1
|
Chen B, Cheng Y, Wu H, Yao J. XAF1 overexpression inhibits the malignant progression and cisplatin resistance of NSCLC by activating endoplasmic reticulum stress. Mol Biol Rep 2024; 51:435. [PMID: 38520543 DOI: 10.1007/s11033-024-09347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/13/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND XIAP-associated factor 1 (XAF1) has been found to participate in the progression of multiple human cancers. Nevertheless, its role as well as the reaction mechanism in non-small cell lung cancer (NSCLC) still remains obscure. METHODS In this study, the protein expression of XAF1 in NSCLC cell lines was evaluated using western blot. With the employment of CCK-8 assay, EdU staining, wound healing and transwell, capabilities of NSCLC cells to proliferate, migrate and invade were assessed. Cell apoptotic level and cell cycle were resolved utilizing flow cytometry. Western blot was applied for the estimation of apoptosis- and endoplasmic reticulum (ER) stress-related proteins. RESULTS It was discovered that XAF1 expression was conspicuously reduced in NSCLC cell lines. XAF1 overexpression suppressed H1299 cell proliferative, invasive and migrative capabilities, but exhibited promotive effects on cell cycle arrest. Meanwhile, XAF1 overexpression inhibited cisplatin resistance in H1299 and H1299/DDP cells by promoting cell apoptosis and enhanced the expression levels of ER stress-related proteins CHOP, GRP78 and ATF4. What's more, 4-PBA treatment reversed the impacts of XAF1 overexpression on the proliferative, invasive, migrative and apoptotic capabilities of H1299 cells, as well as cell cycle and cisplatin resistance. CONCLUSION In conclusion, XAF1 overexpression impeded the advancement of NSCLC and repressed cisplatin resistance of NSCLC cells through inducing ER stress, which indicated that XAF1 might be a novel targeted-therapy for NSCLC.
Collapse
Affiliation(s)
- Bin Chen
- Department of Cardiothoracic Surgery, People's Hospital of Chizhou, Chizhou, 247000, China.
| | - Yuanjun Cheng
- Department of Cardiothoracic Surgery, People's Hospital of Chizhou, Chizhou, 247000, China
| | - Hanqing Wu
- Department of Cardiothoracic Surgery, People's Hospital of Chizhou, Chizhou, 247000, China
| | - Jie Yao
- Department of Cardiothoracic Surgery, People's Hospital of Chizhou, Chizhou, 247000, China.
| |
Collapse
|
2
|
Fu J, Chen J, Meng X, Luo Z, Liu Y, Wei L. Molecular identification and functional analysis of X-linked inhibitor of apoptosis -associated factor-1 (XAF1) in grass carp, Ctenopharyngodon idella. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108635. [PMID: 36822382 DOI: 10.1016/j.fsi.2023.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
X-linked inhibitor of apoptosis protein (XIAP) -associated factor 1 (XAF1) is an interferon-stimulated gene which exhibits pro-apoptosis effect. In this study, XAF1 was characterized from grass carp Ctenopharyngodon idella and its expression pattern and function were analyzed. The open reading frame (orf) of XAF1 is 789 nucleotides (nt) encoding 262 amino acids. SMART online search results showed that a C2H2-type and six C2HC-type zinc-fingers were found in XAF1, however, the XAF1 of grass carp showed high sequence identity to zebrafish (71%), low sequence identity to tetrapods (21-22%). Rt-qPCR results showed that XAF1 was constitutively expressed in all tested organs/tissues with highest expression in blood. An inductive expression of XAF1 at mRNA level was observed in peripheral blood leucocytes (PBLs) and C. idellus kidney cells (CIKs) after treatment with C. idellus recombinant interferon-γ (rIFNg). Overexpressing XAF1 in CIKs exhibited resistance against grass carp reovirus (GCRV) and more sensitivity to cisplatin. These results implied a functional homologue of XAF1 in evolution, however the mechanism may require further investigation.
Collapse
Affiliation(s)
- Jianping Fu
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, PR China
| | - Jun Chen
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, PR China
| | - XinYan Meng
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, PR China
| | - Zhang Luo
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, PR China
| | - Yi Liu
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, PR China.
| | - Lili Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China.
| |
Collapse
|
3
|
Naghsh-Nilchi A, Ebrahimi Ghahnavieh L, Dehghanian F. Construction of miRNA-lncRNA-mRNA co-expression network affecting EMT-mediated cisplatin resistance in ovarian cancer. J Cell Mol Med 2022; 26:4530-4547. [PMID: 35810383 PMCID: PMC9357632 DOI: 10.1111/jcmm.17477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/21/2022] [Accepted: 06/21/2022] [Indexed: 12/22/2022] Open
Abstract
Platinum resistance is one of the major concerns in ovarian cancer treatment. Recent evidence shows the critical role of epithelial-mesenchymal transition (EMT) in this resistance. Epithelial-like ovarian cancer cells show decreased sensitivity to cisplatin after cisplatin treatment. Our study prospected the association between epithelial phenotype and response to cisplatin in ovarian cancer. Microarray dataset GSE47856 was acquired from the GEO database. After identifying differentially expressed genes (DEGs) between epithelial-like and mesenchymal-like cells, the module identification analysis was performed using weighted gene co-expression network analysis (WGCNA). The gene ontology (GO) and pathway analyses of the most considerable modules were performed. The protein-protein interaction network was also constructed. The hub genes were specified using Cytoscape plugins MCODE and cytoHubba, followed by the survival analysis and data validation. Finally, the co-expression of miRNA-lncRNA-TF with the hub genes was reconstructed. The co-expression network analysis suggests 20 modules relating to the Epithelial phenotype. The antiquewhite4, brown and darkmagenta modules are the most significant non-preserved modules in the Epithelial phenotype and contain the most differentially expressed genes. GO, and KEGG pathway enrichment analyses on these modules divulge that these genes were primarily enriched in the focal adhesion, DNA replication pathways and stress response processes. ROC curve and overall survival rate analysis show that the co-expression pattern of the brown module's hub genes could be a potential prognostic biomarker for ovarian cancer cisplatin resistance.
Collapse
Affiliation(s)
- Amirhosein Naghsh-Nilchi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Laleh Ebrahimi Ghahnavieh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fariba Dehghanian
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
4
|
Sun G, Yuan W, Zhu W, Chen J. WZY-321 triggers glioma cell apoptosis via XAF1 up-regulation caused by MTM-mediated miR-873 down-regulation. J Cancer 2022; 13:2312-2321. [PMID: 35517406 PMCID: PMC9066199 DOI: 10.7150/jca.68775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/06/2022] [Indexed: 11/05/2022] Open
Abstract
Gliomas account for the majority of primary malignant brain tumors around the world and are highly aggressive. Evodiamine is one of the main effective components of Evodia rutaecarpa, which can inhibit proliferation and promote apoptosis of tumor cells including glioma cells. The derivative of Evodiamine named WZY-321 was successfully developed, and exhibited significant cytotoxicity and could efficiently induce glioma cell apoptosis; however, the mechanism of WZY-321-induced glioma cell apoptosis is not clear. Our current studies showed that WZY-321 increased X-linked inhibitor of apoptosis-associated factor 1 (XAF1) expression in glioma cells, and up-regulated XAF1 resulted in glioma cell apoptosis. Moreover, WZY-321 treatment decreased miR-873 expression and increased lncRNA MTM expression in glioma cells, and down-regulated miR-873 or up-regulated MTM lead to glioma cell apoptosis. Mechanically, WZY-321 up-regulated XAF1 gene expression via MTM-decreased miR-873 expression, that bound to XAF1 3' UTR and decreased XAF1 mRNA levels. Taken together, these data indicate that WZY-321 triggers glioma cell apoptosis via XAF1 up-regulation caused by MTM-mediated miR-873 down-regulation.
Collapse
Affiliation(s)
- Guan Sun
- Department of Neurosurgery, The Fourth Affiliated Hospital of Nantong University, The First People's Hospital of Yancheng, Yancheng, P.R. China.,Department of Neurosurgery, The Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Wei Yuan
- Department of Neurosurgery, The Fourth Affiliated Hospital of Nantong University, The First People's Hospital of Yancheng, Yancheng, P.R. China
| | - Weiye Zhu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Nantong University, The First People's Hospital of Yancheng, Yancheng, P.R. China
| | - Jian Chen
- Department of Neurosurgery, The Affiliated Hospital of Nantong University, Nantong, P.R. China
| |
Collapse
|
5
|
Tan D, Li G, Zhang P, Peng C, He B. LncRNA SNHG12 in extracellular vesicles derived from carcinoma-associated fibroblasts promotes cisplatin resistance in non-small cell lung cancer cells. Bioengineered 2022; 13:1838-1857. [PMID: 35014944 PMCID: PMC8805932 DOI: 10.1080/21655979.2021.2018099] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is defined as the most universally diagnosed class of lung cancer. Cisplatin (DDP) is an effective drug for NSCLC, but tumors are prone to drug resistance. The current study set out to evaluate the regulatory effect of long non-coding RNA (lncRNA) small nucleolar RNA host gene 12 (SNHG12) in extracellular vesicles (EVs) derived from carcinoma-associated fibroblasts (CAFs) on DDP resistance in NSCLC cells. Firstly, NSCLC cells were treated with EVs, followed by detection of cell activity, IC50 values, cell proliferation and apoptosis, and Cy3-SNHG12. We observed that CAFs-EVs promoted IC50 values and cell proliferation and inhibited apoptosis. In addition, we learned that lncRNA SNHG12 carried by CAFs-EVs into NSCLC facilitated DDP resistance of NSCLC cells. Furthermore, ELAV like RNA binding protein 1 (HuR/ELAVL1) binding to lncRNA SNHG12 and X-linked inhibitor of apoptosis (XIAP) was verified and RNA stability of XIAP was also verified CAFs-EVs promoted RNA stability and transcription of XIAP, while silencing HuR could partially-reverse this promoting effect. Further joint experimentation showed that silencing XIAP partially inhibited DDP resistance in NSCLC cells. Additionally, the tumor growth and the positive rate of Ki67 and HuR were detected, which showed that CAFs-oe-EVs promoted the tumor and the positive rate of Ki67, as well as the levels of lncRNA SNHG12, HuR, and XIAP in vivo. Collectively, our findings indicated that lncRNA SNHG12 carried by CAFs-EVs into NSCLC cells promoted RNA stability and XIAP transcription by binding to HuR, thus augmenting DDP resistance in NSCLC cells.
Collapse
Affiliation(s)
- Deli Tan
- Department of Thoracic Surgery, Chongqing Ninth People’s Hospital, Chongqing, China
| | - Gang Li
- Department of Thoracic Surgery, Chongqing Ninth People’s Hospital, Chongqing, China
| | - Peng Zhang
- Department of Thoracic Surgery, Chongqing Ninth People’s Hospital, Chongqing, China
| | - Chao Peng
- Department of Thoracic Surgery, Chongqing Ninth People’s Hospital, Chongqing, China
| | - Bo He
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing400038, China
| |
Collapse
|
6
|
Mirahmadi Y, Nabavi R, Taheri F, Samadian MM, Ghale-Noie ZN, Farjami M, Samadi-khouzani A, Yousefi M, Azhdari S, Salmaninejad A, Sahebkar A. MicroRNAs as Biomarkers for Early Diagnosis, Prognosis, and Therapeutic Targeting of Ovarian Cancer. JOURNAL OF ONCOLOGY 2021; 2021:3408937. [PMID: 34721577 PMCID: PMC8553480 DOI: 10.1155/2021/3408937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023]
Abstract
Ovarian cancer is the major cause of gynecologic cancer-related mortality. Regardless of outstanding advances, which have been made for improving the prognosis, diagnosis, and treatment of ovarian cancer, the majority of the patients will die of the disease. Late-stage diagnosis and the occurrence of recurrent cancer after treatment are the most important causes of the high mortality rate observed in ovarian cancer patients. Unraveling the molecular mechanisms involved in the pathogenesis of ovarian cancer may help find new biomarkers and therapeutic targets for ovarian cancer. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression, mostly at the posttranscriptional stage, through binding to mRNA targets and inducing translational repression or degradation of target via the RNA-induced silencing complex. Over the last two decades, the role of miRNAs in the pathogenesis of various human cancers, including ovarian cancer, has been documented in multiple studies. Consequently, these small RNAs could be considered as reliable markers for prognosis and early diagnosis. Furthermore, given the function of miRNAs in various cellular pathways, including cell survival and differentiation, targeting miRNAs could be an interesting approach for the treatment of human cancers. Here, we review our current understanding of the most updated role of the important dysregulation of miRNAs and their roles in the progression and metastasis of ovarian cancer. Furthermore, we meticulously discuss the significance of miRNAs as prognostic and diagnostic markers. Lastly, we mention the opportunities and the efforts made for targeting ovarian cancer through inhibition and/or stimulation of the miRNAs.
Collapse
Affiliation(s)
- Yegane Mirahmadi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Fourough Taheri
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Mahdi Samadian
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Farjami
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Samadi-khouzani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Guilan University of Medical Sciences, Guilan, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Hurley RM, McGehee CD, Nesic K, Correia C, Weiskittel TM, Kelly RL, Venkatachalam A, Hou X, Pathoulas NM, Meng XW, Kondrashova O, Radke MR, Schneider PA, Flatten KS, Peterson KL, Becker MA, Wong EM, Southey MS, Dobrovic A, Lin KK, Harding TC, McNeish I, Ross CA, Wagner JM, Wakefield MJ, Scott CL, Haluska P, Wahner Hendrickson AE, Karnitz LM, Swisher EM, Li H, Weroha SJ, Kaufmann SH. Characterization of a RAD51C-silenced high-grade serous ovarian cancer model during development of PARP inhibitor resistance. NAR Cancer 2021; 3:zcab028. [PMID: 34316715 PMCID: PMC8271218 DOI: 10.1093/narcan/zcab028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Acquired PARP inhibitor (PARPi) resistance in BRCA1- or BRCA2-mutant ovarian cancer often results from secondary mutations that restore expression of functional protein. RAD51C is a less commonly studied ovarian cancer susceptibility gene whose promoter is sometimes methylated, leading to homologous recombination (HR) deficiency and PARPi sensitivity. For this study, the PARPi-sensitive patient-derived ovarian cancer xenograft PH039, which lacks HR gene mutations but harbors RAD51C promoter methylation, was selected for PARPi resistance by cyclical niraparib treatment in vivo. PH039 acquired PARPi resistance by the third treatment cycle and grew through subsequent treatment with either niraparib or rucaparib. Transcriptional profiling throughout the course of resistance development showed widespread pathway level changes along with a marked increase in RAD51C mRNA, which reflected loss of RAD51C promoter methylation. Analysis of ovarian cancer samples from the ARIEL2 Part 1 clinical trial of rucaparib monotherapy likewise indicated an association between loss of RAD51C methylation prior to on-study biopsy and limited response. Interestingly, the PARPi resistant PH039 model remained platinum sensitive. Collectively, these results not only indicate that PARPi treatment pressure can reverse RAD51C methylation and restore RAD51C expression, but also provide a model for studying the clinical observation that PARPi and platinum sensitivity are sometimes dissociated.
Collapse
Affiliation(s)
- Rachel M Hurley
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Cordelia D McGehee
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Ksenija Nesic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Cristina Correia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Taylor M Weiskittel
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Rebecca L Kelly
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Annapoorna Venkatachalam
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Xiaonan Hou
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905 USA
| | | | - X Wei Meng
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Olga Kondrashova
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Marc R Radke
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA 98195, USA
| | | | - Karen S Flatten
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905 USA
| | - Kevin L Peterson
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905 USA
| | - Marc A Becker
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905 USA
| | - Ee Ming Wong
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Victoria 3800, Australia
| | - Melissa S Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Victoria 3800, Australia
| | - Alexander Dobrovic
- University of Melbourne Department of Surgery, Austin Hospital, Heidelberg, Victoria 3084, Australia
| | - Kevin K Lin
- Clovis Oncology, San Francisco, CA 94158, USA
| | | | - Iain McNeish
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, W12 0NN United Kingdom
| | - Christian A Ross
- Division of Information Technology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jill M Wagner
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905 USA
| | - Matthew J Wakefield
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Clare L Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Paul Haluska
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Larry M Karnitz
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Elizabeth M Swisher
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - S John Weroha
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905 USA
| | - Scott H Kaufmann
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
8
|
Guy JL, Mor GG. Transcription Factor-Binding Site Identification and Enrichment Analysis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2255:241-261. [PMID: 34033108 DOI: 10.1007/978-1-0716-1162-3_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transcription factors orchestrate complex regulatory networks of gene expression. A better understanding of the common transcription factors, and their shared interactions, among a set of coregulated or differentially expressed genes can provide powerful insights into the key pathways governing such expression patterns. Critically, such information must also be considered in the context of the frequency in which a transcription factor is present in a properly selected background, and in the context of existing evidence of gene and transcription factor interaction. Given the vast amount of publicly available gene expression data that can be further scrutinized by the user-friendly analysis tools described here, many useful insights are assuredly to be revealed. The proceeding methods for application of the analysis tool CiiiDER for transcription factor-binding site identification, enrichment analysis, and coregulatory factor identification should be applicable to any dataset comparing differential gene expression in response to various stimuli and gene coexpression datasets. These methods should assist the researcher in identifying the most relevant regulators within a gene set, and refining the list of targets for future study to those which may share biologically important regulatory networks.
Collapse
Affiliation(s)
- Joe L Guy
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Gil G Mor
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
9
|
刘 娟, 刘 星, 魏 宝, 刘 洁, 王 悦, 刘 辉. [Effect of stable overexpression of XAF1 gene on biological characteristics of ovarian cancer A2780 cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:760-766. [PMID: 34134965 PMCID: PMC8214961 DOI: 10.12122/j.issn.1673-4254.2021.05.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To construct an ovarian cancer cell line stably overexpressing XAF1 gene and observe the effects of XAF1 gene overexpression on proliferation, apoptosis, cell cycle and sensitivity to paclitaxel of the cells. OBJECTIVE Ovarian cancer A2780 cells were transfected with the plasmids pcDNA3.1(+) or pcDNA3.1(+)-XAF1, and the cells stably Over expressing XAF1 (A2780/XAF1 cells) were screened using G418. Cell clone formation assay and CCK8 assay were used to evaluate the changes in proliferation and paclitaxel sensitivity of the transfected cells, and cell cycle and apoptosis of the cells were analyzed using flow cytometry. OBJECTIVE We successfully obtained A2780/XAF1 cells stably overexpressing XAF1, which exhibited no significant changes in cell morphology. Compared with the negative control cells (A2780/NC), A2780/XAF1 cells had lowered clone formation ability (P=0.0016) and attenuated proliferative activity on the first (P=0.009) and third (P=0.0035) days after cell adherence with also a significantly increased percentage of cells in G2-M phase (P < 0.001). A2780/XAF1 cells showed significantly higher apoptosis rates than A2780/NC cells in the absence of apoptotic stimulation, in serum-free culture or following paclitaxel induction (P < 0.001). The proliferative activity of A2780/XAF1 cells was significantly lower than that of A2780/NC cells after exposure to different paclitaxel concentrations (P < 0.001). The half inhibitory concentration of paclitaxel was significantly lower in A2780/XAF1 than in A2780/NC cells. OBJECTIVE Overexpression of XAF1 significantly inhibits the proliferation, induces cell cycle arrest, promotes apoptosis, and increases paclitaxel sensitivity in ovarian cancer cells.
