significant association was found in the multivariate analyses. In a subcohort of 50 HBV-HCC patients who received TACE and TCM treatment, high ccfDNA content conferred an increased death risk with a hazard ratio of 4.01 (95% confidence interval: 1.25-12.84, p = 0.019) in the multivariate analysis. Kaplan-Meier survival analysis also showed that patients with high ccf-mtDNA content had unfavorable survival (log rank p = 0.097). Our findings suggest that ccf-mtDNA content is a potential non-invasive prognostic biomarker in HCC patients receiving TACE and TCM treatment.
Collapse
Affiliation(s)
- Guanlin Zhou
- Institute of Hepatology, Department of Hepatology, The Affiliated Fifth People's Hospital of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Ying Li
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Shicheng Li
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Hongxia Liu
- Institute of Hepatology, Department of Hepatology, The Affiliated Fifth People's Hospital of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Fei Xu
- Institute of Hepatology, Department of Hepatology, The Affiliated Fifth People's Hospital of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Xiaohuan Lai
- Institute of Hepatology, Department of Hepatology, The Affiliated Fifth People's Hospital of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Qiong Zhang
- Department of Emergency Medicine, First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Jingxiang Xu
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Shaogui Wan
- Institute of Hepatology, Department of Hepatology, The Affiliated Fifth People's Hospital of Ganzhou, Gannan Medical University, Ganzhou, China.,Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| |
Collapse
|
11
|
Mohd Khair SZN, Abd Radzak SM, Mohamed Yusoff AA. The Uprising of Mitochondrial DNA Biomarker in Cancer. DISEASE MARKERS 2021; 2021:7675269. [PMID: 34326906 PMCID: PMC8302403 DOI: 10.1155/2021/7675269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022]
Abstract
Cancer is a heterogeneous group of diseases, the progression of which demands an accumulation of genetic mutations and epigenetic alterations of the human nuclear genome or possibly in the mitochondrial genome as well. Despite modern diagnostic and therapeutic approaches to battle cancer, there are still serious concerns about the increase in death from cancer globally. Recently, a growing number of researchers have extensively focused on the burgeoning area of biomarkers development research, especially in noninvasive early cancer detection. Intergenomic cross talk has triggered researchers to expand their studies from nuclear genome-based cancer researches, shifting into the mitochondria-mediated associations with carcinogenesis. Thus, it leads to the discoveries of established and potential mitochondrial biomarkers with high specificity and sensitivity. The research field of mitochondrial DNA (mtDNA) biomarkers has the great potential to confer vast benefits for cancer therapeutics and patients in the future. This review seeks to summarize the comprehensive insights of nuclear genome cancer biomarkers and their usage in clinical practices, the intergenomic cross talk researches that linked mitochondrial dysfunction to carcinogenesis, and the current progress of mitochondrial cancer biomarker studies and development.
Collapse
Affiliation(s)
- Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Muslihah Abd Radzak
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
12
|
Guo Q, Hua Y. The assessment of circulating cell-free DNA as a diagnostic tool for breast cancer: an updated systematic review and meta-analysis of quantitative and qualitative ssays. Clin Chem Lab Med 2021; 59:1479-1500. [PMID: 33951758 DOI: 10.1515/cclm-2021-0193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/23/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES This updated meta-analysis aimed to assess the diagnostic accuracy of circulating cell-free DNA (cfDNA) in breast cancer (BC). CONTENT An extensive systematic search was performed in PubMed, Scopus, Embase, and Science Direct databases to retrieve all related literature. Various diagnostic estimates, including sensitivity (SE), specificity (SP), likelihood ratios (LRs), diagnostic odds ratio (DOR), and area under the curve (AUC) of summary receiver operating characteristic (sROC) curve, were also calculated using bivariate linear mixed models. SUMMARY In this meta-analysis, 57 unique articles (130 assays) on 4246 BC patients and 2,952 controls, were enrolled. For quantitative approaches, pooled SE, SP, PLR, NLR, DOR, and AUC were obtained as 0.80, 0.88, 6.7, 0.23, 29, and 0.91, respectively. Moreover, for qualitative approaches, pooled SE and SP for diagnostic performance were obtained as 0.36 and 0.98, respectively. In addition, PLR was 14.9 and NLR was 0.66. As well, the combined DOR was 23, and the AUC was 0.79. OUTLOOK Regardless of promising SE and SP, analysis of LRs suggested that quantitative assays are not robust enough neither for BC confirmation nor for its exclusion. On the other hand, qualitative assays showed satisfying performance only for confirming the diagnosis of BC, but not for its exclusion. Furthermore, qualitative cfDNA assays showed a better diagnostic performance in patients at the advanced stage of cancer, which represented no remarkable clinical significance as a biomarker for early detection.
