1
|
Arriagada C, Lin E, Schonning M, Astrof S. Mesodermal fibronectin controls cell shape, polarity, and mechanotransduction in the second heart field during cardiac outflow tract development. Dev Cell 2024:S1534-5807(24)00545-8. [PMID: 39413783 DOI: 10.1016/j.devcel.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/06/2024] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
Failure in the elongation of the cardiac outflow tract (OFT) results in congenital heart disease due to the misalignment of the great arteries with the left and right ventricles. The OFT lengthens via the accretion of progenitors from the second heart field (SHF). SHF cells are exquisitely regionalized and organized into an epithelial-like layer, forming the dorsal pericardial wall (DPW). Tissue tension, cell polarity, and proliferation within the DPW are important for the addition of SHF-derived cells to the heart and OFT elongation. However, the genes controlling these processes are not completely characterized. Using conditional mutagenesis in the mouse, we show that fibronectin (FN1) synthesized by the mesoderm coordinates multiple cellular behaviors in the anterior DPW. FN1 is enriched in the anterior DPW and plays a role in OFT elongation by maintaining a balance between pro- and anti-adhesive cell-extracellular matrix (ECM) interactions and controlling DPW cell shape, polarity, cohesion, proliferation, and mechanotransduction.
Collapse
Affiliation(s)
- Cecilia Arriagada
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, 185 South Orange Ave., Newark, NJ 07103, USA
| | - Evan Lin
- Princeton Day School, Princeton, NJ, USA
| | - Michael Schonning
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, 185 South Orange Ave., Newark, NJ 07103, USA
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, 185 South Orange Ave., Newark, NJ 07103, USA.
| |
Collapse
|
2
|
Su X, Fu C, Liu F, Bian R, Jing P. T-cell exhaustion prediction algorithm in tumor microenvironment for evaluating prognostic stratification and immunotherapy effect of esophageal cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:592-611. [PMID: 37493251 DOI: 10.1002/tox.23887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/01/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
Esophageal cancer (EC) is a common digestive malignancy that ranks sixth in cancer deaths, with a 5-year survival rate of 15%-25%. As a result, reliable prognostic biomarkers are required to accurately predict the prognosis of EC. T-cell exhaustion (TEX) is associated with poorer prognosis and immune infiltration in EC. In this study, nine risk genes were finally screened to constitute the prognostic model using least absolute shrinkage and selection operator analysis. Patients were divided into two groups based on the expression of the TEX-related genes: high-risk group and low-risk group. The expression of TEX-related genes differed significantly between the two groups. The findings revealed that the risk model developed was highly related to the clinical prognosis and amount of immune cell infiltration in EC patients. It was also significantly correlated with the therapeutic sensitivity of multiple chemotherapeutic agents in EC patients. Subsequently, we successfully constructed drug-resistant cell lines KYSE480/CDDP-R and KYSE180/CDDP-R to verify the correlation between PD-1 and drug resistance in EC. Then, we examined the mRNA and protein expression levels of PD-1 in parental and drug-resistant cells using qPCR and WB. It was found that the expression level of PD-1 was significantly increased in the plasma red of drug-resistant cells. Next, we knocked down PD-1 in drug-resistant cells and found that the resistance of EC cells to CDDP was significantly reduced. And the proportion of apoptotic cells in cells treated with 6 μM CDDP for 24 h was significantly in increase. The TEX-based risk model achieved good prediction results for prognosis prediction in EC patients. And it was also significantly associated with the level of immune cell infiltration and drug therapy sensitivity of EC patients. Additionally, the downregulation of PD-1 may be associated with increased drug sensitivity in EC and enhanced T-cell infiltration. The high-risk group had lower TIDE scores, indicating that the high-risk group benefits more after receiving immunotherapy. Thus, the TEX-based risk model can be used as a novel tumor prognostic biomarker.
Collapse
Affiliation(s)
- Xiangyu Su
- School of Medicine, Southeast University, Nanjing, China
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chenchun Fu
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Fei Liu
- Department of Oncology, Luhe People's Hospital of Nanjing, Nanjing, China
| | - Rongrong Bian
- Department of Oncology, Luhe People's Hospital of Nanjing, Nanjing, China
| | - Ping Jing
- Department of Gastroenterology, Luhe People's Hospital of Nanjing, Nanjing, China
| |
Collapse
|
3
|
Gao Y, Hu B, Flores R, Xie H, Lin F. Fibronectin and Integrin α5 play overlapping and independent roles in regulating the development of pharyngeal endoderm and cartilage. Dev Biol 2022; 489:122-133. [PMID: 35732225 DOI: 10.1016/j.ydbio.2022.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
Craniofacial skeletal elements are derived from cranial neural crest cells (CNCCs), which migrate along discrete paths and populate distinct pharyngeal arches, structures that are separated by the neighboring endodermal pouches (EPs). Interactions between the CNCCs and the endoderm are critical for proper craniofacial development. In zebrafish, integrin α5 (Itga5) functions in the endoderm to regulate formation of specifically the first EP (EP1) and the development of the hyoid cartilage. Here we show that fibronectin (Fn), a major component of the extracellular matrix (ECM), is also required for these developmental processes, and that the penetrance of defects in mutants is temperature-dependent. fn1a-/- embryos exhibited defects that are similar to, but much more severe than, those of itga5-/- embryos, and a loss of integrin av (itgav) function enhanced both endoderm and cartilage defects in itga5-/- embryos, suggesting that Itga5 and Itgav cooperate to transmit signals from Fn to regulate the development of endoderm and cartilage. Whereas the endodermal defects in itga5; itga5v-/- double mutant embryos were comparable to those of fn1a-/- mutants, the cartilage defects were much milder. Furthermore, Fn assembly was detected in migrating CNCCs, and the epithelial organization and differentiation of CNCC-derived arches were impaired in fn1a-/- embryos, indicating that Fn1 exerts functions in arch development that are independent of Itga5 and Itgav. Additionally, reduction of itga5 function in fn1a-/- embryos led to profound defects in body axis elongation, as well as in endoderm and cartilage formation, suggesting that other ECM proteins signal through Itga5 to regulate development of the endoderm and cartilage. Thus, our studies reveal that Fn1a and Itga5 have both overlapping and independent functions in regulating development of the pharyngeal endoderm and cartilage.
