1
|
Samuel D. EASL Clinical Practice Guidelines on liver transplantation. J Hepatol 2024:S0168-8278(24)02440-1. [PMID: 39487043 DOI: 10.1016/j.jhep.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 11/04/2024]
Abstract
Liver transplantation (LT) is an established life-saving procedure. The field of LT has changed in the past 10 years from several perspectives, with the expansion of indications, transplantation of patients with acute-on-chronic liver failure, evolution of transplant oncology, the use of donations after cardiac death, new surgical techniques, and prioritisation of recipients on the waiting list. In addition, the advent of organ perfusion machines, the recognition of new forms of rejection, and the attention paid to the transition from paediatric to adult patients, have all improved the management of LT recipients. The purpose of the EASL guidelines presented here is not to cover all aspects of LT but to focus on developments since the previous EASL guidelines published in 2016.
Collapse
|
2
|
Cao XY, Zhou HF, Liu XJ, Li XB. Human leukocyte antigen evolutionary divergence as a novel risk factor for donor selection in acute lymphoblastic leukemia patients undergoing haploidentical hematopoietic stem cell transplantation. Front Immunol 2024; 15:1440911. [PMID: 39229273 PMCID: PMC11369896 DOI: 10.3389/fimmu.2024.1440911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/01/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction The human leukocyte antigen (HLA) evolutionary divergence (HED) reflects immunopeptidome diversity and has been shown to predict the response of tumors to immunotherapy. Its impact on allogeneic hematopoietic stem cell transplantation (HSCT) is controversial in different studies. Methods In this study, we retrospectively analyzed the clinical impact of class I and II HED in 225 acute lymphoblastic leukemia patients undergoing HSCT from related haploidentical donors. The HED for recipient, donor, and donor-recipient pair was calculated based on Grantham distance, which accounts for variations in the composition, polarity, and volume of each amino acid within the peptide-binding groove of two HLA alleles. The median value of HED scores was used as a cut-off to stratify patients with high or low HED. Results The class I HED for recipient (R_HEDclass I) showed the strongest association with cumulative incidence of relapse (12.2 vs. 25.0%, P = 0.00814) but not with acute graft-versus-host disease. The patients with high class II HED for donor-recipient (D/R_HEDclass II) showed a significantly higher cumulative incidence of severe aGVHD than those with low D/R_HEDclass II (24.0% vs. 6.1%, P = 0.0027). Multivariate analysis indicated that a high D/R_HEDclass II was an independent risk factor for the development of severe aGVHD (P = 0.007), and a high R_HEDclass I had a more than two-fold reduced risk of relapse (P = 0.028). However, there was no discernible difference in overall survival (OS) or disease-free survival (DFS) for patients with high or low HED, which was inconsistent with the previous investigation. Discussion While the observation are limited by the presented single center retrospective cohort, the results show that HED has poor prognostic value in OS or DFS, as well as the associations with relapse and aGVHD. In haploidentical setting, class II HED for donor-recipient pair (D/R_HEDclass II) is an independent and novel risk factor for finding the best haploidentical donor, which could potentially influence clinical practice if verified in larger cohorts.