Collapse
Affiliation(s)
- Qingfeng Guo
- Department of General Surgery, Affiliated Hospital of Jiangnan University (Original Area of Wuxi No. 3 People's Hospital), Wuxi, P.R. China
| | - Yuming Hua
- Department of General Surgery, Affiliated Hospital of Jiangnan University (Original Area of Wuxi No. 3 People's Hospital), Wuxi, P.R. China
| |
Collapse
|
13
|
Circulating Cell-Free DNA in Breast Cancer: Searching for Hidden Information towards Precision Medicine. Cancers (Basel) 2021; 13:cancers13040728. [PMID: 33578793 PMCID: PMC7916622 DOI: 10.3390/cancers13040728] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Our research focuses in the elucidation of the nature of circulating cell-free DNA (ccfDNA) as a biological entity and its exploitation as a liquid biopsy biomaterial. Working on breast cancer, it became clear that although a promising biosource, its clinical exploitation is burdened mainly by gaps in knowledge about its biology and specific characteristics. The current review covers multiple aspects of ccfDNA in breast cancer. We cover key issues such as quantity, integrity, releasing structures, methylation specific changes, release mechanisms, biological role. Machine learning approaches for analyzing ccfDNA-generated data to produce classifiers for clinical use are also discussed. Abstract Breast cancer (BC) is a leading cause of death between women. Mortality is significantly raised due to drug resistance and metastasis, while personalized treatment options are obstructed by the limitations of conventional biopsy follow-up. Lately, research is focusing on circulating biomarkers as minimally invasive choices for diagnosis, prognosis and treatment monitoring. Circulating cell-free DNA (ccfDNA) is a promising liquid biopsy biomaterial of great potential as it is thought to mirror the tumor’s lifespan; however, its clinical exploitation is burdened mainly by gaps in knowledge of its biology and specific characteristics. The current review aims to gather latest findings about the nature of ccfDNA and its multiple molecular and biological characteristics in breast cancer, covering basic and translational research and giving insights about its validity in a clinical setting.
Collapse
|
14
|
Lowes H, Kurzawa-Akanbi M, Pyle A, Hudson G. Post-mortem ventricular cerebrospinal fluid cell-free-mtDNA in neurodegenerative disease. Sci Rep 2020; 10:15253. [PMID: 32943697 PMCID: PMC7499424 DOI: 10.1038/s41598-020-72190-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Cell-free mitochondrial DNA (cfmtDNA) is detectable in almost all human body fluids and has been associated with the onset and progression of several complex traits. In-life assessments indicate that reduced cfmtDNA is a feature of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease and multiple sclerosis. However, whether this feature is conserved across all neurodegenerative diseases and how it relates to the neurodegenerative processes remains unclear. In this study, we assessed the levels of ventricular cerebrospinal fluid-cfmtDNA (vCSF-cfmtDNA) in a diverse group of neurodegenerative diseases (NDDs) to determine if the in-life observations of reduced cfmtDNA seen in lumbar CSF translated to the post-mortem ventricular CSF. To investigate further, we compared vCSF-cfmtDNA levels to known protein markers of neurodegeneration, synaptic vesicles and mitochondrial integrity. Our data indicate that reduced vCSF-cfmtDNA is a feature specific to Parkinson's and appears consistent throughout the disease course. Interestingly, we observed increased vCSF-cfmtDNA in the more neuropathologically severe NDD cases, but no association to protein markers of neurodegeneration, suggesting that vCSF-cfmtDNA release is more complex than mere cellular debris produced following neuronal death. We conclude that vCSF-cfmtDNA is reduced in PD, but not other NDDs, and appears to correlate to pathology. Although its utility as a prognostic biomarker is limited, our data indicate that higher levels of vCSF-cfmtDNA is associated with more severe clinical presentations; suggesting that it is associated with the neurodegenerative process. However, as vCSF-cfmtDNA does not appear to correlate to established indicators of neurodegeneration or indeed indicators of mitochondrial mass, further work to elucidate its exact role is needed.
