1
|
Pacheco-Castillo H, Zagal-Huerta EE, Acevedo-Fernández JJ, Negrete-León E, Nishigaki T, Beltrán C. Hyperglycemia adversely affects critical physiological events related to rat sperm capacitation. Biochem Biophys Res Commun 2024; 734:150610. [PMID: 39217810 DOI: 10.1016/j.bbrc.2024.150610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Hyperglycemia, the hallmark of diabetes mellitus (DM), is the main cause of DM-related systemic complications, including reproductive issues. Furthermore, the incidence of DM in males of reproductive ages is becoming an increasing concern, as the complexity of sperm capacitation (an essential process for fertilizing the egg) extends beyond conventional sperm parameters such as count, viability, and motility. Capacitation defects cause male infertility, and DM-related hyperglycemia may affect this process. We explore the effects of uncontrolled hyperglycemia on sperm using alloxan-induced hyperglycemic Wistar rats. In addition to assessing conventional sperm parameters, we also evaluated functional indicators, including hyperactivation (HA) with a pharmacological approach and assessed its effects with a computer-assisted sperm analysis (CASA); fluorescence indicators to monitor membrane potential (EmR, DiSC3(5)) and mitochondrial membrane potential (Ψ, JC-1); CatSper activity, using its ability to permeate Na+ ions, and ATP levels with the luciferin-luciferase reaction. We confirmed previous findings with our hyperglycemic model, which replicated the typical reduction on conventional sperm parameters. In sperm from hyperglycemic rats, we observed increased motility and HA levels after pharmacological treatment. Additionally, CatSper activity was unaffected by hyperglycemia, while EmR was hyperpolarized under non-capacitating condition. Finally, we noted a low percentage of hyperpolarized Ψ and reduced ATP content. This study highlights the significance of impact of hyperglycemia on sperm physiology and capacitation. We proposed that low ATP levels perturb energy state, signaling pathways, ion channels activity, motility, and HA. Our findings offer insight into DM-associated infertility and potential treatment strategies.
Collapse
Affiliation(s)
- Hiram Pacheco-Castillo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Erika Elena Zagal-Huerta
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Juan José Acevedo-Fernández
- Laboratorio de Electrofisiología y Bioevaluación Farmacológica, Facultad de Medicina, Universidad Autónoma del Estado de Morelos (UAEM), Leñeros S/N, Los Volcanes, Cuernavaca, Morelos, 62350, Mexico.
| | - Elizabeth Negrete-León
- Laboratorio de Electrofisiología y Bioevaluación Farmacológica, Facultad de Medicina, Universidad Autónoma del Estado de Morelos (UAEM), Leñeros S/N, Los Volcanes, Cuernavaca, Morelos, 62350, Mexico.
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Carmen Beltrán
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
2
|
Ji N, Wang X, Zeng X, Kang H. Pharmacological inhibition of KSper impairs flagellar pH homeostasis of human spermatozoa. Andrology 2024. [PMID: 39498893 DOI: 10.1111/andr.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/03/2024] [Accepted: 10/26/2024] [Indexed: 11/07/2024]
Abstract
BACKGROUND Sperm-specific potassium channel (KSper) comprised of pore-forming subunit SLO3 and auxiliary subunit LRRC52 is of importance for sperm fertility. The deficiency of KSper in both mice and humans resulted in severe impairments of sperm functions including sperm hyperactivity and acrosome reaction. Previous reports suggested that mouse KSper modulated sperm function possibly by affecting sperm intracellular pH (pHi). However, the precise signaling mechanism of human KSper (hKSper) on the regulation of sperm functions was largely unclear. OBJECTIVE To explore the regulatory role of hKSper on sperm flagellar pHi. MATERIALS AND METHODS More than 50 sperm donors were recruited during a period of 1 year. As reported in our previous work, we quantitatively measured flagellar pHi by employing a single-cell pH fluorescent recording on human spermatozoa loaded with pH indicator pHrodo Red. Three different hKSper antagonists including clofilium, quinidine, and a polyclonal antibody of LRRC52 (LID1) were utilized to evaluate the effect of hKSper inhibition on sperm flagellar pHi. RESULTS Given the predominant role of hKSper on the regulation of membrane potential (Em), we first detected a considerable depolarization (about 25-30 mV) of Em evoked by clofilium and quinidine. Subsequently, it was shown that flagellar pHi values of human spermatozoa were significantly decreased by the treatment of clofilium (50 µM, from 7.13 ± 0.11 to 6.43 ± 0.12), quinidine (500 µM, from 7.00 ± 0.11 to 6.64 ± 0.08) and LID1 (20 µg/mL, from 6.98 ± 0.16 to 6.67 ± 0.22). Moreover, we found that when human spermatozoa were pre-incubated with a high K+ solution (135 mM), both the depolarization of Em and the acidification of flagellar pHi evoked by clofilium and quinidine were abolished. In addition, we found that extracellular substitution of N-methyl-D-glucamine for Na+ abolished pHi acidification induced by hKSper inhibition. DISCUSSION AND CONCLUSION Our results demonstrate that hKSper inhibition evokes flagellar pHi acidification of human spermatozoa, suggesting that flagellar pHi maintenance is an important signaling mechanism of hKSper on the regulation of sperm functions.
Collapse
Affiliation(s)
- Nanxi Ji
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Xiaorong Wang
- Center for Reproductive Medicine, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Hang Kang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| |
Collapse
|
3
|
Lorenz J, Eisenhardt C, Mittermair T, Kulle AE, Holterhus PM, Fobker M, Boenigk W, Nordhoff V, Behre HM, Strünker T, Brenker C. The sperm-specific K + channel Slo3 is inhibited by albumin and steroids contained in reproductive fluids. Front Cell Dev Biol 2024; 12:1275116. [PMID: 39310227 PMCID: PMC11413451 DOI: 10.3389/fcell.2024.1275116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/19/2024] [Indexed: 09/25/2024] Open
Abstract
To locate and fertilize the egg, sperm probe the varying microenvironment prevailing at different stages during their journey across the female genital tract. To this end, they are equipped with a unique repertoire of mostly sperm-specific proteins. In particular, the flagellar Ca2+ channel CatSper has come into focus as a polymodal sensor used by human sperm to register ligands released into the female genital tract. Here, we provide the first comprehensive study on the pharmacology of the sperm-specific human Slo3 channel, shedding light on its modulation by reproductive fluids and their constituents. We show that seminal fluid and contained prostaglandins and Zn2+ do not affect the channel, whereas human Slo3 is inhibited in a non-genomic fashion by diverse steroids as well as by albumin, which are released into the oviduct along with the egg. This indicates that not only CatSper but also Slo3 harbours promiscuous ligand-binding sites that can accommodate structurally diverse molecules, suggesting that Slo3 is involved in chemosensory signalling in human sperm.
Collapse
Affiliation(s)
- Johannes Lorenz
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Clara Eisenhardt
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Teresa Mittermair
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Alexandra E. Kulle
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Christian-Albrechts-University, Kiel, Germany
| | - Paul Martin Holterhus
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Christian-Albrechts-University, Kiel, Germany
| | - Manfred Fobker
- Center for Laboratory Medicine, University Hospital, Münster, Germany
| | - Wolfgang Boenigk
- Max Planck Institute for Neurobiology of Behaviour—Caesar, Bonn, Germany
| | - Verena Nordhoff
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | | | - Timo Strünker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Christoph Brenker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| |
Collapse
|
4
|
Kim J, So B, Heo Y, So H, Jo JK. Advances in Male Contraception: When Will the Novel Male Contraception be Available? World J Mens Health 2024; 42:487-501. [PMID: 38164023 PMCID: PMC11216971 DOI: 10.5534/wjmh.230118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 01/03/2024] Open
Abstract
Many contraceptive methods have been developed over the years due to high demand. However, female contraceptive pills and devices do not work for all females due to health conditions and side effects. Also, the number of males who want to actively participate in family planning is gradually increasing. However, the only contraceptive options currently available to males are condoms and vasectomy. Therefore, many male contraceptive methods, including medication (hormonal and non-hormonal therapy) and mechanical methods, are under development. Reversibility, safety, persistence, degree of invasion, promptness, and the suppression of anti-sperm antibody formation are essential factors in the development of male contraceptive methods. In this paper, male contraceptive methods under development are reviewed according to those essential factors. Furthermore, the timeline for the availability of a new male contraception is discussed.
Collapse
Affiliation(s)
- Jongwon Kim
- Department of Medical and Digital Engineering, Hanyang University, Seoul, Korea
| | - Byeongchan So
- Department of Medical and Digital Engineering, Hanyang University, Seoul, Korea
| | - Yongki Heo
- Department of Medical and Digital Engineering, Hanyang University, Seoul, Korea
| | - Hongyun So
- Department of Medical and Digital Engineering, Hanyang University, Seoul, Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, Korea
- Department of Mechanical Engineering, Hanyang University, Seoul, Korea.
| | - Jung Ki Jo
- Department of Medical and Digital Engineering, Hanyang University, Seoul, Korea
- Department of Urology, College of Medicine, Hanyang University, Seoul, Korea.
| |
Collapse
|
5
|
Dai P, Zou M, Cai Z, Zeng X, Zhang X, Liang M. pH Homeodynamics and Male Fertility: A Coordinated Regulation of Acid-Based Balance during Sperm Journey to Fertilization. Biomolecules 2024; 14:685. [PMID: 38927088 PMCID: PMC11201807 DOI: 10.3390/biom14060685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
pH homeostasis is crucial for spermatogenesis, sperm maturation, sperm physiological function, and fertilization in mammals. HCO3- and H+ are the most significant factors involved in regulating pH homeostasis in the male reproductive system. Multiple pH-regulating transporters and ion channels localize in the testis, epididymis, and spermatozoa, such as HCO3- transporters (solute carrier family 4 and solute carrier family 26 transporters), carbonic anhydrases, and H+-transport channels and enzymes (e.g., Na+-H+ exchangers, monocarboxylate transporters, H+-ATPases, and voltage-gated proton channels). Hormone-mediated signals impose an influence on the production of some HCO3- or H+ transporters, such as NBCe1, SLC4A2, MCT4, etc. Additionally, ion channels including sperm-specific cationic channels for Ca2+ (CatSper) and K+ (SLO3) are directly or indirectly regulated by pH, exerting specific actions on spermatozoa. The slightly alkaline testicular pH is conducive to spermatogenesis, whereas the epididymis's low HCO3- concentration and acidic lumen are favorable for sperm maturation and storage. Spermatozoa pH increases substantially after being fused with seminal fluid to enhance motility. In the female reproductive tract, sperm are subjected to increasing concentrations of HCO3- in the uterine and fallopian tube, causing a rise in the intracellular pH (pHi) of spermatozoa, leading to hyperpolarization of sperm plasma membranes, capacitation, hyperactivation, acrosome reaction, and ultimately fertilization. The physiological regulation initiated by SLC26A3, SLC26A8, NHA1, sNHE, and CFTR localized in sperm is proven for certain to be involved in male fertility. This review intends to present the key factors and characteristics of pHi regulation in the testes, efferent duct, epididymis, seminal fluid, and female reproductive tract, as well as the associated mechanisms during the sperm journey to fertilization, proposing insights into outstanding subjects and future research trends.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.Z.); (Z.C.); (X.Z.)
| | - Min Liang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.Z.); (Z.C.); (X.Z.)
| |
Collapse
|
6
|
Mofadel HA, Hussein HA, Abd-Elhafee HH, El-Sherry TM. Impact of various cryo-preservation steps on sperm rheotaxis and sperm kinematics in bull. Sci Rep 2024; 14:11403. [PMID: 38762581 PMCID: PMC11636841 DOI: 10.1038/s41598-024-61617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
Semen cryopreservation is an important tool that has massively contributed to the progression of animal reproduction, especially in cattle. Nonetheless, a large part of the sperm population suffers from cryostress and loses fertility during the process. Although bovine semen cryopreservation is more advanced than any other species, there are still some missing links in the technology knowledge. The aim of the current study was to detect the effect of cryopreservation steps on sperm rheotaxis. Semen samples were collected from sex bulls and analyzed inside a microfluidic platform with CASA after each step of cryopreservation, including control, dilution with yolk citrate, cryoprotectant addition, and cooling or freezing. The results showed that positive rheotaxis % (PR) was not affected during cryopreservation. On the contrary, the sperm kinematics of the positive rheotactic sperm undergo significant changes, as velocity parameters (VCL, VSL, and VAP) were lower in both the cryoprotectant adding and cooling/freezing steps than in the control and yolk citrate dilution steps, while progression parameters (LIN and BCF) were higher in the cryoprotectant and cooling/freezing steps than in the control and yolk citrate dilution steps. Beside these results, an interesting phenomenon of sperm backward positive rheotaxis has been observed. The results of backward sperm rheotaxis samples revealed a significant decrease in PR%, while all sperm kinematics except BCF were significantly higher than normal rheotaxis samples. Based on these results, we conclude that positive rheotactic sperm cells are the elite of the sperm population; however, they still get some sublethal cryodamage, as shown by alterations in sperm kinematics. We also suggest that the sperm-positive rheotaxis mechanism is a mixture of an active and passive process rather than a passive physical one.
Collapse
Affiliation(s)
- Haitham A Mofadel
- Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Hassan A Hussein
- Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Hanan H Abd-Elhafee
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Taymour M El-Sherry
- Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
7
|
Balestrini PA, Sulzyk V, Jabloñski M, Schiavi-Ehrenhaus LJ, González SN, Ferreira JJ, Gómez-Elías MD, Pomata P, Luque GM, Krapf D, Cuasnicu PS, Santi CM, Buffone MG. Membrane potential hyperpolarization: a critical factor in acrosomal exocytosis and fertilization in sperm within the female reproductive tract. Front Cell Dev Biol 2024; 12:1386980. [PMID: 38803392 PMCID: PMC11128623 DOI: 10.3389/fcell.2024.1386980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Hyperpolarization of the membrane potential (Em), a phenomenon regulated by SLO3 channels, stands as a central feature in sperm capacitation-a crucial process conferring upon sperm the ability to fertilize the oocyte. In vitro studies demonstrated that Em hyperpolarization plays a pivotal role in facilitating the mechanisms necessary for the development of hyperactivated motility (HA) and acrosomal exocytosis (AE) occurrence. Nevertheless, the physiological significance of sperm Em within the female reproductive tract remains unexplored. As an approach to this question, we studied sperm migration and AE incidence within the oviduct in the absence of Em hyperpolarization using a novel mouse model established by crossbreeding of SLO3 knock-out (KO) mice with EGFP/DsRed2 mice. Sperm from this model displays impaired HA and AE in vitro. Interestingly, examination of the female reproductive tract shows that SLO3 KO sperm can reach the ampulla, mirroring the quantity of sperm observed in wild-type (WT) counterparts, supporting that the HA needed to reach the fertilization site is not affected. However, a noteworthy distinction emerges-unlike WT sperm, the majority of SLO3 KO sperm arrive at the ampulla with their acrosomes still intact. Of the few SLO3 KO sperm that do manage to reach the oocytes within this location, fertilization does not occur, as indicated by the absence of sperm pronuclei in the MII-oocytes recovered post-mating. In vitro, SLO3 KO sperm fail to penetrate the ZP and fuse with the oocytes. Collectively, these results underscore the vital role of Em hyperpolarization in AE and fertilization within their physiological context, while also revealing that Em is not a prerequisite for the development of the HA motility, essential for sperm migration through the female tract to the ampulla.
Collapse
Affiliation(s)
- Paula A. Balestrini
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Valeria Sulzyk
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Martina Jabloñski
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Liza J. Schiavi-Ehrenhaus
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Soledad N. González
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Juan J. Ferreira
- Department of OB/GYN, Washington University School of Medicine, Saint Louis, MO, United States
| | - Matías D. Gómez-Elías
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Pablo Pomata
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Guillermina M. Luque
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Patricia S. Cuasnicu
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Celia M. Santi
- Department of OB/GYN, Washington University School of Medicine, Saint Louis, MO, United States
| | - Mariano G. Buffone
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| |
Collapse
|
8
|
Zhang J, Zheng L, Chen Y, Luo T, Zeng X, Kang H. LRRC52 is likely a functional component of human KSper†. Biol Reprod 2024; 110:711-721. [PMID: 38267364 DOI: 10.1093/biolre/ioae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/19/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024] Open
Abstract
Completion of fertilization is orchestrated by various ion channels in sperm membrane. Hyperpolarization of membrane potential, an indispensable event during the capacitation process, is dominated by sperm potassium channel (KSper). In addition to sperm-specific SLO3, which forms the channel pore, the auxiliary subunit leucine-rich-repeat-containing protein 52 (LRRC52) is required to form mKSper to function under physiological conditions. However, in human sperm, although most evidence supports that hSLO3 is the pore-forming subunit, whether hLRRC52 contributes to hKSper conductance and modulates sperm function remains to be understood. Here, using an extracellular segment that is homologous between mice and humans as an antigen, we developed a polyclonal antibody designed as LID1 that specifically detected mLRRC52 and performed co-immunoprecipitation with mSLO3. Additionally, patch-clamp recordings of mouse sperm showed that, physiological activation of mKSper and sperm functions were dramatically attenuated after treatment with LID1, indicating that LID1 functionally disrupted the regulation of mLRRC52 on mKSper. Next, LID1 was used to investigate the significance of hLRRC52 for hKSper activation. As a result, hLRRC52 was expressed in human sperm and might be assembled with hSLO3. More importantly, LID1 inhibited hKSper currents and depolarized sperm membrane potential, supporting essential modulation of hLRRC52 in hKSper. Ca2+ signaling of human sperm was also compromised in the presence of LID1, which impaired sperm motility and acrosome reaction. Because LID1 specifically inhibited both mKSper and hKSper but not mCatSper or hCatSper, our results suggest that hLRRC52 functions as an important component of hKSper and regulates sperm physiological functions.
Collapse
Affiliation(s)
- Jiali Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Liping Zheng
- Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Ying Chen
- Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Tao Luo
- Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Hang Kang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
9
|
Liang M, Ji N, Song J, Kang H, Zeng X. Flagellar pH homeostasis mediated by Na+/H+ exchangers regulates human sperm functions through coupling with CatSper and KSper activation. Hum Reprod 2024; 39:674-688. [PMID: 38366201 DOI: 10.1093/humrep/deae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/19/2024] [Indexed: 02/18/2024] Open
Abstract
STUDY QUESTION Whether and how do Na+/H+ exchangers (NHEs) regulate the physiological functions of human sperm? SUMMARY ANSWER NHE-mediated flagellar intracellular pH (pHi) homeostasis facilitates the activation of the pH-sensitive, sperm-specific Ca2+ channel (CatSper) and the sperm-specific K+ channel (KSper), which subsequently modulate sperm motility, hyperactivation, flagellar tyrosine phosphorylation, and the progesterone (P4)-induced acrosome reaction. WHAT IS KNOWN ALREADY Sperm pHi alkalization is an essential prerequisite for the acquisition of sperm-fertilizing capacity. Different sperm functions are strictly controlled by particular pHi regulatory mechanisms. NHEs are suggested to modulate sperm H+ efflux. STUDY DESIGN, SIZE, DURATION This was a laboratory study that used samples from >50 sperm donors over a period of 1 year. To evaluate NHE action on human sperm function, 5-(N,N-dimethyl)-amiloride (DMA), a highly selective inhibitor of NHEs, was utilized. All experiments were repeated at least five times using different individual sperm samples or cells. PARTICIPANTS/MATERIALS, SETTING, METHODS By utilizing the pH fluorescent indicator pHrodo Red-AM, we detected alterations in single-cell pHi value in human sperm. The currents of CatSper and KSper in human sperm were recorded by the whole-cell patch-clamp technique. Changes in population and single-cell Ca2+ concentrations ([Ca2+]i) of human sperm loaded with Fluo 4-AM were measured. Membrane potential (Vm) and population pHi were quantitatively examined by a multimode plate reader after sperm were loaded with 3,3'-dipropylthiadicarbocyanine iodide and 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein, acetoxymethyl ester, respectively. Sperm motility parameters were assessed by a computer-assisted semen analysis system. Tyrosine phosphorylation was determined by immunofluorescence, and sperm acrosome reaction was evaluated by Pisum sativum agglutinin-FITC staining. MAIN RESULTS AND THE ROLE OF CHANCE DMA-induced NHEs inhibition severely acidified the human sperm flagellar pHi from 7.20 ± 0.04 to 6.38 ± 0.12 (mean ± SEM), while the effect of DMA on acrosomal pHi was less obvious (from 5.90 ± 0.13 to 5.57 ± 0.12, mean ± SEM). The whole-cell patch-clamp recordings revealed that NHE inhibition remarkably suppressed alkalization-induced activation of CatSper and KSper. As a consequence, impairment of [Ca2+]i homeostasis and Vm maintenance were detected in the presence of DMA. During the capacitation process, pre-treatment with DMA for 2 h potently decreased sperm pHi, which in turn decreased sperm motility and kinetic parameters. Sperm capacitation-associated functions, including hyperactivation, tyrosine phosphorylation, and P4-induced acrosome reaction, were also compromised by NHE inhibition. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This was an in vitro study. Caution should be taken when extrapolating these results to in vivo applications. WIDER IMPLICATIONS OF THE FINDINGS This study revealed that NHEs are important physiological regulators for human CatSper and KSper, which are indispensable for human sperm fertility, suggesting that malfunction of NHEs could be an underlying mechanism for the pathogenesis of male infertility. FUNDING/COMPETING INTEREST(S) This work was supported by the National Natural Science Foundation of China (32271167 and 81871202 to X.Z.), Jiangsu Innovation and Entrepreneurship Talent Plan (JSSCRC20211543 to X.Z.), the Social Development Project of Jiangsu Province (No. BE2022765 to X.Z.), the Society and livelihood Project of Nantong City (No. MS22022087 to X.Z.), and the Natural Science Foundation of Jiangsu Province (BK20220608 to H.K.). The authors have no competing interests to declare.
Collapse
Affiliation(s)
- Min Liang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Nanxi Ji
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Jian Song
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Hang Kang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| |
Collapse
|
10
|
Delgado-Bermúdez A, Yeste M, Bonet S, Pinart E. Physiological role of potassium channels in mammalian germ cell differentiation, maturation, and capacitation. Andrology 2024. [PMID: 38436215 DOI: 10.1111/andr.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Ion channels are essential for differentiation and maturation of germ cells, and even for fertilization in mammals. Different types of potassium channels have been identified, which are grouped into voltage-gated channels (Kv), ligand-gated channels (Kligand ), inwardly rectifying channels (Kir ), and tandem pore domain channels (K2P ). MATERIAL-METHODS The present review includes recent findings on the role of potassium channels in sperm physiology of mammals. RESULTS-DISCUSSION While most studies conducted thus far have been focused on the physiological role of voltage- (Kv1, Kv3, and Kv7) and calcium-gated channels (SLO1 and SLO3) during sperm capacitation, especially in humans and rodents, little data about the types of potassium channels present in the plasma membrane of differentiating germ cells exist. In spite of this, recent evidence suggests that the content and regulation mechanisms of these channels vary throughout spermatogenesis. Potassium channels are also essential for the regulation of sperm cell volume during epididymal maturation and for preventing premature membrane hyperpolarization. It is important to highlight that the nature, biochemical properties, localization, and regulation mechanisms of potassium channels are species-specific. In effect, while SLO3 is the main potassium channel involved in the K+ current during sperm capacitation in rodents, different potassium channels are implicated in the K+ outflow and, thus, plasma membrane hyperpolarization during sperm capacitation in other mammalian species, such as humans and pigs. CONCLUSIONS Potassium conductance is essential for male fertility, not only during sperm capacitation but throughout the spermiogenesis and epididymal maturation.
Collapse
Affiliation(s)
- Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Department of Biology, Faculty of Sciences, Unit of Cell Biology, University of Girona, Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Department of Biology, Faculty of Sciences, Unit of Cell Biology, University of Girona, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Department of Biology, Faculty of Sciences, Unit of Cell Biology, University of Girona, Girona, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Department of Biology, Faculty of Sciences, Unit of Cell Biology, University of Girona, Girona, Spain
| |
Collapse
|
11
|
Takei GL. Molecular mechanisms of mammalian sperm capacitation, and its regulation by sodium-dependent secondary active transporters. Reprod Med Biol 2024; 23:e12614. [PMID: 39416520 PMCID: PMC11480905 DOI: 10.1002/rmb2.12614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Background Mammalian spermatozoa have to be "capacitated" to be fertilization-competent. Capacitation is a collective term for the physiological and biochemical changes in spermatozoa that occur within the female body. However, the regulatory mechanisms underlying capacitation have not been fully elucidated. Methods Previously published papers on capacitation, especially from the perspective of ions/channels/transporters, were extracted and summarized. Results Capacitation can be divided into two processes: earlier events (membrane potential hyperpolarization, intracellular pH rise, intracellular Ca2+ rise, etc.) and two major later events: hyperactivation and the acrosome reaction. Earlier events are closely interconnected with each other. Various channels/transporters are involved in the regulation of them, which ultimately lead to the later events. Manipulating the extracellular K+ concentration based on the oviductal concentration modifies membrane potential; however, the later events and fertilization are not affected, suggesting the uninvolvement of membrane potential in capacitation. Hyperpolarization is a highly conserved phenomenon among mammalian species, indicating its importance in capacitation. Therefore, the physiological importance of hyperpolarization apart from membrane potential is suggested. Conclusion The hypotheses are (1) hyperpolarizing Na+ dynamics (decrease in intracellular Na+) and Na+-driven secondary active transporters play a vital role in capacitation and (2) the sperm-specific potassium channel Slo3 is involved in volume and/or morphological regulation.
Collapse
Affiliation(s)
- Gen L. Takei
- Department of Pharmacology and ToxicologyDokkyo Medical UniversityTochigiJapan
| |
Collapse
|
12
|
Gardner CC, James PF. Na +/H + Exchangers (NHEs) in Mammalian Sperm: Essential Contributors to Male Fertility. Int J Mol Sci 2023; 24:14981. [PMID: 37834431 PMCID: PMC10573352 DOI: 10.3390/ijms241914981] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Na+/H+ exchangers (NHEs) are known to be important regulators of pH in multiple intracellular compartments of eukaryotic cells. Sperm function is especially dependent on changes in pH and thus it has been postulated that NHEs play important roles in regulating the intracellular pH of these cells. For example, in order to achieve fertilization, mature sperm must maintain a basal pH in the male reproductive tract and then alkalize in response to specific signals in the female reproductive tract during the capacitation process. Eight NHE isoforms are expressed in mammalian testis/sperm: NHE1, NHE3, NHE5, NHE8, NHA1, NHA2, NHE10, and NHE11. These NHE isoforms are expressed at varying times during spermatogenesis and localize to different subcellular structures in developing and mature sperm where they contribute to multiple aspects of sperm physiology and male fertility including proper sperm development/morphogenesis, motility, capacitation, and the acrosome reaction. Previous work has provided evidence for NHE3, NHE8, NHA1, NHA2, and NHE10 being critical for male fertility in mice and NHE10 has recently been shown to be essential for male fertility in humans. In this article we review what is known about each NHE isoform expressed in mammalian sperm and discuss the physiological significance of each NHE isoform with respect to male fertility.
Collapse
Affiliation(s)
| | - Paul F. James
- Department of Biology, Miami University, Oxford, OH 45056, USA;
| |
Collapse
|
13
|
Grahn E, Kaufmann SV, Askarova M, Ninov M, Welp LM, Berger TK, Urlaub H, Kaupp UB. Control of intracellular pH and bicarbonate by CO 2 diffusion into human sperm. Nat Commun 2023; 14:5395. [PMID: 37669933 PMCID: PMC10480191 DOI: 10.1038/s41467-023-40855-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 08/14/2023] [Indexed: 09/07/2023] Open
Abstract
The reaction of CO2 with H2O to form bicarbonate (HCO3-) and H+ controls sperm motility and fertilization via HCO3--stimulated cAMP synthesis. A complex network of signaling proteins participates in this reaction. Here, we identify key players that regulate intracellular pH (pHi) and HCO3- in human sperm by quantitative mass spectrometry (MS) and kinetic patch-clamp fluorometry. The resting pHi is set by amiloride-sensitive Na+/H+ exchange. The sperm-specific putative Na+/H+ exchanger SLC9C1, unlike its sea urchin homologue, is not gated by voltage or cAMP. Transporters and channels implied in HCO3- transport are not detected, and may be present at copy numbers < 10 molecules/sperm cell. Instead, HCO3- is produced by diffusion of CO2 into cells and readjustment of the CO2/HCO3-/H+ equilibrium. The proton channel Hv1 may serve as a unidirectional valve that blunts the acidification ensuing from HCO3- synthesis. This work provides a new framework for the study of male infertility.
Collapse
Affiliation(s)
- Elena Grahn
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Svenja V Kaufmann
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Malika Askarova
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Momchil Ninov
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany
- University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Luisa M Welp
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany
- University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Thomas K Berger
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstrasse 1-2, 35037, Marburg, Germany.
| | - Henning Urlaub
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany.
- University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
- Cluster of Excellence, Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany.
| | - U Benjamin Kaupp
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
- Life & Medical Sciences Institute (LIMES), University Bonn, Carl-Troll-Strasse 31, 53115, Bonn, Germany.
| |
Collapse
|
14
|
Mariani NAP, Silva JV, Fardilha M, Silva EJR. Advances in non-hormonal male contraception targeting sperm motility. Hum Reprod Update 2023; 29:545-569. [PMID: 37141450 DOI: 10.1093/humupd/dmad008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND The high rates of unintended pregnancy and the ever-growing world population impose health, economic, social, and environmental threats to countries. Expanding contraceptive options, including male methods, are urgently needed to tackle these global challenges. Male contraception is limited to condoms and vasectomy, which are unsuitable for many couples. Thus, novel male contraceptive methods may reduce unintended pregnancies, meet the contraceptive needs of couples, and foster gender equality in carrying the contraceptive burden. In this regard, the spermatozoon emerges as a source of druggable targets for on-demand, non-hormonal male contraception based on disrupting sperm motility or fertilization. OBJECTIVE AND RATIONALE A better understanding of the molecules governing sperm motility can lead to innovative approaches toward safe and effective male contraceptives. This review discusses cutting-edge knowledge on sperm-specific targets for male contraception, focusing on those with crucial roles in sperm motility. We also highlight challenges and opportunities in male contraceptive drug development targeting spermatozoa. SEARCH METHODS We conducted a literature search in the PubMed database using the following keywords: 'spermatozoa', 'sperm motility', 'male contraception', and 'drug targets' in combination with other related terms to the field. Publications until January 2023 written in English were considered. OUTCOMES Efforts for developing non-hormonal strategies for male contraception resulted in the identification of candidates specifically expressed or enriched in spermatozoa, including enzymes (PP1γ2, GAPDHS, and sAC), ion channels (CatSper and KSper), transmembrane transporters (sNHE, SLC26A8, and ATP1A4), and surface proteins (EPPIN). These targets are usually located in the sperm flagellum. Their indispensable roles in sperm motility and male fertility were confirmed by genetic or immunological approaches using animal models and gene mutations associated with male infertility due to sperm defects in humans. Their druggability was demonstrated by the identification of drug-like small organic ligands displaying spermiostatic activity in preclinical trials. WIDER IMPLICATIONS A wide range of sperm-associated proteins has arisen as key regulators of sperm motility, providing compelling druggable candidates for male contraception. Nevertheless, no pharmacological agent has reached clinical developmental stages. One reason is the slow progress in translating the preclinical and drug discovery findings into a drug-like candidate adequate for clinical development. Thus, intense collaboration among academia, private sectors, governments, and regulatory agencies will be crucial to combine expertise for the development of male contraceptives targeting sperm function by (i) improving target structural characterization and the design of highly selective ligands, (ii) conducting long-term preclinical safety, efficacy, and reversibility evaluation, and (iii) establishing rigorous guidelines and endpoints for clinical trials and regulatory evaluation, thus allowing their testing in humans.
Collapse
Affiliation(s)
- Noemia A P Mariani
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| | - Joana V Silva
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Erick J R Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| |
Collapse
|
15
|
Lyon MD, Ferreira JJ, Li P, Bhagwat S, Butler A, Anderson K, Polo M, Santi CM. SLO3: A Conserved Regulator of Sperm Membrane Potential. Int J Mol Sci 2023; 24:11205. [PMID: 37446382 DOI: 10.3390/ijms241311205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Sperm cells must undergo a complex maturation process after ejaculation to be able to fertilize an egg. One component of this maturation is hyperpolarization of the membrane potential to a more negative value. The ion channel responsible for this hyperpolarization, SLO3, was first cloned in 1998, and since then much progress has been made to determine how the channel is regulated and how its function intertwines with various signaling pathways involved in sperm maturation. Although Slo3 was originally thought to be present only in the sperm of mammals, recent evidence suggests that a primordial form of the gene is more widely expressed in some fish species. Slo3, like many reproductive genes, is rapidly evolving with low conservation between closely related species and different regulatory and pharmacological profiles. Despite these differences, SLO3 appears to have a conserved role in regulating sperm membrane potential and driving large changes in response to stimuli. The effect of this hyperpolarization of the membrane potential may vary among mammalian species just as the regulation of the channel does. Recent discoveries have elucidated the role of SLO3 in these processes in human sperm and provided tools to target the channel to affect human fertility.
Collapse
Affiliation(s)
- Maximilian D Lyon
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Juan J Ferreira
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ping Li
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Shweta Bhagwat
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Alice Butler
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kelsey Anderson
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Maria Polo
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Celia M Santi
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
16
|
Cong S, Zhang J, Pan F, Pan L, Zhang A, Ma J. Research progress on ion channels and their molecular regulatory mechanisms in the human sperm flagellum. FASEB J 2023; 37:e23052. [PMID: 37352114 DOI: 10.1096/fj.202300756r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
The ion channels in sperm tail play an important role in triggering key physiological reactions, e.g., progressive motility, hyperactivation, required for successful fertilization. Among them, CatSper and KSper have been shown to be important ion channels for the transport of Ca2+ and K+ . Moreover, the voltage-gated proton channel Hv1, the sperm-specific sodium-hydrogen exchanger (sNHE), the epithelial sodium channel (ENaC), members of the temperature-sensitive TRP channel family, and the cystic fibrosis transmembrane regulator (CFTR) are also found in the flagellum. This review focuses on the latest advances in ion channels located at the flagellum, describes how they affect sperm physiological function, and summarizes some primary mutual regulation mechanism between ion channels, including PH, membrane potential, and cAMP. These ion channels may be promising targets for clinical application in infertility.
Collapse
Affiliation(s)
- Shengnan Cong
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Jingjing Zhang
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Feng Pan
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Lianjun Pan
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Aixia Zhang
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Jiehua Ma
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
17
|
Cooray A, Kim J, Nirujan BR, Jayathilake NJ, Lee KP. Pharmacological Evidence Suggests That Slo3 Channel Is the Principal K + Channel in Boar Spermatozoa. Int J Mol Sci 2023; 24:ijms24097806. [PMID: 37175513 PMCID: PMC10178124 DOI: 10.3390/ijms24097806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Sperm ion channels are associated with the quality and type of flagellar movement, and their differential regulation is crucial for sperm function during specific phases. The principal potassium ion channel is responsible for the majority of K+ ion flux, resulting in membrane hyperpolarization, and is essential for sperm capacitation-related signaling pathways. The molecular identity of the principal K+ channel varies greatly between different species, and there is a lack of information about boar K+ channels. We aimed to determine the channel identity of boar sperm contributing to the primary K+ current using pharmacological dissection. A series of Slo1 and Slo3 channel modulators were used for treatment. Sperm motility and related kinematic parameters were monitored using a computer-assisted sperm analysis system under non-capacitated conditions. Time-lapse flow cytometry with fluorochromes was used to measure changes in different intracellular ionic concentrations, and conventional flow cytometry was used to determine the acrosome reaction. Membrane depolarization, reduction in acrosome reaction, and motility parameters were observed upon the inhibition of the Slo3 channel, suggesting that the Slo3 gene encodes the main K+ channel in boar spermatozoa. The Slo3 channel was localized on the sperm flagellum, and the inhibition of Slo3 did not reduce sperm viability. These results may aid potential animal-model-based extrapolations and help to ameliorate motility and related parameters, leading to improved assisted reproductive methods in industrial livestock production.
Collapse
Affiliation(s)
- Akila Cooray
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeongsook Kim
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Beno Ramesh Nirujan
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Nishani Jayanika Jayathilake
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyu Pil Lee
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
18
|
Pinto FM, Odriozola A, Candenas L, Subirán N. The Role of Sperm Membrane Potential and Ion Channels in Regulating Sperm Function. Int J Mol Sci 2023; 24:6995. [PMID: 37108159 PMCID: PMC10138380 DOI: 10.3390/ijms24086995] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
During the last seventy years, studies on mammalian sperm cells have demonstrated the essential role of capacitation, hyperactivation and the acrosome reaction in the acquisition of fertilization ability. These studies revealed the important biochemical and physiological changes that sperm undergo in their travel throughout the female genital tract, including changes in membrane fluidity, the activation of soluble adenylate cyclase, increases in intracellular pH and Ca2+ and the development of motility. Sperm are highly polarized cells, with a resting membrane potential of about -40 mV, which must rapidly adapt to the ionic changes occurring through the sperm membrane. This review summarizes the current knowledge about the relationship between variations in the sperm potential membrane, including depolarization and hyperpolarization, and their correlation with changes in sperm motility and capacitation to further lead to the acrosome reaction, a calcium-dependent exocytosis process. We also review the functionality of different ion channels that are present in spermatozoa in order to understand their association with human infertility.
Collapse
Affiliation(s)
- Francisco M. Pinto
- Instituto de Investigaciones Químicas, CSIC-University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain;
| | - Ainize Odriozola
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), 48940 Bizkaia, Spain; (A.O.); (N.S.)
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- MEPRO Medical Reproductive Solutions, 20009 San Sebastian, Spain
| | - Luz Candenas
- Instituto de Investigaciones Químicas, CSIC-University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain;
| | - Nerea Subirán
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), 48940 Bizkaia, Spain; (A.O.); (N.S.)