Collapse
Affiliation(s)
- Xing-Yu Cao
- Department of Bone Marrow Transplant, Hebei Yanda Lu Daopei Hospital, Langfang, China
- Department of Bone Marrow Transplant, Beijing Lu Daopei Hospital, Beijing, China
| | - Hai-Fei Zhou
- Beijing BFR Gene Diagnostics Co., Ltd, Beijing, China
| | - Xiang-Jun Liu
- Beijing BFR Gene Diagnostics Co., Ltd, Beijing, China
| | - Xiao-Bo Li
- Beijing BFR Gene Diagnostics Co., Ltd, Beijing, China
| |
Collapse
|
3
|
Dekeyser M, de Goër de Herve MG, Hendel-Chavez H, Lhotte R, Scriabine I, Bargiel K, Boutin E, Herr F, Taupin JL, Taoufik Y, Durrbach A. Allogeneic CD4 T Cells Sustain Effective BK Polyomavirus-Specific CD8 T Cell Response in Kidney Transplant Recipients. Kidney Int Rep 2024; 9:2498-2513. [PMID: 39156165 PMCID: PMC11328547 DOI: 10.1016/j.ekir.2024.04.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/29/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction BK polyomavirus-associated nephropathy (BKPyVAN) is a significant complication in kidney transplant recipients (KTRs), associated with a higher level of plasmatic BK polyomavirus (BKPyV) replication and leading to poor graft survival. Methods We prospectively followed-up with 100 KTRs with various degrees of BKPyV reactivation (no BKPyV reactivation, BKPyV-DNAuria, BKPyV-DNAemia, and biopsy-proven BKPyVAN [bp-BKPyVAN], 25 patients per group) and evaluated BKPyV-specific T cell functionality and phenotype. Results We demonstrate that bp-BKPyVAN is associated with a loss of BKPyV-specific T cell proliferation, cytokine secretion, and cytotoxic capacities. This severe functional impairment is associated with an overexpression of lymphocyte inhibitory receptors (programmed cell death 1 [PD1], cytotoxic T lymphocyte-associated protein 4, T cell immunoreceptor with Ig and ITIM domains, and T cell immunoglobulin and mucin domain-containing-3), highlighting an exhausted-like phenotype of BKPyV-specific CD4 and CD8 T cells in bp-BKPyVAN. This T cell dysfunction is associated with low class II donor-recipient human leukocyte antigen (HLA) divergence. In contrast, in the context of higher class II donor-recipient HLA (D/R-HLA) divergence, allogeneic CD4 T cells can provide help that sustains BKPyV-specific CD8 T cell responses. In vitro, allogeneic HLA-mismatched CD4 T cells rescue BKPyV-specific CD8 T cell responses. Conclusion Our findings suggest that in KTRs, allogeneic CD4 T cells can help to maintain an effective BKPyV-specific CD8 T cell response that better controls BKPyV replication in the kidney allograft and may protect against BKPyVAN.
Collapse
Affiliation(s)
- Manon Dekeyser
- INSERM 1186, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Paris, France
- Department of Nephrology, Center Hospitalier Régional Universitaire d'Orléans, Orléans, France
| | | | - Houria Hendel-Chavez
- INSERM 1186, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Paris, France
| | - Romain Lhotte
- Laboratory of Immunology and Histocompatibility, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, INSERM U976 (Team 3), Paris, France
| | - Ivan Scriabine
- INSERM 1186, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Paris, France
| | - Karen Bargiel
- INSERM 1186, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Paris, France
| | - Emmanuelle Boutin
- Unit of Clinical Research, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Creteil, France
- Paris Est Creteil University, INSERM, IMRB, CEpiA Team, Creteil, France
| | - Florence Herr
- INSERM 1186, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Paris, France
| | - Jean-Luc Taupin
- Laboratory of Immunology and Histocompatibility, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, INSERM U976 (Team 3), Paris, France
| | - Yassine Taoufik
- INSERM 1186, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Paris, France
| | - Antoine Durrbach
- INSERM 1186, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Paris, France
- Department of Nephrology and Transplantation, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Creteil, France
| |
Collapse
|
4
|
Féray C, Allain V, Desterke C, Roche B, Coilly A, Caillat-Zucman S. HLA-DQ Diversity Is Associated With Humoral Response to Vaccines in Patients Awaiting or After Liver Transplantation. Gastroenterology 2024; 166:915-917.e3. [PMID: 38215998 DOI: 10.1053/j.gastro.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/22/2023] [Accepted: 01/07/2024] [Indexed: 01/14/2024]
Affiliation(s)
- Cyrille Féray
- Centre Hépato-Biliaire, Assistance Publique-Hôpitaux de Paris, Hôpital Paul-Brousse, Villejuif, France; Université Paris-Saclay, UMR-S 1193 INSERM, FHU Hepatinov, Villejuif, France.