Collapse
Affiliation(s)
- 娟 刘
- 四川大学 华西第二医院妇产科,四川 成都 610041Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- 四川大学 出生缺陷与相关妇儿疾病教育部重点实验室,四川 成都 610041Key Laboratory of Birth Defects and Related Gynecological Diseases of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - 星辰 刘
- 成都市第 六人民医院妇科,四川 成都 610051Department of Gynecology, The Sixth People's Hospital of Chengdu, Chengdu 610051
| | - 宝宝 魏
- 成都中医药大学附属医院妇科,四川 成都 610075Department of Gynecology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - 洁 刘
- 四川大学 华西第二医院妇产科,四川 成都 610041Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- 四川大学 出生缺陷与相关妇儿疾病教育部重点实验室,四川 成都 610041Key Laboratory of Birth Defects and Related Gynecological Diseases of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - 悦华 王
- 四川大学 华西第二医院妇产科,四川 成都 610041Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- 四川大学 出生缺陷与相关妇儿疾病教育部重点实验室,四川 成都 610041Key Laboratory of Birth Defects and Related Gynecological Diseases of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - 辉 刘
- 四川大学 华西第二医院妇产科,四川 成都 610041Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- 四川大学 出生缺陷与相关妇儿疾病教育部重点实验室,四川 成都 610041Key Laboratory of Birth Defects and Related Gynecological Diseases of the Ministry of Education, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Mirza-Aghazadeh-Attari M, Ostadian C, Saei AA, Mihanfar A, Darband SG, Sadighparvar S, Kaviani M, Samadi Kafil H, Yousefi B, Majidinia M. DNA damage response and repair in ovarian cancer: Potential targets for therapeutic strategies. DNA Repair (Amst) 2019; 80:59-84. [PMID: 31279973 DOI: 10.1016/j.dnarep.2019.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/01/2019] [Accepted: 06/15/2019] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is among the most lethal gynecologic malignancies with a poor survival prognosis. The current therapeutic strategies involve surgery and chemotherapy. Research is now focused on novel agents especially those targeting DNA damage response (DDR) pathways. Understanding the DDR process in ovarian cancer necessitates having a detailed knowledge on a series of signaling mediators at the cellular and molecular levels. The complexity of the DDR process in ovarian cancer and how this process works in metastatic conditions is comprehensively reviewed. For evaluating the efficacy of therapeutic agents targeting DNA damage in ovarian cancer, we will discuss the components of this system including DDR sensors, DDR transducers, DDR mediators, and DDR effectors. The constituent pathways include DNA repair machinery, cell cycle checkpoints, and apoptotic pathways. We also will assess the potential of active mediators involved in the DDR process such as therapeutic and prognostic candidates that may facilitate future studies.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Caspian Ostadian
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Saber Ghazizadeh Darband
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | | | - Bahman Yousefi
- Molecular MedicineResearch Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
11
|
Camacho-Moctezuma B, Quevedo-Castillo M, Melendez-Zajgla J, Aquino-Jarquin G, Martinez-Ruiz GU. YY1 negatively regulates the XAF1 gene expression in prostate cancer. Biochem Biophys Res Commun 2018; 508:973-979. [PMID: 30551877 DOI: 10.1016/j.bbrc.2018.12.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 12/06/2018] [Indexed: 12/31/2022]
Abstract
XAF1 is a tumor suppressor gene with low or absent expression in cancer. Since transcriptional reactivation or ectopic-mediated expression of XAF1 inhibits tumor growth, it is of great interest to elucidate the molecular mechanisms leading to XAF1 silencing. YY1 is a transcription factor that acts as a repressor or an activator to modulate several cancer-associated cellular processes. Both YY1 and XAF1 have key roles in prostate cancer (PCa) progression and are associated with worse clinical outcomes. To assess whether YY1 regulates the transcriptional activation of the XAF1 gene, we performed gene-reporter assays coupled with site-directed mutagenesis, which showed that YY1 is able to mediate XAF1 silencing. Concordantly, ChIP-qPCR assays showed that YY1 interacts with the XAF1 promoter in PC3 cells that lacks XAF1 expression. This association was lost after exposure to epigenetic modulators that induce XAF1 expression. Further supporting the YY1's repressive role, we found transcriptional reactivation of the XAF1 gene by YY1 downregulation. As expected by previous reports showing that HDAC1 is needed for YY1-mediated repressive actions, we observed XAF1 re-expression after either inhibition or downregulation of the HDAC1 gene. Finally, expression data retrieved from the TCGA consortium showed that PCa samples presented lower XAF1 and higher HDAC expression levels than normal tissues. Thus, our results support a model in which YY1 is able to silence tumor suppressor genes such as XAF1 through HDAC1 in PCa.
Collapse
Affiliation(s)
- B Camacho-Moctezuma
- Laboratorio de Investigacion en Patologia Experimental, Hospital Infantil de Mexico Federico Gomez, 06720, Mexico City, Mexico; Division de Investigacion, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, 04510, Mexico City, Mexico
| | - M Quevedo-Castillo
- Laboratorio de Investigacion en Patologia Experimental, Hospital Infantil de Mexico Federico Gomez, 06720, Mexico City, Mexico; Division de Investigacion, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, 04510, Mexico City, Mexico
| | - J Melendez-Zajgla
- Genomica Funcional del Cancer, Instituto Nacional de Medicina Genomica, 14610, Mexico City, Mexico
| | - G Aquino-Jarquin
- Laboratorio de Investigacion en Genomica, Genetica y Bioinformatica, Hospital Infantil de Mexico Federico Gomez, 06720, Mexico City, Mexico
| | - G U Martinez-Ruiz
- Laboratorio de Investigacion en Patologia Experimental, Hospital Infantil de Mexico Federico Gomez, 06720, Mexico City, Mexico; Division de Investigacion, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, 04510, Mexico City, Mexico.