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- MEPRO Medical Reproductive Solutions, 20009 San Sebastian, Spain
| |
Collapse
|
19
|
Wang Y, Gao T, Shan L, Li K, Liang F, Yu J, Ni Y, Sun P. Iberiotoxin and clofilium regulate hyperactivation, acrosome reaction, and ion homeostasis synergistically during human sperm capacitation. Mol Reprod Dev 2023; 90:129-140. [PMID: 36682071 DOI: 10.1002/mrd.23671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023]
Abstract
Potassium channels play essential roles in the regulation of male fertility. However, potassium channels mediating K+ currents in human sperm (IKSper ) remain controversial. Besides SLO3, the SLO1 potassium channel is a potential candidate for human sperm KSper. This study intends to elucidate the function of SLO1 potassium channel during human sperm capacitation. Human sperm were treated with iberiotoxin (IbTX, a SLO1 specific inhibitor) and clofilium (SLO3 inhibitor) separately or simultaneously during in vitro capacitation. A computer-assisted sperm analyzer was used to assess sperm motility. The sperm acrosome reaction (AR) was analyzed using fluorescein isothiocyanate-conjugated Pisum sativum agglutinin staining. Sperm protein tyrosine phosphorylation was studied using western blotting. Intracellular Ca2+ , K+ , Cl- , and pH were analyzed using ion fluorescence probes. Independent inhibition with IbTX or clofilium decreased the sperm hyperactivation, AR, and protein tyrosine phosphorylation, and was accompanied by an increase in [K+ ]i , [Cl- ]i , and pHi , but a decrease in [Ca2+ ]i . Simultaneously inhibition with IbTX and clofilium lower sperm hyperactivation and AR more than independent inhibition. The increase in [K+ ]i , [Cl- ]i , and pHi , and the decrease in [Ca2+ ]i were more pronounced. This study suggested that the SLO1 potassium channel may have synergic roles with SLO3 during human sperm capacitation.
Collapse
Affiliation(s)
- Yayan Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Gynecology and Obstetrics, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Tian Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lijun Shan
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kun Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fei Liang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianmin Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ya Ni
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Peibei Sun
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
Pereira R, Sousa M. Morphological and Molecular Bases of Male Infertility: A Closer Look at Sperm Flagellum. Genes (Basel) 2023; 14:383. [PMID: 36833310 PMCID: PMC9956255 DOI: 10.3390/genes14020383] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Infertility is a major health problem worldwide without an effective therapy or cure. It is estimated to affect 8-12% of couples in the reproductive age group, equally affecting both genders. There is no single cause of infertility, and its knowledge is still far from complete, with about 30% of infertile couples having no cause identified (named idiopathic infertility). Among male causes of infertility, asthenozoospermia (i.e., reduced sperm motility) is one of the most observed, being estimated that more than 20% of infertile men have this condition. In recent years, many researchers have focused on possible factors leading to asthenozoospermia, revealing the existence of many cellular and molecular players. So far, more than 4000 genes are thought to be involved in sperm production and as regulators of different aspects of sperm development, maturation, and function, and all can potentially cause male infertility if mutated. In this review, we aim to give a brief overview of the typical sperm flagellum morphology and compile some of the most relevant information regarding the genetic factors involved in male infertility, with a focus on sperm immotility and on genes related to sperm flagellum development, structure, or function.
Collapse
Affiliation(s)
- Rute Pereira
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, 4050-313 Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
21
|
Lyon M, Li P, Ferreira JJ, Lazarenko RM, Kharade SV, Kramer M, McClenahan SJ, Days E, Bauer JA, Spitznagel BD, Weaver CD, Borrego Alvarez A, Puga Molina LC, Lybaert P, Khambekar S, Liu A, Lindsley CW, Denton J, Santi CM. A selective inhibitor of the sperm-specific potassium channel SLO3 impairs human sperm function. Proc Natl Acad Sci U S A 2023; 120:e2212338120. [PMID: 36649421 PMCID: PMC9942793 DOI: 10.1073/pnas.2212338120] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/12/2022] [Indexed: 01/19/2023] Open
Abstract
To fertilize an oocyte, the membrane potential of both mouse and human sperm must hyperpolarize (become more negative inside). Determining the molecular mechanisms underlying this hyperpolarization is vital for developing new contraceptive methods and detecting causes of idiopathic male infertility. In mouse sperm, hyperpolarization is caused by activation of the sperm-specific potassium (K+) channel SLO3 [C. M. Santi et al., FEBS Lett. 584, 1041-1046 (2010)]. In human sperm, it has long been unclear whether hyperpolarization depends on SLO3 or the ubiquitous K+ channel SLO1 [N. Mannowetz, N. M. Naidoo, S. A. S. Choo, J. F. Smith, P. V. Lishko, Elife 2, e01009 (2013), C. Brenker et al., Elife 3, e01438 (2014), and S. A. Mansell, S. J. Publicover, C. L. R. Barratt, S. M. Wilson, Mol. Hum. Reprod. 20, 392-408 (2014)]. In this work, we identified the first selective inhibitor for human SLO3-VU0546110-and showed that it completely blocked heterologous SLO3 currents and endogenous K+ currents in human sperm. This compound also prevented sperm from hyperpolarizing and undergoing hyperactivated motility and induced acrosome reaction, which are necessary to fertilize an egg. We conclude that SLO3 is the sole K+ channel responsible for hyperpolarization and significantly contributes to the fertilizing ability of human sperm. Moreover, SLO3 is a good candidate for contraceptive development, and mutation of this gene is a possible cause of idiopathic male infertility.
Collapse
Affiliation(s)
- Maximilian Lyon
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO63110
| | - Ping Li
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO63110
| | - Juan J. Ferreira
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO63110
| | - Roman M. Lazarenko
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN37232
| | - Sujay V. Kharade
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN37232
| | - Meghan Kramer
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN37232
| | | | - Emily Days
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN37232
| | - Joshua A. Bauer
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN37232
| | | | - C. David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, TN37232
| | - Aluet Borrego Alvarez
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO63110
| | - Lis C. Puga Molina
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO63110
| | - Pascale Lybaert
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO63110
- Laboratoire de recherche en Reproduction humaine, Université Libre de Bruxelles, Bruxelles1050, Belgium
| | - Saayli Khambekar
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO63110
| | - Alicia Liu
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO63110
| | - Craig W. Lindsley
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN37232
- Department of Pharmacology, Vanderbilt University, Nashville, TN37232
| | - Jerod Denton
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN37232
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN37232
- Department of Pharmacology, Vanderbilt University, Nashville, TN37232
| | - Celia M. Santi
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
22
|
Kumar N. Sperm Mitochondria, the Driving Force Behind Human Spermatozoa Activities: Its Functions and Dysfunctions - A Narrative Review. Curr Mol Med 2023; 23:332-340. [PMID: 35400342 DOI: 10.2174/1566524022666220408104047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022]
Abstract
Male infertility is a major issue, and numerous factors contribute to it. One of the important organelles involved in the functioning of human spermatozoa is mitochondria. There are 50-75 mitochondria helically arranged in mid-piece bearing one mitochondrial DNA each. Sperm mitochondria play a crucial role in sperm functions, including the energy production required for sperm motility and the production of reactive oxygen species, which in the physiological range helps in sperm maturation, capacitation, and acrosome reaction. It also plays a role in calcium signaling cascades, intrinsic apoptosis, and sperm hyperactivation. Any structural or functional dysfunction of sperm mitochondria results in increased production of reactive oxygen species and, a state of oxidative stress, decreased energy production, all leading to sperm DNA damage, impaired sperm motility and semen parameters, and reduced male fertility. Furthermore, human sperm mitochondrial DNA mutations can result in impaired sperm motility and parameters leading to male infertility. Numerous types of point mutations, deletions, and missense mutations have been identified in mtDNA that are linked with male infertility. Methods: Recent literature was searched from English language peer-reviewed journals from databases including PubMed, Scopus, EMBASE, Scholar, and Web of Science till September 2021. Search terms used were "Sperm mitochondria and male fertility", "Bioenergetics of sperm", "Sperm mitochondria and reactive oxygen species", "Sperm mitochondrial mutations and infertility". Conclusion: Sperm mitochondria is an important organelle involved in various functions of human spermatozoa and sperm mitochondrial DNA has emerged as one of the potent biomarkers of sperm quality and male fertility.
Collapse
Affiliation(s)
- Naina Kumar
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Bibinagar-508126, Hyderabad Metropolitan Region, Telangana, India
| |
Collapse
|
23
|
Darbandi S, Darbandi M, Khorram Khorshid HR, Sengupta P. Electrophysiology of Human Gametes: A Systematic Review. World J Mens Health 2022; 40:442-455. [PMID: 35021309 PMCID: PMC9253800 DOI: 10.5534/wjmh.210107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/05/2021] [Accepted: 09/14/2021] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Oocytes and spermatozoa are electrogenic cells with the ability to respond to electrical stimuli and modulate their electrical properties accordingly. Determination of the ionic events during the gamete maturation helps to design suitable culture media for gametes in assisted reproductive technology (ART). The present systematic review focuses on the electrophysiology of human gametes during different stages of maturation and also during fertilization. MATERIALS AND METHODS The reports published in the English language between January 2000 and July 2021 were extracted from various electronic scientific databases following the PRISMA checklist using specific MeSH keywords. RESULTS Subsequent to the screening process with defined inclusion and exclusion criteria, 60 articles have been included in this review. Among them, 11 articles were directly related to the electrophysiology of human oocytes and 49 physiology department to the electrophysiology of human spermatozoa. CONCLUSIONS Gametes generate electrical currents by ionic exchange, particularly Na+, K+, Cl-, H+, Zn2+, Cu2+, Se2+, Mg2+, HCO3-, and Ca2+ through specific ion channels in different stages of gamete maturation. The ionic concentrations, pH, and other physicochemical variables are modulated during the gametogenesis, maturation, activation, and the fertilization process following gamete function and metabolism. The electrical properties of human gametes change during different stages of maturation. Although it is demonstrated that the electrical properties are significant regulators of cell signaling and are fundamental to gamete maturation and fertilization, their exact roles in these processes are still poorly understood. Further research is required to unveil the intricate electrophysiological processes of human gamete maturation.
Collapse
Affiliation(s)
- Sara Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran
| | - Mahsa Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran
| | - Hamid Reza Khorram Khorshid
- Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
- Personalized Medicine and Genometabolomics Research Center, Hope Generation Foundation, Tehran, Iran
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, Biosciences and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
- School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER), Chennai, India.
| |
Collapse
|
24
|
Perspectives on Potential Fatty Acid Modulations of Motility Associated Human Sperm Ion Channels. Int J Mol Sci 2022; 23:ijms23073718. [PMID: 35409078 PMCID: PMC8998313 DOI: 10.3390/ijms23073718] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Human spermatozoan ion channels are specifically distributed in the spermatozoan membrane, contribute to sperm motility, and are associated with male reproductive abnormalities. Calcium, potassium, protons, sodium, and chloride are the main ions that are regulated across this membrane, and their intracellular concentrations are crucial for sperm motility. Fatty acids (FAs) affect sperm quality parameters, reproductive pathologies, male fertility, and regulate ion channel functions in other cells. However, to date the literature is insufficient to draw any conclusions regarding the effects of FAs on human spermatozoan ion channels. Here, we aimed to discern the possible effects of FAs on spermatozoan ion channels and direct guidance for future research. After investigating the effects of FAs on characteristics related to human spermatozoan motility, reproductive pathologies, and the modulation of similar ion channels in other cells by FAs, we extrapolated polyunsaturated FAs (PUFAs) to have the highest potency in modulating sperm ion channels to increase sperm motility. Of the PUFAs, the ω-3 unsaturated fatty acids have the greatest effect. We speculate that saturated and monounsaturated FAs will have little to no effect on sperm ion channel activity, though the possible effects could be opposite to those of the PUFAs, considering the differences between FA structure and behavior.
Collapse
|
25
|
Gao T, Li K, Liang F, Yu J, Liu A, Ni Y, Sun P. KCNQ1 Potassium Channel Expressed in Human Sperm Is Involved in Sperm Motility, Acrosome Reaction, Protein Tyrosine Phosphorylation, and Ion Homeostasis During Capacitation. Front Physiol 2021; 12:761910. [PMID: 34744797 PMCID: PMC8569670 DOI: 10.3389/fphys.2021.761910] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Potassium channels are involved in membrane hyperpolarization and ion homeostasis regulation during human sperm capacitation. However, the types of potassium channels in human sperm remain controversial. The voltage-gated ion channel KCNQ1 is ubiquitously expressed and regulates key physiological processes in the human body. In the present study, we investigated whether KCNQ1 is expressed in human sperm and what role it might have in sperm function. The expression and localization of KCNQ1 in human sperm were evaluated using Western blotting and indirect immunofluorescence. During capacitation incubation, human sperm were treated with KCNQ1- specific inhibitor chromanol 293B. Sperm motility was analyzed using a computer-assisted sperm analyzer. The acrosome reaction was studied using fluorescein isothiocyanate-conjugated Pisum sativum agglutinin staining. Protein tyrosine phosphorylation levels and localization after capacitation were determined using Western blotting and immunofluorescence. Intracellular K+, Ca2+, Cl−, pH, and membrane potential were analyzed using fluorescent probes. The results demonstrate that KCNQ1 is expressed and localized in the head and tail regions of human sperm. KCNQ1 inhibition reduced sperm motility, acrosome reaction rates, and protein tyrosine phosphorylation but had no effect on hyperactivation. KCNQ1 inhibition also increased intracellular K+, membrane potential, and intracellular Cl−, while decreasing intracellular Ca2+ and pH. In conclusion, the KCNQ1 channel plays a crucial role during human sperm capacitation.