Collapse
Affiliation(s)
- Yuanyuan Gao
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Bo Hu
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Rickcardo Flores
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Huaping Xie
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
4
|
Identification of the central intermediate in the extra-embryonic to embryonic endoderm transition through single-cell transcriptomics. Nat Cell Biol 2022; 24:833-844. [PMID: 35681011 DOI: 10.1038/s41556-022-00923-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/22/2022] [Indexed: 12/26/2022]
Abstract
High-resolution maps of embryonic development suggest that acquisition of cell identity is not limited to canonical germ layers but proceeds via alternative routes. Despite evidence that visceral organs are formed via embryonic and extra-embryonic trajectories, the production of organ-specific cell types in vitro focuses on the embryonic one. Here we resolve these differentiation routes using massively parallel single-cell RNA sequencing to generate datasets from FOXA2Venus reporter mouse embryos and embryonic stem cell differentiation towards endoderm. To relate cell types in these datasets, we develop a single-parameter computational approach and identify an intermediate en route from extra-embryonic identity to embryonic endoderm, which we localize spatially in embryos at embryonic day 7.5. While there is little evidence for this cell type in embryonic stem cell differentiation, by following the extra-embryonic trajectory starting with naïve extra-embryonic endoderm stem cells we can generate embryonic gut spheroids. Exploiting developmental plasticity therefore offers alternatives to pluripotent cells and opens alternative avenues for in vitro differentiation.
Collapse
|
5
|
Guglielmi L, Heliot C, Kumar S, Alexandrov Y, Gori I, Papaleonidopoulou F, Barrington C, East P, Economou AD, French PMW, McGinty J, Hill CS. Smad4 controls signaling robustness and morphogenesis by differentially contributing to the Nodal and BMP pathways. Nat Commun 2021; 12:6374. [PMID: 34737283 PMCID: PMC8569018 DOI: 10.1038/s41467-021-26486-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/07/2021] [Indexed: 12/25/2022] Open
Abstract
The transcriptional effector SMAD4 is a core component of the TGF-β family signaling pathways. However, its role in vertebrate embryo development remains unresolved. To address this, we deleted Smad4 in zebrafish and investigated the consequences of this on signaling by the TGF-β family morphogens, BMPs and Nodal. We demonstrate that in the absence of Smad4, dorsal/ventral embryo patterning is disrupted due to the loss of BMP signaling. However, unexpectedly, Nodal signaling is maintained, but lacks robustness. This Smad4-independent Nodal signaling is sufficient for mesoderm specification, but not for optimal endoderm specification. Furthermore, using Optical Projection Tomography in combination with 3D embryo morphometry, we have generated a BMP morphospace and demonstrate that Smad4 mutants are morphologically indistinguishable from embryos in which BMP signaling has been genetically/pharmacologically perturbed. Smad4 is thus differentially required for signaling by different TGF-β family ligands, which has implications for diseases where Smad4 is mutated or deleted.
Collapse
Affiliation(s)
- Luca Guglielmi
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Claire Heliot
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Sunil Kumar
- Advanced Light Microscopy, The Francis Crick Institute, London, NW1 1AT, UK
| | - Yuriy Alexandrov
- Advanced Light Microscopy, The Francis Crick Institute, London, NW1 1AT, UK
| | - Ilaria Gori
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | | | - Christopher Barrington
- Bioinformatics and Biostatistics Facility, The Francis Crick Institute, London, NW1 1AT, UK
| | - Philip East
- Bioinformatics and Biostatistics Facility, The Francis Crick Institute, London, NW1 1AT, UK
| | - Andrew D Economou
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Paul M W French
- Department of Physics, Imperial College London, SW7 2AZ, London, UK
| | - James McGinty
- Department of Physics, Imperial College London, SW7 2AZ, London, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
6
|
Kumar V, Park S, Lee U, Kim J. The Organizer and Its Signaling in Embryonic Development. J Dev Biol 2021; 9:jdb9040047. [PMID: 34842722 PMCID: PMC8628936 DOI: 10.3390/jdb9040047] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022] Open
Abstract
Germ layer specification and axis formation are crucial events in embryonic development. The Spemann organizer regulates the early developmental processes by multiple regulatory mechanisms. This review focuses on the responsive signaling in organizer formation and how the organizer orchestrates the germ layer specification in vertebrates. Accumulated evidence indicates that the organizer influences embryonic development by dual signaling. Two parallel processes, the migration of the organizer’s cells, followed by the transcriptional activation/deactivation of target genes, and the diffusion of secreting molecules, collectively direct the early development. Finally, we take an in-depth look at active signaling that originates from the organizer and involves germ layer specification and patterning.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea;
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Korea
- Correspondence: (U.L.); (J.K.); Tel.: +82-33-248-2544 (J.K.); Fax: +82-33-244-8425 (J.K.)
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea;
- Correspondence: (U.L.); (J.K.); Tel.: +82-33-248-2544 (J.K.); Fax: +82-33-244-8425 (J.K.)
| |
Collapse
|
7
|
Abu-Bonsrah KD, Newgreen DF, Dottori M. Development of Functional Thyroid C Cell-like Cells from Human Pluripotent Cells in 2D and in 3D Scaffolds. Cells 2021; 10:cells10112897. [PMID: 34831120 PMCID: PMC8616516 DOI: 10.3390/cells10112897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022] Open
Abstract
Medullary thyroid carcinoma contributes to about 3–4% of thyroid cancers and affects C cells rather than follicular cells. Thyroid C cell differentiation from human pluripotent stem cells has not been reported. We report the stepwise differentiation of human embryonic stem cells into thyroid C cell-like cells through definitive endoderm and anterior foregut endoderm and ultimobranchial body-like intermediates in monolayer and 3D Matrigel culture conditions. The protocol involved sequential treatment with interferon/transferrin/selenium/pyruvate, foetal bovine serum, and activin A, then IGF-1 (Insulin-like growth factor 1), on the basis of embryonic thyroid developmental sequence. As well as expressing C cell lineage relative to follicular-lineage markers by qPCR (quantitative polymerase chain reaction) and immunolabelling, these cells by ELISA (enzyme-linked immunoassay) exhibited functional properties in vitro of calcitonin storage and release of calcitonin on calcium challenge. This method will contribute to developmental studies of the human thyroid gland and facilitate in vitro modelling of medullary thyroid carcinoma and provide a valuable platform for drug screening.