| |
Collapse
|
12
|
Zhang Y, Huang F, Luo Q, Wu X, Liu Z, Chen H, Huang Y. Inhibition of XIAP increases carboplatin sensitivity in ovarian cancer. Onco Targets Ther 2018; 11:8751-8759. [PMID: 30584333 PMCID: PMC6287417 DOI: 10.2147/ott.s171053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose Carboplatin is a first-line treatment for ovarian cancer. However, most patients develop resistance and undergo disease recurrence. This study aims to explore the relationship between the expression of X-linked inhibitor of apoptosis protein (XIAP) and carboplatin sensitivity in ovarian cancer. Patients and methods We examined the expression of XIAP in ovarian cancer by immuno-chemistry. Next, we investigated the role of XIAP in regulating carboplatin sensitivity in ovarian cancer ES2 and 3AO cells through Cell Counting Kit-8 cell viability assay and fluorescein isothiocyanate-Annexin V/propidium iodide apoptosis assay. Expression of apoptotic effectors was measured by Western blot. Results The immunochemistry results showed that high XIAP expression levels inversely correlated with carboplatin response (P=0.03) and progression-free survival (P=0.0068) in patients with ovarian cancer. Knockdown of XIAP repressed the cell viabilities in the carboplatin-treated cells and increased carboplatin-induced caspase activation. In summary, our data show that XIAP mediates carboplatin sensitivity of ovarian cancer. Conclusion In summary, our data show that XIAP mediates carboplatin sensitivity of ovarian cancer and XIAP may be a novel target for the treatment of carboplatin-resistant ovarian cancer.
Collapse
Affiliation(s)
- Yiping Zhang
- Cancer Institute, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China, .,China National Center for Biotechnology Development, Beijing, China
| | - Furong Huang
- The State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,
| | - Qingyu Luo
- The State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,
| | - Xiaowei Wu
- The State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,
| | - Zhihua Liu
- The State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,
| | - Hongyan Chen
- The State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,
| | - Yinghui Huang
- Cancer Institute, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China,
| |
Collapse
|
13
|
Jiang X, Zhang N, Yin L, Zhang WL, Han F, Liu WB, Chen HQ, Cao J, Liu JY. A commercial Roundup® formulation induced male germ cell apoptosis by promoting the expression of XAF1 in adult mice. Toxicol Lett 2018; 296:163-172. [PMID: 29908847 DOI: 10.1016/j.toxlet.2018.06.1067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/01/2018] [Accepted: 06/12/2018] [Indexed: 01/04/2023]
Abstract
Roundup® is extensively used for weed control worldwide. Residues of this compound may lead to side effects of the male reproductive system. However, the toxic effects and mechanisms of Roundup® of male germ cells remain unclear. We aimed to investigate the apoptosis-inducing effects of Roundup® on mouse male germ cells and explore the role of a novel tumor suppressor XAF1 (X-linked inhibitor of apoptosis-associated factor 1) involved in this process. We demonstrated that Roundup® can impair spermatogenesis, decrease sperm motility and concentration, and increase the sperm deformity rate in mice. In addition, excessive apoptosis of germ cells accompanied by the overexpression of XAF1 occurred after Roundup® exposure both in vitro and in vivo. Furthermore, the low expression of XIAP (X-linked inhibitor of apoptosis) induced by Roundup® was inversely correlated with XAF1. Moreover, the knockdown of XAF1 attenuated germ cell apoptosis, improved XIAP expression and inhibited the activation of its downstream target proteins, caspase-3 and PARP, after Roundup® exposure. Taken together, our data indicated that XAF1 plays an important role in Roundup®-induced male germ cell apoptosis. The present study suggested that Roundup® exposure has potential negative implications on male reproductive health in mammals.
Collapse
Affiliation(s)
- Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, PR China
| | - Ning Zhang
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, PR China
| | - Li Yin
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, PR China
| | - Wen-Long Zhang
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, PR China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, PR China
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, PR China
| | - Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, PR China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, PR China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, PR China.
| |
Collapse
|
14
|
Jiang X, Yin L, Zhang N, Han F, Liu WB, Zhang X, Chen HQ, Cao J, Liu JY. Bisphenol A induced male germ cell apoptosis via IFNβ-XAF1-XIAP pathway in adult mice. Toxicol Appl Pharmacol 2018; 355:247-256. [PMID: 30017639 DOI: 10.1016/j.taap.2018.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 01/06/2023]
|
15
|
Niu P, Shi D, Zhang S, Zhu Y, Zhou J. Cardamonin enhances the anti-proliferative effect of cisplatin on ovarian cancer. Oncol Lett 2018; 15:3991-3997. [PMID: 29456744 DOI: 10.3892/ol.2018.7743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/09/2017] [Indexed: 12/19/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is well-known as a promising therapeutic target in various cancer cells. mTOR activation decreases the sensitivity of ovarian cancer to cisplatin. Cardamonin inhibits the proliferation of various cancer cells by mTOR suppression. The present study examined whether cardamonin combined with cisplatin is efficacious for the anti-proliferation of ovarian cancer cells. The anti-proliferative effect was determined by MTT and cell cycle assays. Activation of the mTOR signal pathway and the expression of anti-apoptotic proteins were evaluated by western blot analysis. Cardamonin significantly enhanced the effects of cisplatin on cell proliferation and cell cycle progression. The expression of B cell lymphoma-2, X-linked inhibitor of apoptosis protein and Survivin was significantly decreased following combination treatment. Furthermore, the activation of mTOR and its downstream 70 kDa ribosomal protein S6 kinase was inhibited by cardamonin. These results demonstrated that the combinatorial effects of cardamonin and cisplatin on anti-proliferation were enhanced by suppressing the expression of anti-apoptotic proteins and activation of mTOR in ovarian cancer cells.