Collapse
Affiliation(s)
- Tian Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Kun Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| | - Fei Liang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| | - Jianmin Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| | - Ajuan Liu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Ya Ni
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| | - Peibei Sun
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
26
|
Mata-Martínez E, Sánchez-Cárdenas C, Chávez JC, Guerrero A, Treviño CL, Corkidi G, Montoya F, Hernandez-Herrera P, Buffone MG, Balestrini PA, Darszon A. Role of calcium oscillations in sperm physiology. Biosystems 2021; 209:104524. [PMID: 34453988 DOI: 10.1016/j.biosystems.2021.104524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Intracellular Ca2+ is a key regulator of cell signaling and sperm are not the exception. Cells often use cytoplasmic Ca2+ concentration ([Ca2+]i) oscillations as a means to decodify external and internal information. [Ca2+]i oscillations faster than those usually found in other cells and correlated with flagellar beat were the first to be described in sperm in 1993 by Susan Suarez, in the boar. More than 20 years passed before similar [Ca2+]i oscillations were documented in human sperm, simultaneously examining their flagellar beat in three dimensions by Corkidi et al. 2017. On the other hand, 10 years after the discovery of the fast boar [Ca2+]i oscillations, slower ones triggered by compounds from the egg external envelope were found to regulate cell motility and chemotaxis in sperm from marine organisms. Today it is known that sperm display fast and slow spontaneous and agonist triggered [Ca2+]i oscillations. In mammalian sperm these Ca2+ transients may act like a multifaceted tool that regulates fundamental functions such as motility and acrosome reaction. This review covers the main sperm species and experimental conditions where [Ca2+]i oscillations have been described and discusses what is known about the transporters involved, their regulation and the physiological purpose of these oscillations. There is a lot to be learned regarding the origin, regulation and physiological relevance of these Ca2+ oscillations.
Collapse
Affiliation(s)
- Esperanza Mata-Martínez
- Laboratorio de Fusión de Membranas y Exocitosis Acrosomal, Instituto de Histología y Embriología Dr. Mario H. Burgos (IHEM) Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
| | - Claudia Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | - Julio C Chávez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | - Adán Guerrero
- Laboratorio Nacional de Microscopía Avanzada, IBT, UNAM, Mexico.
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | - Gabriel Corkidi
- Departamento de Ingeniería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por Computadora, IBT, UNAM, Mexico.
| | - Fernando Montoya
- Departamento de Ingeniería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por Computadora, IBT, UNAM, Mexico.
| | - Paul Hernandez-Herrera
- Departamento de Ingeniería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por Computadora, IBT, UNAM, Mexico.
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Paula A Balestrini
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| |
Collapse
|
27
|
Balestrini PA, Sanchez-Cardenas C, Luque GM, Baro Graf C, Sierra JM, Hernández-Cruz A, Visconti PE, Krapf D, Darszon A, Buffone MG. Membrane hyperpolarization abolishes calcium oscillations that prevent induced acrosomal exocytosis in human sperm. FASEB J 2021; 35:e21478. [PMID: 33991146 DOI: 10.1096/fj.202002333rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Sperm capacitation is essential to gain fertilizing capacity. During this process, a series of biochemical and physiological modifications occur that allow sperm to undergo acrosomal exocytosis (AE). At the molecular level, hyperpolarization of the sperm membrane potential (Em) takes place during capacitation. This study shows that human sperm incubated under conditions that do not support capacitation (NC) can become ready for an agonist stimulated AE by pharmacologically inducing Em hyperpolarization with Valinomycin or Amiloride. To investigate how Em hyperpolarization promotes human sperm's ability to undergo AE, live single-cell imaging experiments were performed to simultaneously monitor changes in [Ca2+ ]i and the occurrence of AE. Em hyperpolarization turned [Ca2+ ]i dynamics in NC sperm from spontaneously oscillating into a sustained slow [Ca2+ ]i increase. The addition of progesterone (P4) or K+ to Valinomycin-treated sperm promoted that a significant number of cells displayed a transitory rise in [Ca2+ ]i which then underwent AE. Altogether, our results demonstrate that Em hyperpolarization is necessary and sufficient to prepare human sperm for the AE. Furthermore, this Em change decreased Ca2+ oscillations that block the occurrence of AE, providing strong experimental evidence of the molecular mechanism that drives the acquisition of acrosomal responsiveness.
Collapse
Affiliation(s)
- Paula A Balestrini
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Claudia Sanchez-Cardenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Guillermina M Luque
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carolina Baro Graf
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM) Ciudad Universitaria, Ciudad de México, México
| | - Jessica M Sierra
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Arturo Hernández-Cruz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM) Ciudad Universitaria, Ciudad de México, México
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, Paige Labs, University of Massachusetts, Amherst, MA, USA
| | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), Rosario, Argentina
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
28
|
Torrezan-Nitao E, Brown SG, Mata-Martínez E, Treviño CL, Barratt C, Publicover S. [Ca2+]i oscillations in human sperm are triggered in the flagellum by membrane potential-sensitive activity of CatSper. Hum Reprod 2021; 36:293-304. [PMID: 33305795 DOI: 10.1093/humrep/deaa302] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
STUDY QUESTION How are progesterone (P4)-induced repetitive intracellular Ca2+ concentration ([Ca2+]i) signals (oscillations) in human sperm generated? SUMMARY ANSWER P4-induced [Ca2+]i oscillations are generated in the flagellum by membrane potential (Vm)-sensitive Ca2+-influx through CatSper channels. WHAT IS KNOWN ALREADY A subset of human sperm display [Ca2+]i oscillations that regulate flagellar beating and acrosome reaction. Although pharmacological manipulations indicate involvement of stored Ca2+ in these oscillations, influx of extracellular Ca2+ is also required. STUDY DESIGN, SIZE, DURATION This was a laboratory study that used >20 sperm donors and involved more than 100 separate experiments and analysis of more than 1000 individual cells over a period of 2 years. PARTICIPANTS/MATERIALS, SETTING, METHODS Semen donors and patients were recruited in accordance with local ethics approval from Birmingham University and Tayside ethics committees. [Ca2+]i responses and Vm of individual cells were examined by fluorescence imaging and whole-cell current clamp. MAIN RESULTS AND THE ROLE OF CHANCE P4-induced [Ca2+]i oscillations originated in the flagellum, spreading to the neck and head (latency of 1-2 s). K+-ionophore valinomycin (1 µM) was used to investigate the role of membrane potential (Vm). Direct assessment by whole-cell current-clamp confirmed that Vm in valinomycin-exposed cells was determined primarily by K+ equilibrium potential (EK) and was rapidly 'reset' upon manipulation of [K+]o. Pre-treatment of sperm with valinomycin ([K+]o = 5.4 mM) had no effect on the P4-induced [Ca2+] transient (P = 0.95; eight experiments), but application of valinomycin to P4-pretreated sperm suppressed activity in 82% of oscillating cells (n = 257; P = 5 × 10-55 compared to control) and significantly reduced both the amplitude and frequency of persisting oscillations (P = 0.0001). Upon valinomycin washout, oscillations re-started in most cells. When valinomycin was applied in saline with elevated [K+], the inhibitory effect of valinomycin was reduced and was dependent on EK (P = 10-25). Amplitude and frequency of [Ca2+]i oscillations that persisted in the presence of valinomycin showed similar sensitivity to EK (P < 0.01). The CatSper inhibitor RU1968 (4.8 and 11 µM) caused immediate and reversible arrest of activity in 36% and 96% of oscillating cells, respectively (P < 10-10). Quinidine (300 µM) which blocks the sperm K+ current (IKsper) completely, inhibited [Ca2+]i oscillations. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This was an in-vitro study and caution must be taken when extrapolating these results to in-vivo regulation of sperm. WIDER IMPLICATIONS OF THE FINDINGS [Ca2+]i oscillations in human sperm are functionally important and their absence is associated with failed fertilisation at IVF. The data reported here provide new understanding of the mechanisms that underlie the regulation and generation (or failure) of these oscillations. STUDY FUNDING/COMPETING INTEREST(S) E.T.-N. was in receipt of a postgraduate scholarship from the CAPES Foundation (Ministry of Education, Brazil). E.M-M received travel funds from the Programa de Apoyo a los Estudios de Posgrado (Maestria y Doctorado en Ciencias Bioquimicas-Universidad Autonoma de Mexico). SGB and CLRB are recipients of a Chief Scientist Office (NHS Scotland) grant TCS/17/28. The authors have no conflicts of interest.
Collapse
Affiliation(s)
| | - Sean G Brown
- School of Applied Sciences, Division of Health Sciences, Abertay University, Dundee DD11HG, UK
| | - Esperanza Mata-Martínez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Christopher Barratt
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | | |
Collapse
|
29
|
Noto F, Recuero S, Valencia J, Saporito B, Robbe D, Bonet S, Carluccio A, Yeste M. Inhibition of Potassium Channels Affects the Ability of Pig Spermatozoa to Elicit Capacitation and Trigger the Acrosome Exocytosis Induced by Progesterone. Int J Mol Sci 2021; 22:ijms22041992. [PMID: 33671466 PMCID: PMC7922121 DOI: 10.3390/ijms22041992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 01/02/2023] Open
Abstract
During capacitation, sperm undergo a myriad of changes, including remodeling of plasma membrane, modification of sperm motility and kinematic parameters, membrane hyperpolarization, increase in intracellular calcium levels, and tyrosine phosphorylation of certain sperm proteins. While potassium channels have been reported to be crucial for capacitation of mouse and human sperm, their role in pigs has not been investigated. With this purpose, sperm samples from 15 boars were incubated in capacitation medium for 300 min with quinine, a general blocker of potassium channels (including voltage-gated potassium channels, calcium-activated potassium channels, and tandem pore domain potassium channels), and paxilline (PAX), a specific inhibitor of calcium-activated potassium channels. In all samples, acrosome exocytosis was induced after 240 min of incubation with progesterone. Plasma membrane and acrosome integrity, membrane lipid disorder, intracellular calcium levels, mitochondrial membrane potential, and total and progressive sperm motility were evaluated after 0, 120, and 240 min of incubation, and after 5, 30, and 60 min of progesterone addition. Although blocking potassium channels with quinine and PAX prevented sperm to elicit in vitro capacitation by impairing motility and mitochondrial function, as well as reducing intracellular calcium levels, the extent of that inhibition was larger with quinine than with PAX. Therefore, while our data support that calcium-activated potassium channels are essential for sperm capacitation in pigs, they also suggest that other potassium channels, such as the voltage-gated, tandem pore domain, and mitochondrial ATP-regulated ones, are involved in that process. Thus, further research is needed to elucidate the specific functions of these channels and the mechanisms underlying its regulation during sperm capacitation.
Collapse
Affiliation(s)
- Federico Noto
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (F.N.); (S.R.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain;
- Faculty of Veterinary Medicine, University of Teramo, Località Piano D’Accio, IT-64100 Teramo, Italy; (B.S.); (D.R.); (A.C.)
| | - Sandra Recuero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (F.N.); (S.R.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain;
| | - Julián Valencia
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain;
- University Antonio Nariño, Calle 53 #9-35, Popayán CO-190002, Colombia
| | - Beatrice Saporito
- Faculty of Veterinary Medicine, University of Teramo, Località Piano D’Accio, IT-64100 Teramo, Italy; (B.S.); (D.R.); (A.C.)
| | - Domenico Robbe
- Faculty of Veterinary Medicine, University of Teramo, Località Piano D’Accio, IT-64100 Teramo, Italy; (B.S.); (D.R.); (A.C.)
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (F.N.); (S.R.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain;
| | - Augusto Carluccio
- Faculty of Veterinary Medicine, University of Teramo, Località Piano D’Accio, IT-64100 Teramo, Italy; (B.S.); (D.R.); (A.C.)
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (F.N.); (S.R.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain;
- Correspondence:
| |
Collapse
|
30
|
Delgado-Bermúdez A, Mateo-Otero Y, Llavanera M, Bonet S, Yeste M, Pinart E. HVCN1 but Not Potassium Channels Are Related to Mammalian Sperm Cryotolerance. Int J Mol Sci 2021; 22:ijms22041646. [PMID: 33562049 PMCID: PMC7914938 DOI: 10.3390/ijms22041646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 12/23/2022] Open
Abstract
Little data exist about the physiological role of ion channels during the freeze–thaw process in mammalian sperm. Herein, we determined the relevance of potassium channels, including SLO1, and of voltage-gated proton channels (HVCN1) during mammalian sperm cryopreservation, using the pig as a model and through the addition of specific blockers (TEA: tetraethyl ammonium chloride, PAX: paxilline or 2-GBI: 2-guanidino benzimidazole) to the cryoprotective media at either 15 °C or 5 °C. Sperm quality of the control and blocked samples was performed at 30- and 240-min post-thaw, by assessing sperm motility and kinematics, plasma and acrosome membrane integrity, membrane lipid disorder, intracellular calcium levels, mitochondrial membrane potential, and intracellular O2−⁻ and H2O2 levels. General blockade of K+ channels by TEA and specific blockade of SLO1 channels by PAX did not result in alterations in sperm quality after thawing as compared to control samples. In contrast, HVCN1-blocking with 2-GBI led to a significant decrease in post-thaw sperm quality as compared to the control, despite intracellular O2−⁻ and H2O2 levels in 2-GBI blocked samples being lower than in the control and in TEA- and PAX-blocked samples. We can thus conclude that HVCN1 channels are related to mammalian sperm cryotolerance and have an essential role during cryopreservation. In contrast, potassium channels do not seem to play such an instrumental role.
