1
|
Roychowdhury T, McNutt SW, Pasala C, Nguyen HT, Thornton DT, Sharma S, Botticelli L, Digwal CS, Joshi S, Yang N, Panchal P, Chakrabarty S, Bay S, Markov V, Kwong C, Lisanti J, Chung SY, Ginsberg SD, Yan P, De Stanchina E, Corben A, Modi S, Alpaugh ML, Colombo G, Erdjument-Bromage H, Neubert TA, Chalkley RJ, Baker PR, Burlingame AL, Rodina A, Chiosis G, Chu F. Phosphorylation-driven epichaperome assembly is a regulator of cellular adaptability and proliferation. Nat Commun 2024; 15:8912. [PMID: 39414766 PMCID: PMC11484706 DOI: 10.1038/s41467-024-53178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
The intricate network of protein-chaperone interactions is crucial for maintaining cellular function. Recent discoveries have unveiled the existence of specialized chaperone assemblies, known as epichaperomes, which serve as scaffolding platforms that orchestrate the reconfiguration of protein-protein interaction networks, thereby enhancing cellular adaptability and proliferation. This study explores the structural and regulatory aspects of epichaperomes, with a particular focus on the role of post-translational modifications (PTMs) in their formation and function. A key finding is the identification of specific PTMs on HSP90, particularly at residues Ser226 and Ser255 within an intrinsically disordered region, as critical determinants of epichaperome assembly. Our data demonstrate that phosphorylation of these serine residues enhances HSP90's interactions with other chaperones and co-chaperones, creating a microenvironment conducive to epichaperome formation. Moreover, we establish a direct link between epichaperome function and cellular physiology, particularly in contexts where robust proliferation and adaptive behavior are essential, such as in cancer and pluripotent stem cell maintenance. These findings not only provide mechanistic insights but also hold promise for the development of novel therapeutic strategies targeting chaperone assemblies in diseases characterized by epichaperome dysregulation, thereby bridging the gap between fundamental research and precision medicine.
Collapse
Affiliation(s)
- Tanaya Roychowdhury
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Seth W McNutt
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Chiranjeevi Pasala
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hieu T Nguyen
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Daniel T Thornton
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luke Botticelli
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nan Yang
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Souparna Chakrabarty
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sadik Bay
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vladimir Markov
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlene Kwong
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeanine Lisanti
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sun Young Chung
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen D Ginsberg
- Departments of Psychiatry, Neuroscience & Physiology & the NYU Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa De Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adriana Corben
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Maimonides Medical Center, Brooklyn, NY, USA
| | - Shanu Modi
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mary L Alpaugh
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Rowan University, Glassboro, NJ, USA
| | | | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Thomas A Neubert
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Robert J Chalkley
- Mass Spectrometry Facility, University of California, San Francisco, CA, USA
| | - Peter R Baker
- Mass Spectrometry Facility, University of California, San Francisco, CA, USA
| | - Alma L Burlingame
- Mass Spectrometry Facility, University of California, San Francisco, CA, USA
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Feixia Chu
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA.
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA.
| |
Collapse
|
2
|
Lee SY, Park J, Seo SB. Negative regulation of HDAC3 transcription by histone acetyltransferase TIP60 in colon cancer. Genes Genomics 2024; 46:871-879. [PMID: 38805168 PMCID: PMC11208239 DOI: 10.1007/s13258-024-01524-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Colon cancer is the third most common cancer globally. The expression of histone deacetylase 3 (HDAC3) is upregulated, whereas the expression of tat interactive protein, 60 kDa (TIP60) is downregulated in colon cancer. However, the relationship between HDAC3 and TIP60 in colon cancer has not been clearly elucidated. OBJECTIVE We investigated whether TIP60 could regulate the expression of HDAC3 and suppress colon cancer cell proliferation. METHODS RNA sequencing data (GSE108834) showed that HDAC3 expression was regulated by TIP60. Subsequently, we generated TIP60-knockdown HCT116 cells and examined the expression of HDAC3 by western blotting and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We examined the expression pattern of HDAC3 in various cancers using publicly available datasets. The promoter activity of HDAC3 was validated using a dual-luciferase assay, and transcription factors binding to HDAC3 were identified using GeneCards and Promo databases, followed by validation using chromatin immunoprecipitation-quantitative polymerase chain reaction. Cell proliferation and apoptosis were assessed using colony formation assays and fluorescence-activated cell sorting analysis of HCT116 cell lines. RESULTS In response to TIP60 knockdown, the expression level and promoter activity of HDAC3 increased. Conversely, when HDAC3 was downregulated by overexpression of TIP60, proliferation of HCT116 cells was inhibited and apoptosis was promoted. CONCLUSION TIP60 plays a crucial role in the regulation of HDAC3 transcription, thereby influencing cell proliferation and apoptosis in colon cancer. Consequently, TIP60 may function as a tumor suppressor by inhibiting HDAC3 expression in colon cancer cells.
Collapse
Affiliation(s)
- Seong Yun Lee
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Junyoung Park
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sang Beom Seo
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
3
|
Bahram Sangani N, Koetsier J, Mélius J, Kutmon M, Ehrhart F, Evelo CT, Curfs LMG, Reutelingsperger CP, Eijssen LMT. A novel insight into neurological disorders through HDAC6 protein-protein interactions. Sci Rep 2024; 14:14666. [PMID: 38918466 PMCID: PMC11199618 DOI: 10.1038/s41598-024-65094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Due to its involvement in physiological and pathological processes, histone deacetylase 6 (HDAC6) is considered a promising pharmaceutical target for several neurological manifestations. However, the exact regulatory role of HDAC6 in the central nervous system (CNS) is still not fully understood. Hence, using a semi-automated literature screening technique, we systematically collected HDAC6-protein interactions that are experimentally validated and reported in the CNS. The resulting HDAC6 network encompassed 115 HDAC6-protein interactions divided over five subnetworks: (de)acetylation, phosphorylation, protein complexes, regulatory, and aggresome-autophagy subnetworks. In addition, 132 indirect interactions identified through HDAC6 inhibition were collected and categorized. Finally, to display the application of our HDAC6 network, we mapped transcriptomics data of Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis on the network and highlighted that in the case of Alzheimer's disease, alterations predominantly affect the HDAC6 phosphorylation subnetwork, whereas differential expression within the deacetylation subnetwork is observed across all three neurological disorders. In conclusion, the HDAC6 network created in the present study is a novel and valuable resource for the understanding of the HDAC6 regulatory mechanisms, thereby providing a framework for the integration and interpretation of omics data from neurological disorders and pharmacodynamic assessments.
Collapse
Affiliation(s)
- Nasim Bahram Sangani
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD, Maastricht, The Netherlands.
- GKC, Maastricht University Medical Centre, 6229 ER, Maastricht, The Netherlands.
| | - Jarno Koetsier
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD, Maastricht, The Netherlands
- GKC, Maastricht University Medical Centre, 6229 ER, Maastricht, The Netherlands
| | - Jonathan Mélius
- DataHub, Maastricht University & Maastricht UMC+, P. Debyelaan 15, 6229 HX, Maastricht, The Netherlands
| | - Martina Kutmon
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Friederike Ehrhart
- Department of Bioinformatics - BiGCaT, Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD, Maastricht, The Netherlands
- Department of Psychiatry and Neuropsychology, Research Institute for Mental Health and Neuroscience (MHeNs), Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Chris T Evelo
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, 6200 MD, Maastricht, The Netherlands
- Department of Bioinformatics - BiGCaT, Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Leopold M G Curfs
- GKC, Maastricht University Medical Centre, 6229 ER, Maastricht, The Netherlands
| | - Chris P Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD, Maastricht, The Netherlands
- GKC, Maastricht University Medical Centre, 6229 ER, Maastricht, The Netherlands
| | - Lars M T Eijssen
- Department of Bioinformatics - BiGCaT, Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD, Maastricht, The Netherlands
- Department of Psychiatry and Neuropsychology, Research Institute for Mental Health and Neuroscience (MHeNs), Maastricht University, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
4
|
Forouzanfar F, Plassard D, Furst A, Moreno D, Oliveira KA, Reina-San-Martin B, Tora L, Molina N, Mendoza M. Gene-specific RNA homeostasis revealed by perturbation of coactivator complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577960. [PMID: 38352321 PMCID: PMC10862879 DOI: 10.1101/2024.01.30.577960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Transcript buffering entails the reciprocal modulation of mRNA synthesis and degradation rates to maintain stable RNA levels under varying cellular conditions. Current research supports a global, non-sequence-specific connection between mRNA synthesis and degradation, but the underlying mechanisms are still unclear. In this study, we investigated changes in RNA metabolism following acute depletion of TIP60/KAT5, the acetyltransferase subunit of the NuA4 transcriptional coactivator complex, in mouse embryonic stem cells. By combining RNA sequencing of nuclear, cytoplasmic, and newly synthesised transcript fractions with biophysical modelling, we demonstrate that TIP60 predominantly enhances transcription of numerous genes, while a smaller set of genes undergoes TIP60-dependent transcriptional repression. Surprisingly, transcription changes caused by TIP60 depletion were offset by corresponding changes in RNA nuclear export and cytoplasmic stability, indicating gene-specific buffering mechanisms. Similarly, disruption of the unrelated ATAC coactivator complex also resulted in gene-specific transcript buffering. These findings reveal that transcript buffering functions at a gene-specific level and suggest that cells dynamically adjust RNA splicing, export, and degradation in response to individual RNA synthesis alterations, thereby sustaining cellular homeostasis.
Collapse
|
5
|
Tian Q, Yin Y, Tian Y, Wang Y, Wang Y, Fukunaga R, Fujii T, Liao A, Li L, Zhang W, He X, Xiang W, Zhou L. Chromatin Modifier EP400 Regulates Oocyte Quality and Zygotic Genome Activation in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308018. [PMID: 38493496 PMCID: PMC11132066 DOI: 10.1002/advs.202308018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Epigenetic modifiers that accumulate in oocytes, play a crucial role in steering the developmental program of cleavage embryos and initiating life. However, the identification of key maternal epigenetic regulators remains elusive. In the findings, the essential role of maternal Ep400, a chaperone for H3.3, in oocyte quality and early embryo development in mice is highlighted. Depletion of Ep400 in oocytes resulted in a decline in oocyte quality and abnormalities in fertilization. Preimplantation embryos lacking maternal Ep400 exhibited reduced major zygotic genome activation (ZGA) and experienced developmental arrest at the 2-to-4-cell stage. The study shows that EP400 forms protein complex with NFYA, occupies promoters of major ZGA genes, modulates H3.3 distribution between euchromatin and heterochromatin, promotes transcription elongation, activates the expression of genes regulating mitochondrial functions, and facilitates the expression of rate-limiting enzymes of the TCA cycle. This intricate process driven by Ep400 ensures the proper execution of the developmental program, emphasizing its critical role in maternal-to-embryonic transition.
Collapse
Affiliation(s)
- Qing Tian
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Department of Gynecology and ObstetricsZhongnan Hospital of Wuhan UniversityWuhanHubei430071China
| | - Ying Yin
- Department of PhysiologySchool of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Center for Genomics and Proteomics ResearchSchool of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Yu Tian
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Yufan Wang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Yong‐feng Wang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Rikiro Fukunaga
- Department of BiochemistryOsaka Medical and Pharmaceutical UniversityTakatsukiOsaka569‐1094Japan
| | - Toshihiro Fujii
- Department of BiochemistryOsaka Medical and Pharmaceutical UniversityTakatsukiOsaka569‐1094Japan
| | - Ai‐hua Liao
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
| | - Wei Zhang
- Department of Gynecology and ObstetricsZhongnan Hospital of Wuhan UniversityWuhanHubei430071China
| | - Ximiao He
- Department of PhysiologySchool of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Center for Genomics and Proteomics ResearchSchool of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Wenpei Xiang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Li‐quan Zhou
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| |
Collapse
|
6
|
McNutt SW, Roychowdhury T, Pasala C, Nguyen HT, Thornton DT, Sharma S, Botticelli L, Digwal CS, Joshi S, Yang N, Panchal P, Chakrabarty S, Bay S, Markov V, Kwong C, Lisanti J, Chung SY, Ginsberg SD, Yan P, DeStanchina E, Corben A, Modi S, Alpaugh M, Colombo G, Erdjument-Bromage H, Neubert TA, Chalkley RJ, Baker PR, Burlingame AL, Rodina A, Chiosis G, Chu F. Phosphorylation-Driven Epichaperome Assembly: A Critical Regulator of Cellular Adaptability and Proliferation. RESEARCH SQUARE 2024:rs.3.rs-4114038. [PMID: 38645031 PMCID: PMC11030525 DOI: 10.21203/rs.3.rs-4114038/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The intricate protein-chaperone network is vital for cellular function. Recent discoveries have unveiled the existence of specialized chaperone complexes called epichaperomes, protein assemblies orchestrating the reconfiguration of protein-protein interaction networks, enhancing cellular adaptability and proliferation. This study delves into the structural and regulatory aspects of epichaperomes, with a particular emphasis on the significance of post-translational modifications in shaping their formation and function. A central finding of this investigation is the identification of specific PTMs on HSP90, particularly at residues Ser226 and Ser255 situated within an intrinsically disordered region, as critical determinants in epichaperome assembly. Our data demonstrate that the phosphorylation of these serine residues enhances HSP90's interaction with other chaperones and co-chaperones, creating a microenvironment conducive to epichaperome formation. Furthermore, this study establishes a direct link between epichaperome function and cellular physiology, especially in contexts where robust proliferation and adaptive behavior are essential, such as cancer and stem cell maintenance. These findings not only provide mechanistic insights but also hold promise for the development of novel therapeutic strategies targeting chaperone complexes in diseases characterized by epichaperome dysregulation, bridging the gap between fundamental research and precision medicine.
Collapse
Affiliation(s)
- Seth W McNutt
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
- co-first author, equally contributed to the work
| | - Tanaya Roychowdhury
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- co-first author, equally contributed to the work
| | - Chiranjeevi Pasala
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hieu T Nguyen
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Daniel T Thornton
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Luke Botticelli
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nan Yang
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Souparna Chakrabarty
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sadik Bay
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vladimir Markov
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charlene Kwong
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jeanine Lisanti
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sun Young Chung
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stephen D Ginsberg
- Departments of Psychiatry, Neuroscience & Physiology & the NYU Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
| | - Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa DeStanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Adriana Corben
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Shanu Modi
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mary Alpaugh
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Thomas A Neubert
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Robert J Chalkley
- Mass Spectrometry Facility, University of California, San Francisco, California 94143, USA
| | - Peter R Baker
- Mass Spectrometry Facility, University of California, San Francisco, California 94143, USA
| | - Alma L Burlingame
- Mass Spectrometry Facility, University of California, San Francisco, California 94143, USA
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- These authors jointly supervised this work: Feixia Chu, Gabriela Chiosis
| | - Feixia Chu
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH 03824, USA
- These authors jointly supervised this work: Feixia Chu, Gabriela Chiosis
| |
Collapse
|
7
|
Kelly RDW, Stengel KR, Chandru A, Johnson LC, Hiebert SW, Cowley SM. Histone deacetylases maintain expression of the pluripotent gene network via recruitment of RNA polymerase II to coding and noncoding loci. Genome Res 2024; 34:34-46. [PMID: 38290976 PMCID: PMC10903948 DOI: 10.1101/gr.278050.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Histone acetylation is a dynamic modification regulated by the opposing actions of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Deacetylation of histone tails results in chromatin tightening, and therefore, HDACs are generally regarded as transcriptional repressors. Counterintuitively, simultaneous deletion of Hdac1 and Hdac2 in embryonic stem cells (ESCs) reduces expression of the pluripotency-associated transcription factors Pou5f1, Sox2, and Nanog (PSN). By shaping global histone acetylation patterns, HDACs indirectly regulate the activity of acetyl-lysine readers, such as the transcriptional activator BRD4. Here, we use inhibitors of HDACs and BRD4 (LBH589 and JQ1, respectively) in combination with precision nuclear run-on and sequencing (PRO-seq) to examine their roles in defining the ESC transcriptome. Both LBH589 and JQ1 cause a marked reduction in the pluripotent gene network. However, although JQ1 treatment induces widespread transcriptional pausing, HDAC inhibition causes a reduction in both paused and elongating polymerase, suggesting an overall reduction in polymerase recruitment. Using enhancer RNA (eRNA) expression to measure enhancer activity, we find that LBH589-sensitive eRNAs are preferentially associated with superenhancers and PSN binding sites. These findings suggest that HDAC activity is required to maintain pluripotency by regulating the PSN enhancer network via the recruitment of RNA polymerase II.
Collapse
Affiliation(s)
- Richard D W Kelly
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Kristy R Stengel
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, Bronx, New York 10461, USA
| | - Aditya Chandru
- Cancer Research UK Beatson Institute, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Lyndsey C Johnson
- Locate Bio Limited, MediCity, Beeston, Nottingham NG90 6BH, United Kingdom
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Shaun M Cowley
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester LE1 9HN, United Kingdom;
| |
Collapse
|
8
|
RDW K, KR S, A C, LC4 J, SW H, SM C. Histone Deacetylases (HDACs) maintain expression of the pluripotent gene network via recruitment of RNA polymerase II to coding and non-coding loci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535398. [PMID: 37066171 PMCID: PMC10104071 DOI: 10.1101/2023.04.06.535398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Histone acetylation is a dynamic modification regulated by the opposing actions of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Deacetylation of histone tails results in chromatin tightening and therefore HDACs are generally regarded as transcriptional repressors. Counterintuitively, simultaneous deletion of Hdac1 and Hdac2 in embryonic stem cells (ESC) reduced expression of pluripotent transcription factors, Oct4, Sox2 and Nanog (OSN). By shaping global histone acetylation patterns, HDACs indirectly regulate the activity of acetyl-lysine readers, such as the transcriptional activator, BRD4. We used inhibitors of HDACs and BRD4 (LBH589 and JQ1 respectively) in combination with precision nuclear run-on and sequencing (PRO-seq) to examine their roles in defining the ESC transcriptome. Both LBH589 and JQ1 caused a marked reduction in the pluripotent network. However, while JQ1 treatment induced widespread transcriptional pausing, HDAC inhibition caused a reduction in both paused and elongating polymerase, suggesting an overall reduction in polymerase recruitment. Using enhancer RNA (eRNA) expression to measure enhancer activity we found that LBH589-sensitive eRNAs were preferentially associated with super-enhancers and OSN binding sites. These findings suggest that HDAC activity is required to maintain pluripotency by regulating the OSN enhancer network via the recruitment of RNA polymerase II.
Collapse
Affiliation(s)
- Kelly RDW
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 9HN, UK
| | - Stengel KR
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue Chanin Building, Bronx, NY 10461
| | - Chandru A
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Johnson LC4
- Locate Bio Limited, MediCity, Thane Road, Beeston, Nottingham, NG90 6BH
| | - Hiebert SW
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cowley SM
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 9HN, UK
| |
Collapse
|
9
|
Pollina EA, Gilliam DT, Landau AT, Lin C, Pajarillo N, Davis CP, Harmin DA, Yap EL, Vogel IR, Griffith EC, Nagy MA, Ling E, Duffy EE, Sabatini BL, Weitz CJ, Greenberg ME. A NPAS4-NuA4 complex couples synaptic activity to DNA repair. Nature 2023; 614:732-741. [PMID: 36792830 PMCID: PMC9946837 DOI: 10.1038/s41586-023-05711-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 01/05/2023] [Indexed: 02/17/2023]
Abstract
Neuronal activity is crucial for adaptive circuit remodelling but poses an inherent risk to the stability of the genome across the long lifespan of postmitotic neurons1-5. Whether neurons have acquired specialized genome protection mechanisms that enable them to withstand decades of potentially damaging stimuli during periods of heightened activity is unknown. Here we identify an activity-dependent DNA repair mechanism in which a new form of the NuA4-TIP60 chromatin modifier assembles in activated neurons around the inducible, neuronal-specific transcription factor NPAS4. We purify this complex from the brain and demonstrate its functions in eliciting activity-dependent changes to neuronal transcriptomes and circuitry. By characterizing the landscape of activity-induced DNA double-strand breaks in the brain, we show that NPAS4-NuA4 binds to recurrently damaged regulatory elements and recruits additional DNA repair machinery to stimulate their repair. Gene regulatory elements bound by NPAS4-NuA4 are partially protected against age-dependent accumulation of somatic mutations. Impaired NPAS4-NuA4 signalling leads to a cascade of cellular defects, including dysregulated activity-dependent transcriptional responses, loss of control over neuronal inhibition and genome instability, which all culminate to reduce organismal lifespan. In addition, mutations in several components of the NuA4 complex are reported to lead to neurodevelopmental and autism spectrum disorders. Together, these findings identify a neuronal-specific complex that couples neuronal activity directly to genome preservation, the disruption of which may contribute to developmental disorders, neurodegeneration and ageing.
Collapse
Affiliation(s)
- Elizabeth A Pollina
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Daniel T Gilliam
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Andrew T Landau
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Cindy Lin
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Naomi Pajarillo
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - David A Harmin
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ee-Lynn Yap
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ian R Vogel
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Eric C Griffith
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - M Aurel Nagy
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Emi Ling
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Erin E Duffy
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Bernardo L Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Charles J Weitz
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
10
|
Tominaga K, Sakashita E, Kasashima K, Kuroiwa K, Nagao Y, Iwamori N, Endo H. Tip60/KAT5 Histone Acetyltransferase Is Required for Maintenance and Neurogenesis of Embryonic Neural Stem Cells. Int J Mol Sci 2023; 24:ijms24032113. [PMID: 36768434 PMCID: PMC9916716 DOI: 10.3390/ijms24032113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Epigenetic regulation via epigenetic factors in collaboration with tissue-specific transcription factors is curtail for establishing functional organ systems during development. Brain development is tightly regulated by epigenetic factors, which are coordinately activated or inactivated during processes, and their dysregulation is linked to brain abnormalities and intellectual disability. However, the precise mechanism of epigenetic regulation in brain development and neurogenesis remains largely unknown. Here, we show that Tip60/KAT5 deletion in neural stem/progenitor cells (NSCs) in mice results in multiple abnormalities of brain development. Tip60-deficient embryonic brain led to microcephaly, and proliferating cells in the developing brain were reduced by Tip60 deficiency. In addition, neural differentiation and neuronal migration were severely affected in Tip60-deficient brains. Following neurogenesis in developing brains, gliogenesis started from the earlier stage of development in Tip60-deficient brains, indicating that Tip60 is involved in switching from neurogenesis to gliogenesis during brain development. It was also confirmed in vitro that poor neurosphere formation, proliferation defects, neural differentiation defects, and accelerated astrocytic differentiation in mutant NSCs are derived from Tip60-deficient embryonic brains. This study uncovers the critical role of Tip60 in brain development and NSC maintenance and function in vivo and in vitro.
Collapse
Affiliation(s)
- Kaoru Tominaga
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
- Correspondence: (K.T.); (N.I.)
| | - Eiji Sakashita
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
| | - Katsumi Kasashima
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
| | - Kenji Kuroiwa
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
| | - Yasumitsu Nagao
- Center for Experimental Medicine, Jichi Medical University, Tochigi 321-0498, Japan
| | - Naoki Iwamori
- Department of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence: (K.T.); (N.I.)
| | - Hitoshi Endo
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
| |
Collapse
|
11
|
Su Y, Lian J, Chen S, Zhang W, Deng C. Epigenetic histone acetylation modulating prenatal Poly I:C induced neuroinflammation in the prefrontal cortex of rats: a study in a maternal immune activation model. Front Cell Neurosci 2022; 16:1037105. [DOI: 10.3389/fncel.2022.1037105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction: Neuroinflammation in the central nervous system, particularly the prefrontal cortex (PFC), plays a role in the pathogenesis of schizophrenia, which has been found to be associated with maternal immune activation (MIA). Recent evidence suggests that epigenetic regulation involves in the MIA-induced neurodevelopmental disturbance. However, it is not well-understood how epigenetic modulation is involved in the neuroinflammation and pathogenesis of schizophrenia.Methods: This study explored the modulation of histone acetylation in both neuroinflammation and neurotransmission using an MIA rat model induced by prenatal polyriboinosinic-polyribocytidylic acid (Poly I:C) exposure, specifically examining those genes that were previously observed to be impacted by the exposure, including a subunit of nuclear factor kappa-B (Rela), Nod-Like-Receptor family Pyrin domain containing 3 (Nlrp3), NMDA receptor subunit 2A (Grin2a), 5-HT2A (Htr2a), and GABAA subunit β3 (Gabrb3).Results: Our results revealed global changes of histone acetylation on H3 (H3ace) and H4 (H4ace) in the PFC of offspring rats with prenatal Poly I:C exposure. In addition, it revealed enhancement of both H3ace and H4ace binding on the promoter region of Rela, as well as positive correlations between Rela and genes encoding histone acetyltransferases (HATs) including CREB-binding protein (CBP) and E1A-associated protein p300 (EP300). Although there was no change in H3ace or H4ace enrichment on the promoter region of Nlrp3, a significant enhancement of histone deacetylase 6 (HDAC6) binding on the promoter region of Nlrp3 and a positive correlation between Nlrp3 and Hdac6 were also observed. However, prenatal Poly I:C treatment did not lead to any specific changes of H3ace and H4ace on the promoter region of the target genes encoding neurotransmitter receptors in this study.Discussion: These findings demonstrated that epigenetic modulation contributes to NF-κB/NLRP3 mediated neuroinflammation induced by prenatal Poly I:C exposure via enhancement of histone acetylation of H3ace and H4ace on Rela and HDAC6-mediated NLRP3 transcriptional activation. This may further lead to deficits in neurotransmissions and schizophrenia-like behaviors observed in offspring.
Collapse
|
12
|
Gomar‐Alba M, Pozharskaia V, Cichocki B, Schaal C, Kumar A, Jacquel B, Charvin G, Igual JC, Mendoza M. Nuclear pore complex acetylation regulates mRNA export and cell cycle commitment in budding yeast. EMBO J 2022; 41:e110271. [PMID: 35735140 PMCID: PMC9340480 DOI: 10.15252/embj.2021110271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022] Open
Abstract
Nuclear pore complexes (NPCs) mediate communication between the nucleus and the cytoplasm, and regulate gene expression by interacting with transcription and mRNA export factors. Lysine acetyltransferases (KATs) promote transcription through acetylation of chromatin-associated proteins. We find that Esa1, the KAT subunit of the yeast NuA4 complex, also acetylates the nuclear pore basket component Nup60 to promote mRNA export. Acetylation of Nup60 recruits the mRNA export factor Sac3, the scaffolding subunit of the Transcription and Export 2 (TREX-2) complex, to the nuclear basket. The Esa1-mediated nuclear export of mRNAs in turn promotes entry into S phase, which is inhibited by the Hos3 deacetylase in G1 daughter cells to restrain their premature commitment to a new cell division cycle. This mechanism is not only limited to G1/S-expressed genes but also inhibits the expression of the nutrient-regulated GAL1 gene specifically in daughter cells. Overall, these results reveal how acetylation can contribute to the functional plasticity of NPCs in mother and daughter yeast cells. In addition, our work demonstrates dual gene expression regulation by the evolutionarily conserved NuA4 complex, at the level of transcription and at the stage of mRNA export by modifying the nucleoplasmic entrance to nuclear pores.
Collapse
Affiliation(s)
- Mercè Gomar‐Alba
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Institut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia MolecularUniversitat de ValènciaBurjassotSpain
| | | | - Bogdan Cichocki
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
| | - Celia Schaal
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
| | - Arun Kumar
- Department of Cell BiologyUniversitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Basile Jacquel
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
| | - Gilles Charvin
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche Scientifique, UMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U964IllkirchFrance
- Université de StrasbourgStrasbourgFrance
| | - J Carlos Igual
- Institut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia MolecularUniversitat de ValènciaBurjassotSpain
| | - Manuel Mendoza
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche Scientifique, UMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U964IllkirchFrance
- Université de StrasbourgStrasbourgFrance
| |
Collapse
|
13
|
Ngo V, Fleischmann BK, Jung M, Hein L, Lother A. Histone Deacetylase 6 Inhibitor JS28 Prevents Pathological Gene Expression in Cardiac Myocytes. J Am Heart Assoc 2022; 11:e025857. [PMID: 35699165 PMCID: PMC9238633 DOI: 10.1161/jaha.122.025857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
Background Epigenetic modulators have been proposed as promising new drug targets to treat adverse remodeling in heart failure. Here, we evaluated the potential of 4 epigenetic drugs, including the recently developed histone deacetylase 6 (HDAC6) inhibitor JS28, to prevent endothelin-1 induced pathological gene expression in cardiac myocytes and analyzed the chromatin binding profile of the respective inhibitor targets. Methods and Results Cardiac myocytes were differentiated and puromycin-selected from mouse embryonic stem cells and treated with endothelin-1 to induce pathological gene expression (938 differentially expressed genes, q<0.05). Dysregulation of gene expression was at least in part prevented by epigenetic inhibitors, including the pan-BRD (bromodomain-containing protein) inhibitor bromosporine (290/938 genes), the BET (bromodomain and extraterminal) inhibitor JQ1 (288/938), the broad-spectrum HDAC inhibitor suberoylanilide hydroxamic acid (227/938), and the HDAC6 inhibitor JS28 (210/938). Although the 4 compounds were similarly effective toward pathological gene expression, JS28 demonstrated the least adverse effects on physiological gene expression. Genome-wide chromatin binding profiles revealed that HDAC6 binding sites were preferentially associated with promoters of genes involved in RNA processing. In contrast, BRD4 binding was associated with genes involved in core cardiac myocyte functions, for example, myocyte contractility, and showed enrichment at enhancers and intronic regions. These distinct chromatin binding profiles of HDAC6 and BRD4 might explain the different effects of their inhibitors on pathological versus physiological gene expression. Conclusions In summary, we demonstrated, that the HDAC6 inhibitor JS28 effectively prevented the adverse effects of endothelin-1 on gene expression with minor impact on physiological gene expression in cardiac myocytes. Selective HDAC6 inhibition by JS28 appears to be a promising strategy for future evaluation in vivo and potential translation into clinical application.
Collapse
Affiliation(s)
- Vivien Ngo
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of MedicineUniversity of FreiburgGermany
| | - Bernd K. Fleischmann
- Institute of Physiology I, Life & Brain Center, Medical FacultyUniversity of BonnGermany
| | - Manfred Jung
- Institute of Pharmaceutical SciencesUniversity of FreiburgGermany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of MedicineUniversity of FreiburgGermany
- BIOSS Centre for Biological Signaling StudiesUniversity of FreiburgGermany
| | - Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of MedicineUniversity of FreiburgGermany
- Interdisciplinary Medical Intensive Care (IMIT), Medical Center – University of Freiburg, Faculty of MedicineUniversity of FreiburgGermany
| |
Collapse
|
14
|
Barry RM, Sacco O, Mameri A, Stojaspal M, Kartsonis W, Shah P, De Ioannes P, Hofr C, Côté J, Sfeir A. Rap1 regulates TIP60 function during fate transition between two-cell-like and pluripotent states. Genes Dev 2022; 36:313-330. [PMID: 35210222 PMCID: PMC8973845 DOI: 10.1101/gad.349039.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/08/2022] [Indexed: 01/05/2023]
Abstract
In mammals, the conserved telomere binding protein Rap1 serves a diverse set of nontelomeric functions, including activation of the NF-kB signaling pathway, maintenance of metabolic function in vivo, and transcriptional regulation. Here, we uncover the mechanism by which Rap1 modulates gene expression. Using a separation-of-function allele, we show that Rap1 transcriptional regulation is largely independent of TRF2-mediated binding to telomeres and does not involve direct binding to genomic loci. Instead, Rap1 interacts with the TIP60/p400 complex and modulates its histone acetyltransferase activity. Notably, we show that deletion of Rap1 in mouse embryonic stem cells increases the fraction of two-cell-like cells. Specifically, Rap1 enhances the repressive activity of Tip60/p400 across a subset of two-cell-stage genes, including Zscan4 and the endogenous retrovirus MERVL. Preferential up-regulation of genes proximal to MERVL elements in Rap1-deficient settings implicates these endogenous retroviral elements in the derepression of proximal genes. Altogether, our study reveals an unprecedented link between Rap1 and the TIP60/p400 complex in the regulation of pluripotency.
Collapse
Affiliation(s)
- Raymond Mario Barry
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Olivia Sacco
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Amel Mameri
- St-Patrick Research Group in Basic Oncology; CHU de Québec-Université Laval Research Center-Oncology Division, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Martin Stojaspal
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - William Kartsonis
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - Pooja Shah
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - Pablo De Ioannes
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Ctirad Hofr
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Scientific Incubator, 612 65 Brno, Czech Republic
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology; CHU de Québec-Université Laval Research Center-Oncology Division, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
15
|
Rust K, Wodarz A. Transcriptional Control of Apical-Basal Polarity Regulators. Int J Mol Sci 2021; 22:ijms222212340. [PMID: 34830224 PMCID: PMC8624420 DOI: 10.3390/ijms222212340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022] Open
Abstract
Cell polarity is essential for many functions of cells and tissues including the initial establishment and subsequent maintenance of epithelial tissues, asymmetric cell division, and morphogenetic movements. Cell polarity along the apical-basal axis is controlled by three protein complexes that interact with and co-regulate each other: The Par-, Crumbs-, and Scrib-complexes. The localization and activity of the components of these complexes is predominantly controlled by protein-protein interactions and protein phosphorylation status. Increasing evidence accumulates that, besides the regulation at the protein level, the precise expression control of polarity determinants contributes substantially to cell polarity regulation. Here we review how gene expression regulation influences processes that depend on the induction, maintenance, or abolishment of cell polarity with a special focus on epithelial to mesenchymal transition and asymmetric stem cell division. We conclude that gene expression control is an important and often neglected mechanism in the control of cell polarity.
Collapse
Affiliation(s)
- Katja Rust
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University, 35037 Marburg, Germany
- Correspondence: (K.R.); (A.W.)
| | - Andreas Wodarz
- Department of Molecular Cell Biology, Institute I for Anatomy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Cluster of Excellence—Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
- Correspondence: (K.R.); (A.W.)
| |
Collapse
|
16
|
He R, Dantas A, Riabowol K. Histone Acetyltransferases and Stem Cell Identity. Cancers (Basel) 2021; 13:2407. [PMID: 34067525 PMCID: PMC8156521 DOI: 10.3390/cancers13102407] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Acetylation of histones is a key epigenetic modification involved in transcriptional regulation. The addition of acetyl groups to histone tails generally reduces histone-DNA interactions in the nucleosome leading to increased accessibility for transcription factors and core transcriptional machinery to bind their target sequences. There are approximately 30 histone acetyltransferases and their corresponding complexes, each of which affect the expression of a subset of genes. Because cell identity is determined by gene expression profile, it is unsurprising that the HATs responsible for inducing expression of these genes play a crucial role in determining cell fate. Here, we explore the role of HATs in the maintenance and differentiation of various stem cell types. Several HAT complexes have been characterized to play an important role in activating genes that allow stem cells to self-renew. Knockdown or loss of their activity leads to reduced expression and or differentiation while particular HATs drive differentiation towards specific cell fates. In this study we review functions of the HAT complexes active in pluripotent stem cells, hematopoietic stem cells, muscle satellite cells, mesenchymal stem cells, neural stem cells, and cancer stem cells.
Collapse
Affiliation(s)
- Ruicen He
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.H.); (A.D.)
- Department of Molecular Genetics, Temerty School of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Arthur Dantas
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.H.); (A.D.)
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Karl Riabowol
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.H.); (A.D.)
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
17
|
Lai Y, He Z, Zhang A, Yan Z, Zhang X, Hu S, Wang N, He H. Tip60 and p300 function antagonistically in the epigenetic regulation of HPV18 E6/E7 genes in cervical cancer HeLa cells. Genes Genomics 2020; 42:691-698. [PMID: 32399935 DOI: 10.1007/s13258-020-00938-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/27/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND High-risk HPV is a causative factor of cervical cancer. HPV DNA fragments integrate into host genome resulting in the constitutive expression of HPV genes E6 and E7 under the regulation of transcription factors, such as p300 and Tip60. Interestingly, Tip60, a factor with HAT (histone acetyl transferase) activity, represses HPV18 E6/E7 genes while another HAT p300 activates the transcription of HPV18 E6/E7. OBJECTIVE To explore the mechanism for the opposite roles of Tip60 and p300 in the virus gene regulation, and the influence of Tip60 and p300 in histone modifications in the regulatory sequence of HPV18 genes. METHODS Tip60 or p300 was either knocked down or overexpressed in HeLa cells. The effects on HPV E6E7 expression were determined with RT-qPCR. The association of RNA polymerase II and the enrichment of acetylated or methylated histones in HPV promoter region were measured by ChIP assays with specific antibodies. RESULTS ChIP results showed that Tip60 and p300 differently affected the modifications of histone H3K9 and the deposition of nucleosomes in HPV18 long control region (LCR). HPV18 LCR in HeLa cells is bivalent chromatin carrying both the active histone H3K9 acetylation mark and the repressive histone H3K9 trimethylation mark, the balance is maintained by Tip60 and p300. CONCLUSION(S) Based on the roles of Tip60 and p300 in HPV gene regulation, chemical compounds targeting Tip60 or p300 are potential anti-cervical cancer drugs.
Collapse
Affiliation(s)
- Yongwei Lai
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City State Key Laboratory of Food Nutrition and Safety College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
- Department of Pharmacology, Jilin Medical University, Jilin City, 132013, Jilin Province, People's Republic of China
| | - Zhao He
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City State Key Laboratory of Food Nutrition and Safety College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Aowei Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City State Key Laboratory of Food Nutrition and Safety College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Zhinan Yan
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City State Key Laboratory of Food Nutrition and Safety College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Xiao Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City State Key Laboratory of Food Nutrition and Safety College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Shiyue Hu
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City State Key Laboratory of Food Nutrition and Safety College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Nan Wang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City State Key Laboratory of Food Nutrition and Safety College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Hongpeng He
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City State Key Laboratory of Food Nutrition and Safety College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China.
| |
Collapse
|
18
|
HDAC6-an Emerging Target Against Chronic Myeloid Leukemia? Cancers (Basel) 2020; 12:cancers12020318. [PMID: 32013157 PMCID: PMC7072136 DOI: 10.3390/cancers12020318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Imatinib became the standard treatment for chronic myeloid leukemia (CML) about 20 years ago, which was a major breakthrough in stabilizing the pathology and improving the quality of life of patients. However, the emergence of resistance to imatinib and other tyrosine kinase inhibitors leads researchers to characterize new therapeutic targets. Several studies have highlighted the role of histone deacetylase 6 (HDAC6) in various pathologies, including cancer. This protein effectively intervenes in cellular activities by its primarily cytoplasmic localization. In this review, we will discuss the molecular characteristics of the HDAC6 protein, as well as its overexpression in CML leukemic stem cells, which make it a promising therapeutic target for the treatment of CML.
Collapse
|
19
|
Tsai PH, Chien Y, Wang ML, Hsu CH, Laurent B, Chou SJ, Chang WC, Chien CS, Li HY, Lee HC, Huo TI, Hung JH, Chen CH, Chiou SH. Ash2l interacts with Oct4-stemness circuitry to promote super-enhancer-driven pluripotency network. Nucleic Acids Res 2019; 47:10115-10133. [PMID: 31555818 PMCID: PMC6821267 DOI: 10.1093/nar/gkz801] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 01/31/2023] Open
Abstract
Pluripotency and cell fates can be modulated through the regulation of super-enhancers; however, the underlying mechanisms are unclear. Here, we showed a novel mechanism in which Ash2l directly binds to super-enhancers of several stemness genes to regulate pluripotency and self-renewal in pluripotent stem cells. Ash2l recruits Oct4/Sox2/Nanog (OSN) to form Ash2l/OSN complex at the super-enhancers of Jarid2, Nanog, Sox2 and Oct4, and further drives enhancer activation, upregulation of stemness genes, and maintains the pluripotent circuitry. Ash2l knockdown abrogates the OSN recruitment to all super-enhancers and further hinders the enhancer activation. In addition, CRISPRi/dCas9-mediated blocking of Ash2l-binding motifs at these super-enhancers also prevents OSN recruitment and enhancer activation, validating that Ash2l directly binds to super-enhancers and initiates the pluripotency network. Transfection of Ash2l with W118A mutation to disrupt Ash2l–Oct4 interaction fails to rescue Ash2l-driven enhancer activation and pluripotent gene upregulation in Ash2l-depleted pluripotent stem cells. Together, our data demonstrated Ash2l formed an enhancer-bound Ash2l/OSN complex that can drive enhancer activation, govern pluripotency network and stemness circuitry.
Collapse
Affiliation(s)
- Ping-Hsing Tsai
- Department of Medical Research, Taipei VeteransGeneral Hospital, Taipei 11217, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei VeteransGeneral Hospital, Taipei 11217, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Mong-Lien Wang
- Department of Medical Research, Taipei VeteransGeneral Hospital, Taipei 11217, Taiwan.,Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei 11221, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan.,School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chih-Hung Hsu
- Department of Public Health, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Benoit Laurent
- Boston Children's Hospital and Harvard Medical School, Boston MA 02115, USA
| | - Shih-Jie Chou
- Department of Medical Research, Taipei VeteransGeneral Hospital, Taipei 11217, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan.,School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chian-Shiu Chien
- Department of Medical Research, Taipei VeteransGeneral Hospital, Taipei 11217, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Hsin-Yang Li
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.,Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hsin-Chen Lee
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan.,School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Teh-Ia Huo
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan.,Section of Gastroenterology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Jui-Hung Hung
- Institutes of Data Science and Engineering, and Department of computer science, National Chiao-Tung University, Hsinchu 30010, Taiwan
| | | | - Shih-Hwa Chiou
- Department of Medical Research, Taipei VeteransGeneral Hospital, Taipei 11217, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan.,Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei 11221, Taiwan.,School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.,Genomic Research Center, Academia Sinica, Taipei 11529, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao-Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
20
|
Gökbuget D, Blelloch R. Epigenetic control of transcriptional regulation in pluripotency and early differentiation. Development 2019; 146:dev164772. [PMID: 31554624 PMCID: PMC6803368 DOI: 10.1242/dev.164772] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pluripotent stem cells give rise to all cells of the adult organism, making them an invaluable tool in regenerative medicine. In response to differentiation cues, they can activate markedly distinct lineage-specific gene networks while turning off or rewiring pluripotency networks. Recent innovations in chromatin and nuclear structure analyses combined with classical genetics have led to novel insights into the transcriptional and epigenetic mechanisms underlying these networks. Here, we review these findings in relation to their impact on the maintenance of and exit from pluripotency and highlight the many factors that drive these processes, including histone modifying enzymes, DNA methylation and demethylation, nucleosome remodeling complexes and transcription factor-mediated enhancer switching.
Collapse
Affiliation(s)
- Deniz Gökbuget
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Urology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Urology, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
21
|
Hainer SJ, Bošković A, McCannell KN, Rando OJ, Fazzio TG. Profiling of Pluripotency Factors in Single Cells and Early Embryos. Cell 2019; 177:1319-1329.e11. [PMID: 30955888 DOI: 10.1016/j.cell.2019.03.014] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/13/2019] [Accepted: 03/05/2019] [Indexed: 02/09/2023]
Abstract
Cell fate decisions are governed by sequence-specific transcription factors (TFs) that act in small populations of cells within developing embryos. To understand their functions in vivo, it is important to identify TF binding sites in these cells. However, current methods cannot profile TFs genome-wide at or near the single-cell level. Here we adapt the cleavage under targets and release using nuclease (CUT&RUN) method to profile TFs in low cell numbers, including single cells and individual pre-implantation embryos. Single-cell experiments suggest that only a fraction of TF binding sites are occupied in most cells, in a manner broadly consistent with measurements of peak intensity from multi-cell studies. We further show that chromatin binding by the pluripotency TF NANOG is highly dependent on the SWI/SNF chromatin remodeling complex in individual blastocysts but not in cultured cells. Ultra-low input CUT&RUN (uliCUT&RUN) therefore enables interrogation of TF binding from rare cell populations of particular importance in development or disease.
Collapse
Affiliation(s)
- Sarah J Hainer
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Ana Bošković
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kurtis N McCannell
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
22
|
Sainz de Aja J, Menchero S, Rollan I, Barral A, Tiana M, Jawaid W, Cossio I, Alvarez A, Carreño‐Tarragona G, Badia‐Careaga C, Nichols J, Göttgens B, Isern J, Manzanares M. The pluripotency factor NANOG controls primitive hematopoiesis and directly regulates Tal1. EMBO J 2019; 38:embj.201899122. [PMID: 30814124 PMCID: PMC6443201 DOI: 10.15252/embj.201899122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 02/02/2023] Open
Abstract
Progenitors of the first hematopoietic cells in the mouse arise in the early embryo from Brachyury-positive multipotent cells in the posterior-proximal region of the epiblast, but the mechanisms that specify primitive blood cells are still largely unknown. Pluripotency factors maintain uncommitted cells of the blastocyst and embryonic stem cells in the pluripotent state. However, little is known about the role played by these factors during later development, despite being expressed in the postimplantation epiblast. Using a dual transgene system for controlled expression at postimplantation stages, we found that Nanog blocks primitive hematopoiesis in the gastrulating embryo, resulting in a loss of red blood cells and downregulation of erythropoietic genes. Accordingly, Nanog-deficient embryonic stem cells are prone to erythropoietic differentiation. Moreover, Nanog expression in adults prevents the maturation of erythroid cells. By analysis of previous data for NANOG binding during stem cell differentiation and CRISPR/Cas9 genome editing, we found that Tal1 is a direct NANOG target. Our results show that Nanog regulates primitive hematopoiesis by directly repressing critical erythroid lineage specifiers.
Collapse
Affiliation(s)
- Julio Sainz de Aja
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| | - Sergio Menchero
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| | - Isabel Rollan
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| | - Antonio Barral
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| | - Maria Tiana
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| | - Wajid Jawaid
- Wellcome‐Medical Research Council Cambridge Stem Cell InstituteCambridgeUK,Department of HaematologyCambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - Itziar Cossio
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| | - Alba Alvarez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| | - Gonzalo Carreño‐Tarragona
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain,Department of HaematologyHospital 12 de OctubreMadridSpain
| | | | - Jennifer Nichols
- Wellcome‐Medical Research Council Cambridge Stem Cell InstituteCambridgeUK,Department of PhysiologyDevelopment and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Berthold Göttgens
- Wellcome‐Medical Research Council Cambridge Stem Cell InstituteCambridgeUK,Department of HaematologyCambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - Joan Isern
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain,Department of Experimental & Health SciencesUniversity Pompeu Fabra (UPF)BarcelonaSpain
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| |
Collapse
|
23
|
Cogné B, Ehresmann S, Beauregard-Lacroix E, Rousseau J, Besnard T, Garcia T, Petrovski S, Avni S, McWalter K, Blackburn PR, Sanders SJ, Uguen K, Harris J, Cohen JS, Blyth M, Lehman A, Berg J, Li MH, Kini U, Joss S, von der Lippe C, Gordon CT, Humberson JB, Robak L, Scott DA, Sutton VR, Skraban CM, Johnston JJ, Poduri A, Nordenskjöld M, Shashi V, Gerkes EH, Bongers EM, Gilissen C, Zarate YA, Kvarnung M, Lally KP, Kulch PA, Daniels B, Hernandez-Garcia A, Stong N, McGaughran J, Retterer K, Tveten K, Sullivan J, Geisheker MR, Stray-Pedersen A, Tarpinian JM, Klee EW, Sapp JC, Zyskind J, Holla ØL, Bedoukian E, Filippini F, Guimier A, Picard A, Busk ØL, Punetha J, Pfundt R, Lindstrand A, Nordgren A, Kalb F, Desai M, Ebanks AH, Jhangiani SN, Dewan T, Coban Akdemir ZH, Telegrafi A, Zackai EH, Begtrup A, Song X, Toutain A, Wentzensen IM, Odent S, Bonneau D, Latypova X, Deb W, Redon S, Bilan F, Legendre M, Troyer C, Whitlock K, Caluseriu O, Murphree MI, Pichurin PN, Agre K, Gavrilova R, Rinne T, Park M, Shain C, Heinzen EL, Xiao R, Amiel J, Lyonnet S, Isidor B, Biesecker LG, Lowenstein D, Posey JE, Denommé-Pichon AS, Férec C, Yang XJ, Rosenfeld JA, Gilbert-Dussardier B, Audebert-Bellanger S, Redon R, Stessman HA, Nellaker C, Yang Y, Lupski JR, Goldstein DB, Eichler EE, Bolduc F, Bézieau S, Küry S, Campeau PM, Küry S, Campeau PM. Missense Variants in the Histone Acetyltransferase Complex Component Gene TRRAP Cause Autism and Syndromic Intellectual Disability. Am J Hum Genet 2019; 104:530-541. [PMID: 30827496 DOI: 10.1016/j.ajhg.2019.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
Acetylation of the lysine residues in histones and other DNA-binding proteins plays a major role in regulation of eukaryotic gene expression. This process is controlled by histone acetyltransferases (HATs/KATs) found in multiprotein complexes that are recruited to chromatin by the scaffolding subunit transformation/transcription domain-associated protein (TRRAP). TRRAP is evolutionarily conserved and is among the top five genes intolerant to missense variation. Through an international collaboration, 17 distinct de novo or apparently de novo variants were identified in TRRAP in 24 individuals. A strong genotype-phenotype correlation was observed with two distinct clinical spectra. The first is a complex, multi-systemic syndrome associated with various malformations of the brain, heart, kidneys, and genitourinary system and characterized by a wide range of intellectual functioning; a number of affected individuals have intellectual disability (ID) and markedly impaired basic life functions. Individuals with this phenotype had missense variants clustering around the c.3127G>A p.(Ala1043Thr) variant identified in five individuals. The second spectrum manifested with autism spectrum disorder (ASD) and/or ID and epilepsy. Facial dysmorphism was seen in both groups and included upslanted palpebral fissures, epicanthus, telecanthus, a wide nasal bridge and ridge, a broad and smooth philtrum, and a thin upper lip. RNA sequencing analysis of skin fibroblasts derived from affected individuals skin fibroblasts showed significant changes in the expression of several genes implicated in neuronal function and ion transport. Thus, we describe here the clinical spectrum associated with TRRAP pathogenic missense variants, and we suggest a genotype-phenotype correlation useful for clinical evaluation of the pathogenicity of the variants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sébastien Küry
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093 Nantes, France; INSERM, CNRS, UNIV Nantes, l'institut du thorax, 44007 Nantes, France.
| | - Philippe M Campeau
- Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada; Department of Pediatrics, University of Montreal, Montreal, QC H3T1J4, Canada.
| |
Collapse
|
24
|
Kang KT, Kwon YW, Kim DK, Lee SI, Kim KH, Suh DS, Kim JH. TRRAP stimulates the tumorigenic potential of ovarian cancer stem cells. BMB Rep 2019. [PMID: 29936929 PMCID: PMC6235085 DOI: 10.5483/bmbrep.2018.51.10.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer is the most fatal gynecological malignancy in women and identification of new therapeutic targets is essential for the continued development of therapy for ovarian cancer. TRRAP (transformation/transcription domain-associated protein) is an adaptor protein and a component of histone acetyltransferase complex. The present study was undertaken to investigate the roles played by TRRAP in the proliferation and tumorigenicity of ovarian cancer stem cells. TRRAP expression was found to be up-regulated in the sphere cultures of A2780 ovarian cancer cells. Knockdown of TRRAP significantly decreased cell proliferation and the number of A2780 spheroids. In addition, TRRAP knockdown induced cell cycle arrest and increased apoptotic percentages of A2780 sphere cells. Notably, the mRNA levels of stemness-associated markers, that is, OCT4, SOX2, and NANOG, were suppressed in TRRAP-silenced A2780 sphere cells. In addition, TRRAP overexpression increased the mRNA level of NANOG and the transcriptional activity of NANOG promoter in these cells. Furthermore, TRRAP knockdown significantly reduced tumor growth in a murine xenograft transplantation model. Taken together, the findings of the present study suggest that TRRAP plays an important role in the regulation of the proliferation and stemness of ovarian cancer stem cells.
Collapse
Affiliation(s)
- Kyung Taek Kang
- Departments of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Yang Woo Kwon
- Departments of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Dae Kyoung Kim
- Departments of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Su In Lee
- Departments of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Ki-Hyung Kim
- Obstetrics and Gynecology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Dong-Soo Suh
- Obstetrics and Gynecology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jae Ho Kim
- Departments of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea; Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea
| |
Collapse
|
25
|
Singh R, Holz PS, Roth K, Hupfer A, Meissner W, Müller R, Buchholz M, Gress TM, Elsässer HP, Jacob R, Lauth M. DYRK1B regulates Hedgehog-induced microtubule acetylation. Cell Mol Life Sci 2019; 76:193-207. [PMID: 30317528 PMCID: PMC11105311 DOI: 10.1007/s00018-018-2942-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/25/2018] [Accepted: 10/08/2018] [Indexed: 01/12/2023]
Abstract
The posttranslational modification (PTM) of tubulin subunits is important for the physiological functions of the microtubule (MT) cytoskeleton. Although major advances have been made in the identification of enzymes carrying out MT-PTMs, little knowledge is available on how intercellular signaling molecules and their associated pathways regulate MT-PTM-dependent processes inside signal-receiving cells. Here we show that Hedgehog (Hh) signaling, a paradigmatic intercellular signaling system, affects the MT acetylation state in mammalian cells. Mechanistically, Hh pathway activity increases the levels of the MT-associated DYRK1B kinase, resulting in the inhibition of GSK3β through phosphorylation of Serine 9 and the subsequent suppression of HDAC6 enzyme activity. Since HDAC6 represents a major tubulin deacetylase, its inhibition increases the levels of acetylated MTs. Through the activation of DYRK1B, Hh signaling facilitates MT-dependent processes such as intracellular mitochondrial transport, mesenchymal cell polarization or directed cell migration. Taken together, we provide evidence that intercellular communication through Hh signals can regulate the MT cytoskeleton and contribute to MT-dependent processes by affecting the level of tubulin acetylation.
Collapse
Affiliation(s)
- Rajeev Singh
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor- and Immune Biology (ZTI), Philipps University, Hans-Meerwein-Str. 3, 35043, Marburg, Germany
| | - Philipp Simon Holz
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor- and Immune Biology (ZTI), Philipps University, Hans-Meerwein-Str. 3, 35043, Marburg, Germany
| | - Katrin Roth
- Imaging Core Facility, Center for Tumor- and Immune Biology (ZTI), Philipps University, Hans-Meerwein-Str. 3, 35043, Marburg, Germany
| | - Anna Hupfer
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor- and Immune Biology (ZTI), Philipps University, Hans-Meerwein-Str. 3, 35043, Marburg, Germany
| | - Wolfgang Meissner
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor- and Immune Biology (ZTI), Philipps University, Hans-Meerwein-Str. 3, 35043, Marburg, Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor- and Immune Biology (ZTI), Philipps University, Hans-Meerwein-Str. 3, 35043, Marburg, Germany
| | - Malte Buchholz
- Clinic for Gastroenterology, Endocrinology, Metabolism and Infectiology, Philipps University, Marburg, Germany
| | - Thomas M Gress
- Clinic for Gastroenterology, Endocrinology, Metabolism and Infectiology, Philipps University, Marburg, Germany
| | - Hans-Peter Elsässer
- Institute of Cytobiology and Cytopathology, Philipps University, Robert Koch Str. 6, 35037, Marburg, Germany
| | - Ralf Jacob
- Institute of Cytobiology and Cytopathology, Philipps University, Robert Koch Str. 6, 35037, Marburg, Germany
| | - Matthias Lauth
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor- and Immune Biology (ZTI), Philipps University, Hans-Meerwein-Str. 3, 35043, Marburg, Germany.
| |
Collapse
|
26
|
Yen YP, Hsieh WF, Tsai YY, Lu YL, Liau ES, Hsu HC, Chen YC, Liu TC, Chang M, Li J, Lin SP, Hung JH, Chen JA. Dlk1-Dio3 locus-derived lncRNAs perpetuate postmitotic motor neuron cell fate and subtype identity. eLife 2018; 7:38080. [PMID: 30311912 PMCID: PMC6221546 DOI: 10.7554/elife.38080] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/11/2018] [Indexed: 12/28/2022] Open
Abstract
The mammalian imprinted Dlk1-Dio3 locus produces multiple long non-coding RNAs (lncRNAs) from the maternally inherited allele, including Meg3 (i.e., Gtl2) in the mammalian genome. Although this locus has well-characterized functions in stem cell and tumor contexts, its role during neural development is unknown. By profiling cell types at each stage of embryonic stem cell-derived motor neurons (ESC~MNs) that recapitulate spinal cord development, we uncovered that lncRNAs expressed from the Dlk1-Dio3 locus are predominantly and gradually enriched in rostral motor neurons (MNs). Mechanistically, Meg3 and other Dlk1-Dio3 locus-derived lncRNAs facilitate Ezh2/Jarid2 interactions. Loss of these lncRNAs compromises the H3K27me3 landscape, leading to aberrant expression of progenitor and caudal Hox genes in postmitotic MNs. Our data thus illustrate that these lncRNAs in the Dlk1-Dio3 locus, particularly Meg3, play a critical role in maintaining postmitotic MN cell fate by repressing progenitor genes and they shape MN subtype identity by regulating Hox genes. When a gene is active, its DNA sequence is ‘transcribed’ to form a molecule of RNA. Many of these RNAs act as templates for making proteins. But for some genes, the protein molecules are not their final destinations. Their RNA molecules instead help to control gene activity, which can alter the behaviour or the identity of a cell. For example, experiments performed in individual cells suggest that so-called long non-coding RNAs (or lncRNAs for short) guide how stem cells develop into different types of mature cells. However, it is not clear whether lncRNAs play the same critical role in embryos. Yen et al. used embryonic stem cells to model how motor neurons develop in the spinal cord of mouse embryos. This revealed that motor neurons produce large amounts of a specific group of lncRNAs, particularly one called Meg3. Further experiments showed that motor neurons in mouse embryos that lack Meg3 do not correctly silence a set of genes called the Hox genes, which are crucial for laying out the body plans of many different animal embryos. These neurons also incorrectly continue to express genes that are normally active in an early phase of the stem-like cells that make motor neurons. There is wide interest in how lncRNAs help to regulate embryonic development. With this new knowledge of how Meg3 regulates the activity of Hox genes in motor neurons, research could now be directed toward investigating whether lncRNAs help other tissues to develop in a similar way.
Collapse
Affiliation(s)
- Ya-Ping Yen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China.,Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Wen-Fu Hsieh
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Ya-Yin Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Ya-Lin Lu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Ee Shan Liau
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Ho-Chiang Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yen-Chung Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Ting-Chun Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Mien Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Joye Li
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Shau-Ping Lin
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Jui-Hung Hung
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China.,Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Jun-An Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| |
Collapse
|
27
|
Acharya D, Nera B, Milstone ZJ, Bourke L, Yoon Y, Rivera-Pérez JA, Trivedi CM, Fazzio TG. TIP55, a splice isoform of the KAT5 acetyltransferase, is essential for developmental gene regulation and organogenesis. Sci Rep 2018; 8:14908. [PMID: 30297694 PMCID: PMC6175934 DOI: 10.1038/s41598-018-33213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/24/2018] [Indexed: 11/19/2022] Open
Abstract
Regulation of chromatin structure is critical for cell type-specific gene expression. Many chromatin regulatory complexes exist in several different forms, due to alternative splicing and differential incorporation of accessory subunits. However, in vivo studies often utilize mutations that eliminate multiple forms of complexes, preventing assessment of the specific roles of each. Here we examined the developmental roles of the TIP55 isoform of the KAT5 histone acetyltransferase. In contrast to the pre-implantation lethal phenotype of mice lacking all four Kat5 transcripts, mice specifically deficient for Tip55 die around embryonic day 11.5 (E11.5). Prior to developmental arrest, defects in heart and neural tube were evident in Tip55 mutant embryos. Specification of cardiac and neural cell fates appeared normal in Tip55 mutants. However, cell division and survival were impaired in heart and neural tube, respectively, revealing a role for TIP55 in cellular proliferation. Consistent with these findings, transcriptome profiling revealed perturbations in genes that function in multiple cell types and developmental pathways. These findings show that Tip55 is dispensable for the pre- and early post-implantation roles of Kat5, but is essential during organogenesis. Our results raise the possibility that isoform-specific functions of other chromatin regulatory proteins may play important roles in development.
Collapse
Affiliation(s)
- Diwash Acharya
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Bernadette Nera
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Zachary J Milstone
- Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.,Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Lauren Bourke
- Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.,Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Yeonsoo Yoon
- Department of Pediatrics, Division of Genes and Development, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Jaime A Rivera-Pérez
- Department of Pediatrics, Division of Genes and Development, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Chinmay M Trivedi
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.,Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.,Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
28
|
Acharya D, Hainer SJ, Yoon Y, Wang F, Bach I, Rivera-Pérez JA, Fazzio TG. KAT-Independent Gene Regulation by Tip60 Promotes ESC Self-Renewal but Not Pluripotency. Cell Rep 2018; 19:671-679. [PMID: 28445719 DOI: 10.1016/j.celrep.2017.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 03/01/2017] [Accepted: 03/30/2017] [Indexed: 12/11/2022] Open
Abstract
Although histone-modifying enzymes are generally assumed to function in a manner dependent on their enzymatic activities, this assumption remains untested for many factors. Here, we show that the Tip60 (Kat5) lysine acetyltransferase (KAT), which is essential for embryonic stem cell (ESC) self-renewal and pre-implantation development, performs these functions independently of its KAT activity. Unlike ESCs depleted of Tip60, KAT-deficient ESCs exhibited minimal alterations in gene expression, chromatin accessibility at Tip60 binding sites, and self-renewal, thus demonstrating a critical KAT-independent role of Tip60 in ESC maintenance. In contrast, KAT-deficient ESCs exhibited impaired differentiation into mesoderm and endoderm, demonstrating a KAT-dependent function in differentiation. Consistent with this phenotype, KAT-deficient mouse embryos exhibited post-implantation developmental defects. These findings establish separable KAT-dependent and KAT-independent functions of Tip60 in ESCs and during differentiation, revealing a complex repertoire of regulatory functions for this essential chromatin remodeling complex.
Collapse
Affiliation(s)
- Diwash Acharya
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sarah J Hainer
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yeonsoo Yoon
- Division of Genes and Development, Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Feng Wang
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ingolf Bach
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jaime A Rivera-Pérez
- Division of Genes and Development, Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
29
|
Börner K, Becker PB. Splice variants of the SWR1-type nucleosome remodeling factor Domino have distinct functions during Drosophila melanogaster oogenesis. Development 2017; 143:3154-67. [PMID: 27578180 DOI: 10.1242/dev.139634] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/21/2016] [Indexed: 12/16/2022]
Abstract
SWR1-type nucleosome remodeling factors replace histone H2A by variants to endow chromatin locally with specialized functionality. In Drosophila melanogaster a single H2A variant, H2A.V, combines functions of mammalian H2A.Z and H2A.X in transcription regulation and the DNA damage response. A major role in H2A.V incorporation for the only SWR1-like enzyme in flies, Domino, is assumed but not well documented in vivo. It is also unclear whether the two alternatively spliced isoforms, DOM-A and DOM-B, have redundant or specialized functions. Loss of both DOM isoforms compromises oogenesis, causing female sterility. We systematically explored roles of the two DOM isoforms during oogenesis using a cell type-specific knockdown approach. Despite their ubiquitous expression, DOM-A and DOM-B have non-redundant functions in germline and soma for egg formation. We show that chromatin incorporation of H2A.V in germline and somatic cells depends on DOM-B, whereas global incorporation in endoreplicating germline nurse cells appears to be independent of DOM. By contrast, DOM-A promotes the removal of H2A.V from stage 5 nurse cells. Remarkably, therefore, the two DOM isoforms have distinct functions in cell type-specific development and H2A.V exchange.
Collapse
Affiliation(s)
- Kenneth Börner
- Biomedical Center and Center for Integrated Protein Science Munich, Ludwig-Maximilians-University, Großhaderner Strasse 9, 82152 Munich, Germany
| | - Peter B Becker
- Biomedical Center and Center for Integrated Protein Science Munich, Ludwig-Maximilians-University, Großhaderner Strasse 9, 82152 Munich, Germany
| |
Collapse
|
30
|
Ee LS, McCannell KN, Tang Y, Fernandes N, Hardy WR, Green MR, Chu F, Fazzio TG. An Embryonic Stem Cell-Specific NuRD Complex Functions through Interaction with WDR5. Stem Cell Reports 2017; 8:1488-1496. [PMID: 28528697 PMCID: PMC5470077 DOI: 10.1016/j.stemcr.2017.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 11/18/2022] Open
Abstract
The Nucleosome Remodeling and Deacetylase (NuRD) complex is a chromatin regulatory complex that functions as a transcriptional co-repressor in metazoans. The NuRD subunit MBD3 is essential for targeting and assembly of a functional NuRD complex as well as embryonic stem cell (ESC) pluripotency. Three MBD3 isoforms (MBD3A, MBD3B, and MBD3C) are expressed in mouse. Here, we find that the MBD3C isoform contains a unique 50-amino-acid N-terminal region that is necessary for MBD3C to specifically interact with the histone H3 binding protein WDR5. Domain analyses of WDR5 reveal that the H3 binding pocket is required for interaction with MBD3C. We find that while Mbd3c knockout ESCs differentiate normally, MBD3C is redundant with the MBD3A and MBD3B isoforms in regulation of gene expression, with the unique MBD3C N terminus required for this redundancy. Together, our data characterize a unique NuRD complex variant that functions specifically in ESCs. Mbd3c binds Wdr5 through its unique N-terminal domain Wdr5 interaction is critical for Mbd3c function Mbd3c/NuRD can substitute for canonical NuRD complex in ESC gene regulation
Collapse
Affiliation(s)
- Ly-Sha Ee
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kurtis N McCannell
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yang Tang
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Nancy Fernandes
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - W Rod Hardy
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael R Green
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Feixia Chu
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
31
|
Ryu HW, Shin DH, Lee DH, Choi J, Han G, Lee KY, Kwon SH. HDAC6 deacetylates p53 at lysines 381/382 and differentially coordinates p53-induced apoptosis. Cancer Lett 2017; 391:162-171. [DOI: 10.1016/j.canlet.2017.01.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 02/02/2023]
|
32
|
Hayashi T, Lombaert IMA, Hauser BR, Patel VN, Hoffman MP. Exosomal MicroRNA Transport from Salivary Mesenchyme Regulates Epithelial Progenitor Expansion during Organogenesis. Dev Cell 2016; 40:95-103. [PMID: 28041903 DOI: 10.1016/j.devcel.2016.12.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/23/2016] [Accepted: 12/01/2016] [Indexed: 12/20/2022]
Abstract
Epithelial-mesenchymal interactions involve fundamental communication between tissues during organogenesis and are primarily regulated by growth factors and extracellular matrix. It is unclear whether RNA-containing exosomes are mobile genetic signals regulating epithelial-mesenchymal interactions. Here we identify that exosomes loaded with mesenchyme-specific mature microRNA contribute mobile genetic signals from mesenchyme to epithelium. The mature mesenchymal miR-133b-3p, loaded into exosomes, was transported from mesenchyme to the salivary epithelium, which did not express primary miR-133b-3p. Knockdown of miR-133b-3p in culture decreased endbud morphogenesis, reduced proliferation of epithelial KIT+ progenitors, and increased expression of a target gene, Disco-interacting protein 2 homolog B (Dip2b). DIP2B, which is involved in DNA methylation, was localized with 5-methylcytosine in the prophase nucleus of a subset of KIT+ progenitors during mitosis. In summary, exosomal transport of miR-133b-3p from mesenchyme to epithelium decreases DIP2B, which may function as an epigenetic regulator of genes responsible for KIT+ progenitor expansion during organogenesis.
Collapse
Affiliation(s)
- Toru Hayashi
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Isabelle M A Lombaert
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Belinda R Hauser
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
33
|
Hainer SJ, McCannell KN, Yu J, Ee LS, Zhu LJ, Rando OJ, Fazzio TG. DNA methylation directs genomic localization of Mbd2 and Mbd3 in embryonic stem cells. eLife 2016; 5. [PMID: 27849519 PMCID: PMC5111885 DOI: 10.7554/elife.21964] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/01/2016] [Indexed: 12/22/2022] Open
Abstract
Cytosine methylation is an epigenetic and regulatory mark that functions in part through recruitment of chromatin remodeling complexes containing methyl-CpG binding domain (MBD) proteins. Two MBD proteins, Mbd2 and Mbd3, were previously shown to bind methylated or hydroxymethylated DNA, respectively; however, both of these findings have been disputed. Here, we investigated this controversy using experimental approaches and re-analysis of published data and find no evidence for methylation-independent functions of Mbd2 or Mbd3. We show that chromatin localization of Mbd2 and Mbd3 is highly overlapping and, unexpectedly, we find Mbd2 and Mbd3 are interdependent for chromatin association. Further investigation reveals that both proteins are required for normal levels of cytosine methylation and hydroxymethylation in murine embryonic stem cells. Furthermore, Mbd2 and Mbd3 regulate overlapping sets of genes that are also regulated by DNA methylation/hydroxymethylation factors. These findings reveal an interdependent regulatory mechanism mediated by the DNA methylation machinery and its readers.
Collapse
Affiliation(s)
- Sarah J Hainer
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Kurtis N McCannell
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Jun Yu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Ly-Sha Ee
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Lihua J Zhu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, United States.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
34
|
Lau AC, Zhu KP, Brouhard EA, Davis MB, Csankovszki G. An H4K16 histone acetyltransferase mediates decondensation of the X chromosome in C. elegans males. Epigenetics Chromatin 2016; 9:44. [PMID: 27777629 PMCID: PMC5070013 DOI: 10.1186/s13072-016-0097-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/05/2016] [Indexed: 02/08/2023] Open
Abstract
Background In C. elegans, in order to equalize gene expression between the sexes and balance X and autosomal expression, two steps are believed to be required. First, an unknown mechanism is hypothesized to upregulate the X chromosome in both sexes. This mechanism balances the X to autosomal expression in males, but creates X overexpression in hermaphrodites. Therefore, to restore the balance, hermaphrodites downregulate gene expression twofold on both X chromosomes. While many studies have focused on X chromosome downregulation, the mechanism of X upregulation is not known. Results To gain more insight into X upregulation, we studied the effects of chromatin condensation and histone acetylation on gene expression levels in male C. elegans. We have found that the H4K16 histone acetyltransferase MYS-1/Tip60 mediates dramatic decondensation of the male X chromosome as measured by FISH. However, RNA-seq analysis revealed that MYS-1 contributes only slightly to upregulation of gene expression on the X chromosome. These results suggest that the level of chromosome decondensation does not necessarily correlate with the degree of gene expression change in vivo. Furthermore, the X chromosome is more sensitive to MYS-1-mediated decondensation than the autosomes, despite similar levels of H4K16ac on all chromosomes, as measured by ChIP-seq. H4K16ac levels weakly correlate with gene expression levels on both the X and the autosomes, but highly expressed genes on the X chromosome do not contain exceptionally high levels of H4K16ac. Conclusion These results indicate that H4K16ac and chromosome decondensation influence regulation of the male X chromosome; however, they do not fully account for the high levels of gene expression observed on the X chromosomes. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0097-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alyssa C Lau
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA ; Genome Technologies, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Kevin P Zhu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| | - Elizabeth A Brouhard
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| | - Michael B Davis
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| | - Györgyi Csankovszki
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| |
Collapse
|
35
|
Time-Course Gene Expression Profiling Reveals a Novel Role of Non-Canonical WNT Signaling During Neural Induction. Sci Rep 2016; 6:32600. [PMID: 27600186 PMCID: PMC5013468 DOI: 10.1038/srep32600] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/10/2016] [Indexed: 12/22/2022] Open
Abstract
The process of neuroepithelial differentiation from human pluripotent stem cells (PSCs) resembles in vivo neuroectoderm induction in the temporal course, morphogenesis, and biochemical changes. This in vitro model is therefore well-suited to reveal previously unknown molecular mechanisms underlying neural induction in humans. By transcriptome analysis of cells along PSC differentiation to early neuroepithelia at day 6 and definitive neuroepithelia at day 10, we found downregulation of genes that are associated with TGF-β and canonical WNT/β-CATENIN signaling, confirming the roles of classical signaling in human neural induction. Interestingly, WNT/Ca2+ signaling was upregulated. Pharmacological inhibition of the downstream effector of WNT/Ca2+ pathway, Ca2+/calmodulin-dependent protein kinase II (CaMKII), led to an inhibition of the neural marker PAX6 and upregulation of epidermal marker K18, suggesting that Ca2+/CaMKII signaling promotes neural induction by preventing the alternative epidermal fate. In addition, our analyses revealed known and novel expression patterns of genes that are involved in DNA methylation, histone modification, as well as epithelial-mesenchymal transition, highlighting potential roles of those genes and signaling pathways during neural differentiation.
Collapse
|
36
|
Abstract
Hybridization of RNA to its template DNA strand during transcription induces formation of R-loops-RNA:DNA hybrids with unpaired non-template DNA strands. Although unresolved R-loops can be detrimental, some R-loops contribute to regulation of chromatin structure. Consequently, R-loops help regulate gene expression and play important roles in numerous cellular processes.
Collapse
Affiliation(s)
- Thomas G Fazzio
- a Department of Molecular, Cell, and Cancer Biology , University of Massachusetts Medical School , Worcester , MA , USA.,b Program in Molecular Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| |
Collapse
|
37
|
Roles for the Histone Modifying and Exchange Complex NuA4 in Cell Cycle Progression in Drosophila melanogaster. Genetics 2016; 203:1265-81. [PMID: 27184390 DOI: 10.1534/genetics.116.188581] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/04/2016] [Indexed: 11/18/2022] Open
Abstract
Robust and synchronous repression of E2F-dependent gene expression is critical to the proper timing of cell cycle exit when cells transition to a postmitotic state. Previously NuA4 was suggested to act as a barrier to proliferation in Drosophila by repressing E2F-dependent gene expression. Here we show that NuA4 activity is required for proper cell cycle exit and the repression of cell cycle genes during the transition to a postmitotic state in vivo However, the delay of cell cycle exit caused by compromising NuA4 is not due to additional proliferation or effects on E2F activity. Instead NuA4 inhibition results in slowed cell cycle progression through late S and G2 phases due to aberrant activation of an intrinsic p53-independent DNA damage response. A reduction in NuA4 function ultimately produces a paradoxical cell cycle gene expression program, where certain cell cycle genes become derepressed in cells that are delayed during the G2 phase of the final cell cycle. Bypassing the G2 delay when NuA4 is inhibited leads to abnormal mitoses and results in severe tissue defects. NuA4 physically and genetically interacts with components of the E2F complex termed D: rosophila, R: bf, E: 2F A: nd M: yb/ M: ulti-vulva class B: (DREAM/MMB), and modulates a DREAM/MMB-dependent ectopic neuron phenotype in the posterior wing margin. However, this effect is also likely due to the cell cycle delay, as simply reducing Cdk1 is sufficient to generate a similar phenotype. Our work reveals that the major requirement for NuA4 in the cell cycle in vivo is to suppress an endogenous DNA damage response, which is required to coordinate proper S and G2 cell cycle progression with differentiation and cell cycle gene expression.
Collapse
|
38
|
Chen PB, Chen HV, Acharya D, Rando OJ, Fazzio TG. R loops regulate promoter-proximal chromatin architecture and cellular differentiation. Nat Struct Mol Biol 2015; 22:999-1007. [PMID: 26551076 PMCID: PMC4677832 DOI: 10.1038/nsmb.3122] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/09/2015] [Indexed: 12/11/2022]
Abstract
Numerous chromatin-remodeling factors are regulated by interactions with RNA, although the contexts and functions of RNA binding are poorly understood. Here we show that R-loops, RNA:DNA hybrids consisting of nascent transcripts hybridized to template DNA, modulate the binding of two key chromatin regulatory complexes, Tip60–p400 and polycomb repressive complex 2 (PRC2) in mouse embryonic stem cells (ESCs). Like PRC2, the Tip60–p400 histone acetyltransferase complex binds to nascent transcripts, but unlike PRC2, transcription promotes chromatin binding by Tip60–p400. Interestingly, we observed higher Tip60–p400 and lower PRC2 levels at genes marked by promoter-proximal R-loops. Furthermore, disruption of R-loops broadly reduced Tip60–p400 and increased PRC2 occupancy genome-wide. Consistent with these alterations, ESCs with reduced R-loops exhibited impaired differentiation. These results show that R-loops act both positively and negatively to modulate the recruitment of key pluripotency regulators.
Collapse
Affiliation(s)
- Poshen B Chen
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Hsiuyi V Chen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Diwash Acharya
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
39
|
Ravens S, Yu C, Ye T, Stierle M, Tora L. Tip60 complex binds to active Pol II promoters and a subset of enhancers and co-regulates the c-Myc network in mouse embryonic stem cells. Epigenetics Chromatin 2015; 8:45. [PMID: 26550034 PMCID: PMC4636812 DOI: 10.1186/s13072-015-0039-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/29/2015] [Indexed: 01/24/2023] Open
Abstract
Background Tip60 (KAT5) is the histone acetyltransferase (HAT) of the mammalian Tip60/NuA4 complex. While Tip60 is important for early mouse development and mouse embryonic stem cell (mESC) pluripotency, the function of Tip60 as reflected in a genome-wide context is not yet well understood. Results Gel filtration of nuclear mESCs extracts indicate incorporation of Tip60 into large molecular complexes and exclude the existence of large quantities of “free” Tip60 within the nuclei of ESCs. Thus, monitoring of Tip60 binding to the genome should reflect the behaviour of Tip60-containing complexes. The genome-wide mapping of Tip60 binding in mESCs by chromatin immunoprecipitation (ChIP) coupled with high-throughput sequencing (ChIP-seq) shows that the Tip60 complex is present at promoter regions of predominantly active genes that are bound by RNA polymerase II (Pol II) and contain the H3K4me3 histone mark. The coactivator HAT complexes, Tip60- and Mof (KAT8)-containing (NSL and MSL), show a global overlap at promoters, whereas distinct binding profiles at enhancers suggest different regulatory functions of each essential HAT complex. Interestingly, Tip60 enrichment peaks at about 200 bp downstream of the transcription start sites suggesting a function for the Tip60 complexes in addition to histone acetylation. The comparison of genome-wide binding profiles of Tip60 and c-Myc, a somatic cell reprogramming factor that binds predominantly to active genes in mESCs, demonstrate that Tip60 and c-Myc co-bind at 50–60 % of their binding sites. We also show that the Tip60 complex binds to a subset of bivalent developmental genes and defines a set of mESC-specific enhancer as well as super-enhancer regions. Conclusions Our study suggests that the Tip60 complex functions as a global transcriptional co-activator at most active Pol II promoters, co-regulates the ESC-specific c-Myc network, important for ESC self-renewal and cell metabolism and acts at a subset of active distal regulatory elements, or super enhancers, in mESCs. Electronic supplementary material The online version of this article (doi:10.1186/s13072-015-0039-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarina Ravens
- Cellular Signalling and Nuclear Dynamics Programme, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, Université de Strasbourg (UdS), BP 10142, 1 Rue Laurent Fries, CU de Strasbourg, 67404 Illkirch Cedex, France
| | - Changwei Yu
- Cellular Signalling and Nuclear Dynamics Programme, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, Université de Strasbourg (UdS), BP 10142, 1 Rue Laurent Fries, CU de Strasbourg, 67404 Illkirch Cedex, France
| | - Tao Ye
- Microarrays and Deep Sequencing Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, UdS, BP 10142, CU de Strasbourg, 67404 Illkirch Cedex, France
| | - Matthieu Stierle
- Cellular Signalling and Nuclear Dynamics Programme, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, Université de Strasbourg (UdS), BP 10142, 1 Rue Laurent Fries, CU de Strasbourg, 67404 Illkirch Cedex, France
| | - Laszlo Tora
- Cellular Signalling and Nuclear Dynamics Programme, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, Université de Strasbourg (UdS), BP 10142, 1 Rue Laurent Fries, CU de Strasbourg, 67404 Illkirch Cedex, France
| |
Collapse
|
40
|
Regulation of Nucleosome Architecture and Factor Binding Revealed by Nuclease Footprinting of the ESC Genome. Cell Rep 2015; 13:61-69. [PMID: 26411677 DOI: 10.1016/j.celrep.2015.08.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/01/2015] [Accepted: 08/25/2015] [Indexed: 12/15/2022] Open
Abstract
Functional interactions between gene regulatory factors and chromatin architecture have been difficult to directly assess. Here, we use micrococcal nuclease (MNase) footprinting to probe the functions of two chromatin-remodeling complexes. By simultaneously quantifying alterations in small MNase footprints over the binding sites of 30 regulatory factors in mouse embryonic stem cells (ESCs), we provide evidence that esBAF and Mbd3/NuRD modulate the binding of several regulatory proteins. In addition, we find that nucleosome occupancy is reduced at specific loci in favor of subnucleosomes upon depletion of esBAF, including sites of histone H2A.Z localization. Consistent with these data, we demonstrate that esBAF is required for normal H2A.Z localization in ESCs, suggesting esBAF either stabilizes H2A.Z-containing nucleosomes or promotes subnucleosome to nucleosome conversion by facilitating H2A.Z deposition. Therefore, integrative examination of MNase footprints reveals insights into nucleosome dynamics and functional interactions between chromatin structure and key gene-regulatory factors.
Collapse
|
41
|
Seidel C, Schnekenburger M, Dicato M, Diederich M. Histone deacetylase 6 in health and disease. Epigenomics 2015; 7:103-18. [PMID: 25687470 DOI: 10.2217/epi.14.69] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Histone deacetylase (HDAC)6 is a member of the class IIb HDAC family. This enzyme is zinc-dependent and mainly localized in the cytoplasm. HDAC6 is a unique isoenzyme with two functional catalytic domains and specific physiological roles. Indeed, HDAC6 deacetylates various substrates including α-tubulin and HSP90α, and is involved in protein trafficking and degradation, cell shape and migration. