1
|
Perrotta N, Angelo Fiorito L, Leanza C, Di Bari S, Casini G, Gentile R, Vescovo R, Piciocchi A, Ajassa C, Iaiani G, Maria Proli E, Russo G. Impact analysis of SARS-CoV-2 vaccination in patients treated with monoclonal antibodies: A monocentric experience. Int Immunopharmacol 2024; 142:113101. [PMID: 39265354 DOI: 10.1016/j.intimp.2024.113101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/03/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Since the discovery of SARS-CoV-2, no treatment has been able to completely eradicate the virus. The study aimed to evaluate the virological and clinical impact of the vaccination in SARS-CoV-2 infected patients treated with monoclonal antibodies (mAbs). METHODS This single-centre, observational, retrospective, real-life study was performed on SARS-CoV-2 symptomatic outpatients and inpatients treated with mAbs from March 2021 to November 2022 includes 726 patients. Each patient received available mAbs (bamlanivimab-etesevimab or casirivimab-indevimab or sotrovimab or tixagevimab-cilgavimab) according to the circulating virus strains. Age, comorbidities, vaccination status, death rates, duration of virological clearance, average length of stay, risk factors, and hospitalization or ICU admission were recorded. RESULTS Of 726 patients with complete data analyzed (median age 64), 516 outpatients and 210 inpatients were included. Vaccination status was known for all participants: 74.4 % and 51.7 % were vaccinated against SARS-CoV-2 among inpatients and outpatients, respectively. A shorter duration of virological clearance was observed in the vaccinated group, with a median of 16 days (IQR 15-17), compared to 19 days (IQR 18-21) in the unvaccinated group [HR 1.21; p < 0.032]. Multivariate analysis of virological clearance also showed statistical significance with tixagevimab cilgavimab 300 mg/300 mg (HR 2.73, p value < 0.001). No significant difference was found in worsening [OR 1,29; p = 0.57] and mortality [OR 0.65; p = 0.81] rates between vaccinated and unvaccinated patients treated with mAbs. CONCLUSIONS Key findings include a shorter duration of virological clearance in vaccinated outpatients but no significant differences in worsening or mortality rates between vaccinated and unvaccinated patients treated with mAbs. The study suggests a potential synergistic role of mAbs in accelerating virological clearance in vaccinated patients with mild to moderate COVID-19, with differing effects in hospitalized patients. Therefore, it is essential to implement health surveillance in high-risk patients with comorbidities in order to identify early any variants that might otherwise escape neutralizing antibodies.
Collapse
Affiliation(s)
- Nicola Perrotta
- Department of Physiology and Pharmacology "V. Erspamer" University of Rome, Sapienza, Italy; Pharmacy Unit, Policlinico Umberto I Hospital, Sapienza University of Rome, Italy.
| | - Luigi Angelo Fiorito
- Department of Physiology and Pharmacology "V. Erspamer" University of Rome, Sapienza, Italy; Pharmacy Unit, Policlinico Umberto I Hospital, Sapienza University of Rome, Italy.
| | - Cristiana Leanza
- Department of Public Health and Infectious Diseases, Policlinico Umberto I Hospital, Sapienza University of Rome, Italy.
| | - Silvia Di Bari
- Department of Infectious and Tropical Diseases, Sant'Andrea Hospital University of Rome Sapienza, Italy.
| | - Gianfranco Casini
- Pharmacy Unit, Policlinico Umberto I Hospital, Sapienza University of Rome, Italy.
| | - Rossella Gentile
- Department of Physiology and Pharmacology "V. Erspamer" University of Rome, Sapienza, Italy; Pharmacy Unit, Policlinico Umberto I Hospital, Sapienza University of Rome, Italy.
| | - Roberta Vescovo
- Pharmacy Unit, Policlinico Umberto I Hospital, Sapienza University of Rome, Italy.
| | | | - Camilla Ajassa
- Department of Public Health and Infectious Diseases, Policlinico Umberto I Hospital, Sapienza University of Rome, Italy.
| | - Giancarlo Iaiani
- Department of Public Health and Infectious Diseases, Policlinico Umberto I Hospital, Sapienza University of Rome, Italy.
| | - Enrica Maria Proli
- Pharmacy Unit, Policlinico Umberto I Hospital, Sapienza University of Rome, Italy.
| | - Gianluca Russo
- Department of Public Health and Infectious Diseases, Policlinico Umberto I Hospital, Sapienza University of Rome, Italy.
| |
Collapse
|
2
|
Soria A, Graziano F, Ghilardi G, Lapadula G, Gasperina DD, Benatti SV, Quiros-Roldan E, Milesi M, Bai F, Merli M, Minisci D, Franzetti M, Asperges E, Chiabrando F, Pocaterra D, Pandolfo A, Zanini F, Lombardi D, Cappelletti A, Rugova A, Borghesi ML, Squillace N, Pusterla L, Piconi S, Morelli P, Querini PR, Bruno R, Rusconi S, Casari S, Bandera A, Franzetti F, Travi G, D'Arminio Monforte A, Marchetti G, Pan A, Castelli F, Rizzi M, Dentali F, Mallardo M, Rossi E, Valsecchi MG, Galimberti S, Bonfanti P. Monoclonal antibodies against SARS-CoV-2 to prevent COVID-19 worsening in a large multicenter cohort. Heliyon 2024; 10:e36102. [PMID: 39247344 PMCID: PMC11378919 DOI: 10.1016/j.heliyon.2024.e36102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
Objective Monoclonal antibodies (mAbs) against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) reduced Coronavirus Disease 2019 (COVID-19) hospitalizations in people at risk of clinical worsening. Real-world descriptions are limited. Methods CONDIVIDIAMO, a two-year multicenter observational study, consecutively enrolled SARS-CoV-2 outpatients with ≥1 risk factor for COVID-19 progression receiving mAbs. Demographic data, underlying medical condition, type of mAbs combination received, duration of symptoms before mAbs administration, COVID-19 vaccination history, were collected upon enrolment and centrally recorded. Data on outcomes (hospitalizations, reasons of hospitalization, deaths) were prospectively collected. The primary endpoint was the rate of hospitalization or death in a 28-day follow-up, whichever occurred first; subjects were censored at the day of last follow-up or up to 28 days. The Kaplan-Meier method was used to estimate the incidence rate curve in time. The Cox regression model was used to assess potential risk factors for unfavorable outcome. Results were shown as hazard ratio (HR) along with the corresponding 95 % Confidence Interval (95%CI). Results Among 1534 subjects (median [interquartile range, IQR] age 66.5 [52.4-74.9] years, 693 [45.2 %] women), 632 (41.2 %) received bamlanivimab ± etesevimab, 209 (13.6 %) casirivimab/imdevimab, 586 (38.2 %) sotrovimab, 107 (7.0 %) tixagevimab/cilgavimab. After 28-day follow-up, 87/1534 (5.6 %, 95%CI: 4.4%-6.8 %) met the primary outcome (85 hospitalizations, 2 deaths). Hospitalizations for COVID-19 (52, 3.4 %) occurred earlier than for other reasons (33, 2.1 %), after a median (IQR) of 3.5 (1-7) versus 8 (3-15) days (p = 0.006) from mAbs administration.In a multivariable Cox regression model, factors independently associated with increased hospitalization risk were age (hazard ratio [HR] 1.02, 95%CI 1.00-1.03, p = 0.021), immunodeficiency (HR 1.78, 95%CI 1.11-2.85, p = 0.017), pre-Omicron calendar period (HR 1.66, 95%CI 1.02-2.69, p = 0.041). Conclusions MAbs real-world data over a 2-year changing pandemic landscape showed the feasibility of the intervention, although the hospitalization rate was not negligible. Immunosuppressed subjects remain more at risk of clinical worsening.
Collapse
Affiliation(s)
- Alessandro Soria
- Clinic of Infectious Diseases, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Francesca Graziano
- Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre (B4), School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Giulia Ghilardi
- Clinic of Infectious Diseases, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Giuseppe Lapadula
- Clinic of Infectious Diseases, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Daniela Dalla Gasperina
- Department of Medicine and Technological Innovation, University of Insubria, ASST Sette Laghi, Varese, Italy
| | - Simone Vasilij Benatti
- Unit of Infectious Diseases, ASST Papa Giovanni XXIII, Bergamo, Italy
- Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, Milan, Italy
| | | | | | - Francesca Bai
- Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Marco Merli
- Clinic of Infectious Diseases, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Davide Minisci
- Clinic of Infectious Diseases, University of Brescia, Brescia, Italy
- Unit of Infectious Diseases, ASST Mantova, Mantova, Italy
| | - Marco Franzetti
- Unit of Infectious Diseases, ASST Ovest Milano, Legnano, Italy
| | - Erika Asperges
- Clinic of Infectious Diseases, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | | | | | | | | | - Anna Cappelletti
- Clinic of Infectious Diseases, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Alban Rugova
- Clinic of Infectious Diseases, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Maria Lucia Borghesi
- Clinic of Infectious Diseases, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Nicola Squillace
- Clinic of Infectious Diseases, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | | | | | | | | | - Raffaele Bruno
- Clinic of Infectious Diseases, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefano Rusconi
- Unit of Infectious Diseases, ASST Ovest Milano, Legnano, Italy
- University of Milano, Milan, Italy
| | | | - Alessandra Bandera
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Fabio Franzetti
- Unit of Infectious Diseases, ASST Valle Olona, Busto Arsizio, Italy
| | - Giovanna Travi
- Clinic of Infectious Diseases, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Antonella D'Arminio Monforte
- Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Angelo Pan
- Unit of Infectious Diseases, ASST Cremona, Cremona, Italy
| | | | - Marco Rizzi
- Unit of Infectious Diseases, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Francesco Dentali
- Department of Medicine and Technological Innovation, University of Insubria, ASST Sette Laghi, Varese, Italy
| | - Maria Mallardo
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre (B4), School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Emanuela Rossi
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre (B4), School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Maria Grazia Valsecchi
- Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre (B4), School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Stefania Galimberti
- Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre (B4), School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Paolo Bonfanti
- Clinic of Infectious Diseases, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
3
|
Roohi A, Gharagozlou S. Vitamin D supplementation and calcium: Many-faced gods or nobody in fighting against Corona Virus Disease 2019. Clin Nutr ESPEN 2024; 62:172-184. [PMID: 38901939 DOI: 10.1016/j.clnesp.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
In December 2019, Corona Virus Disease 2019 (COVID-19) was first identified and designated as a pandemic in March 2020 due to rapid spread of the virus globally. At the beginning of the pandemic, only a few treatment options, mainly focused on supportive care and repurposing medications, were available. Due to its effects on immune system, vitamin D was a topic of interest during the pandemic, and researchers investigated its potential impact on COVID-19 outcomes. However, the results of studies about the impact of vitamin D on the disease are inconclusive. In the present narrative review, different roles of vitamin D regarding the COVID-19 have been discussed to show that vitamin D supplementation should be recommended carefully.
Collapse
Affiliation(s)
- Azam Roohi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
4
|
Shang N, Li X, Guo Z, Zhang L, Wang S. Comparative analysis of the safety and effectiveness of Nirmatrelvir-Ritonavir and Azvudine in older patients with COVID-19: a retrospective study from a tertiary hospital in China. Front Pharmacol 2024; 15:1362345. [PMID: 39104387 PMCID: PMC11298358 DOI: 10.3389/fphar.2024.1362345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/27/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction: Numerous studies have explored the treatment outcomes of Nirmatrelvir-Ritonavir and Azvudine in older patients with COVID-19. However, direct comparisons between these two drugs are still relatively limited. This study aims to compare the safety and effectiveness of these two drugs in Chinese older patients with early infection to provide strategies for clinical treatment. Methods: Older COVID-19 patients (age ≥65) hospitalized during the winter 2022 epidemic in China were included and divided into Nirmatrelvir-Ritonavir and Azvudine. Demographics, medication information, laboratory parameters, and treatment outcomes were collected. All-cause 28-day mortality, delta cycle threshold (ΔCt), nucleic acid negative conversion time, and incidence of adverse events were defined as outcomes. Propensity score matching (PSM), Kaplan-Meier, Cox proportional hazards model, subgroup analysis, and nomograms were selected to evaluate the outcomes. Results: A total of 1,508 older COVID-19 patients were screened. Based on the inclusion and exclusion criteria, 1,075 patients were eligible for the study. After PSM, the final number of older COVID-19 patients included in the study was 375, and there were no significant differences in demographic characteristics between the two groups (p > 0.05). Compared to the Azvudine group, the Nirmatrelvir-Ritonavir group showed a higher incidence of multiple adverse events (12.8% vs 5.2%, p = 0.009). The incidence of adverse events related to abnormal renal function was higher in the Nirmatrelvir-Ritonavir group compared to the Azvudine group (13.6% vs 7.2%, p = 0.045). There were no significant differences between the two groups in terms of all-cause 28-day mortality (HR = 1.020, 95% CI: 0.542 - 1.921, p = 0.951), whereas there were significant differences in nucleic acid negative conversion time (HR = 1.659, 95% CI: 1.166 - 2.360, p = 0.005) and ΔCt values (HR = 1.442, 95% CI: 1.084 - 1.918, p = 0.012). Conclusion: Azvudine and Nirmatrelvir-Ritonavir have comparable effectiveness in reducing mortality risk. Azvudine may perform better in nucleic acid negative conversion time and virus clearance and shows slightly better safety in older patients. Further studies with a larger sample size were needed to validate the result.