Collapse
Affiliation(s)
- Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (A.D.-B.); (Y.M.-O.); (M.L.); (S.B.); (M.Y.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (A.D.-B.); (Y.M.-O.); (M.L.); (S.B.); (M.Y.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Marc Llavanera
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (A.D.-B.); (Y.M.-O.); (M.L.); (S.B.); (M.Y.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (A.D.-B.); (Y.M.-O.); (M.L.); (S.B.); (M.Y.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (A.D.-B.); (Y.M.-O.); (M.L.); (S.B.); (M.Y.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (A.D.-B.); (Y.M.-O.); (M.L.); (S.B.); (M.Y.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
- Correspondence: ; Tel.: +34-972-419-514
| |
Collapse
|
31
|
Kang H, Liu M, Zhang W, Huang RZ, Zhao N, Chen C, Zeng XH. Na +/H + Exchangers Involve in Regulating the pH-Sensitive Ion Channels in Mouse Sperm. Int J Mol Sci 2021; 22:ijms22041612. [PMID: 33562644 PMCID: PMC7914462 DOI: 10.3390/ijms22041612] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/20/2022] Open
Abstract
Sperm-specific K+ ion channel (KSper) and Ca2+ ion channel (CatSper), whose elimination causes male infertility in mice, determine the membrane potential and Ca2+ influx, respectively. KSper and CatSper can be activated by cytosolic alkalization, which occurs during sperm going through the alkaline environment of the female reproductive tract. However, which intracellular pH (pHi) regulator functionally couples to the activation of KSper/CatSper remains obscure. Although Na+/H+ exchangers (NHEs) have been implicated to mediate pHi in sperm, there is a lack of direct evidence confirming the functional coupling between NHEs and KSper/CatSper. Here, 5-(N,N-dimethyl)-amiloride (DMA), an NHEs inhibitor that firstly proved not to affect KSper/CatSper directly, was chosen to examine NHEs function on KSper/CatSper in mouse sperm. The results of patch clamping recordings showed that, when extracellular pH was at the physiological level of 7.4, DMA application caused KSper inhibition and the depolarization of membrane potential when pipette solutions were not pH-buffered. In contrast, these effects were minimized when pipette solutions were pH-buffered, indicating that they solely resulted from pHi acidification caused by NHEs inhibition. Similarly, DMA treatment reduced CatSper current and intracellular Ca2+, effects also dependent on the buffer capacity of pH in pipette solutions. The impairment of sperm motility was also observed after DMA incubation. These results manifested that NHEs activity is coupled to the activation of KSper/CatSper under physiological conditions.
Collapse
Affiliation(s)
- Hang Kang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China; (H.K.); (M.L.); (W.Z.); (N.Z.)
| | - Min Liu
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China; (H.K.); (M.L.); (W.Z.); (N.Z.)
| | - Wei Zhang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China; (H.K.); (M.L.); (W.Z.); (N.Z.)
| | - Rong-Zu Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226019, Jiangsu, China; (R.-Z.H.); (C.C.)
| | - Na Zhao
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China; (H.K.); (M.L.); (W.Z.); (N.Z.)
| | - Chen Chen
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226019, Jiangsu, China; (R.-Z.H.); (C.C.)
| | - Xu-Hui Zeng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226019, Jiangsu, China; (R.-Z.H.); (C.C.)
- Correspondence: ; Tel.: +86-177-6196-0066
| |
Collapse
|
32
|
Hyakutake T, Sugita K, Ujifuku S, Sakurai R, Murakami R, Hayamizu Y. Experimental study on the effect of flow in microfluidic channel on bovine sperm navigation. J Biomech 2021; 118:110290. [PMID: 33581442 DOI: 10.1016/j.jbiomech.2021.110290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/17/2020] [Accepted: 01/23/2021] [Indexed: 10/22/2022]
Abstract
The navigation mechanism of mammalian sperm in the female reproductive tract is unclear owing to its complex process. This study performed an in vitro experiment using the microfluidic channel with two reservoirs to investigate the effect of fluid flow on the swimming properties of the bovine sperm. The width and height of the manufactured channel were 200 and 20 μm, respectively. The flow in the microchannel occurs because of the hydraulic head difference between the two reservoirs. Sperm with positive rheotaxis proceed in the opposite direction of the flow in the channel after swimming up the downstream reservoir. This study focused on the effect of the flow in the microfluidic channel on sperm motility. It was observed that sperm mostly moved along the channel wall and accumulated near the wall away from the downstream reservoir. The existence of fluid flow in the channel brought about an increase in the ratio of the sperm with positive rheotaxis. Furthermore, the experimental results indicated that the motility of sperm swimming against the flow along the wall increased away from the downstream reservoir. These results will provide useful information to understand the mechanism of sperm navigation for in vivo fertilization.
Collapse
Affiliation(s)
- Toru Hyakutake
- Faculty of Engineering, Yokohama National University, 79-5, Hodogaya, Yokohama 240-8501, Japan.
| | - Kenta Sugita
- Graduate School of Engineering, Yokohama National University, 79-5, Hodogaya, Yokohama 240-8501, Japan
| | - Shota Ujifuku
- Graduate School of Engineering, Yokohama National University, 79-5, Hodogaya, Yokohama 240-8501, Japan
| | - Rintaro Sakurai
- Graduate School of Engineering, Yokohama National University, 79-5, Hodogaya, Yokohama 240-8501, Japan
| | - Renta Murakami
- Graduate School of Engineering, Yokohama National University, 79-5, Hodogaya, Yokohama 240-8501, Japan
| | - Yasutaka Hayamizu
- National Institute of Technology, Yonago College, 4448 Hikona-cho, Yonago 683-8502, Japan
| |
Collapse
|
33
|
Ogata K, Nagata MPB, Nishizono H, Yamanouchi T, Matsuda H, Ogata Y, Takeda K, Hashiyada Y, Yamashita K. In vitro survival kinetics of microfluidic-sorted bovine spermatozoa. Andrology 2020; 9:977-988. [PMID: 33305455 DOI: 10.1111/andr.12958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/14/2020] [Accepted: 12/06/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND The isolation and characterization of sperm subpopulations that can achieve fertilization is a major challenge of assisted reproduction methods. We focused on the microfluidic sperm sorter as a novel tool for collecting highly motile spermatozoa from heterogeneous semen samples. OBJECTIVES This study primarily aims to obtain baseline information on sorted spermatozoa according to its characteristics and in vitro life span. MATERIALS AND METHODS Frozen-thawed bull semen was subjected to microfluidic sperm sorting using diffuser-type microfluidic sperm sorter (DMSS). After sorting, samples were collected as the sorted spermatozoa and unsorted residual spermatozoa and incubated at 37°C for subsequent evaluation. The samples were assessed at different time points (0 or 1, 6, and 24 h) in terms of motility, which was measured by computer-assisted sperm analysis (CASA), membrane integrity, mitochondrial function, and adenosine triphosphate (ATP) production after sorting (0 h). To determine the characteristics and efficiency of DMSS sorting, the sorted spermatozoa were compared with samples collected using the swim-up method, a conventional method in motile sperm selection. RESULTS A comparison between the sorted and residual spermatozoa demonstrated significantly higher motility parameters, membrane integrity, and mitochondrial function of the sorted spermatozoa until 6 h after incubation. The time course decrement of membrane and mitochondrial status were subjected to curve fitting and theoretically supported. Sperm ATP production measured immediately after sorting showed higher ATP generation of the sorted spermatozoa compared with the unsorted, frozen-thawed spermatozoa. The motility parameters and mitochondrial activity of DMSS-sorted spermatozoa were higher than the swim-up-collected spermatozoa (p < 0.05). DISCUSSION AND CONCLUSION These results indicate that DMSS sorting can strictly select highly motile spermatozoa with the ability to maintain its membrane integrity and mitochondrial function related to ATP production. We speculate that the device that is able to sort high-quality spermatozoa can have great potential in assisted reproduction.
Collapse
Affiliation(s)
- Kazuko Ogata
- National Livestock Breeding Center (NLBC), Fukushima, Japan.,National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Maria Portia B Nagata
- Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Saga, Japan
| | - Hirofumi Nishizono
- Life Science Research Center, University of Toyama, Toyama, Japan.,Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | | | - Hideo Matsuda
- National Livestock Breeding Center (NLBC), Fukushima, Japan
| | - Yuki Ogata
- National Livestock Breeding Center (NLBC), Fukushima, Japan
| | - Kumiko Takeda
- National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Yutaka Hashiyada
- National Livestock Breeding Center (NLBC), Fukushima, Japan.,Ishikawa Prefectural University, Ishikawa, Japan
| | - Kenichi Yamashita
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Saga, Japan
| |
Collapse
|
34
|
Sperm ion channels and transporters in male fertility and infertility. Nat Rev Urol 2020; 18:46-66. [PMID: 33214707 DOI: 10.1038/s41585-020-00390-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 12/16/2022]
Abstract
Mammalian sperm cells must respond to cues originating from along the female reproductive tract and from the layers of the egg in order to complete their fertilization journey. Dynamic regulation of ion signalling is, therefore, essential for sperm cells to adapt to their constantly changing environment. Over the past 15 years, direct electrophysiological recordings together with genetically modified mouse models and human genetics have confirmed the importance of ion channels, including the principal Ca2+-selective plasma membrane ion channel CatSper, for sperm activity. Sperm ion channels and membrane receptors are attractive targets for both the development of contraceptives and infertility treatment drugs. Furthermore, in this era of assisted reproductive technologies, understanding the signalling processes implicated in defective sperm function, particularly those arising from genetic abnormalities, is of the utmost importance not only for the development of infertility treatments but also to assess the overall health of a patient and his children. Future studies to improve reproductive health care and overall health care as a function of the ability to reproduce should include identification and analyses of gene variants that underlie human infertility and research into fertility-related molecules.
Collapse
|
35
|
Oviductal high concentration of K + suppresses hyperpolarization but does not prevent hyperactivation, acrosome reaction and in vitro fertilization in hamsters. ZYGOTE 2020; 29:66-74. [PMID: 33012301 DOI: 10.1017/s0967199420000532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mammalian sperm have to undergo capacitation to be fertilization competent. Capacitated sperm in vitro show hyperpolarization of the membrane potential. It has been reported that in mouse membrane hyperpolarization is necessary for the acrosome reaction. We recently found that the fluid of the hamster oviduct, where fertilization occurs, contained a high potassium (K+) concentration (~20 mEq/l). This high K+ concentration could depolarize the membrane potential and prevent the acrosome reaction/fertilization. Conversely, some beneficial effects on capacitation of high K+ concentration or a high K/Na ratio were also reported. In the present study, we investigated the effects of oviduct high K+ concentration on hamster sperm capacitation-associated events and fertilization. The present study confirmed that, in hamster sperm, membrane potential was hyperpolarized upon in vitro capacitation, indicating that capacitation-associated hyperpolarization is a universal phenomenon among mammalian species. An increase in KCl concentration in the medium to 20 mM significantly depolarized the membrane potential and suppressed hyperpolarization when in the presence of >101 mM NaCl. However, an increase in the KCl concentration to 20 mM did not significantly affect the percentage of motile sperm, hyperactivation or the acrosome reaction. No effect of 20 mM KCl on in vitro fertilization was observed. In addition, no correlative changes in hyperactivation and the acrosome reaction with K/Na ratio were observed. These results suggested that in hamsters the oviduct K+ concentration suppressed hyperpolarization but had no effect on capacitation and in vitro fertilization. Our results raised a question over the physiological significance of capacitation-associated hyperpolarization.
Collapse
|
36
|
Tamburrino L, Marchiani S, Muratori M, Luconi M, Baldi E. Progesterone, spermatozoa and reproduction: An updated review. Mol Cell Endocrinol 2020; 516:110952. [PMID: 32712385 DOI: 10.1016/j.mce.2020.110952] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/16/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
The rapid effects of steroids on spermatozoa have been demonstrated for the first time more than three decades ago. Progesterone (P), which is present throughout the female genital tract with peaks of levels in the cumulus matrix surrounding the oocyte, has been shown to stimulate several sperm functions in vitro, including capacitation, hyperactivation, chemotaxis and acrosome reaction (AR). Besides an increase of intracellular calcium, P has been shown to activate other sperm signalling pathways including tyrosine phosphorylation of several sperm proteins. All these effects are mediated by extra-nuclear pathways likely involving interaction with molecules present on the sperm surface. In particular, the increase in intracellular calcium ([Ca2+]i) in spermatozoa from human and several other mammalian species is mediated by the sperm specific calcium channel CatSper, whose expression and function are required for sperm hyperactive motility. P-mediated CatSper activation is indeed involved in promoting sperm hyperactivation, but the involvement of this channel in other P-stimulated sperm functions, such as AR and chemotaxis, is less clear and further studies are required to disclose all the involved pathways. In human spermatozoa, responsiveness to P in terms of [Ca2+]i increase and AR is highly related to sperm fertilizing ability in vitro, suggesting that the steroid is a physiological inducer of AR during in vitro fertilization. In view of their physiological relevance, P-stimulated sperm functions are currently investigated to develop new tools to select highly performant spermatozoa for assisted reproduction.