Collapse
Affiliation(s)
- Kwaku Dad Abu-Bonsrah
- The Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (K.D.A.-B.); (D.F.N.); (M.D.)
| | - Donald F. Newgreen
- The Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Correspondence: (K.D.A.-B.); (D.F.N.); (M.D.)
| | - Mirella Dottori
- Department of Biomedical Engineering, Department of Anatomy and Neurosciences, University of Melbourne, Parkville, VIC 3010, Australia
- Illawarra Health and Medical Research Institute, School of Medicine, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- Correspondence: (K.D.A.-B.); (D.F.N.); (M.D.)
| |
Collapse
|
8
|
Xiong S, Kumar A, Tian S, Taher EE, Yang E, Kinchington PR, Xia X, Du Y. Stem cell transplantation rescued a primary open-angle glaucoma mouse model. eLife 2021; 10:63677. [PMID: 33506763 PMCID: PMC7864631 DOI: 10.7554/elife.63677] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Glaucoma is a leading cause of irreversible blindness. In this study, we investigated if transplanted stem cells are able to rescue a glaucoma mouse model with transgenic myocilin Y437H mutation and explored the possible mechanisms. Human trabecular meshwork stem cells (TMSCs) were intracamerally transplanted which reduced mouse intraocular pressure, increased outflow facility, protected the retinal ganglion cells and preserved their function. TMSC transplantation also significantly increased the TM cellularity, promoted myocilin secretion from TM cells into the aqueous humor to reduce endoplasmic reticulum stress, repaired the TM tissue with extracellular matrix modulation and ultrastructural restoration. Co-culturing TMSCs with myocilin mutant TM cells in vitro promoted TMSCs differentiating into phagocytic functional TM cells. RNA sequencing revealed that TMSCs had upregulated genes related to TM regeneration and neuroprotection. Our results uncovered therapeutic potential of TMSCs for curing glaucoma and elucidated possible mechanisms by which TMSCs achieve the treatment effect.
Collapse
Affiliation(s)
- Siqi Xiong
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States.,Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Ajay Kumar
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States
| | - Shenghe Tian
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States
| | - Eman E Taher
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States.,Research Institute of Ophthalmology, Giza, Egypt
| | - Enzhi Yang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States
| | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States.,Department of Developmental Biology, University of Pittsburgh, Pittsburgh, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
9
|
Histological, immunohistochemical and transcriptomic characterization of human tracheoesophageal fistulas. PLoS One 2020; 15:e0242167. [PMID: 33201890 PMCID: PMC7671559 DOI: 10.1371/journal.pone.0242167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Esophageal atresia (EA) and tracheoesophageal fistula (TEF) are relatively frequently occurring foregut malformations. EA/TEF is thought to have a strong genetic component. Not much is known regarding the biological processes disturbed or which cell type is affected in patients. This hampers the detection of the responsible culprits (genetic or environmental) for the origin of these congenital anatomical malformations. Therefore, we examined gene expression patterns in the TEF and compared them to the patterns in esophageal, tracheal and lung control samples. We studied tissue organization and key proteins using immunohistochemistry. There were clear differences between TEF and control samples. Based on the number of differentially expressed genes as well as histological characteristics, TEFs were most similar to normal esophagus. The BMP-signaling pathway, actin cytoskeleton and extracellular matrix pathways are downregulated in TEF. Genes involved in smooth muscle contraction are overexpressed in TEF compared to esophagus as well as trachea. These enriched pathways indicate myofibroblast activated fibrosis. TEF represents a specific tissue type with large contributions of intestinal smooth muscle cells and neurons. All major cell types present in esophagus are present-albeit often structurally disorganized-in TEF, indicating that its etiology should not be sought in cell fate specification.
Collapse
|
10
|
Schumacher JA, Wright ZA, Owen ML, Bredemeier NO, Sumanas S. Integrin α5 and Integrin α4 cooperate to promote endocardial differentiation and heart morphogenesis. Dev Biol 2020; 465:46-57. [PMID: 32628938 DOI: 10.1016/j.ydbio.2020.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 10/23/2022]
Abstract
Endocardium is critically important for proper function of the cardiovascular system. Not only does endocardium connect the heart to blood vasculature, it also plays an important role in heart morphogenesis, valve formation, and ventricular trabeculation. The extracellular protein Fibronectin (Fn1) promotes endocardial differentiation, but the signaling pathways downstream of Fn1 that regulate endocardial development are not understood. Here, we analyzed the role of the Fibronectin receptors Integrin alpha5 (Itga5) and Integrin alpha4 (Itga4) in zebrafish heart development. We show that itga5 mRNA is expressed in both endocardium and myocardium during early stages of heart development. Through analysis of both itga5 single mutants and itga4;itga5 double mutants, we show that loss of both itga5 and itga4 results in enhanced defects in endocardial differentiation and morphogenesis compared to loss of itga5 alone. Loss of both itga5 and itga4 results in cardia bifida and severe myocardial morphology defects. Finally, we find that loss of itga5 and itga4 results in abnormally narrow anterior endodermal sheet morphology. Together, our results support a model in which Itga5 and Itga4 cooperate to promote endocardial differentiation, medial migration of endocardial and myocardial cells, and morphogenesis of anterior endoderm.
Collapse
Affiliation(s)
- Jennifer A Schumacher
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Biological Sciences, Miami University, Hamilton, OH, USA.
| | - Zoë A Wright
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mackenzie L Owen
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nina O Bredemeier
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
11
|
Madsen RR. PI3K in stemness regulation: from development to cancer. Biochem Soc Trans 2020; 48:301-315. [PMID: 32010943 PMCID: PMC7054754 DOI: 10.1042/bst20190778] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 02/08/2023]
Abstract
The PI3K/AKT pathway is a key target in oncology where most efforts are focussed on phenotypes such as cell proliferation and survival. Comparatively, little attention has been paid to PI3K in stemness regulation, despite the emerging link between acquisition of stem cell-like features and therapeutic failure in cancer. The aim of this review is to summarise current known and unknowns of PI3K-dependent stemness regulation, by integrating knowledge from the fields of developmental, signalling and cancer biology. Particular attention is given to the role of the PI3K pathway in pluripotent stem cells (PSCs) and the emerging parallels to dedifferentiated cancer cells with stem cell-like features. Compelling evidence suggests that PI3K/AKT signalling forms part of a 'core molecular stemness programme' in both mouse and human PSCs. In cancer, the oncogenic PIK3CAH1047R variant causes constitutive activation of the PI3K pathway and has recently been linked to increased stemness in a dose-dependent manner, similar to observations in mouse PSCs with heterozygous versus homozygous Pten loss. There is also evidence that the stemness phenotype may become 'locked' and thus independent of the original PI3K activation, posing limitations for the success of PI3K monotherapy in cancer. Ongoing therapeutic developments for PI3K-associated cancers may therefore benefit from a better understanding of the pathway's two-layered and highly context-dependent regulation of cell growth versus stemness.
Collapse
Affiliation(s)
- Ralitsa R. Madsen
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, U.K
| |
Collapse
|
12
|
Miller SA, Policastro RA, Savant SS, Sriramkumar S, Ding N, Lu X, Mohammad HP, Cao S, Kalin JH, Cole PA, Zentner GE, O'Hagan HM. Lysine-Specific Demethylase 1 Mediates AKT Activity and Promotes Epithelial-to-Mesenchymal Transition in PIK3CA-Mutant Colorectal Cancer. Mol Cancer Res 2019; 18:264-277. [PMID: 31704733 DOI: 10.1158/1541-7786.mcr-19-0748] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/24/2019] [Accepted: 11/05/2019] [Indexed: 12/23/2022]
Abstract
Activation of the epithelial-to-mesenchymal transition (EMT) program is a critical mechanism for initiating cancer progression and migration. Colorectal cancers contain many genetic and epigenetic alterations that can contribute to EMT. Mutations activating the PI3K/AKT signaling pathway are observed in >40% of patients with colorectal cancer contributing to increased invasion and metastasis. Little is known about how oncogenic signaling pathways such as PI3K/AKT synergize with chromatin modifiers to activate the EMT program. Lysine-specific demethylase 1 (LSD1) is a chromatin-modifying enzyme that is overexpressed in colorectal cancer and enhances cell migration. In this study, we determine that LSD1 expression is significantly elevated in patients with colorectal cancer with mutation of the catalytic subunit of PI3K, PIK3CA, compared with patients with colorectal cancer with WT PIK3CA. LSD1 enhances activation of the AKT kinase in colorectal cancer cells through a noncatalytic mechanism, acting as a scaffolding protein for the transcription-repressing CoREST complex. In addition, growth of PIK3CA-mutant colorectal cancer cells is uniquely dependent on LSD1. Knockdown or CRISPR knockout of LSD1 blocks AKT-mediated stabilization of the EMT-promoting transcription factor Snail and effectively blocks AKT-mediated EMT and migration. Overall, we uniquely demonstrate that LSD1 mediates AKT activation in response to growth factors and oxidative stress, and LSD1-regulated AKT activity promotes EMT-like characteristics in a subset of PIK3CA-mutant cells. IMPLICATIONS: Our data support the hypothesis that inhibitors targeting the CoREST complex may be clinically effective in patients with colorectal cancer harboring PIK3CA mutations.
Collapse
Affiliation(s)
- Samuel A Miller
- Genome, Cell, and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, Indiana.,Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Robert A Policastro
- Genome, Cell, and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, Indiana
| | - Sudha S Savant
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Shruthi Sriramkumar
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Ning Ding
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Xiaoyu Lu
- Center for Computational Biology and Bioinformatics, Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Biohealth Informatics, Indiana University-Purdue University, Indianapolis, Indiana
| | - Helai P Mohammad
- Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Sha Cao
- Department of Biohealth Informatics, Indiana University-Purdue University, Indianapolis, Indiana
| | - Jay H Kalin
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Gabriel E Zentner
- Genome, Cell, and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, Indiana.,Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Heather M O'Hagan
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana. .,Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| |
Collapse
|
13
|
Fibronectin regulates the self-renewal of rabbit limbal epithelial stem cells by stimulating the Wnt11/Fzd7/ROCK non-canonical Wnt pathway. Exp Eye Res 2019; 185:107681. [DOI: 10.1016/j.exer.2019.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/23/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022]
|
14
|
Rothová M, Hölzenspies JJ, Livigni A, Villegas SN, Brickman JM. Differentiation of Mouse Embryonic Stem Cells into Ventral Foregut Precursors. ACTA ACUST UNITED AC 2018; 36:1G.3.1-1G.3.12. [DOI: 10.1002/9780470151808.sc01g03s36] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Alessandra Livigni
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, University of Edinburgh Edinburgh United Kingdom
| | - Santiago Nahuel Villegas
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, University of Edinburgh Edinburgh United Kingdom
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas, Universidad Miguel Hernandez de Elche Alicante Spain
| | - Joshua M. Brickman
- Centre (DanStem), University of Copenhagen Copenhagen Denmark
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, University of Edinburgh Edinburgh United Kingdom
| |
Collapse
|
15
|
Morgani SM, Metzger JJ, Nichols J, Siggia ED, Hadjantonakis AK. Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning. eLife 2018; 7:e32839. [PMID: 29412136 PMCID: PMC5807051 DOI: 10.7554/elife.32839] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/02/2018] [Indexed: 12/29/2022] Open
Abstract
During gastrulation epiblast cells exit pluripotency as they specify and spatially arrange the three germ layers of the embryo. Similarly, human pluripotent stem cells (PSCs) undergo spatially organized fate specification on micropatterned surfaces. Since in vivo validation is not possible for the human, we developed a mouse PSC micropattern system and, with direct comparisons to mouse embryos, reveal the robust specification of distinct regional identities. BMP, WNT, ACTIVIN and FGF directed mouse epiblast-like cells to undergo an epithelial-to-mesenchymal transition and radially pattern posterior mesoderm fates. Conversely, WNT, ACTIVIN and FGF patterned anterior identities, including definitive endoderm. By contrast, epiblast stem cells, a developmentally advanced state, only specified anterior identities, but without patterning. The mouse micropattern system offers a robust scalable method to generate regionalized cell types present in vivo, resolve how signals promote distinct identities and generate patterns, and compare mechanisms operating in vivo and in vitro and across species.
Collapse
Affiliation(s)
- Sophie M Morgani
- Developmental Biology ProgramSloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Wellcome Trust-Medical Research Council Centre for Stem Cell ResearchUniversity of CambridgeCambridgeUnited Kingdom
| | - Jakob J Metzger
- Center for Studies in Physics and BiologyThe Rockefeller UniversityNew YorkUnited States
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Centre for Stem Cell ResearchUniversity of CambridgeCambridgeUnited Kingdom
| | - Eric D Siggia
- Center for Studies in Physics and BiologyThe Rockefeller UniversityNew YorkUnited States
| | - Anna-Katerina Hadjantonakis
- Developmental Biology ProgramSloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
16
|
Wang L, Koutelou E, Hirsch C, McCarthy R, Schibler A, Lin K, Lu Y, Jeter C, Shen J, Barton MC, Dent SYR. GCN5 Regulates FGF Signaling and Activates Selective MYC Target Genes during Early Embryoid Body Differentiation. Stem Cell Reports 2017; 10:287-299. [PMID: 29249668 PMCID: PMC5768892 DOI: 10.1016/j.stemcr.2017.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022] Open
Abstract
Precise control of gene expression during development is orchestrated by transcription factors and co-regulators including chromatin modifiers. How particular chromatin-modifying enzymes affect specific developmental processes is not well defined. Here, we report that GCN5, a histone acetyltransferase essential for embryonic development, is required for proper expression of multiple genes encoding components of the fibroblast growth factor (FGF) signaling pathway in early embryoid bodies (EBs). Gcn5-/- EBs display deficient activation of ERK and p38, mislocalization of cytoskeletal components, and compromised capacity to differentiate toward mesodermal lineage. Genomic analyses identified seven genes as putative direct targets of GCN5 during early differentiation, four of which are cMYC targets. These findings established a link between GCN5 and the FGF signaling pathway and highlighted specific GCN5-MYC partnerships in gene regulation during early differentiation.
Collapse
Affiliation(s)
- Li Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Program in Epigenetics and Molecular Carcinogenesis, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Evangelia Koutelou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Calley Hirsch
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Ryan McCarthy
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Andria Schibler
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Program in Genes and Development, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Collene Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Michelle C Barton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Program in Epigenetics and Molecular Carcinogenesis, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Program in Genes and Development, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Program in Epigenetics and Molecular Carcinogenesis, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Program in Genes and Development, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
17
|
Kona SL, Shrestha A, Yi X, Joseph S, Barona HM, Martinez-Ceballos E. RARβ2-dependent signaling represses neuronal differentiation in mouse ES cells. Differentiation 2017; 98:55-61. [PMID: 29154149 PMCID: PMC5726922 DOI: 10.1016/j.diff.2017.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/30/2017] [Accepted: 11/08/2017] [Indexed: 01/03/2023]
Abstract
Embryonic Stem (ES) cells are pluripotent cells that can be induced to differentiate into cells of all three lineages: mesoderm, endoderm, and ectoderm. In culture, ES cells can be differentiated into mature neurons by treatment with Retinoic Acid (RA) and this effect is mediated mainly through the activation of the RA nuclear receptors (RAR α, β, and γ), and their isoforms. However, little is known about the role played by specific RAR types on ES cell differentiation. Here, we found that treatment of ES cells with AC55649, an RARβ2 agonist, increased endodermal marker gene expression. On the other hand, we found that the inhibition of RARβ with 5μM LE135, together with RA treatment, increased the efficiency of mouse ES cell differentiation into neurons by more than 4-fold as compared to cells treated with RA only. Finally, we performed proteomic analyses on ES cells treated with RA vs RA plus AC55649 in order to identify the signaling pathways activated by the RARβ agonist. Our proteomic analyses using antibody microarrays indicated that proteins such as p38 and AKT were upregulated in cells treated with RA plus the agonist, as compared to cells treated with RA alone. Our results indicate that RARβ may function as a repressor of neuronal differentiation through the activation of major cell signaling pathways, and that the pharmacological inhibition of this nuclear receptor may constitute a novel method to increase the efficiency of ES to neuronal differentiation in culture.
Collapse
Affiliation(s)
- Sri L Kona
- Department of Biological Sciences and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA
| | - Amita Shrestha
- Department of Biological Sciences and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA
| | - Xiaoping Yi
- Department of Biological Sciences and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA
| | - Serenthia Joseph
- Department of Biological Sciences and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA
| | - Humberto Munoz Barona
- Department of Physics and Mathematics, Southern University and A&M College, Baton Rouge, LA 70813, USA
| | - Eduardo Martinez-Ceballos
- Department of Biological Sciences and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA.
| |
Collapse
|
18
|
Anderson KGV, Hamilton WB, Roske FV, Azad A, Knudsen TE, Canham M, Forrester LM, Brickman JM. Insulin fine-tunes self-renewal pathways governing naive pluripotency and extra-embryonic endoderm. Nat Cell Biol 2017; 19:1164-1177. [DOI: 10.1038/ncb3617] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/17/2017] [Indexed: 12/16/2022]
|
19
|
Qu S, Yan L, Fang B, Ye S, Li P, Ge S, Wu J, Qu D, Song H. Generation of enhanced definitive endoderm from human embryonic stem cells under an albumin/insulin-free and chemically defined condition. Life Sci 2017; 175:37-46. [DOI: 10.1016/j.lfs.2017.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/12/2017] [Accepted: 03/21/2017] [Indexed: 12/14/2022]
|
20
|
Calle EA, Hill RC, Leiby KL, Le AV, Gard AL, Madri JA, Hansen KC, Niklason LE. Targeted proteomics effectively quantifies differences between native lung and detergent-decellularized lung extracellular matrices. Acta Biomater 2016; 46:91-100. [PMID: 27693690 DOI: 10.1016/j.actbio.2016.09.043] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/25/2016] [Accepted: 09/28/2016] [Indexed: 12/16/2022]
Abstract
Extracellular matrix is a key component of many products in regenerative medicine. Multiple regenerative medicine products currently in the clinic are comprised of human or xenogeneic extracellular matrix. In addition, whole-organ regeneration exploits decellularized native organs as scaffolds for organotypic cell culture. However, precise understanding of the constituents of such extracellular matrix-based implants and scaffolds has sorely lagged behind their use. We present here an advanced protein extraction method using known quantities of proteotypic 13C-labeled peptides to quantify matrix proteins in native and decellularized lung tissues. Using quantitative proteomics that produce picomole-level measurements of a large number of matrix proteins, we show that a mild decellularization technique ("Triton/SDC") results in near-native retention of laminins, proteoglycans, and other basement membrane and ECM-associated proteins. Retention of these biologically important glycoproteins and proteoglycans is quantified to be up to 27-fold higher in gently-decellularized lung scaffolds compared to scaffolds generated using a previously published decellularization regimen. Cells seeded onto this new decellularized matrix also proliferate robustly, showing positive staining for proliferating cell nuclear antigen (PCNA). The high fidelity of the gently decellularized scaffold as compared to the original lung extracellular matrix represents an important step forward in the ultimate recapitulation of whole organs using tissue-engineering techniques. This method of ECM and scaffold protein analysis allows for better understanding, and ultimately quality control, of matrices that are used for tissue engineering and human implantation. These results should advance regenerative medicine in general, and whole organ regeneration in particular. STATEMENT OF SIGNIFICANCE The extracellular matrix (ECM) in large part defines the biochemical and mechanical properties of tissues and organs; these inherent cues make acellular ECM scaffolds potent substrates for tissue regeneration. As such, they are increasingly prevalent in the clinic and the laboratory. However, the exact composition of these scaffolds has been difficult to ascertain. This paper uses targeted proteomics to definitively quantify 71 proteins present in acellular lung ECM scaffolds. We use this technique to compare two decellularization methods and demonstrate superior retention of ECM proteins important for cell adhesion, migration, proliferation, and differentiation in scaffolds treated with low-concentration detergent solutions. In the long term, the ability to acquire quantitative biochemical data about biological substrates will facilitate the rational design of engineered tissues and organs based on precise cell-matrix interactions.
Collapse
|
21
|
Malta DFB, Reticker-Flynn NE, da Silva CL, Cabral JMS, Fleming HE, Zaret KS, Bhatia SN, Underhill GH. Extracellular matrix microarrays to study inductive signaling for endoderm specification. Acta Biomater 2016; 34:30-40. [PMID: 26883775 DOI: 10.1016/j.actbio.2016.02.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/29/2016] [Accepted: 02/10/2016] [Indexed: 12/31/2022]
Abstract
During tissue development, stem and progenitor cells are faced with fate decisions coordinated by microenvironmental cues. Although insights have been gained from in vitro and in vivo studies, the role of the microenvironment remains poorly understood due to the inability to systematically explore combinations of stimuli at a large scale. To overcome such restrictions, we implemented an extracellular matrix (ECM) array platform that facilitates the study of 741 distinct combinations of 38 different ECM components in a systematic, unbiased and high-throughput manner. Using embryonic stem cells as a model system, we derived definitive endoderm progenitors and applied them to the array platform to study the influence of ECM, including the interactions of ECM with growth factor signaling, on the specification of definitive endoderm cells towards the liver and pancreas fates. We identified ECM combinations that influence endoderm fate decisions towards these lineages, and demonstrated the utility of this platform for studying ECM-mediated modifications to signal activation during liver specification. In particular, defined combinations of fibronectin and laminin isoforms, as well as combinations of distinct collagen subtypes, were shown to influence SMAD pathway activation and the degree of hepatic differentiation. Overall, our systematic high-throughput approach suggests that ECM components of the microenvironment have modulatory effects on endoderm differentiation, including effects on lineage fate choice and cell adhesion and survival during the differentiation process. This platform represents a robust tool for analyzing effects of ECM composition towards the continued improvement of stem cell differentiation protocols and further elucidation of tissue development processes. STATEMENT OF SIGNIFICANCE Cellular microarrays can provide the capability to perform high-throughput investigations into the role of microenvironmental signals in a variety of cell functions. This study demonstrates the utility of a high-throughput cellular microarray approach for analyzing the effects of extracellular matrix (ECM) in liver and pancreas differentiation of endoderm progenitor cells. Despite an appreciation that ECM is likely involved in these processes, the influence of ECM, particularly combinations of matrix proteins, had not been systematically explored. In addition to the identification of relevant ECM compositions, this study illustrates the capability of the cellular microarray platform to be integrated with a diverse range of cell fate measurements, which could be broadly applied towards the investigation of cell fate regulation in other tissue development and disease contexts.
Collapse
Affiliation(s)
- D F Braga Malta
- Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | | | - C L da Silva
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - J M S Cabral
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - H E Fleming
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - K S Zaret
- University of Pennsylvania, Philadelphia, PA, United States
| | - S N Bhatia
- Massachusetts Institute of Technology, Cambridge, MA, United States; The Howard Hughes Medical Institute, Cambridge, MA, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 021392, United States; Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - G H Underhill
- University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
22
|
Mohammadnia A, Yaqubi M, Pourasgari F, Neely E, Fallahi H, Massumi M. Signaling and Gene Regulatory Networks Governing Definitive Endoderm Derivation From Pluripotent Stem Cells. J Cell Physiol 2016; 231:1994-2006. [PMID: 26755186 DOI: 10.1002/jcp.25308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 01/06/2016] [Indexed: 11/07/2022]
Abstract
The generation of definitive endoderm (DE) from pluripotent stem cells (PSCs) is a fundamental stage in the formation of highly organized visceral organs, such as the liver and pancreas. Currently, there is a need for a comprehensive study that illustrates the involvement of different signaling pathways and their interactions in the derivation of DE cells from PSCs. This study aimed to identify signaling pathways that have the greatest influence on DE formation using analyses of transcriptional profiles, protein-protein interactions, protein-DNA interactions, and protein localization data. Using this approach, signaling networks involved in DE formation were constructed using systems biology and data mining tools, and the validity of the predicted networks was confirmed experimentally by measuring the mRNA levels of hub genes in several PSCs-derived DE cell lines. Based on our analyses, seven signaling pathways, including the BMP, ERK1-ERK2, FGF, TGF-beta, MAPK, Wnt, and PIP signaling pathways and their interactions, were found to play a role in the derivation of DE cells from PSCs. Lastly, the core gene regulatory network governing this differentiation process was constructed. The results of this study could improve our understanding surrounding the efficient generation of DE cells for the regeneration of visceral organs. J. Cell. Physiol. 231: 1994-2006, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Abdulshakour Mohammadnia
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Moein Yaqubi
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.,Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, Quebec, Canada.,Douglas Mental Health University Institute, McGill University, Montréal, Quebec, Canada
| | - Farzaneh Pourasgari
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Karaj, Iran.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Eric Neely
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Hossein Fallahi
- Department of Biology, School of Science, Razi University, Kermanshah, Iran.,Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Massumi
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Chen D, Wang X, Liang D, Gordon J, Mittal A, Manley N, Degenhardt K, Astrof S. Fibronectin signals through integrin α5β1 to regulate cardiovascular development in a cell type-specific manner. Dev Biol 2015; 407:195-210. [PMID: 26434918 DOI: 10.1016/j.ydbio.2015.09.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/09/2015] [Accepted: 09/12/2015] [Indexed: 01/23/2023]
Abstract
Fibronectin (Fn1) is an evolutionarily conserved extracellular matrix glycoprotein essential for embryonic development. Global deletion of Fn1 leads to mid-gestation lethality from cardiovascular defects. However, severe morphogenetic defects that occur early in embryogenesis in these embryos precluded assigning a direct role for Fn1 in cardiovascular development. We noticed that Fn1 is expressed in strikingly non-uniform patterns during mouse embryogenesis, and that its expression is particularly enriched in the pharyngeal region corresponding with the pharyngeal arches 3, 4, and 6. This region bears a special importance for the developing cardiovascular system, and we hypothesized that the localized enrichment of Fn1 in the pharyngeal region may be essential for cardiovascular morphogenesis. To test this hypothesis, we ablated Fn1 using the Isl1(Cre) knock-in strain of mice. Deletion of Fn1 using the Isl1(Cre) strain resulted in defective formation of the 4th pharyngeal arch arteries (PAAs), aberrant development of the cardiac outflow tract (OFT), and ventricular septum defects. To determine the cell types responding to Fn1 signaling during cardiovascular development, we deleted a major Fn1 receptor, integrin α5 using the Isl1(Cre) strain, and observed the same spectrum of abnormalities seen in the Fn1 conditional mutants. Additional conditional mutagenesis studies designed to ablate integrin α5 in distinct cell types within the Isl1(+) tissues and their derivatives, suggested that the expression of integrin α5 in the pharyngeal arch mesoderm, endothelium, surface ectoderm and the neural crest were not required for PAA formation. Our studies suggest that an (as yet unknown) integrin α5-dependent signal extrinsic to the pharyngeal endothelium mediates the formation of the 4th PAAs.
Collapse
Affiliation(s)
- Dongying Chen
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA; Cell and Developmental Biology graduate program, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Xia Wang
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Dong Liang
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Julie Gordon
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Ashok Mittal
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Nancy Manley
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Karl Degenhardt
- Children's Hospital of Pennsylvania, University of Pennsylvania, Philadelphia, PA 19107, USA
| | - Sophie Astrof
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA; Cell and Developmental Biology graduate program, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
24
|
Abstract
The liver is a central regulator of metabolism, and liver failure thus constitutes a major health burden. Understanding how this complex organ develops during embryogenesis will yield insights into how liver regeneration can be promoted and how functional liver replacement tissue can be engineered. Recent studies of animal models have identified key signaling pathways and complex tissue interactions that progressively generate liver progenitor cells, differentiated lineages and functional tissues. In addition, progress in understanding how these cells interact, and how transcriptional and signaling programs precisely coordinate liver development, has begun to elucidate the molecular mechanisms underlying this complexity. Here, we review the lineage relationships, signaling pathways and transcriptional programs that orchestrate hepatogenesis.
Collapse
Affiliation(s)
- Miriam Gordillo
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Valerie Gouon-Evans
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
25
|
Viotti M, Foley AC, Hadjantonakis AK. Gutsy moves in mice: cellular and molecular dynamics of endoderm morphogenesis. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0547. [PMID: 25349455 DOI: 10.1098/rstb.2013.0547] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite the importance of the gut and its accessory organs, our understanding of early endoderm development is still incomplete. Traditionally, endoderm has been difficult to study because of its small size and relative fragility. However, recent advances in live cell imaging technologies have dramatically expanded our understanding of this tissue, adding a new appreciation for the complex molecular and morphogenetic processes that mediate gut formation. Several spatially and molecularly distinct subpopulations have been shown to exist within the endoderm before the onset of gastrulation. Here, we review findings that have uncovered complex cell movements within the endodermal layer, before and during gastrulation, leading to the conclusion that cells from primitive endoderm contribute descendants directly to gut.
Collapse
Affiliation(s)
- Manuel Viotti
- Genentech Incorporated, South San Francisco, CA 94080, USA
| | - Ann C Foley
- Department of Bioengineering, Clemson University, Charleston, SC 29425, USA
| | | |
Collapse
|
26
|
Santhakumar R, Vidyasekar P, Verma RS. Cardiogel: a nano-matrix scaffold with potential application in cardiac regeneration using mesenchymal stem cells. PLoS One 2014; 9:e114697. [PMID: 25521816 PMCID: PMC4270637 DOI: 10.1371/journal.pone.0114697] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/13/2014] [Indexed: 01/05/2023] Open
Abstract
3-Dimensional conditions for the culture of Bone Marrow-derived Stromal/Stem Cells (BMSCs) can be generated with scaffolds of biological origin. Cardiogel, a cardiac fibroblast-derived Extracellular Matrix (ECM) has been previously shown to promote cardiomyogenic differentiation of BMSCs and provide protection against oxidative stress. To determine the matrix composition and identify significant proteins in cardiogel, we investigated the differences in the composition of this nanomatrix and a BMSC-derived ECM scaffold, termed as ‘mesogel’. An optimized protocol was developed that resulted in efficient decellularization while providing the maximum yield of ECM. The proteins were sequentially solubilized using acetic acid, Sodium Dodecyl Sulfate (SDS) and Dithiothreitol (DTT). These proteins were then analyzed using surfactant-assisted in-solution digestion followed by nano-liquid chromatography and tandem mass spectrometry (nLC-MS/MS). The results of these analyses revealed significant differences in their respective compositions and 17 significant ECM/matricellular proteins were differentially identified between cardiogel and mesogel. We observed that cardiogel also promoted cell proliferation, adhesion and migration while enhancing cardiomyogenic differentiation and angiogenesis. In conclusion, we developed a reproducible method for efficient extraction and solubilization of in vitro cultured cell-derived extracellular matrix. We report several important proteins differentially identified between cardiogel and mesogel, which can explain the biological properties of cardiogel. We also demonstrated the cardiomyogenic differentiation and angiogenic potential of cardiogel even in the absence of any external growth factors. The transplantation of Bone Marrow derived Stromal/Stem Cells (BMSCs) cultured on such a nanomatrix has potential applications in regenerative therapy for Myocardial Infarction (MI).
Collapse
Affiliation(s)
- Rajalakshmi Santhakumar
- Stem cell and Molecular Biology Lab, Department of Biotechnology, Indian Institute of Technology Madras (IITM), Chennai, Tamil Nadu, India
| | - Prasanna Vidyasekar
- Stem cell and Molecular Biology Lab, Department of Biotechnology, Indian Institute of Technology Madras (IITM), Chennai, Tamil Nadu, India
| | - Rama Shanker Verma
- Stem cell and Molecular Biology Lab, Department of Biotechnology, Indian Institute of Technology Madras (IITM), Chennai, Tamil Nadu, India
- * E-mail:
| |
Collapse
|
27
|
Liang D, Wang X, Mittal A, Dhiman S, Hou SY, Degenhardt K, Astrof S. Mesodermal expression of integrin α5β1 regulates neural crest development and cardiovascular morphogenesis. Dev Biol 2014; 395:232-44. [PMID: 25242040 DOI: 10.1016/j.ydbio.2014.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 01/09/2023]
Abstract
Integrin α5-null embryos die in mid-gestation from severe defects in cardiovascular morphogenesis, which stem from defective development of the neural crest, heart and vasculature. To investigate the role of integrin α5β1 in cardiovascular development, we used the Mesp1(Cre) knock-in strain of mice to ablate integrin α5 in the anterior mesoderm, which gives rise to all of the cardiac and many of the vascular and muscle lineages in the anterior portion of the embryo. Surprisingly, we found that mutant embryos displayed numerous defects related to the abnormal development of the neural crest such as cleft palate, ventricular septal defect, abnormal development of hypoglossal nerves, and defective remodeling of the aortic arch arteries. We found that defects in arch artery remodeling stem from the role of mesodermal integrin α5β1 in neural crest proliferation and differentiation into vascular smooth muscle cells, while proliferation of pharyngeal mesoderm and differentiation of mesodermal derivatives into vascular smooth muscle cells was not defective. Taken together our studies demonstrate a requisite role for mesodermal integrin α5β1 in signaling between the mesoderm and the neural crest, thereby regulating neural crest-dependent morphogenesis of essential embryonic structures.
Collapse
Affiliation(s)
- Dong Liang
- Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Xia Wang
- Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Ashok Mittal
- Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Sonam Dhiman
- Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Shuan-Yu Hou
- Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Karl Degenhardt
- Childrens Hospital of Pennsylvania, University of Pennsylvania, Philadelphia, PA 19107, USA
| | - Sophie Astrof
- Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
28
|
Brachyury cooperates with Wnt/β-catenin signalling to elicit primitive-streak-like behaviour in differentiating mouse embryonic stem cells. BMC Biol 2014; 12:63. [PMID: 25115237 PMCID: PMC4171571 DOI: 10.1186/s12915-014-0063-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/25/2014] [Indexed: 12/13/2022] Open
Abstract
Background The formation of the primitive streak is the first visible sign of gastrulation, the process by which the three germ layers are formed from a single epithelium during early development. Embryonic stem cells (ESCs) provide a good system for understanding the molecular and cellular events associated with these processes. Previous work, both in embryos and in culture, has shown how converging signals from both nodal/TGFβR and Wnt/β-catenin signalling pathways specify cells to adopt a primitive-streak-like fate and direct them to undertake an epithelial-to-mesenchymal transition (EMT). However, many of these approaches have relied on genetic analyses without taking into account the temporal progression of events within single cells. In addition, it is still unclear to what extent events in the embryo are able to be reproduced in culture. Results Here, we combine flow cytometry and a quantitative live single-cell imaging approach to demonstrate how the controlled differentiation of mouse ESCs towards a primitive streak fate in culture results in cells displaying many of the characteristics observed during early mouse development including transient brachyury expression, EMT and increased motility. We also find that the EMT initiates the process, and this is both fuelled and terminated by the action of brachyury, whose expression is dependent on the EMT and β-catenin activity. Conclusions As a consequence of our analysis, we propose that a major output of brachyury expression is in controlling the velocity of the cells that are transiting out of the primitive streak. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0063-7) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Pulina M, Liang D, Astrof S. Shape and position of the node and notochord along the bilateral plane of symmetry are regulated by cell-extracellular matrix interactions. Biol Open 2014; 3:583-90. [PMID: 24928429 PMCID: PMC4154294 DOI: 10.1242/bio.20148243] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The node and notochord (and their equivalents in other species) are essential signaling centers, positioned along the plane of bilateral symmetry in developing vertebrate embryos. However, genes and mechanisms regulating morphogenesis of these structures and their placement along the embryonic midline are not well understood. In this work, we provide the first evidence that the position of the node and the notochord along the bilateral plane of symmetry are under genetic control and are regulated by integrin α5β1 and fibronectin in mice. We found that the shape of the node is often inverted in integrin α5-null and fibronectin-null mutants, and that the positioning of node and the notochord is often skewed away from the perceived plane of embryonic bilateral of symmetry. Our studies also show that the shape and position of the notochord are dependent on the shape and embryonic placement of the node. Our studies suggest that fibronectin regulates the shape of the node by affecting apico-basal polarity of the nodal cells. Taken together, our data indicate that cell–extracellular matrix interactions mediated by integrin α5β1 and fibronectin regulate the geometry of the node as well as the placement of the node and notochord along the plane of bilateral symmetry in the mammalian embryo.
Collapse
Affiliation(s)
- Maria Pulina
- Present address: Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, NY 10065, USA
| | - Dong Liang
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA Present address: Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, NY 10065, USA
| | - Sophie Astrof
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA Present address: Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|