Collapse
Affiliation(s)
- Nan Shang
- Department of Pharmacy, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xianlin Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhiyu Guo
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lan Zhang
- School of Public Health, Capital Medical University, Beijing, China
| | - Shanshan Wang
- Section of Occupational Medicine, Department of Special Medicine, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Hofmeyer KA, Ventura CL, Armstrong KL, Houchens CR, Patel S, Disbrow GL, Johnson RA. Project NextGen: Developing the Next Generation of COVID-19 Vaccines and Therapeutics to Respond to the Present and Prepare for the Future. Clin Infect Dis 2024; 79:115-121. [PMID: 38356144 PMCID: PMC11259220 DOI: 10.1093/cid/ciae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/03/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) epidemiology and product landscapes have changed considerably since onset of the pandemic. Safe and effective vaccines and therapeutics are available, but the continual emergence of severe acute respiratory syndrome coronavirus 2 variants introduce limitations in our ability to prevent and treat disease. Project NextGen is a collaboration between the Biomedical Advanced Research and Development Authority, part of the Administration for Strategic Preparedness and Response, and the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, that is leveraging public-private partnerships to address gaps in the nation's COVID-19 vaccine and therapeutic capabilities. Targeted investments will advance promising next-generation candidates through the most difficult phases of clinical development to encourage further private sector interest for later stage development and commercial availability. New commercial vaccines and therapeutics that are more durable and effective across variants will improve our fight against COVID-19 and transform our response to future threats.
Collapse
Affiliation(s)
- Kimberly A Hofmeyer
- Biomedical Advanced Research and Development Authority, Administration for Strategic Preparedness and Response, U.S. Department of Health and Human Services, Washington, DC, USA
| | - Christy L Ventura
- Biomedical Advanced Research and Development Authority, Administration for Strategic Preparedness and Response, U.S. Department of Health and Human Services, Washington, DC, USA
| | - Kimberly L Armstrong
- Biomedical Advanced Research and Development Authority, Administration for Strategic Preparedness and Response, U.S. Department of Health and Human Services, Washington, DC, USA
| | - Christopher R Houchens
- Biomedical Advanced Research and Development Authority, Administration for Strategic Preparedness and Response, U.S. Department of Health and Human Services, Washington, DC, USA
| | - Sandeep Patel
- Biomedical Advanced Research and Development Authority, Administration for Strategic Preparedness and Response, U.S. Department of Health and Human Services, Washington, DC, USA
| | - Gary L Disbrow
- Biomedical Advanced Research and Development Authority, Administration for Strategic Preparedness and Response, U.S. Department of Health and Human Services, Washington, DC, USA
| | - Robert A Johnson
- Biomedical Advanced Research and Development Authority, Administration for Strategic Preparedness and Response, U.S. Department of Health and Human Services, Washington, DC, USA
| |
Collapse
|
6
|
Bell CF, Gibbons DC, Drysdale M, Birch HJ, Lloyd EJ, Patel V, Carpenter C, Carlson K, Calay ES, Puranik A, Wagner TE, O’Horo JC, Razonable RR. Real-world effectiveness of sotrovimab in preventing hospitalization and mortality in high-risk patients with COVID-19 in the United States: A cohort study from the Mayo Clinic electronic health records. PLoS One 2024; 19:e0304822. [PMID: 39012863 PMCID: PMC11251586 DOI: 10.1371/journal.pone.0304822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/18/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND To describe outcomes of high-risk patients with coronavirus disease 2019 (COVID-19) treated with sotrovimab, other monoclonal antibodies (mAbs), or antivirals, and patients who did not receive early COVID-19 treatment. We also evaluate the comparative effectiveness of sotrovimab versus no treatment in preventing severe clinical outcomes. METHODS This observational retrospective cohort study analyzed Mayo Clinic electronic health records. Non-hospitalized adult patients diagnosed with COVID-19 from May 26, 2021 and April 23, 2022 and at high risk of COVID-19 progression were eligible. The primary outcome was 29-day all-cause hospitalization and/or death. Outcomes were described for patients treated with sotrovimab, other mAbs, or antivirals, and eligible but untreated patients, and compared between sotrovimab-treated and propensity score (PS)-matched untreated cohorts. RESULTS We included 35,485 patients (sotrovimab, 1369; other mAbs, 6488; antivirals, 133; high-risk untreated, 27,495). A low proportion of patients treated with sotrovimab (n = 33/1369, 2.4%), other mAbs (n = 147/6488, 2.3%), or antivirals (n = 2/133, 1.5%) experienced all-cause hospitalization or death. Among high-risk untreated patients, the percentage of all-cause hospitalization or death was 3.3% (n = 910/27,495). In the PS-matched analysis, 2.5% (n = 21/854) of sotrovimab-treated patients experienced all-cause hospitalization and/or death versus 2.8% (n = 48/1708) of untreated patients (difference, -0.4%; p = 0.66). Significantly fewer sotrovimab-treated patients required intensive care unit admission (0.5% vs 1.8%; difference, -1.3%; p = 0.002) or respiratory support (3.5% vs 8.7%; difference, -5.2%; p < 0.001). CONCLUSIONS There was no significant difference in the proportion of sotrovimab-treated and PS-matched untreated patients experiencing 29-day all-cause hospitalization or mortality, although significantly fewer sotrovimab-treated patients required intensive care unit admission or respiratory support.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ediz S. Calay