Collapse
Affiliation(s)
- Hannah Lowes
- Biosciences Institute, 4th Floor Cookson Building, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Marzena Kurzawa-Akanbi
- Biosciences Institute, 4th Floor Cookson Building, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Angela Pyle
- Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Gavin Hudson
- Biosciences Institute, 4th Floor Cookson Building, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
15
|
Lowes H, Pyle A, Santibanez-Koref M, Hudson G. Circulating cell-free mitochondrial DNA levels in Parkinson's disease are influenced by treatment. Mol Neurodegener 2020; 15:10. [PMID: 32070373 PMCID: PMC7029508 DOI: 10.1186/s13024-020-00362-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Several studies have linked circulating cell-free mitochondrial DNA (ccf-mtDNA) to human disease. In particular, reduced ccf-mtDNA levels in the cerebrospinal fluid (CSF) of both Alzheimer's and Parkinson's disease (PD) patients have raised the hypothesis that ccf-mtDNA could be used as a biomarker for neurodegenerative disease onset and progression. However, how a reduction of CSF ccf-mtDNA levels relates to neurodegeneration remains unclear. Many factors are likely to influence ccf-mtDNA levels, such as concomitant therapeutic treatment and comorbidities. In this study we aimed to investigate these factors, quantifying CSF ccf-mtDNA from the Parkinson's Progression Markers Initiative in 372 PD patients and 159 matched controls at two time points. We found that ccf-mtDNA levels appear significantly reduced in PD cases when compared to matched controls and are associated with cognitive impairment. However, our data indicate that this reduction in ccf-mtDNA is also associated with the commencement, type and duration of treatment. Additionally, we found that ccf-mtDNA levels are associated with comorbidities such as depression and insomnia, however this was only significant if measured in the absence of treatment. We conclude that in PD, similar to reports in HIV and sepsis, comorbidities and treatment can both influence ccf-mtDNA homeostasis, raising the possibility that ccf-mtDNA may be useful as a biomarker for treatment response or the development of secondary phenotypes. Given that, clinically, PD manifests often decades after neurodegeneration begins, predicting who will develop disease is important. Also, identifying patients who will respond to existing treatments or develop secondary phenotypes will have increased clinical importance as PD incidence rises.
Collapse
Affiliation(s)
- Hannah Lowes
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE1 3BZ UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | | | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE1 3BZ UK
| |
Collapse
|
16
|
Pereira CA, Carlos D, Ferreira NS, Silva JF, Zanotto CZ, Zamboni DS, Garcia VD, Ventura DF, Silva JS, Tostes RC. Mitochondrial DNA Promotes NLRP3 Inflammasome Activation and Contributes to Endothelial Dysfunction and Inflammation in Type 1 Diabetes. Front Physiol 2020; 10:1557. [PMID: 32009974 PMCID: PMC6978691 DOI: 10.3389/fphys.2019.01557] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022] Open
Abstract
Background: NLRP3 inflammasome activation in response to several signals, including mitochondrial DNA (mDNA), regulates inflammatory responses by caspase-1 activation and interleukin-1β (IL-1β) release. Circulating mDNA is linked to micro and macrovascular complications in diabetes. However, a role for mDNA in endothelial dysfunction is not clear. We tested the hypothesis that mDNA contributes to diabetes-associated endothelial dysfunction and vascular inflammation via NLRP3 activation. Methods: Vascular reactivity, reactive oxygen species (ROS) generation, calcium (Ca2+) influx and caspase-1 and IL-1β activation were determined in mesenteric resistance arteries from normoglicemic and streptozotocin-induced diabetic C57BL/6 and NLRP3 knockout (Nlrp3-/- ) mice. Endothelial cells and mesenteric arteries were stimulated with mDNA from control (cmDNA) and diabetic (dmDNA) mice. Results: Diabetes reduced endothelium-dependent vasodilation and increased vascular ROS generation and caspase-1 and IL-1β activation in C57BL/6, but not in Nlrp3-/- mice. Diabetes increased pancreatic cytosolic mDNA. dmDNA decreased endothelium-dependent vasodilation. In endothelial cells, dmDNA activated NLRP3 via mitochondrial ROS and Ca2+ influx. Patients with type 1 diabetes exhibited increased circulating mDNA as well as caspase-1 and IL-1β activation. Conclusion: dmDNA activates endothelial NLRP3 inflammasome by mechanisms that involve Ca2+ influx and mitochondrial ROS generation. NLRP3 deficiency prevents diabetes-associated vascular inflammatory damage and endothelial dysfunction. Our study highlights the importance of NLRP3 inflammasome in diabetes-associated vascular dysfunction, which is key to diabetic complications.
Collapse
Affiliation(s)
- Camila A Pereira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniela Carlos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Nathanne S Ferreira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Josiane F Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Camila Z Zanotto
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Dario S Zamboni
- Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Valéria D Garcia
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo, São Paulo, Brazil
| | - Dora Fix Ventura
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo, São Paulo, Brazil
| | - João S Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
17
|
Pasha HA, Rezk NA, Riad MA. Circulating Cell Free Nuclear DNA, Mitochondrial DNA and Global DNA Methylation: Potential Noninvasive Biomarkers for Breast Cancer Diagnosis. Cancer Invest 2019; 37:432-439. [PMID: 31516038 DOI: 10.1080/07357907.2019.1663864] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Eighty seven women with benign breast lesion, 120 patients with breast cancer (BC) and one hundred controls were included in the study. Quantification of mtDNA and nDNA was done by qPCR. Global DNA methylation was measured using ELISA. Circulating cell-free nDNA and mtDNA were significantly elevated in BC and benign breast lesions patients. Global methylation was significantly low in BC patients. Combining the studied parameters in one panel, nDNA/mtDNA/hypomethylation, improved their sensitivity in detecting BC to reach 92.5%. Circulating cell-free nDNA, mtDNA and global DNA hypomethylation can be used as diagnostic and prognostic markers for BC.
Collapse
Affiliation(s)
- Heba A Pasha
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University , Zagazig , Egypt
| | - Noha A Rezk
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University , Zagazig , Egypt
| | - Mohamed A Riad
- Surgery Department, Faculty of Medicine, Zagazig University , Zagazig , Egypt
| |
Collapse
|
18
|
Temilola DO, Wium M, Coulidiati TH, Adeola HA, Carbone GM, Catapano CV, Zerbini LF. The Prospect and Challenges to the Flow of Liquid Biopsy in Africa. Cells 2019; 8:E862. [PMID: 31404988 PMCID: PMC6721679 DOI: 10.3390/cells8080862] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/30/2019] [Accepted: 08/03/2019] [Indexed: 12/24/2022] Open
Abstract
Liquid biopsy technologies have the potential to transform cancer patient management as it offers non-invasive diagnosis and real-time monitoring of disease progression and treatment responses. The use of liquid biopsy for non-invasive cancer diagnosis can have pivotal importance for the African continent where access to medical infrastructures is limited, as it eliminates the need for surgical biopsies. To apply liquid biopsy technologies in the African setting, the influence of environmental and population genetic factors must be known. In this review, we discuss the use of circulating tumor cells, cell-free nucleic acids, extracellular vesicles, protein, and other biomolecules in liquid biopsy technology for cancer management with special focus on African studies. We discussed the prospect, barriers, and other aspects that pose challenges to the use of liquid biopsy in the African continent.
Collapse
Affiliation(s)
- Dada Oluwaseyi Temilola
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Martha Wium
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
| | - Tangbadioa Herve Coulidiati
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
- Training and Research unit in Sciences and Technology, University Norbert Zongo, P.O. Box 376, Koudougou 376, Burkina Faso
| | - Henry Ademola Adeola
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town 7925, South Africa
| | - Giuseppina Maria Carbone
- Institute of Oncology Research, Università della Svizzera Italiana, Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland
| | - Carlo Vittorio Catapano
- Institute of Oncology Research, Università della Svizzera Italiana, Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland
| | - Luiz Fernando Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa.
| |
Collapse
|
19
|
Abstract
To our knowledge, this is the first comprehensive study on the influence of several pre-analytical and demographic parameters that could be a source of variability in the quantification of nuclear and mitochondrial circulating DNA (NcirDNA and McirDNA). We report data from a total of 222 subjects, 104 healthy individuals and 118 metastatic colorectal cancer (mCRC) patients. Approximately 50,000 and 3,000-fold more mitochondrial than nuclear genome copies were found in the plasma of healthy individuals and mCRC patients, respectively. In healthy individuals, NcirDNA concentration was statistically influenced by age (p = 0.009) and gender (p = 0.048). Multivariate analysis with logistic regression specified that age over 47 years-old was predictive to have higher NcirDNA concentration (OR = 2.41; p = 0.033). McirDNA concentration was independent of age and gender in healthy individuals. In mCRC patients, NcirDNA and McirDNA levels were independent of age, gender, delay between food intake and blood collection, and plasma aspect, either with univariate or multivariate analysis. Nonetheless, ad hoc study suggested that menopause and blood collection time might have tendency to influence cirDNA quantification. In addition, high significant statistical differences were found between mCRC patients and healthy individuals for NcirDNA (p < 0.0001), McirDNA (p < 0.0001) and McirDNA/NcirDNA ratio (p < 0.0001). NcirDNA and McirDNA levels do not vary in the same way with regards to cancer vs healthy status, pre-analytical and demographic factors.
Collapse
|
20
|
Afrifa J, Zhao T, Yu J. Circulating mitochondria DNA, a non-invasive cancer diagnostic biomarker candidate. Mitochondrion 2018; 47:238-243. [PMID: 30562607 DOI: 10.1016/j.mito.2018.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/05/2018] [Accepted: 12/14/2018] [Indexed: 12/15/2022]
Abstract
The mitochondria are defined by their unique structure and cellular functions which includes energy production, metabolic regulation, apoptosis, calcium homeostasis, cell proliferation, cell motility and transport as well as free radical generation. Recent advances geared towards enhancing the diagnostic and prognostic value of cancer patients have targeted the circulating mitochondria genome due to its specific and unique characteristics. Circulating mitochondria DNA is known to possess short length, relatively simple molecular structure and a high copy number. These coupled with its ability to serve as a liquid biopsy makes it an easily accessible non-invasive biomarker for diagnostics and prognostics of various forms of solid tumors. In this article, we review recent findings on circulating mitochondria DNA content in cancer. In addition, we provide an insight into the potential of circulating mitochondria DNA to act as a non-invasive diagnostic biomarker and its linearity with clinical and sociodemographic characteristics.
Collapse
Affiliation(s)
- Justice Afrifa
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Tie Zhao
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Jingcui Yu
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
21
|
Weerts MJA, Timmermans EC, van de Stolpe A, Vossen RHAM, Anvar SY, Foekens JA, Sleijfer S, Martens JWM. Tumor-Specific Mitochondrial DNA Variants Are Rarely Detected in Cell-Free DNA. Neoplasia 2018; 20:687-696. [PMID: 29842994 PMCID: PMC6030393 DOI: 10.1016/j.neo.2018.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022] Open
Abstract
The use of blood-circulating cell-free DNA (cfDNA) as a “liquid biopsy” in oncology is being explored for its potential as a cancer biomarker. Mitochondria contain their own circular genomic entity (mitochondrial DNA, mtDNA), up to even thousands of copies per cell. The mutation rate of mtDNA is several orders of magnitude higher than that of the nuclear DNA. Tumor-specific variants have been identified in tumors along the entire mtDNA, and their number varies among and within tumors. The high mtDNA copy number per cell and the high mtDNA mutation rate make it worthwhile to explore the potential of tumor-specific cf-mtDNA variants as cancer marker in the blood of cancer patients. We used single-molecule real-time (SMRT) sequencing to profile the entire mtDNA of 19 tissue specimens (primary tumor and/or metastatic sites, and tumor-adjacent normal tissue) and 9 cfDNA samples, originating from 8 cancer patients (5 breast, 3 colon). For each patient, tumor-specific mtDNA variants were detected and traced in cfDNA by SMRT sequencing and/or digital PCR to explore their feasibility as cancer biomarker. As a reference, we measured other blood-circulating biomarkers for these patients, including driver mutations in nuclear-encoded cfDNA and cancer-antigen levels or circulating tumor cells. Four of the 24 (17%) tumor-specific mtDNA variants were detected in cfDNA, however at much lower allele frequencies compared to mutations in nuclear-encoded driver genes in the same samples. Also, extensive heterogeneity was observed among the heteroplasmic mtDNA variants present in an individual. We conclude that there is limited value in tracing tumor-specific mtDNA variants in blood-circulating cfDNA with the current methods available.
Collapse
Affiliation(s)
- M J A Weerts
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - E C Timmermans
- Philips Research Laboratories, High Tech Campus 11, Eindhoven, The Netherlands
| | - A van de Stolpe
- Philips Research Laboratories, High Tech Campus 11, Eindhoven, The Netherlands
| | - R H A M Vossen
- Leiden Genome Technology Center (LGTC), Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - S Y Anvar
- Leiden Genome Technology Center (LGTC), Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - J A Foekens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - S Sleijfer
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J W M Martens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
22
|
Kansaku K, Munakata Y, Itami N, Shirasuna K, Kuwayama T, Iwata H. Mitochondrial dysfunction in cumulus-oocyte complexes increases cell-free mitochondrial DNA. J Reprod Dev 2018; 64:261-266. [PMID: 29618676 PMCID: PMC6021605 DOI: 10.1262/jrd.2018-012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
This study examined the concentration of cell-free mitochondrial DNA (cf-mtDNA) in porcine follicular fluid (FF) and explored whether the cfDNA level in the culture medium could reflect mitochondrial dysfunction in cumulus cell-oocyte complexes (COCs). cfDNA concentration was higher in the fluid of small-sized follicles, compared to that in larger follicles. The length of cfDNA ranged from short (152 bp) to long (1,914 bp) mtDNA in FF, detected by polymerase chain reaction (PCR). cfDNA concentration in FF significantly correlated with the mtDNA copy number in FF but not with the number of one-copy gene (nuclear DNA) in FF. When the COCs were treated with the mitochondrial uncoupler, namely carbonyl cyanide m-chlorophenyl hydrazone (CCCP), for 2 h and incubated for 42 h, subsequent real-time PCR detected significantly higher amount of cf-mtDNA, compared to nuclear cfDNA, in the spent culture medium. The mtDNA number and viability of cumulus cells and oocytes remained unchanged. When the oocytes were denuded from the cumulus cells following CCCP treatment, PCR detected very low levels of cfDNA in the spent culture medium of the denuded oocytes. In contrast, CCCP treatment of granulosa cells significantly increased the amount of cf-mtDNA in the spent culture medium, without any effect on other markers, including survival rate, apoptosis of cumulus cells, and lactate dehydrogenase levels. Thus, cf-mtDNA was present in FF in a wide range of length, and mitochondrial dysfunction in COCs increased the active secretion of cf-mtDNA in the cultural milieu.
Collapse
Affiliation(s)
- Kazuki Kansaku
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Yasuhisa Munakata
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Nobuhiko Itami
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Koumei Shirasuna
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Takehito Kuwayama
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Hisataka Iwata
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| |
Collapse
|
23
|
Value of circulating cell-free DNA analysis as a diagnostic tool for breast cancer: a meta-analysis. Oncotarget 2018; 8:26625-26636. [PMID: 28460452 PMCID: PMC5432284 DOI: 10.18632/oncotarget.15775] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/15/2017] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The aim of this study was to systematically evaluate the diagnostic value of cell free DNA (cfDNA) for breast cancer. RESULTS Among 308 candidate articles, 25 with relevant diagnostic screening qualified for final analysis. The mean sensitivity, specificity and area under the curve (AUC) of SROC plots for 24 studies that distinguished breast cancer patients from healthy controls were 0.70, 0.87, and 0.9314, yielding a DOR of 32.31. When analyzed in subgroups, the 14 quantitative studies produced sensitivity, specificity, AUC, and a DOR of 0.78, 0.83, 0.9116, and 24.40. The 10 qualitative studies produced 0.50, 0.98, 0.9919, and 68.45. For 8 studies that distinguished malignant breast cancer from benign diseases, the specificity, sensitivity, AUC and DOR were 0.75, 0.79, 0.8213, and 9.49. No covariate factors had a significant correlation with relative DOR. Deek's funnel plots indicated an absence of publication bias. MATERIALS AND METHODS Databases were searched for studies involving the use of cfDNA to diagnose breast cancer. The studies were analyzed to determine sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio (DOR), and the summary receiver operating characteristic (SROC). Covariates were evaluated for effect on relative DOR. Deek's Funnel plots were generated to measure publication bias. CONCLUSIONS Our analysis suggests a promising diagnostic potential of using cfDNA for breast cancer screening, but this diagnostic method is not yet independently sufficient. Further work refining qualitative cfDNA assays will improve the correct diagnosis of breast cancers.