| | - Vincent Allain
- Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Laboratoire d'Immunologie et Histocompatibilité, Paris, France; INSERM UMR976, Université de Paris, Paris, France
| | - Christophe Desterke
- Centre Hépato-Biliaire, Assistance Publique-Hôpitaux de Paris, Hôpital Paul-Brousse, Villejuif, France; Université Paris-Saclay, UMR-S 1193 INSERM, FHU Hepatinov, Villejuif, France
| | - Bruno Roche
- Centre Hépato-Biliaire, Assistance Publique-Hôpitaux de Paris, Hôpital Paul-Brousse, Villejuif, France; Université Paris-Saclay, UMR-S 1193 INSERM, FHU Hepatinov, Villejuif, France
| | - Audrey Coilly
- Centre Hépato-Biliaire, Assistance Publique-Hôpitaux de Paris, Hôpital Paul-Brousse, Villejuif, France; Université Paris-Saclay, UMR-S 1193 INSERM, FHU Hepatinov, Villejuif, France
| | - Sophie Caillat-Zucman
- Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Laboratoire d'Immunologie et Histocompatibilité, Paris, France; INSERM UMR976, Université de Paris, Paris, France
| |
Collapse
|
5
|
Viard M, O'hUigin C, Yuki Y, Bashirova AA, Collins DR, Urbach JM, Wolinsky S, Buchbinder S, Kirk GD, Goedert JJ, Michael NL, Haas DW, Deeks SG, Walker BD, Yu X, Carrington M. Impact of HLA class I functional divergence on HIV control. Science 2024; 383:319-325. [PMID: 38236978 PMCID: PMC11395297 DOI: 10.1126/science.adk0777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024]
Abstract
Heterozygosity of Human leukocyte antigen (HLA) class I genes is linked to beneficial outcomes after HIV infection, presumably through greater breadth of HIV epitope presentation and cytotoxic T cell response. Distinct allotype pairs, however, differ in the extent to which they bind shared sets of peptides. We developed a functional divergence metric that measures pairwise complementarity of allotype-associated peptide binding profiles. Greater functional divergence for pairs of HLA-A and/or HLA-B allotypes was associated with slower AIDS progression and independently with enhanced viral load control. The metric predicts immune breadth at the peptide level rather than gene level and redefines HLA heterozygosity as a continuum differentially affecting disease outcome. Functional divergence may affect response to additional infections, vaccination, immunotherapy, and other diseases where HLA heterozygote advantage occurs.
Collapse
Affiliation(s)
- Mathias Viard
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute Bethesda, MD, USA
| | - Colm O'hUigin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute Bethesda, MD, USA
| | - Yuko Yuki
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute Bethesda, MD, USA
| | - Arman A Bashirova
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute Bethesda, MD, USA
| | - David R Collins
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Jonathan M Urbach
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Steven Wolinsky
- Division of Infectious Diseases, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Susan Buchbinder
- Bridge HIV, San Francisco Department of Public Health, San Francisco, CA, USA
- Department of Medicine, Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Gregory D Kirk
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - James J Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nelson L Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - David W Haas
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Xu Yu
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute Bethesda, MD, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| |
Collapse
|
6
|
Chen G, Hu X, Huang Y, Xiang X, Pan S, Chen R, Xu X. Role of the immune system in liver transplantation and its implications for therapeutic interventions. MedComm (Beijing) 2023; 4:e444. [PMID: 38098611 PMCID: PMC10719430 DOI: 10.1002/mco2.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Liver transplantation (LT) stands as the gold standard for treating end-stage liver disease and hepatocellular carcinoma, yet postoperative complications continue to impact survival rates. The liver's unique immune system, governed by a microenvironment of diverse immune cells, is disrupted during processes like ischemia-reperfusion injury posttransplantation, leading to immune imbalance, inflammation, and subsequent complications. In the posttransplantation period, immune cells within the liver collaboratively foster a tolerant environment, crucial for immune tolerance and liver regeneration. While clinical trials exploring cell therapy for LT complications exist, a comprehensive summary is lacking. This review provides an insight into the intricacies of the liver's immune microenvironment, with a specific focus on macrophages and T cells as primary immune players. Delving into the immunological dynamics at different stages of LT, we explore the disruptions after LT and subsequent immune responses. Focusing on immune cell targeting for treating liver transplant complications, we provide a comprehensive summary of ongoing clinical trials in this domain, especially cell therapies. Furthermore, we offer innovative treatment strategies that leverage the opportunities and prospects identified in the therapeutic landscape. This review seeks to advance our understanding of LT immunology and steer the development of precise therapies for postoperative complications.