Collapse
Affiliation(s)
- Peiguang Niu
- Department of Pharmacy, Fujian Provincial Maternity and Children Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Daohua Shi
- Department of Pharmacy, Fujian Provincial Maternity and Children Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Shusheng Zhang
- Department of Pharmacy, Fujian Provincial Maternity and Children Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yanting Zhu
- Department of Pharmacy, Fujian Provincial Maternity and Children Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Jintuo Zhou
- Department of Pharmacy, Fujian Provincial Maternity and Children Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
16
|
Liu Y, Zhang B, Shi T, Qin H. Inhibition of X-linked inhibitor of apoptosis protein suppresses tumorigenesis and enhances chemosensitivity in anaplastic thyroid carcinoma. Oncotarget 2017; 8:95764-95772. [PMID: 29221164 PMCID: PMC5707058 DOI: 10.18632/oncotarget.21320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is one of the most lethal carcinoma with a poor prognosis; however, molecular mechanisms underlying the aggressiveness of ATC remain unclear. Our goal was to examine the expression of X-linked inhibitor of apoptosis protein (XIAP) in ATC, as well as its role in ATC tumorigenesis. This is a retrospective study of ATC patients from the Second Affiliated Hospital of Harbin Medical University during June 2003 to October 2013. The expression of XIAP in tumor specimens of ATC patients was examined by immunohistochemical staining. The roles of XIAP in proliferation, migration, invasion, and chemoresistance were investigated by shRNA mediated-knockdown of XIAP in human ATC cell lines. The effect of XIAP on tumorigenesis was evaluated using a xenograft tumor model with nude mice. XIAP expression was significantly higher in the invasive area of ATC samples, whereas XIAP expression was negative in either normal thyroid follicular epithelial cells or the differentiated papillary thyroid carcinoma. XIAP-depleted ATC cells showed a remarkable decrease in the proliferation, migration, and invasion compared with the scramble group. Knockdown of XIAP expression significantly enhanced the chemosensitivity of WRO and SW1736 cells to docetaxel or taxane. Moreover, knockdown of XIAP significantly suppressed ATC tumorigenesis in vivo. XIAP is highly expressed in ATC cells and tumors. XIAP play important roles in tumor behaviors and chemosensitivity of ATC cells. XIAP may function in ATC aggressiveness and may serve as a potential therapeutic target for ATC treatment.
Collapse
Affiliation(s)
- Yao Liu
- The Fourth Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Bing Zhang
- The Fourth Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Tiefeng Shi
- The Fourth Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Huadong Qin
- The Fourth Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
17
|
Down-regulation of XIAP enhances the radiosensitivity of esophageal cancer cells in vivo and in vitro. Biosci Rep 2017; 37:BSR20170711. [PMID: 28821565 PMCID: PMC5603754 DOI: 10.1042/bsr20170711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 12/20/2022] Open
Abstract
The study investigated the effects of X-chromosome-linked inhibitor of apoptosis (XIAP) gene silencing on the radiosensitivity of esophageal cancer (EC) cells. Western blotting was used to select EC cell lines with XIAP overexpression. Selected EC9706 and KYSE30 cell lines were both divided into four groups: the blank control group, the negative control (NC) group (transfected with pBSHH1), the siRNA-enhanced group (transfected with pBSHH1-XIAP1-siRNA), and the siRNA-decreased group (transfected with pBSHH1-XIAP2-siRNA). Expressions of XIAP were measured by reverse-transcription quantitative PCR (RT-qPCR) and Western blotting, cell survival and viability by MTT assay and colony formation assay, and cell apoptosis by flow cytometry, respectively. Caspase-3 and caspase-9 activity were detected using caspase-3 and caspase-9 activity detection kits. A nude mice model of EC9706 cell line was established to measure tumorigenesis ability. Compared with the NC group, XIAP mRNA and protein expressions were decreased, caspase-3 and caspase-9 activity and apoptosis were up-regulated, and cell survival rate and colony-forming efficiency were lower in the siRNA-enhanced and siRNA-decreased groups in both the cell lines; while the opposite trends were found in the siRNA-decreased group compared with the siRNA-enhanced group. Tumor weight and volume of nude mice were decreased in the siRNA-enhanced and siRNA-decreased groups than those in the NC group, and were elevated in the siRNA-decreased group compared with the siRNA-enhanced group. These results indicate that XIAP gene silencing would strengthen the radiosensitivity of EC9706 cells, which provides a novel target for the treatment of EC.
Collapse
|
18
|
Wang Z, Ying YM, Li KQ, Zhang Y, Chen BY, Zeng JJ, He XJ, Jiang MM, Chen BX, Wang Y, Xu XD, Hao K, Zhu MH, Zhang W. Marsdeniae tenacissima extract-induced growth inhibition and apoptosis in hepatoma carcinoma cells is mediated through the p53/nuclear factor-κB signaling pathway. Exp Ther Med 2017; 14:2477-2484. [PMID: 28962183 PMCID: PMC5609296 DOI: 10.3892/etm.2017.4833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 03/24/2017] [Indexed: 12/13/2022] Open
Abstract
An extract from a traditional Chinese herb, Marsdeniae tenacissima (trade name, Xiao-Ai-Ping) has been approved for use on the Chinese market as a cancer chemotherapeutic agent for decades. Previous studies have demonstrated the cytostatic and pro-apoptotic effects of M. tenacissima extract (MTE) in multiple cancer cells. However, the contributions of MTE to the proliferation and apoptosis of hepatoma carcinoma cells and the underlying mechanisms remain unclear. In the present study, Bel-7402 cells were incubated with increasing concentrations of MTE ranging from 0–320 µl/ml to explore the effects and potential mechanisms of MTE on the proliferation and apoptosis of Bel-7402 cells. 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethoxyphenyl)-2-(4-sulfopheny)-2H-tetrazolium, inner salt and propidium iodide (PI)-stained flow cytometry assays demonstrated that MTE significantly suppressed the proliferation of Bel-7402 cells in a dose-dependent manner by arresting the cell cycle at S phase (P<0.05). Annexin V-fluorescein isothiocyanate PI-stained flow cytometry confirmed the significantly pro-apoptotic effect of MTE at both 160 and 240 µl/ml (P<0.001). Reverse transcription-quantitative polymerase chain reaction and western blot analysis demonstrated that MTE (both 160 and 240 µl/ml) induced a significant downregulation of B-cell lymphoma (Bcl)-2 (P<0.01), upregulation of Bcl-2-associated X protein (P<0.01) and activation of caspase-3 (P<0.05). Furthermore, a significant downregulation of murine double minute-2 (MDM2) (P<0.001) and activation of p53 (P<0.001) in Bel-7402 cells following treatment with 160 or 240 µl/ml MTE was observed, accompanied by the inhibition of the nuclear factor (NF)-κB pathway (P<0.001). These results suggested that MTE inhibited growth and exhibited pro-apoptotic effects in Bel-7402 cells, which was mediated by downregulation of the MDM2-induced p53-dependent mitochondrial apoptosis pathway and blocking the NF-κB pathway. Overall, these data serve as preliminary identification of the significant roles of MTE in hepatic carcinoma cells, and suggest that MTE may be a promising candidate for hepatocellular carcinoma therapy.
Collapse
Affiliation(s)
- Zhen Wang
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - You-Min Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Kai-Qiang Li
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yu Zhang
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China.,College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Bing-Yu Chen
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Jing-Jing Zeng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xu-Jun He
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Meng-Meng Jiang
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Bo-Xu Chen
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Ying Wang
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiao-Dong Xu
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Ke Hao
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Meng-Hua Zhu
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Wei Zhang
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
19
|
Zhu G, Qiu W, Li Y, Zhao C, He F, Zhou M, Wang L, Zhao D, Lu Y, Zhang J, Liu Y, Yu T, Wang Y. Sublytic C5b-9 Induces Glomerular Mesangial Cell Apoptosis through the Cascade Pathway of MEKK2-p38 MAPK-IRF-1-TRADD-Caspase 8 in Rat Thy-1 Nephritis. THE JOURNAL OF IMMUNOLOGY 2016; 198:1104-1118. [PMID: 28039298 DOI: 10.4049/jimmunol.1600403] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022]
Abstract
The apoptosis of glomerular mesangial cells (GMCs) in the early phase of rat Thy-1 nephritis (Thy-1N), a model of human mesangioproliferative glomerulonephritis (MsPGN), is primarily triggered by sublytic C5b-9. However, the mechanism of GMC apoptosis induced by sublytic C5b-9 remains unclear. In this study, we demonstrate that expressions of TNFR1-associated death domain-containing protein (TRADD) and IFN regulatory factor-1 (IRF-1) were simultaneously upregulated in the renal tissue of Thy-1N rats (in vivo) and in GMCs under sublytic C5b-9 stimulation (in vitro). In vitro, TRADD was confirmed to be a downstream gene of IRF-1, because IRF-1 could bind to TRADD gene promoter to promote its transcription, leading to caspase 8 activation and GMC apoptosis. Increased phosphorylation of p38 MAPK was verified to contribute to IRF-1 and TRADD production and caspase 8 activation, as well as to GMC apoptosis induced by sublytic C5b-9. Furthermore, phosphorylation of MEK kinase 2 (MEKK2) mediated p38 MAPK activation. More importantly, three sites (Ser153/164/239) of MEKK2 phosphorylation were identified and demonstrated to be necessary for p38 MAPK activation. In addition, silencing of renal MEKK2, IRF-1, and TRADD genes or inhibition of p38 MAPK activation in vivo had obvious inhibitory effects on GMC apoptosis, secondary proliferation, and urinary protein secretion in rats with Thy-1N. Collectively, these findings indicate that the cascade axis of MEKK2-p38 MAPK-IRF-1-TRADD-caspase 8 may play an important role in GMC apoptosis following exposure to sublytic C5b-9 in rat Thy-1N.
Collapse
Affiliation(s)
- Ganqian Zhu
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Wen Qiu
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Yongting Li
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Chenhui Zhao
- Department of Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China; and
| | - Fengxia He
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Mengya Zhou
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Lulu Wang
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Dan Zhao
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Yanlai Lu
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Jing Zhang
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Yu Liu
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Tianyi Yu
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Yingwei Wang
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China; .,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| |
Collapse
|
20
|
Lei Y, Zhang B, Zhang Y, Zhao Y, Sun J, Zhang X, Yang S. Lentivirus-mediated downregulation of MAT2B inhibits cell proliferation and induces apoptosis in melanoma. Int J Oncol 2016; 49:981-90. [PMID: 27573889 DOI: 10.3892/ijo.2016.3603] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/31/2016] [Indexed: 11/06/2022] Open
Abstract
Malignant melanoma is the most lethal of skin cancers and its pathogenesis is complex and heterogeneous. The efficacy of conventional therapeutic regimens for melanoma remains limited. Thus, it is important to explore novel effective therapeutic targets in the treatment of melanoma. The MAT2B gene encodes for the regulatory subunit of methionine adenosyltransferase (MAT). Recent studies have suggested that MAT2B may have functional roles other than modulating catalytic activity of MAT. In order to identify the roles of MAT2B in the tumorigenesis of malignant melanoma, we compared MAT2B expression profile in melanoma tissues with that in benign nevus samples. We employed lentivirus-mediated RNAi to downregulate the expression of MAT2B in malignant melanoma cell lines (A375 and Mel-RM), and investigated the effects of MAT2B on cell growth, colony-formation ability and apoptosis in vitro, as well as tumor growth of a xenograft model in vivo. The expression levels of BCL2 and XAF1 proteins, which were closely related to tumor cell apoptosis, were analyzed by western blot analysis. Our data showed that MAT2B was elevated in both primary and metastatic melanoma tissues compared with benign nevus samples. Lentivirus-mediated downregulation of MAT2B suppressed cell growth, colony formation and induced apoptosis in A375 and Mel-RM cell lines in vitro, affected protein expression of BCL2 and XAF1, extended the transplanted tumor growth in vivo. These results indicated that MAT2B was critical in the proliferation of melanoma cells and tumorigenicity. It may be considered as a potential anti-melanoma therapeutic target.
Collapse
Affiliation(s)
- Yu Lei
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Bo Zhang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yaohua Zhang
- Institute of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yuan Zhao
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jingying Sun
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xuejun Zhang
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Sen Yang
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
21
|
Xu Y, Wu D, Fan Y, Li P, Du H, Shi J, Wang D, Zhou X. Novel recombinant protein FlaA N/C increases tumor radiosensitivity via NF-κB signaling in murine breast cancer cells. Oncol Lett 2016; 12:2632-2640. [PMID: 27703525 PMCID: PMC5038907 DOI: 10.3892/ol.2016.4957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/20/2016] [Indexed: 12/21/2022] Open
Abstract
The recombinant protein flagellin A (FlaA) N/C, derived from the flagellin protein of Legionella pneumophila, has been shown to increase the expression of cytoprotective cytokines, activate the nuclear factor-κB (NF-κB) signaling pathway, and increase the survival of mice following total body irradiation. Determi ning whether FlaA N/C has a sensitizing effect on tumor radiation or a direct tumoricidal effect is critical for its application as an effective radiation protection agent. The present study investigated the molecular mechanism underlying the tumor radiosensitivity of FlaA N/C. FlaA N/C was found to increase tumor apoptosis and autophagy, regulate the cell cycle and increase radiosensitivity in 4T1 tumor cells. Furthermore, FlaA N/C was found to promote radiosensitivity by activating NF-κB signaling. Finally, the present study analyzed FlaA N/C-enhanced radiosensitivity in animal models, and FlaA N/C was found to significantly prolong the survival period of mice after total body radiation. This indicates that FlaA N/C might be a novel radiation sensitizer in tumor radiation therapy.
Collapse
Affiliation(s)
- Ying Xu
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610041, P.R. China
| | - Dongming Wu
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610041, P.R. China
| | - Yuanchun Fan
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610041, P.R. China
| | - Peigeng Li
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610041, P.R. China
| | - Hongfei Du
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610041, P.R. China
| | - Jiao Shi
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610041, P.R. China
| | - Dan Wang
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoping Zhou
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
22
|
Ren M, Wang Z, Gao G, Gu X, Wu L, Chen L. Impact of X-linked inhibitor of apoptosis protein on survival of nasopharyngeal carcinoma patients following radiotherapy. Tumour Biol 2016; 37:11825-11833. [PMID: 27048285 DOI: 10.1007/s13277-016-5029-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/18/2016] [Indexed: 11/26/2022] Open
Abstract
This study aims to investigate CNE1 and CNE2 cell proliferation and apoptosis of nasopharyngeal cancer (NPC) and X-linked inhibitor of apoptosis protein (XIAP) expression in NPC patients after radiotherapy. Quantitative real-time quantitative polymerase chain reaction (qRT-PCR) and Western Blot detected XIAP and XIAP-associated factor1 (XAF1) messenger RNA (mRNA) and protein expression of CNE1 and CNE2 in NPC cells irradiated by γ-ray; MTT and flow cytometry assays detected CNE2 cells proliferation and apoptotic rate, respectively. With a retrospective analysis of 109 NPC patients in Xinxiang Central Hospital, immunohistochemistry (IHC) method detected XIAP expression, followed by a 5-year clinical analysis of the prognosis relevance after radiotherapy. In vitro, the inhibition and apoptotic rates of cells increased with the growth of radiation dose. qRT-PCR and Western blot detection declared that XIAP mRNA and protein expression increased, whereas XAF1 mRNA and protein expression decreased with the growth of radiation dose and exposure time. And XIAP mRNA and protein expression were negatively correlated with proliferation and apoptotic rates of the cells. In vivo, positive XIAP expression rate was negatively correlated with pathological tumor-node-metastasis (p-TNM) staging and tumor differentiation. Further, high XIAP expression, high p-TNM staging, and lower degree of differentiation were significantly correlated with the decrease of NPC patients' survival rate. Additionally, XIAP expression, p-TNM staging, and degrees of differentiation were independent risk factors for the survival of the NPC patients after radiotherapy. Increased XIAP expression and decreased XAF1 expression may be one reason for the apoptosis delays of CNE1 and CNE2 cells after irradiation, and the XIAP expression or the p-TNM staging and degree of differentiation are independent risk factors for NPC patients' survival after radiotherapy, providing a molecular rationale for radiotherapy and prognosis of NPC.
Collapse
Affiliation(s)
- Minzhu Ren
- Department of Radiotherapy, Xinxiang Central Hospital, Weibin District, No. 56, Jinsui Road, Xinxiang, 453000, Henan Province, People's Republic of China.
| | - Zhenhua Wang
- Department of Radiotherapy, Xinxiang Central Hospital, Weibin District, No. 56, Jinsui Road, Xinxiang, 453000, Henan Province, People's Republic of China
| | - Guowei Gao
- Department of Radiotherapy, Xinxiang Central Hospital, Weibin District, No. 56, Jinsui Road, Xinxiang, 453000, Henan Province, People's Republic of China
| | - Xiaohua Gu
- Department of Radiotherapy, Xinxiang Central Hospital, Weibin District, No. 56, Jinsui Road, Xinxiang, 453000, Henan Province, People's Republic of China
| | - Liping Wu
- Department of Radiotherapy, Xinxiang Central Hospital, Weibin District, No. 56, Jinsui Road, Xinxiang, 453000, Henan Province, People's Republic of China
| | - Lijun Chen
- Department of Radiotherapy, Xinxiang Central Hospital, Weibin District, No. 56, Jinsui Road, Xinxiang, 453000, Henan Province, People's Republic of China
| |
Collapse
|
23
|
Kewitz S, Kurch L, Volkmer I, Staege MS. Stimulation of the hypoxia pathway modulates chemotherapy resistance in Hodgkin's lymphoma cells. Tumour Biol 2015; 37:8229-37. [PMID: 26718211 DOI: 10.1007/s13277-015-4705-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/20/2015] [Indexed: 12/18/2022] Open
Abstract
Hodgkin's lymphoma (HL) is a malignant disease of the lymphatic system. The therapy has been improved during the last decades but there are still patients who cannot be cured, and the therapy is associated with several adverse late effects. Therefore, we asked which genes might be involved in the chemotherapy resistance of HL cells. We observed that HL cells became more resistant against cisplatin after treatment with cobalt chloride. Therefore, we analyzed which genes were differentially expressed between cells incubated in medium with or without cobalt chloride. We found several genes which were up- or downregulated in the presence of cobalt chloride and might be involved in the modulation of chemotherapy resistance. Cobalt chloride is a hypoxia-mimetic agent. Therefore, we tested chemo-resistance and gene expression of HL cells under hypoxic conditions and confirmed the results from the cobalt chloride experiments. Taken together, activation of the hypoxia pathway led to altered gene expression and drug resistance of HL cells. Differentially expressed genes might be interesting targets for the development of future treatment strategies against drug-resistant HL.
Collapse
Affiliation(s)
- Stefanie Kewitz
- Department of Pediatrics, Martin Luther University Halle-Wittenberg, Halle, 06097, Germany.
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University Giessen, Feulgenstr. 12, Giessen, 35392, Germany.
| | - Lars Kurch
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, 04109, Germany
| | - Ines Volkmer
- Department of Pediatrics, Martin Luther University Halle-Wittenberg, Halle, 06097, Germany
| | - Martin S Staege
- Department of Pediatrics, Martin Luther University Halle-Wittenberg, Halle, 06097, Germany
| |
Collapse
|