Collapse
|
24
|
Wang H, Liu Z, Xie J, Wang Z, Zhou X, Fang Y, Pan H, Han W. Quantitation of cell-free DNA in blood is a potential screening and diagnostic maker of breast cancer: a meta-analysis. Oncotarget 2017; 8:102336-102345. [PMID: 29254249 PMCID: PMC5731959 DOI: 10.18632/oncotarget.21827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/22/2017] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Increased cell-free DNA (cfDNA) levels in circulating blood have been associated with higher possibility of breast cancer, however, researchers have not reached an agreement on its analysis. MATERIALS AND METHODS We conducted a meta-analysis of 12 retrospective studies to clarify the value of cfDNA quantification in screening and diagnosis of breast cancer. PubMed, EMBASE, Web of Science and Cochrane library were searched from January, 2000 to October, 2016. Pooled analyses were estimated using a random effects model. RESULTS In total, 1003 primary breast cancer patients, 283 cases with benign breast disease and 575 healthy individuals were included. Pooled diagnostic odds ratio (DOR) was 27.63 (95% confidence interval [CI]: 10.96~69.61, I2 = 86.2%, P < 0.001) in discriminating between breast cancer and healthy controls; the area under the summary receiver operating characteristic (SROC) curve measured 0.91 (95% CI: 0.17~1.00). Analysis of available data in distinguishing breast cancer and benign breast disease showed a pooled DOR of 35.30 (95% CI: 7.58~164.39, I2 = 79.9%, P = 0.002) with an area under SROC of 0.91 (95% CI: 0.89~0.93). Ethnic group distribution based geographical factors suggested by meta-regression and subgroup analyses explained most of the heterogeneity. CONCLUSIONS Quantification of cfDNA is a promising test in screening and diagnostic of breast cancer, but population-based standardization of test methods require completion prior to clinical use.
Collapse
Affiliation(s)
- Huadi Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhen Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiansheng Xie
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhanggui Wang
- Department of Radiotherapy, The Second People's Hospital of Anhui Province, Hefei, Anhui, China
| | - Xiaoyun Zhou
- Department of Medical Oncology, Xiasha Campus, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
N Zekri AR, Salama H, Medhat E, Hamdy S, Hassan ZK, Bakr YM, Youssef ASED, Saleh D, Saeed R, Omran D. Potential Diagnostic and Prognostic Value of Lymphocytic Mitochondrial DNA Deletion in Relation to Folic Acid Status in HCV-Related Hepatocellular Carcinoma. ASIAN PACIFIC JOURNAL OF CANCER PREVENTION : APJCP 2017; 18:2451-2457. [PMID: 28952275 PMCID: PMC5720650 DOI: 10.22034/apjcp.2017.18.9.2451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Objective: We assessed the possibility of using mitochondrial (mt) DNA deletion as a molecular biomarker for disease progression in HCV-related hepatocellular carcinoma (HCC) and to identify its association with folic acid status. Methods: Serum folic acid and lymphocytic mtDNA deletions were assessed in 90 patients; 50 with HCC, 20 with liver cirrhosis (LC), and 20 with chronic hepatitis C (CHC) compared to 10 healthy control subjects. The diagnostic accuracy of mtDNA deletions frequency was evaluated using receiver-operating characteristic (ROC) curve analysis Survival analysis was performed using the Kaplan-Meier method. Differences in the survival rates were compared using log-rank test. Result: Our data revealed a significant elevation of mtDNA deletions frequency in the HCC group compared to the other groups (P-value <0.01). Also, our data showed a significant correlation between folate deficiency and high frequency of mtDNA deletions in patients with HCV-related HCC when compared to the other groups (r= -0.094 and P-value <0.05). Moreover, the size of the hepatic focal lesion in the HCC patients was positively correlated with mtDNA deletions (r= 0.09 and P-value <0.01). The median survival time for the HCC patients with high frequency of mtDNA deletions (∆Ct ≥3.9; 5.7+ 0.6 months) was significantly shorter than those with low mtDNA deletions frequency (∆Ct < 3.9; 11.9+ 0.04 months, P-value <0.01). Conclusion: Our data provided an evidence that lymphocytic mtDNA deletion could be used as non-invasive biomarker for disease progression and patients’ survival in HCV-related HCC. Also, our findings implied a causal relationship between the folate deficiency and the high mtDNA deletions frequency among Egyptian patients with HCV related HCC.
Collapse
Affiliation(s)
- Abdel Rahman N Zekri
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| | | | | | | | | | | | | | | | | | | |
Collapse
|