Collapse
Affiliation(s)
- Guanrong Chen
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xin Hu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Yingchen Huang
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xiaonan Xiang
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Sheng Pan
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Ronggao Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiao Xu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
- Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
7
|
Yang K, Halima A, Chan TA. Antigen presentation in cancer - mechanisms and clinical implications for immunotherapy. Nat Rev Clin Oncol 2023; 20:604-623. [PMID: 37328642 DOI: 10.1038/s41571-023-00789-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/18/2023]
Abstract
Over the past decade, the emergence of effective immunotherapies has revolutionized the clinical management of many types of cancers. However, long-term durable tumour control is only achieved in a fraction of patients who receive these therapies. Understanding the mechanisms underlying clinical response and resistance to treatment is therefore essential to expanding the level of clinical benefit obtained from immunotherapies. In this Review, we describe the molecular mechanisms of antigen processing and presentation in tumours and their clinical consequences. We examine how various aspects of the antigen-presentation machinery (APM) shape tumour immunity. In particular, we discuss genomic variants in HLA alleles and other APM components, highlighting their influence on the immunopeptidomes of both malignant cells and immune cells. Understanding the APM, how it is regulated and how it changes in tumour cells is crucial for determining which patients will respond to immunotherapy and why some patients develop resistance. We focus on recently discovered molecular and genomic alterations that drive the clinical outcomes of patients receiving immune-checkpoint inhibitors. An improved understanding of how these variables mediate tumour-immune interactions is expected to guide the more precise administration of immunotherapies and reveal potentially promising directions for the development of new immunotherapeutic approaches.
Collapse
Affiliation(s)
- Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmed Halima
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA.
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA.
- National Center for Regenerative Medicine, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
| |
Collapse
|
8
|
Villemonteix J, Allain V, Verstraete E, Jorge-Cordeiro D, Socié G, Xhaard A, Feray C, Caillat-Zucman S. HLA-DP diversity is associated with improved response to SARS-Cov-2 vaccine in hematopoietic stem cell transplant recipients. iScience 2023; 26:106763. [PMID: 37168557 PMCID: PMC10132830 DOI: 10.1016/j.isci.2023.106763] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/26/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients show lower humoral vaccine responsiveness than immunocompetent individuals. HLA diversity, measured by the HLA evolutionary divergence (HED) metrics, reflects the diversity of the antigenic repertoire presented to T cells, and has been shown to predict response to cancer immunotherapy. We retrospectively investigated the association of HED with humoral response to SARS-CoV-2 vaccine in allo-HSCT recipients. HED was calculated as pairwise genetic distance between alleles at HLA-A, -B, -C, -DRB1, -DQB1, and -DPB1 loci in recipients and their donors. Low anti-spike IgG levels (<30 BAU/mL) were associated with short time from allo-SCT and low donor DPB1-HED, mostly related to donor DPB1 homozygosity. The diversity of donor HLA-DP molecules, assessed by heterozygosity or sequence divergence, may thus impact the efficacy of donor-derived CD4 T cells to sustain vaccine-mediated antibody response in allo-HSCT recipients.