- nference, Cambridge, Massachusetts, United States of America
| | - Arjun Puranik
- nference, Cambridge, Massachusetts, United States of America
| | - Tyler E. Wagner
- nference, Cambridge, Massachusetts, United States of America
| | - John C. O’Horo
- Mayo Clinic, Rochester, Minnesota, United States of America
| | | |
Collapse
|
7
|
Liang L, Wang B, Zhang Q, Zhang S, Zhang S. Antibody drugs targeting SARS-CoV-2: Time for a rethink? Biomed Pharmacother 2024; 176:116900. [PMID: 38861858 DOI: 10.1016/j.biopha.2024.116900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/20/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) heavily burdens human health. Multiple neutralizing antibodies (nAbs) have been issued for emergency use or tested for treating infected patients in the clinic. However, SARS-CoV-2 variants of concern (VOC) carrying mutations reduce the effectiveness of nAbs by preventing neutralization. Uncoding the mutation profile and immune evasion mechanism of SARS-CoV-2 can improve the outcome of Ab-mediated therapies. In this review, we first outline the development status of anti-SARS-CoV-2 Ab drugs and provide an overview of SARS-CoV-2 variants and their prevalence. We next focus on the failure causes of anti-SARS-CoV-2 Ab drugs and rethink the design strategy for developing new Ab drugs against COVID-19. This review provides updated information for the development of therapeutic Ab drugs against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Likeng Liang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Bo Wang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Qing Zhang
- Department of Laboratory Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
8
|
Kip KE, Diamond D, Mulukutla S, Marroquin OC. Is LDL cholesterol associated with long-term mortality among primary prevention adults? A retrospective cohort study from a large healthcare system. BMJ Open 2024; 14:e077949. [PMID: 38548371 PMCID: PMC10982736 DOI: 10.1136/bmjopen-2023-077949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
OBJECTIVES Among primary prevention-type adults not on lipid-lowering therapy, conflicting results exist on the relationship between low-density lipoprotein cholesterol (LDL-C) and long-term mortality. We evaluated this relationship in a real-world evidence population of adults. DESIGN Retrospective cohort study. SETTING Electronic medical record data for adults, from 4 January 2000 through 31 December 2022, were extracted from the University of Pittsburgh Medical Center healthcare system. PARTICIPANTS Adults without diabetes aged 50-89 years not on statin therapy at baseline or within 1 year and classified as primary prevention-type patients. To mitigate potential reverse causation, patients who died within 1 year or had baseline total cholesterol (T-C) ≤120 mg/dL or LDL-C <30 mg/dL were excluded. MAIN EXPOSURE MEASURE Baseline LDL-C categories of 30-79, 80-99, 100-129, 130-159, 160-189 or ≥190 mg/dL. MAIN OUTCOME MEASURE All-cause mortality with follow-up starting 365 days after baseline cholesterol measurement. RESULTS 177 860 patients with a mean (SD) age of 61.1 (8.8) years and mean (SD) LDL-C of 119 (31) mg/dL were evaluated over a mean of 6.1 years of follow-up. A U-shaped relationship was observed between the six LDL-C categories and mortality with crude 10-year mortality rates of 19.8%, 14.7%, 11.7%, 10.7%, 10.1% and 14.0%, respectively. Adjusted mortality HRs as compared with the referent group of LDL-C 80-99 mg/dL were: 30-79 mg/dL (HR 1.23, 95% CI 1.17 to 1.30), 100-129 mg/dL (0.87, 0.83-0.91), 130-159 mg/dL (0.88, 0.84-0.93), 160-189 mg/dL (0.91, 0.84-0.98) and ≥190 mg/dL (1.19, 1.06-1.34), respectively. Unlike LDL-C, both T-C/HDL cholesterol (high-density lipoprotein cholesterol) and triglycerides/HDL cholesterol ratios were independently associated with long-term mortality. CONCLUSIONS Among primary prevention-type patients aged 50-89 years without diabetes and not on statin therapy, the lowest risk for long-term mortality appears to exist in the wide LDL-C range of 100-189 mg/dL, which is much higher than current recommendations. For counselling these patients, minimal consideration should be given to LDL-C concentration.
Collapse
Affiliation(s)
- Kevin E Kip
- Clinical Analytics, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | - David Diamond
- Department of Psychology, University of South Florida, Tampa, Florida, USA
| | - Suresh Mulukutla
- Clinical Analytics, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | - Oscar C Marroquin
- Physician Services Division, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Vitiello A, Sabbatucci M, Ponzo A, Salzano A, Zovi A. A Short Update on the Use of Monoclonal Antibodies in COVID-19. AAPS J 2024; 26:30. [PMID: 38443725 DOI: 10.1208/s12248-024-00904-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Monoclonal antibodies in the prophylaxis and treatment of COVID-19 have been crucial in reducing severe infections when vaccines were unavailable. However, as the virus and its variants have changed over time, the effectiveness of monoclonal antibodies has been questioned. This technical note highlights the need to assess the antiviral activity of these antibodies against new variants and adapt treatment strategies accordingly. On the one hand, in vitro studies have suggested reduced susceptibility of the latest variants to monoclonal antibodies, whereas clinical data still show benefits in reducing severe illness and mortality, indicating that laboratory results do not always mirror real-world outcomes. As a result, although resistance to monoclonal antibodies can develop over time, they could still have an important role in COVID-19 treatment, especially when used in combination, and ongoing research aims to identify effective antibodies against new variants.