Collapse
Affiliation(s)
- Lara Tamburrino
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Sara Marchiani
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Monica Muratori
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Michaela Luconi
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Elisabetta Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
| |
Collapse
|
37
|
Yeste M, Llavanera M, Mateo-Otero Y, Catalán J, Bonet S, Pinart E. HVCN1 Channels Are Relevant for the Maintenance of Sperm Motility During In Vitro Capacitation of Pig Spermatozoa. Int J Mol Sci 2020; 21:ijms21093255. [PMID: 32375375 PMCID: PMC7246839 DOI: 10.3390/ijms21093255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 12/12/2022] Open
Abstract
The objective of the present study was to determine the physiological role of voltage-gated hydrogen channels 1 (HVCN1 channels) during in vitro capacitation of pig spermatozoa. Sperm samples from 20 boars were incubated in capacitating medium for 300 minutes (min) in the presence of 2-guanidino benzimidazole (2-GBI), a specific HVCN1-channel blocker, added either at 0 min or after 240 min of incubation. Control samples were incubated in capacitating medium without the inhibitor. In all samples, acrosomal exocytosis was triggered with progesterone after 240 min of incubation. Sperm viability, sperm motility and kinematics, acrosomal exocytosis, membrane lipid disorder, intracellular calcium levels and mitochondrial membrane potential were evaluated after 0, 60, 120, 180, 240, 250, 270 and 300 min of incubation. While HVCN1-blockage resulted in altered sperm viability, sperm motility and kinematics and reduced mitochondrial membrane potential as compared to control samples, at any blocker concentration and incubation time, it had a non-significant effect on intracellular Ca2+ levels determined through Fluo3-staining. The effects on acrosomal exocytosis were only significant in blocked samples at 0 min, and were associated with increased membrane lipid disorder and Ca2+ levels of the sperm head determined through Rhod5-staining. In conclusion, HVCN1 channels play a crucial role in the modulation of sperm motility and kinematics, and in Ca2+ entrance to the sperm head.
Collapse
Affiliation(s)
- Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (M.Y.); (M.L.); (Y.M.-O); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Marc Llavanera
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (M.Y.); (M.L.); (Y.M.-O); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (M.Y.); (M.L.); (Y.M.-O); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Jaime Catalán
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, E-08193 Bellaterra (Cerdanyola del Vallès), Spain;
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (M.Y.); (M.L.); (Y.M.-O); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (M.Y.); (M.L.); (Y.M.-O); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
- Correspondence: ; Tel.: +34-972-419-514
| |
Collapse
|
38
|
Darszon A, Nishigaki T, López-González I, Visconti PE, Treviño CL. Differences and Similarities: The Richness of Comparative Sperm Physiology. Physiology (Bethesda) 2020; 35:196-208. [PMID: 32293232 DOI: 10.1152/physiol.00033.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Species preservation depends on the success of fertilization. Sperm are uniquely equipped to fulfill this task, and, although several mechanisms are conserved among species, striking functional differences have evolved to contend with particular sperm-egg environmental characteristics. This review highlights similarities and differences in sperm strategies, with examples within internal and external fertilizers, pointing out unresolved issues.
Collapse
Affiliation(s)
- Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | - Ignacio López-González
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| |
Collapse
|
39
|
Wang GM, Zhong ZG, Du XR, Zhang FF, Guo Q, Liu Y, Tang QY, Zhang Z. Cloning and characterization of the rat Slo3 (K Ca 5.1) channel: From biophysics to pharmacology. Br J Pharmacol 2020; 177:3552-3567. [PMID: 32335912 DOI: 10.1111/bph.15078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE The Slo3 potassium (KCa 5.1) channel, which is specifically expressed in the testis and sperm, is essential for mammalian male fertilization. The sequence divergence of the bovine, mouse and human Slo3 α-subunit revealed a rapid evolution rate across different species. The rat Slo3 (rSlo3) channel has not been cloned and characterized previously. EXPERIMENTAL APPROACH We used molecular cloning, electrophysiology (inside-out patches and outside-out patches) and mutagenesis to investigate the biophysical properties and pharmacological characteristics of the rSlo3 channel. KEY RESULTS The rat Slo3 channel (rSlo3) is gated by voltage and cytosolic pH rather than intracellular calcium. The characteristics of voltage-dependent, pH-sensitivity and activation kinetics of the rSlo3 channel differ from the characteristics of other Slo3 orthologues. In terms of pharmacology, the 4-AP blockade of the rSlo3 channel also shows properties distinct from its blockade of the mSlo3 channel. Iberiotoxin and progesterone weakly inhibit the rSlo3 channel. Finally, we found that propofol, one of the widely used general anaesthetics, blocks the rSlo3 channel from both intracellular and extracellular sides, whereas ketamine only blocks the rSlo3 channel at the extracellular side. CONCLUSION AND IMPLICATIONS Our findings suggest that the rSlo3 channel possesses unique biophysical and pharmacological properties. Our results provide new insights into the diversities of the Slo3 family of channels, which are valuable for estimating the effects of the use of these drugs to improve sperm quality.
Collapse
Affiliation(s)
- Guang-Ming Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anaesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Zhi-Gang Zhong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anaesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xiang-Rong Du
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anaesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Fei-Fei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anaesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Qing Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anaesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Ye Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anaesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Qiong-Yao Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anaesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Zhe Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anaesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
40
|
Vyklicka L, Lishko PV. Dissecting the signaling pathways involved in the function of sperm flagellum. Curr Opin Cell Biol 2020; 63:154-161. [PMID: 32097833 DOI: 10.1016/j.ceb.2020.01.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/09/2020] [Accepted: 01/26/2020] [Indexed: 01/28/2023]
Abstract
The mammalian flagellum is a specific type of motile cilium required for sperm motility and male fertility. Effective flagellar movement is dependent on axonemal function, which in turn relies on proper ion homeostasis within the flagellar compartment. This ion homeostasis is maintained by the concerted function of ion channels and transporters that initiate signal transduction pathways resulting in motility changes. Advances in electrophysiology and super-resolution microscopy have helped to identify and characterize new regulatory modalities of the mammalian flagellum. Here, we discuss what is currently known about the regulation of flagellar ion channels and transporters that maintain sodium, potassium, calcium, and proton homeostasis. Identification of new regulatory elements and their specific roles in sperm motility is imperative for improving diagnostics of male infertility.
Collapse
Affiliation(s)
- Lenka Vyklicka
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Polina V Lishko
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
41
|
Yeste M, Llavanera M, Pérez G, Scornik F, Puig-Parri J, Brugada R, Bonet S, Pinart E. Elucidating the Role of K + Channels during In Vitro Capacitation of Boar Spermatozoa: Do SLO1 Channels Play a Crucial Role? Int J Mol Sci 2019; 20:E6330. [PMID: 31847486 PMCID: PMC6940911 DOI: 10.3390/ijms20246330] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 01/16/2023] Open
Abstract
This study sought to identify and localize SLO1 channels in boar spermatozoa by immunoblotting and immunofluorescence, and to determine their physiological role during in vitro sperm capacitation. Sperm samples from 14 boars were incubated in a capacitation medium for 300 min in the presence of paxilline (PAX), a specific SLO1-channel blocker, added either at 0 min or after 240 min of incubation. Negative controls were incubated in capacitation medium, and positive controls in capacitation medium plus tetraethyl ammonium (TEA), a general K+-channel blocker, also added at 0 min or after 240 min of incubation. In all samples, acrosome exocytosis was triggered with progesterone after 240 min of incubation. Sperm motility and kinematics, integrity of plasma and acrosome membranes, membrane lipid disorder, intracellular calcium levels and acrosin activity were evaluated after 0, 60, 120, 180, 240, 250, 270 and 300 min of incubation. In boar spermatozoa, SLO1 channels were found to have 80 kDa and be localized in the anterior postacrosomal region and the mid and principal piece of the tail; their specific blockage through PAX resulted in altered calcium levels and acrosome exocytosis. As expected, TEA blocker impaired in vitro sperm capacitation, by altering sperm motility and kinematics and calcium levels. In conclusion, SLO1 channels are crucial for the acrosome exocytosis induced by progesterone in in vitro capacitated boar spermatozoa.
Collapse
Affiliation(s)
- Marc Yeste
- Unit of Cell Biology, Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (M.Y.); (M.L.); (J.P.-P.); (S.B.)
| | - Marc Llavanera
- Unit of Cell Biology, Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (M.Y.); (M.L.); (J.P.-P.); (S.B.)
| | - Guillermo Pérez
- Department of Medical Sciences, Faculty of Medicine, University of Girona, E-17003 Girona, Spain; (G.P.); (F.S.); (R.B.)
- Cardiovascular Genetics Group, Girona Biomedical Research Institute (IDIBGI), E-17190 Girona, Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), E-28029 Madrid, Spain
| | - Fabiana Scornik
- Department of Medical Sciences, Faculty of Medicine, University of Girona, E-17003 Girona, Spain; (G.P.); (F.S.); (R.B.)
- Cardiovascular Genetics Group, Girona Biomedical Research Institute (IDIBGI), E-17190 Girona, Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), E-28029 Madrid, Spain
| | - Josep Puig-Parri
- Unit of Cell Biology, Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (M.Y.); (M.L.); (J.P.-P.); (S.B.)
| | - Ramon Brugada
- Department of Medical Sciences, Faculty of Medicine, University of Girona, E-17003 Girona, Spain; (G.P.); (F.S.); (R.B.)
- Cardiovascular Genetics Group, Girona Biomedical Research Institute (IDIBGI), E-17190 Girona, Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), E-28029 Madrid, Spain
- Cardiology Service, Hospital Josep Trueta, E-17003 Girona, Spain
| | - Sergi Bonet
- Unit of Cell Biology, Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (M.Y.); (M.L.); (J.P.-P.); (S.B.)
| | - Elisabeth Pinart
- Unit of Cell Biology, Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (M.Y.); (M.L.); (J.P.-P.); (S.B.)
| |
Collapse
|
42
|
Brown SG, Publicover SJ, Barratt CLR, Martins da Silva SJ. Human sperm ion channel (dys)function: implications for fertilization. Hum Reprod Update 2019; 25:758-776. [PMID: 31665287 PMCID: PMC6847974 DOI: 10.1093/humupd/dmz032] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/14/2019] [Accepted: 08/13/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Intensive research on sperm ion channels has identified members of several ion channel families in both mouse and human sperm. Gene knock-out studies have unequivocally demonstrated the importance of the calcium and potassium conductances in sperm for fertility. In both species, the calcium current is carried by the highly complex cation channel of sperm (CatSper). In mouse sperm, the potassium current has been conclusively shown to be carried by a channel consisting of the pore forming subunit SLO3 and auxiliary subunit leucine-rich repeat-containing 52 (LRRC52). However, in human sperm it is controversial whether the pore forming subunit of the channel is composed of SLO3 and/or SLO1. Deciphering the role of the proton-specific Hv1 channel is more challenging as it is only expressed in human sperm. However, definitive evidence for a role in, and importance for, human fertility can only be determined through studies using clinical samples. OBJECTIVE AND RATIONALE This review aims to provide insight into the role of sperm ion channels in human fertilization as evidenced from recent studies of sperm from infertile men. We also summarize the key discoveries from mouse ion channel knock-out models and contrast the properties of mouse and human CatSper and potassium currents. We detail the evidence for, and consequences of, defective ion channels in human sperm and discuss hypotheses to explain how defects arise and why affected sperm have impaired fertilization potential. SEARCH METHODS Relevant studies were identified using PubMed and were limited to ion channels that have been characterized in mouse and human sperm. Additional notable examples from other species are included as appropriate. OUTCOMES There are now well-documented fundamental differences between the properties of CatSper and potassium channel currents in mouse and human sperm. However, in both species, sperm lacking either channel cannot fertilize in vivo and CatSper-null sperm also fail to fertilize at IVF. Sperm-lacking potassium currents are capable of fertilizing at IVF, albeit at a much lower rate. However, additional complex and heterogeneous ion channel dysfunction has been reported in sperm from infertile men, the causes of which are unknown. Similarly, the nature of the functional impairment of affected patient sperm remains elusive. There are no reports of studies of Hv1 in human sperm from infertile men. WIDER IMPLICATIONS Recent studies using sperm from infertile men have given new insight and critical evidence supporting the supposition that calcium and potassium conductances are essential for human fertility. However, it should be highlighted that many fundamental questions remain regarding the nature of molecular and functional defects in sperm with dysfunctional ion channels. The development and application of advanced technologies remains a necessity to progress basic and clinical research in this area, with the aim of providing effective screening methodologies to identify and develop treatments for affected men in order to help prevent failed ART cycles. Conversely, development of drugs that block calcium and/or potassium conductances in sperm is a plausible strategy for producing sperm-specific contraceptives.