Collapse
Affiliation(s)
- Juliette Villemonteix
- Laboratoire d'Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, 75010 Paris, France
| | - Vincent Allain
- Laboratoire d'Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, 75010 Paris, France
- INSERM UMR 976, Université Paris Cité, Institut de Recherche Saint-Louis (IRSL), 75010 Paris, France
| | - Emma Verstraete
- Service d'hématologie-greffe, Hôpital Saint-Louis, AP-HP, Université Paris Cité, 75010 Paris, France
| | - Debora Jorge-Cordeiro
- Laboratoire d'Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, 75010 Paris, France
| | - Gérard Socié
- INSERM UMR 976, Université Paris Cité, Institut de Recherche Saint-Louis (IRSL), 75010 Paris, France
- Service d'hématologie-greffe, Hôpital Saint-Louis, AP-HP, Université Paris Cité, 75010 Paris, France
| | - Alienor Xhaard
- Service d'hématologie-greffe, Hôpital Saint-Louis, AP-HP, Université Paris Cité, 75010 Paris, France
| | - Cyrille Feray
- Centre Hépato-Biliaire, Hôpital Paul-Brousse, AP-HP, Université Paris-Saclay, FHU Hepatinov, 94800 Villejuif, France
- Institut National de la santé et de la recherche médicale (INSERM) UMR-S 1193, 94800 Villejuif, France
| | - Sophie Caillat-Zucman
- Laboratoire d'Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, 75010 Paris, France
- INSERM UMR 976, Université Paris Cité, Institut de Recherche Saint-Louis (IRSL), 75010 Paris, France
| |
Collapse
|
9
|
Li Y, Zhou Y, Qiao W, Shi J, Qiu X, Dong N. Application of decellularized vascular matrix in small-diameter vascular grafts. Front Bioeng Biotechnol 2023; 10:1081233. [PMID: 36686240 PMCID: PMC9852870 DOI: 10.3389/fbioe.2022.1081233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Coronary artery bypass grafting (CABG) remains the most common procedure used in cardiovascular surgery for the treatment of severe coronary atherosclerotic heart disease. In coronary artery bypass grafting, small-diameter vascular grafts can potentially replace the vessels of the patient. The complete retention of the extracellular matrix, superior biocompatibility, and non-immunogenicity of the decellularized vascular matrix are unique advantages of small-diameter tissue-engineered vascular grafts. However, after vascular implantation, the decellularized vascular matrix is also subject to thrombosis and neoplastic endothelial hyperplasia, the two major problems that hinder its clinical application. The keys to improving the long-term patency of the decellularized matrix as vascular grafts include facilitating early endothelialization and avoiding intravascular thrombosis. This review article sequentially introduces six aspects of the decellularized vascular matrix as follows: design criteria of vascular grafts, components of the decellularized vascular matrix, the changing sources of the decellularized vascular matrix, the advantages and shortcomings of decellularization technologies, modification methods and the commercialization progress as well as the application prospects in small-diameter vascular grafts.
Collapse
Affiliation(s)
| | | | | | | | - Xuefeng Qiu
- *Correspondence: Xuefeng Qiu, ; Nianguo Dong,
| | | |
Collapse
|
10
|
Halima A, Vuong W, Chan TA. Next-generation sequencing: unraveling genetic mechanisms that shape cancer immunotherapy efficacy. J Clin Invest 2022; 132:154945. [PMID: 35703181 PMCID: PMC9197511 DOI: 10.1172/jci154945] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Immunity is governed by fundamental genetic processes. These processes shape the nature of immune cells and set the rules that dictate the myriad complex cellular interactions that power immune systems. Everything from the generation of T cell receptors and antibodies, control of epitope presentation, and recognition of pathogens by the immunoediting of cancer cells is, in large part, made possible by core genetic mechanisms and the cellular machinery that they encode. In the last decade, next-generation sequencing has been used to dissect the complexities of cancer immunity with potent effect. Sequencing of exomes and genomes has begun to reveal how the immune system recognizes “foreign” entities and distinguishes self from non-self, especially in the setting of cancer. High-throughput analyses of transcriptomes have revealed deep insights into how the tumor microenvironment affects immunotherapy efficacy. In this Review, we discuss how high-throughput sequencing has added to our understanding of how immune systems interact with cancer cells and how cancer immunotherapies work.