Collapse
Affiliation(s)
- Antonio Vitiello
- Directorate General for Health Prevention, Italian Ministry of Health, Rome, Italy
| | - Michela Sabbatucci
- Department Infectious Diseases, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Annarita Ponzo
- Biology Department L. Spallanzani, University of Pavia, Pavia, Italy
| | - Antonio Salzano
- Directorate General for Health Prevention, Italian Ministry of Health, Rome, Italy
| | | |
Collapse
|
10
|
Bell CF, Bobbili P, Desai R, Gibbons DC, Drysdale M, DerSarkissian M, Patel V, Birch HJ, Lloyd EJ, Zhang A, Duh MS. Real-World Effectiveness of Sotrovimab for the Early Treatment of COVID-19: Evidence from the US National COVID Cohort Collaborative (N3C). Clin Drug Investig 2024; 44:183-198. [PMID: 38379107 PMCID: PMC10912146 DOI: 10.1007/s40261-024-01344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND AND OBJECTIVE The coronavirus disease 2019 (COVID-19) pandemic has been an unprecedented healthcare crisis, one that threatened to overwhelm health systems and prompted an urgent need for early treatment options for patients with mild-to-moderate COVID-19 at high risk for progression to severe disease. Randomised clinical trials established the safety and efficacy of monoclonal antibodies (mAbs) early in the pandemic; in vitro data subsequently led to use of the mAbs being discontinued, without clear evidence on how these data were linked to outcomes. In this study, we describe and compare real-world outcomes for patients with mild-to-moderate COVID-19 at high risk for progression to severe COVID-19 treated with sotrovimab versus untreated patients. METHODS Electronic health records from the National COVID Cohort Collaborative (N3C) were used to identify US patients (aged ≥ 12 years) diagnosed with COVID-19 (positive test or ICD-10: U07.1) in an ambulatory setting (27 September 2021-30 April 2022) who met Emergency Use Authorization (EUA) high-risk criteria. Patients receiving the mAb sotrovimab within 10 days of diagnosis were assigned to the sotrovimab cohort, with the day of infusion as the index date. Untreated patients (no evidence of early mAb treatment, prophylactic mAb or oral antiviral treatment) were assigned to the untreated cohort, with an imputed index date based on the time distribution between diagnosis and sotrovimab infusion in the sotrovimab cohort. The primary endpoint was hospitalisation or death (both all-cause) within 29 days of index, reported as descriptive rate and adjusted [via inverse probability of treatment weighting (IPTW)] odds ratio (OR) and 95% confidence interval (CI). RESULTS Of nearly 2.9 million patients diagnosed with COVID-19 during the analysis period, 4992 met the criteria for the sotrovimab cohort, and 541,325 were included in the untreated cohort. Before weighting, significant differences were noted between the cohorts; for example, patients in the sotrovimab cohort were older (60 years versus 54 years), were more likely to be white (85% versus 75%) and met more EUA criteria (mean 3.1 versus 2.2) versus the untreated cohort. The proportions of patients with 29-day hospitalisation or death were 3.5% (176/4992) and 4.5% (24,163/541,325) in the sotrovimab and untreated cohorts, respectively (unadjusted OR: 0.78; 95% CI: 0.67, 0.91; p = 0.001). In adjusted analysis, sotrovimab was associated with a 25% reduction in the odds of hospitalisation or death compared with the untreated cohort (IPTW-adjusted OR: 0.75; 95% CI: 0.61, 0.92; p = 0.005). CONCLUSIONS Sotrovimab demonstrated clinical effectiveness in preventing severe outcomes (hospitalisation, mortality) in the period 27 September 2021-30 April 2022, which included Delta and Omicron BA.1 variants and an early surge of Omicron BA.2 variant.
Collapse
Affiliation(s)
- Christopher F Bell
- GSK, Research Triangle Park, 410 Blackwell Street, Durham, NC, 27701, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
McCreary EK. Our "Side Hustle". Clin Infect Dis 2024; 78:240-242. [PMID: 37791973 DOI: 10.1093/cid/ciad543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Indexed: 10/05/2023] Open
Affiliation(s)
- Erin K McCreary
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Wang Z, Huang AS, Tang L, Wang J, Wang G. Microfluidic-assisted single-cell RNA sequencing facilitates the development of neutralizing monoclonal antibodies against SARS-CoV-2. LAB ON A CHIP 2024; 24:642-657. [PMID: 38165771 DOI: 10.1039/d3lc00749a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
As a class of antibodies that specifically bind to a virus and block its entry, neutralizing monoclonal antibodies (neutralizing mAbs) have been recognized as a top choice for combating COVID-19 due to their high specificity and efficacy in treating serious infections. Although conventional approaches for neutralizing mAb development have been optimized for decades, there is an urgent need for workflows with higher efficiency due to time-sensitive concerns, including the high mutation rate of SARS-CoV-2. One promising approach is the identification of neutralizing mAb candidates via single-cell RNA sequencing (RNA-seq), as each B cell has a unique transcript sequence corresponding to its secreted antibody. The state-of-the-art high-throughput single-cell sequencing technologies, which have been greatly facilitated by advances in microfluidics, have greatly accelerated the process of neutralizing mAb development. Here, we provide an overview of the general procedures for high-throughput single-cell RNA-seq enabled by breakthroughs in droplet microfluidics, introduce revolutionary approaches that combine single-cell RNA-seq to facilitate the development of neutralizing mAbs against SARS-CoV-2, and outline future steps that need to be taken to further improve development strategies for effective treatments against infectious diseases.
Collapse
Affiliation(s)
- Ziwei Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Amelia Siqi Huang
- Dalton Academy, The Affiliated High School of Peking University, Beijing, 100190, China
| | - Lingfang Tang
- Dalton Academy, The Affiliated High School of Peking University, Beijing, 100190, China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guanbo Wang
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
13
|
Boretti A. mRNA vaccine boosters and impaired immune system response in immune compromised individuals: a narrative review. Clin Exp Med 2024; 24:23. [PMID: 38280109 PMCID: PMC10821957 DOI: 10.1007/s10238-023-01264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/05/2023] [Indexed: 01/29/2024]
Abstract
Over the last 24 months, there has been growing evidence of a correlation between mRNA COVID-19 vaccine boosters and increased prevalence of COVID-19 infection and other pathologies. Recent works have added possible causation to correlation. mRNA vaccine boosters may impair immune system response in immune compromised individuals. Multiple doses of the mRNA COVID-19 vaccines may result in much higher levels of IgG 4 antibodies, or also impaired activation of CD4 + and CD8 + T cells. The opportunity for mRNA vaccine boosters to impair the immune system response needs careful consideration, as this impacts the cost-to-benefit ratio of the boosters' practice.
Collapse
Affiliation(s)
- Alberto Boretti
- Melbourne Institute of Technology, The Argus, 288 La Trobe St, Melbourne, VIC 3000, Australia.
| |
Collapse
|
14
|
De Luca V, Angeli A, Nocentini A, Gratteri P, Pratesi S, Tanini D, Carginale V, Capperucci A, Supuran CT, Capasso C. Leveraging SARS-CoV-2 Main Protease (M pro) for COVID-19 Mitigation with Selenium-Based Inhibitors. Int J Mol Sci 2024; 25:971. [PMID: 38256046 PMCID: PMC10815619 DOI: 10.3390/ijms25020971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The implementation of innovative approaches is crucial in an ongoing endeavor to mitigate the impact of COVID-19 pandemic. The present study examines the strategic application of the SARS-CoV-2 Main Protease (Mpro) as a prospective instrument in the repertoire to combat the virus. The cloning, expression, and purification of Mpro, which plays a critical role in the viral life cycle, through heterologous expression in Escherichia coli in a completely soluble form produced an active enzyme. The hydrolysis of a specific substrate peptide comprising a six-amino-acid sequence (TSAVLQ) linked to a p-nitroaniline (pNA) fragment together with the use of a fluorogenic substrate allowed us to determine effective inhibitors incorporating selenium moieties, such as benzoselenoates and carbamoselenoates. The new inhibitors revealed their potential to proficiently inhibit Mpro with IC50-s in the low micromolar range. Our study contributes to the development of a new class of protease inhibitors targeting Mpro, ultimately strengthening the antiviral arsenal against COVID-19 and possibly, related coronaviruses.
Collapse
Affiliation(s)
- Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, 80131 Naples, Italy; (V.D.L.); (V.C.)
| | - Andrea Angeli
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (A.N.); (P.G.)
| | - Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (A.N.); (P.G.)
| | - Paola Gratteri
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (A.N.); (P.G.)
| | - Silvia Pratesi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy (D.T.); (A.C.)
| | - Damiano Tanini
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy (D.T.); (A.C.)
| | - Vincenzo Carginale
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, 80131 Naples, Italy; (V.D.L.); (V.C.)
| | - Antonella Capperucci
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy (D.T.); (A.C.)
| | - Claudiu T. Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (A.N.); (P.G.)
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, 80131 Naples, Italy; (V.D.L.); (V.C.)
| |
Collapse
|
15
|
Barnard GC, Zhou M, Shen A, Yuk IH, Laird MW. Utilizing targeted integration CHO pools to potentially accelerate the GMP manufacturing of monoclonal and bispecific antibodies. Biotechnol Prog 2024; 40:e3399. [PMID: 37874920 DOI: 10.1002/btpr.3399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/26/2023]
Abstract
Monoclonal antibodies (mAbs) are effective therapeutic agents against many acute infectious diseases including COVID-19, Ebola, RSV, Clostridium difficile, and Anthrax. mAbs can therefore help combat a future pandemic. Unfortunately, mAb development typically takes years, limiting its potential to save lives during a pandemic. Therefore "pandemic mAb" timelines need to be shortened. One acceleration tool is "deferred cloning" and leverages new Chinese hamster ovary (CHO) technology based on targeted gene integration (TI). CHO pools, instead of CHO clones, can be used for Phase I/II clinical material production. A final CHO clone (producing the mAb with a similar product quality profile and preferably with a higher titer) can then be used for Phase III trials and commercial manufacturing. This substitution reduces timelines by ~3 months. We evaluated our novel CHO TI platform to enable deferred cloning. We created four unique CHO pools expressing three unique mAbs (mAb1, mAb2, and mAb3), and a bispecific mAb (BsAb1). We then performed single-cell cloning for mAb1 and mAb2, identifying three high-expressing clones from each pool. CHO pools and clones were inoculated side-by-side in ambr15 bioreactors. CHO pools yielded mAb titers as high as 10.4 g/L (mAb3) and 7.1 g/L (BsAb1). Subcloning yielded CHO clones expressing higher titers relative to the CHO pools while yielding similar product quality profiles. Finally, we showed that CHO TI pools were stable by performing a 3-month cell aging study. In summary, our CHO TI platform can increase the speed to clinic for a future "pandemic mAb."
Collapse
Affiliation(s)
- Gavin C Barnard
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California, USA
| | - Michelle Zhou
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California, USA
| | - Amy Shen
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California, USA
| | - Inn H Yuk
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California, USA
| | - Michael W Laird
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California, USA
| |
Collapse
|
16
|
Maranda B, Labbé SM, Lurquin M, Brabant P, Fugère A, Larrivée JF, Grbic D, Leroux A, Leduc F, Finzi A, Gaudreau S, Swart Y. Safety and efficacy of inhaled IBIO123 for mild-to-moderate COVID-19: a randomised, double-blind, dose-ascending, placebo-controlled, phase 1/2 trial. THE LANCET. INFECTIOUS DISEASES 2024; 24:25-35. [PMID: 37619584 DOI: 10.1016/s1473-3099(23)00393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND COVID-19 severity is associated with its respiratory manifestations. Neutralising antibodies against SARS-CoV-2 administered systemically have shown clinical efficacy. However, immediate and direct delivery of neutralising antibodies via inhalation might provide additional respiratory clinical benefits. IBIO123 is a cocktail of three, fully human, neutralising monoclonal antibodies against SARS-CoV-2. We aimed to assess the safety and efficacy of inhaled IBIO123 in individuals with mild-to-moderate COVID-19. METHODS This double-blind, dose-ascending, placebo-controlled, first-in-human, phase 1/2 trial recruited symptomatic and non-hospitalised participants with COVID-19 in South Africa and Brazil across 11 centres. Eligible participants were adult outpatients (aged ≥18 years; men and non-pregnant women) infected with COVID-19 (first PCR-confirmed within 72 h) and with mild-to-moderate symptoms, the onset of which had to be within 10 days of randomisation. Using permuted blocks of four, stratified by site, we randomly assigned participants (1:3) to receive single-dose placebo or IBIO123 (1 mg, 5 mg, or 10 mg) in phase 1, and single-dose placebo or IBIO123 (10 mg) in phase 2, in addition to local standard of care. Participants underwent serological testing to identify antibodies against SARS-CoV-2. Participants, investigators, and the study team were masked to treatment assignment. In phase 1, the primary outcome was the safety assessment in the safety population (ie, all participants who received an intervention). In phase 2, the primary outcome was the mean absolute change from baseline to day 5 in SARS-CoV-2 viral load measured by nasopharyngeal swabs analysed using a mixed model for repeated measures in the full analysis set (FAS; ie, participants with one analysable viral load value at baseline and at least one analysable viral load value at day 3 or day 5). Secondary clinical outcomes included safety from baseline to day 29, assessed by evaluating adverse events; the effect of IBIO123 on baseline COVID-19 symptoms resolution until day 6, with symptoms systemically evaluated by the investigators; and disease progression as measured by the COVID-19 WHO Clinical Progression Scale. For clinical endpoints in phase 2, we used a modified FAS (ie, participants who had at least one analysable viral load value over the course of the study, confirming that they were infected with SARS-CoV-2). This trial is now completed and is registered with ClinicalTrials.gov, NCT05298813. FINDINGS Between Dec 4, 2021, and May 23, 2022, 24 participants were enrolled in phase 1. Between July 20, 2022, and Jan 4, 2023, 138 participants were enrolled in phase 2 and five were excluded because they did not meet the inclusion criteria. Participants were randomly assigned to receive IBIO123 (n=18) or placebo (n=6) in phase 1, and randomly assigned to receive IBIO123 (n=104) or placebo (n=34) in phase 2. In phase 2, the study was stopped before reaching the planned accrual because of a decline in COVID-19 incidence. In phase 1, no safety issues were observed. In phase 2, the difference in mean absolute change from baseline viral load to day 5 between participants in the IBIO123 group and participants in the placebo group was -0·29 log10 copies per mL (95% CI -1·32 to 0·75; p=0·45) in the FAS population and -0·49 log10 copies per mL (-1·56 to 0·58; p=0·20) in seropositive participants. In the modified FAS, 81 (69%) of 118 participants were at high risk of severe disease progression. The number of participants with resolution of respiratory symptoms at day 6 was 34 (42%) of 81 in the IBIO123 group versus five (17%) of 29 in the placebo group (p=0·017) in the modified FAS population and 19 (35%) of 55 versus three (14%) of 21 among participants at high risk (p=0·083). One participant died and one participant was hospitalised in the placebo group, whereas no deaths or hospitalisations were reported in the IBIO123 group. 39 (38%) of 104 participants in the IBIO123 group had adverse events, compared with 13 (38%) of 34 in the placebo group. INTERPRETATION Inhalation of IBIO123 was safe. Despite the lack of significant reduction of viral load at day 5, treatment with IBIO123 resulted in a higher proportion of participants with complete resolution of respiratory symptoms at day 6. This study supports further clinical research on inhaled monoclonal antibodies in COVID-19 and respiratory diseases in general. FUNDING Canadian Strategic Innovation Fund and Immune Biosolutions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andrés Finzi
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | | | | |
Collapse
|
17
|
Lee JY, Bu SH, Song E, Cho S, Yu S, Kim J, Kym S, Seo KW, Kwon KT, Kim JY, Kim S, Ahn K, Jung N, Lee Y, Jung Y, Hwang C, Park SW. Safety and Effectiveness of Regdanvimab for COVID-19 Treatment: A Phase 4 Post-marketing Surveillance Study Conducted in South Korea. Infect Dis Ther 2023; 12:2417-2435. [PMID: 37833467 PMCID: PMC10600078 DOI: 10.1007/s40121-023-00859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/15/2023] [Indexed: 10/15/2023] Open
Abstract
INTRODUCTION Regdanvimab, a neutralising monoclonal antibody (mAb) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), received approval for the treatment of coronavirus disease 2019 (COVID-19) in South Korea in 2021. The Ministry of Food and Drug Safety in South Korea mandate that new medications be re-examined for safety and effectiveness post-approval in at least 3000 individuals. This post-marketing surveillance (PMS) study was used to evaluate the safety and effectiveness of regdanvimab in real-world clinical care. METHODS This prospective, multicentre, phase 4 PMS study was conducted between February 2021 and March 2022 in South Korea. Eligible patients were aged ≥ 18 years with confirmed mild COVID-19 at high risk of disease progression or moderate COVID-19. Patients were hospitalised and treated with regdanvimab (40 mg/kg, day 1) and then monitored until discharge, with a follow-up call on day 28. Adverse events (AEs) were documented, and the COVID-19 disease progression rate was used to measure effectiveness. RESULTS Of the 3123 patients with COVID-19 infection identified, 3036 were eligible for inclusion. Approximately 80% and 5% of the eligible patients were diagnosed with COVID-19 during the delta- and omicron-dominant periods, respectively. Median (range) age was 57 (18-95) years, and 50.6% of patients were male. COVID-19 severity was assessed before treatment, and high-risk mild and moderate COVID-19 was diagnosed in 1030 (33.9%) and 2006 (66.1%) patients, respectively. AEs and adverse drug reactions (ADRs) were experienced by 684 (22.5%) and 363 (12.0%) patients, respectively. The most common ADR was increased liver function test (n = 62, 2.0%). Nine (0.3%) patients discontinued regdanvimab due to ADRs. Overall, 378 (12.5%) patients experienced disease progression after regdanvimab infusion, with extended hospitalisation/re-admission (n = 300, 9.9%) as the most common reason. Supplemental oxygen was required by 282 (9.3%) patients. Ten (0.3%) patients required intensive care monitoring and 3 (0.1%) died due to COVID-19. CONCLUSION This large-scale PMS study demonstrated that regdanvimab was effective against COVID-19 progression and had an acceptable safety profile when used in real-world clinical practice.
Collapse
Affiliation(s)
- Ji Yeon Lee
- Keimyung University Daegu Dongsan Hospital, Daegu, Republic of Korea
| | - Seon Hee Bu
- Seoul Metropolitan City Bukbu Hospital, Seoul, Republic of Korea
| | - EunHyang Song
- Seoul Metropolitan City Seobuk Hospital, Seoul, Republic of Korea
| | | | - Sungbong Yu
- Bagae General Hospital, Pyeongtaek, Republic of Korea
| | - Jungok Kim
- Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Sungmin Kym
- Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Kwang Won Seo
- Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Ki Tae Kwon
- School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jin Yong Kim
- Incheon Medical Centre, Incheon, Republic of Korea
| | | | | | | | - Yeonmi Lee
- Celltrion, Inc., Incheon, Republic of Korea
| | | | | | - Sang Won Park
- Department of Internal Medicine, Seoul National University Boramae Medical Centre, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea.
| |
Collapse
|
18
|
Şimşek-Yavuz S. COVID-19: An Update on Epidemiology, Prevention and Treatment, September-2023. INFECTIOUS DISEASES & CLINICAL MICROBIOLOGY 2023; 5:165-187. [PMID: 38633552 PMCID: PMC10986731 DOI: 10.36519/idcm.2023.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/19/2023] [Indexed: 04/19/2024]
Abstract
After a downward trend for more than 12 months, the incidence of COVID-19 has increased in the last months. Although COVID-19 is not as frequent as in the first years of the pandemic, case numbers are still very high, and it causes a significant number of deaths. COVID-19 is not seen with a predictable frequency, at least two times more deadly than the flu, continues as an epidemic, and has not reached the endemic level yet. Currently, the Omicron strains EG.5 and XBB.1.16 are dominant worldwide. Although BA.2.86 and FLip variants, including FL.1.5.1 are not widespread at the moment, both were shown to be highly immune-evasive and require close monitoring. Prevention of COVID-19 relies on vaccinations, surveillance, proper ventilation of enclosed spaces, isolation of patients, and mask usage. Currently, monovalent COVID-19 vaccines, including XBB.1.5 Omicron SARS-CoV-2, are recommended for both primary and booster vaccinations against COVID-19. Monovalent vaccines, including only original SARS-CoV-2 strain, and bivalent vaccines, including original virus plus BA4/5 variant, are no longer recommended against COVID-19. Booster vaccination with XBB.1.5 containing vaccine should be prioritized for patients at high risk for severe COVID-19. Bacillus Calmette-Guérin (BCG) vaccination does not seem to be effective in preventing COVID-19. At the current phase of the pandemic, nirmatrelvir/ritonavir, remdesivir, molnupiravir, sotrovimab (for patients from XBB.1.5 variant dominant settings), and convalescent plasma can be considered for the treatment of high-risk early-stage outpatients with COVID-19, while hospitalized patients with more severe disease can be treated with dexamethasone, anti cytokines including tocilizumab, sarilumab, baricitinib, and tofacitinib and antithrombotic agents including enoxaparin. Remdesivir oral analogues and ensitrelvir fumarate are promising agents for treating acute COVID-19, which are in phase trials now; however, ivermectin, fluvoxamine, and metformin were shown to be ineffective.
Collapse
Affiliation(s)
- Serap Şimşek-Yavuz
- Department of Infectious Diseases and Clinical Microbiology, İstanbul University School of Medicine, İstanbul, Türkiye
| |
Collapse
|
19
|
McGarry BE, Sommers BD, Wilcock AD, Grabowski DC, Barnett ML. Monoclonal Antibody and Oral Antiviral Treatment of SARS-CoV-2 Infection in US Nursing Homes. JAMA 2023; 330:561-563. [PMID: 37450293 PMCID: PMC10349351 DOI: 10.1001/jama.2023.12945] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
This study examines the use of COVID-19 antiviral treatments in US nursing homes and the facility characteristics associated with use of oral antivirals and monoclonal antibodies.
Collapse
Affiliation(s)
- Brian E. McGarry
- Department of Medicine, University of Rochester, Rochester, New York
| | - Benjamin D. Sommers
- Department of Health Policy and Management, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Andrew D. Wilcock
- Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts
| | - David C. Grabowski
- Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts
| | - Michael L. Barnett
- Department of Health Policy and Management, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
20
|
Passariello M, Esposito S, Manna L, Rapuano Lembo R, Zollo I, Sasso E, Amato F, De Lorenzo C. Comparative Analysis of a Human Neutralizing mAb Specific for SARS-CoV-2 Spike-RBD with Cilgavimab and Tixagevimab for the Efficacy on the Omicron Variant in Neutralizing and Detection Assays. Int J Mol Sci 2023; 24:10053. [PMID: 37373201 DOI: 10.3390/ijms241210053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
The recent pandemic years have prompted the scientific community to increasingly search for and adopt new and more efficient therapeutic and diagnostic approaches to deal with a new infection. In addition to the development of vaccines, which has played a leading role in fighting the pandemic, the development of monoclonal antibodies has also represented a valid approach in the prevention and treatment of many cases of CoronaVirus Disease 2019 (COVID-19). Recently, we reported the development of a human antibody, named D3, showing neutralizing activity against different SARS-CoV-2 variants, wild-type, UK, Delta and Gamma variants. Here, we have further characterized with different methods D3's ability to bind the Omicron-derived recombinant RBD by comparing it with the antibodies Cilgavimab and Tixagevimab, recently approved for prophylactic use of COVID-19. We demonstrate here that D3 binds to a distinct epitope from that recognized by Cilgavimab and shows a different binding kinetic behavior. Furthermore, we report that the ability of D3 to bind the recombinant Omicron RBD domain in vitro results in a good ability to also neutralize Omicron-pseudotyped virus infection in ACE2-expressing cell cultures. We point out here that D3 mAb maintains a good ability to recognize both the wild-type and Omicron Spike proteins, either when used as recombinant purified proteins or when expressed on pseudoviral particles despite the different variants, making it particularly useful both from a therapeutic and diagnostic point of view. On the basis of these results, we propose to exploit this mAb for combinatorial treatments with other neutralizing mAbs to increase their therapeutic efficacy and for diagnostic use to measure the viral load in biological samples in the current and future pandemic waves of coronaviruses.
Collapse
Affiliation(s)
- Margherita Passariello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Naples, NA, Italy
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, NA, Italy
| | - Speranza Esposito
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, NA, Italy
| | - Lorenzo Manna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Naples, NA, Italy
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, NA, Italy
| | - Rosa Rapuano Lembo
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, NA, Italy
- European School of Molecular Medicine, University of Milan, 20122 Milan, MI, Italy
| | - Immacolata Zollo
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, NA, Italy
| | - Emanuele Sasso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Naples, NA, Italy
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, NA, Italy
| | - Felice Amato
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Naples, NA, Italy
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, NA, Italy
| | - Claudia De Lorenzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Naples, NA, Italy
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, NA, Italy
| |
Collapse
|
21
|
Horga A, Kuritzkes DR, Kowalczyk JJ, Pietropaolo K, Belanger B, Lin K, Perkins K, Hammond J. Phase II study of bemnifosbuvir in high-risk participants in a hospital setting with moderate COVID-19. Future Virol 2023; 18:489-500. [PMID: 38051993 PMCID: PMC10308776 DOI: 10.2217/fvl-2023-0064] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/02/2023] [Indexed: 11/07/2023]
Abstract
Background Bemnifosbuvir, a novel, oral, nonmutagenic, nonteratogenic nucleotide analogue inhibits SARS-CoV-2 replication in vitro. Materials & methods Adults in hospital settings with moderate COVID-19 were randomized 1:1 bemnifosbuvir/placebo. Study amended to two parts after interim analysis; part B enrollment limited owing to evolving standard of care. Results Although the study ended early and did not meet the primary efficacy end point, bemnifosbuvir was well tolerated and did not contribute to all-cause mortality. Compared with placebo, bemnifosbuvir treatment resulted in 0.61 log10 greater viral load mean change on day 2; trend sustained through day 8. Treatment-emergent adverse events were similar in both groups; most were mild/moderate, unrelated to study drug. Conclusion Our results suggest a potential role for bemnifosbuvir in blunting COVID-19 progression. Clinical Trial Registration NCT04396106 (ClinicalTrials.gov).
Collapse
Affiliation(s)
| | - Daniel R. Kuritzkes
- Brigham & Women's Hospital, Division of Infectious Disease, Boston, MA 02115, USA
| | | | | | | | - Kai Lin
- Atea Pharmaceuticals, Boston, MA 02110, USA
| | | | | |
Collapse
|