Collapse
Affiliation(s)
- Sean G Brown
- School of Applied Sciences, Abertay University, Dundee DD11HG, UK
| | | | - Christopher L R Barratt
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Sarah J Martins da Silva
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| |
Collapse
|
43
|
Wijerathne TD, Kim JH, Kim MJ, Kim CY, Chae MR, Lee SW, Lee KP. Onion peel extract and its constituent, quercetin inhibits human Slo3 in a pH and calcium dependent manner. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:381-392. [PMID: 31496875 PMCID: PMC6717788 DOI: 10.4196/kjpp.2019.23.5.381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 11/30/2022]
Abstract
Sperm function and male fertility are closely related to pH dependent K+ current (KSper) in human sperm, which is most likely composed of Slo3 and its auxiliary subunit leucine-rich repeat-containing protein 52 (LRRC52). Onion peel extract (OPE) and its major active ingredient quercetin are widely used as fertility enhancers; however, the effect of OPE and quercetin on Slo3 has not been elucidated. The purpose of this study is to investigate the effect of quercetin on human Slo3 channels. Human Slo3 and LRRC52 were co-transfected into HEK293 cells and pharmacological properties were studied with the whole cell patch clamp technique. We successfully expressed and measured pH sensitive and calcium insensitive Slo3 currents in HEK293 cells. We found that OPE and its key ingredient quercetin inhibit Slo3 currents. Inhibition by quercetin is dose dependent and this degree of inhibition decreases with elevating internal alkalization and internal free calcium concentrations. Functional moieties in the quercetin polyphenolic ring govern the degree of inhibition of Slo3 by quercetin, and the composition of such functional moieties are sensitive to the pH of the medium. These results suggest that quercetin inhibits Slo3 in a pH and calcium dependent manner. Therefore, we surmise that quercetin induced depolarization in spermatozoa may enhance the voltage gated proton channel (Hv1), and activate non-selective cation channels of sperm (CatSper) dependent calcium influx to trigger sperm capacitation and acrosome reaction.
Collapse
Affiliation(s)
- Tharaka Darshana Wijerathne
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Ji Hyun Kim
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Min Ji Kim
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Chul Young Kim
- College of Pharmacy, Hanyang University, Ansan 15588, Korea
| | - Mee Ree Chae
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Sung Won Lee
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Kyu Pil Lee
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
44
|
Analyzing the functional divergence of Slo1 and Slo3 channel subfamilies. Mol Phylogenet Evol 2019; 133:33-41. [DOI: 10.1016/j.ympev.2018.12.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 09/08/2018] [Accepted: 12/20/2018] [Indexed: 01/27/2023]
|
45
|
Lv MG, Chen WQ, Weng SQ, Chen HY, Cheng YM, Luo T. Rosmarinic acid compromises human sperm functions by an intracellular Ca 2+ concentration-related mechanism. Reprod Toxicol 2018; 81:58-63. [PMID: 30009954 DOI: 10.1016/j.reprotox.2018.07.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/08/2018] [Accepted: 07/12/2018] [Indexed: 11/25/2022]
Abstract
Rosmarinic acid (RA), a natural phenolic ester, is cytoprotective for male reproduction in animal models. The present study investigated the in vitro actions of RA on human sperm functions. Human sperm were exposed to 1, 10, 100, and 1000 μM RA in vitro and sperm functions were examined. The results showed that although RA did not affect human sperm viability, RA at 10-1000 μM dose-dependently reduced sperm motility, penetration ability, capacitation, and spontaneous acrosome reaction. In addition, the intracellular Ca2+ concentration ([Ca2+]i), which serve as a key regulator of sperm function, was decreased by RA (10-1000 μM) in a dose-dependent manner. Furthermore, the current of the sperm-specific potassium channel, KSPER, which is predominant for Ca2+ influx in sperm, was dose-dependently inhibited by 10-1000 μM RA. Therefore, we conclude that in vitro exposure to RA can compromise human sperm functions by decreasing sperm [Ca2+]i through the suppression of KSPER current.
Collapse
Affiliation(s)
- Meng-Ge Lv
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China; Nanchang University Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Wen-Qiong Chen
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Shi-Qi Weng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Hou-Yang Chen
- Reproductive Medical Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, China
| | - Yi-Min Cheng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China; Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
46
|
Brukman NG, Nuñez SY, Puga Molina LDC, Buffone MG, Darszon A, Cuasnicu PS, Da Ros VG. Tyrosine phosphorylation signaling regulates Ca 2+ entry by affecting intracellular pH during human sperm capacitation. J Cell Physiol 2018; 234:5276-5288. [PMID: 30203545 DOI: 10.1002/jcp.27337] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/10/2018] [Indexed: 12/23/2022]
Abstract
Capacitation is a mandatory process for the acquisition of mammalian sperm fertilization competence and involves the activation of a complex and still not fully understood system of signaling pathways. Under in vitro conditions, there is an increase in both protein tyrosine phosphorylation (pTyr) and intracellular Ca2+ levels in several species. In human sperm, results from our group revealed that pTyr signaling can be blocked by inhibiting proline-rich tyrosine kinase 2 (PYK2). Based on the role of PYK2 in other cell types, we investigated whether the PYK2-dependent pTyr cascade serves as a sensor for Ca 2+ signaling during human sperm capacitation. Flow cytometry studies showed that exposure of sperm to the PYK2 inhibitor N-[2-[[[2-[(2,3-dihydro-2-oxo-1 H-indol-5-yl)amino]-5-(trifluoromethyl)-4-pyrimidinyl]amino]methyl]phenyl]- N-methyl-methanesulfonamide hydrate (PF431396) produced a significant and concentration-dependent reduction in intracellular Ca 2+ levels during capacitation. Further studies revealed that PF431396-treated sperm exhibited a decrease in the activity of CatSper, a key sperm Ca 2+ channel. In addition, time course studies during capacitation in the presence of PF431396 showed a significant and sustained decrease in both intracellular Ca 2+ and pH levels after 2 hr of incubation, temporarily coincident with the activation of PYK2 during capacitation. Interestingly, decreases in Ca 2+ levels and progressive motility caused by PF431396 were reverted by inducing intracellular alkalinization with NH 4 Cl, without affecting the pTyr blockage. Altogether, these observations support pTyr as an intracellular sensor for Ca 2+ entry in human sperm through regulation of cytoplasmic pH. These results contribute to a better understanding of the modulation of the polymodal CatSper and signaling pathways involved in human sperm capacitation.
Collapse
Affiliation(s)
- Nicolás Gastón Brukman
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Sol Yanel Nuñez
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Lis Del Carmen Puga Molina
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Mariano Gabriel Buffone
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Patricia Sara Cuasnicu
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Vanina Gabriela Da Ros
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
47
|
Puga Molina LC, Luque GM, Balestrini PA, Marín-Briggiler CI, Romarowski A, Buffone MG. Molecular Basis of Human Sperm Capacitation. Front Cell Dev Biol 2018; 6:72. [PMID: 30105226 PMCID: PMC6078053 DOI: 10.3389/fcell.2018.00072] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/19/2018] [Indexed: 12/31/2022] Open
Abstract
In the early 1950s, Austin and Chang independently described the changes that are required for the sperm to fertilize oocytes in vivo. These changes were originally grouped under name of “capacitation” and were the first step in the development of in vitro fertilization (IVF) in humans. Following these initial and fundamental findings, a remarkable number of observations led to characterization of the molecular steps behind this process. The discovery of certain sperm-specific molecules and the possibility to record ion currents through patch-clamp approaches helped to integrate the initial biochemical observation with the activity of ion channels. This is of particular importance in the male gamete due to the fact that sperm are transcriptionally inactive. Therefore, sperm must control all these changes that occur during their transit through the male and female reproductive tracts by complex signaling cascades that include post-translational modifications. This review is focused on the principal molecular mechanisms that govern human sperm capacitation with particular emphasis on comparing all the reported pieces of evidence with the mouse model.
Collapse
Affiliation(s)
- Lis C Puga Molina
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Guillermina M Luque
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Paula A Balestrini
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Clara I Marín-Briggiler
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Ana Romarowski
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| |
Collapse
|
48
|
Mundt N, Spehr M, Lishko PV. TRPV4 is the temperature-sensitive ion channel of human sperm. eLife 2018; 7:35853. [PMID: 29963982 PMCID: PMC6051745 DOI: 10.7554/elife.35853] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 06/30/2018] [Indexed: 12/15/2022] Open
Abstract
Ion channels control the ability of human sperm to fertilize the egg by triggering hyperactivated motility, which is regulated by membrane potential, intracellular pH, and cytosolic calcium. Previous studies unraveled three essential ion channels that regulate these parameters: (1) the Ca2+ channel CatSper, (2) the K+ channel KSper, and (3) the H+ channel Hv1. However, the molecular identity of the sperm Na+ conductance that mediates initial membrane depolarization and, thus, triggers downstream signaling events is yet to be defined. Here, we functionally characterize DSper, the Depolarizing Channel of Sperm, as the temperature-activated channel TRPV4. It is functionally expressed at both mRNA and protein levels, while other temperature-sensitive TRPV channels are not functional in human sperm. DSper currents are activated by warm temperatures and mediate cation conductance, that shares a pharmacological profile reminiscent of TRPV4. Together, these results suggest that TRPV4 activation triggers initial membrane depolarization, facilitating both CatSper and Hv1 gating and, consequently, sperm hyperactivation.
Collapse
Affiliation(s)
- Nadine Mundt
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Polina V Lishko
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
49
|
Puga Molina LC, Pinto NA, Torres NI, González-Cota AL, Luque GM, Balestrini PA, Romarowski A, Krapf D, Santi CM, Treviño CL, Darszon A, Buffone MG. CFTR/ENaC-dependent regulation of membrane potential during human sperm capacitation is initiated by bicarbonate uptake through NBC. J Biol Chem 2018; 293:9924-9936. [PMID: 29743243 DOI: 10.1074/jbc.ra118.003166] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/29/2018] [Indexed: 12/16/2022] Open
Abstract
To fertilize an egg, sperm must reside in the female reproductive tract to undergo several maturational changes that are collectively referred to as capacitation. From a molecular point of view, the HCO3--dependent activation of the atypical soluble adenylyl cyclase (ADCY10) is one of the first events that occurs during capacitation and leads to the subsequent cAMP-dependent activation of protein kinase A (PKA). Capacitation is also accompanied by hyperpolarization of the sperm plasma membrane. We previously reported that PKA activation is necessary for CFTR (cystic fibrosis transmembrane conductance regulator channel) activity and for the modulation of membrane potential (Em). However, the main HCO3- transporters involved in the initial transport and the PKA-dependent Em changes are not well known nor characterized. Here, we analyzed how the activity of CFTR regulates Em during capacitation and examined its relationship with an electrogenic Na+/HCO3- cotransporter (NBC) and epithelial Na+ channels (ENaCs). We observed that inhibition of both CFTR and NBC decreased HCO3- influx, resulting in lower PKA activity, and that events downstream of the cAMP activation of PKA are essential for the regulation of Em. Addition of a permeable cAMP analog partially rescued the inhibitory effects caused by these inhibitors. HCO3- also produced a rapid membrane hyperpolarization mediated by ENaC channels, which contribute to the regulation of Em during capacitation. Altogether, we demonstrate for the first time, that NBC cotransporters and ENaC channels are essential in the CFTR-dependent activation of the cAMP/PKA signaling pathway and Em regulation during human sperm capacitation.
Collapse
Affiliation(s)
- Lis C Puga Molina
- From the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1425FQB Buenos Aires, Argentina
| | - Nicolás A Pinto
- From the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1425FQB Buenos Aires, Argentina
| | - Nicolás I Torres
- From the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1425FQB Buenos Aires, Argentina
| | - Ana L González-Cota
- the Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Guillermina M Luque
- From the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1425FQB Buenos Aires, Argentina
| | - Paula A Balestrini
- From the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1425FQB Buenos Aires, Argentina
| | - Ana Romarowski
- From the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1425FQB Buenos Aires, Argentina
| | - Dario Krapf
- the Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario 2000, Argentina, and
| | - Celia M Santi
- the Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Claudia L Treviño
- the Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, 62210 Morelos, México
| | - Alberto Darszon
- the Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, 62210 Morelos, México
| | - Mariano G Buffone
- From the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1425FQB Buenos Aires, Argentina,
| |
Collapse
|
50
|
Jin SK, Yang WX. Factors and pathways involved in capacitation: how are they regulated? Oncotarget 2018; 8:3600-3627. [PMID: 27690295 PMCID: PMC5356907 DOI: 10.18632/oncotarget.12274] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/23/2016] [Indexed: 01/07/2023] Open
Abstract
In mammals, fertilization occurs via a comprehensive progression of events. Freshly ejaculated sperm have yet to acquire progressive motility or fertilization ability. They must first undergo a series of biochemical and physiological changes, collectively known as capacitation. Capacitation is a significant prerequisite to fertilization. During the process of capacitation, changes in membrane properties, intracellular ion concentration and the activities of enzymes, together with other protein modifications, induce multiple signaling events and pathways in defined media in vitro or in the female reproductive tract in vivo. These, in turn, stimulate the acrosome reaction and prepare spermatozoa for penetration of the egg zona pellucida prior to fertilization. In the present review, we conclude all mainstream factors and pathways regulate capacitation and highlight their crosstalk. We also summarize the relationship between capacitation and assisted reproductive technology or human disease. In the end, we sum up the open questions and future avenues in this field.
Collapse
Affiliation(s)
- Shi-Kai Jin
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|