Collapse
Affiliation(s)
- Ahmed Halima
- Department of Radiation Oncology, Taussig Cancer Institute, and
| | - Winston Vuong
- Department of Radiation Oncology, Taussig Cancer Institute, and
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Institute, and.,Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, Ohio, USA.,National Center for Regenerative Medicine, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Daull AM, Dubois V, Labussière-Wallet H, Venet F, Barraco F, Ducastelle-Lepretre S, Larcher MV, Balsat M, Gilis L, Fossard G, Ghesquières H, Heiblig M, Ader F, Alcazer V. Class I/Class II HLA Evolutionary Divergence Ratio Is an Independent Marker Associated With Disease-Free and Overall Survival After Allogeneic Hematopoietic Stem Cell Transplantation for Acute Myeloid Leukemia. Front Immunol 2022; 13:841470. [PMID: 35309346 PMCID: PMC8931406 DOI: 10.3389/fimmu.2022.841470] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Class I Human Leukocyte Antigen (HLA) evolutionary divergence (HED) is a metric which reflects immunopeptidome diversity and has been associated with immune checkpoint inhibitor responses in solid tumors. Its impact and interest in allogeneic hematopoietic stem cell transplantation (HCT) have not yet been thoroughly studied. This study analyzed the clinical and immune impact of class I and II HED in 492 acute myeloid leukemia (AML) recipients undergoing HCT. The overall cohort was divided into a training (n=338) and a testing (n=132) set. Univariate cox screening found a positive impact of a high class I HED and a negative impact of a high class II HED on both disease-free (DFS) and overall survival (OS). These results were combined in a unique marker, class I/class II HED ratio, and assessed in the testing cohort. The final multivariate cox model confirmed the positive impact of a high versus low class I/class II HED ratio on both DFS (Hazard Ratio (HR) 0.41 [95% CI 0.2-0.83]; p=0.01) and OS (HR 0.34 [0.19-0.59]; p<0.001), independently of HLA matching and other HCT parameters. No significant association was found between the ratio and graft-versus-host disease (GvHD) nor with neutrophil and platelet recovery. A high class I HED was associated with a tendency for an increase in NK, CD8 T-cell, and B cell recovery at 12 months. These results introduce HED as an original and independent prognosis marker reflecting immunopeptidome diversity and alloreactivity after HCT.
Collapse
Affiliation(s)
- Anne-Marie Daull
- Hospices Civils de Lyon, Department of clinical Hematology, Lyon Sud hospital, Pierre-Bénite, France
| | - Valérie Dubois
- Laboratory of histocompatibility, Etablissement Français du Sang, Lyon, France
| | - Hélène Labussière-Wallet
- Hospices Civils de Lyon, Department of clinical Hematology, Lyon Sud hospital, Pierre-Bénite, France
| | - Fabienne Venet
- Hospices Civils de Lyon, Immunology laboratory, Edouard Herriot Hospital, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard-Lyon 1, Lyon, France
| | - Fiorenza Barraco
- Hospices Civils de Lyon, Department of clinical Hematology, Lyon Sud hospital, Pierre-Bénite, France
| | | | - Marie-Virginie Larcher
- Hospices Civils de Lyon, Department of clinical Hematology, Lyon Sud hospital, Pierre-Bénite, France
| | - Marie Balsat
- Hospices Civils de Lyon, Department of clinical Hematology, Lyon Sud hospital, Pierre-Bénite, France
| | - Lila Gilis
- Hospices Civils de Lyon, Department of clinical Hematology, Lyon Sud hospital, Pierre-Bénite, France
| | - Gaëlle Fossard
- Hospices Civils de Lyon, Department of clinical Hematology, Lyon Sud hospital, Pierre-Bénite, France
| | - Hervé Ghesquières
- Hospices Civils de Lyon, Department of clinical Hematology, Lyon Sud hospital, Pierre-Bénite, France
| | - Maël Heiblig
- Hospices Civils de Lyon, Department of clinical Hematology, Lyon Sud hospital, Pierre-Bénite, France
- UR LIB “Lymphoma Immuno-Biology”, Université Claude Bernard Lyon I, Lyon, France
| | - Florence Ader
- Hospices Civils de Lyon, Immunology laboratory, Edouard Herriot Hospital, Lyon, France
- Hospices Civils de Lyon, Department of infectious diseases, Croix-Rousse hospital, Lyon, France
- LegioPath team, CIRI INSERM U1111 CNRS UMR 5308, Lyon, France
| | - Vincent Alcazer
- Hospices Civils de Lyon, Department of clinical Hematology, Lyon Sud hospital, Pierre-Bénite, France
- UR LIB “Lymphoma Immuno-Biology”, Université Claude Bernard Lyon I, Lyon, France
- *Correspondence: Vincent Alcazer,
| |
Collapse
|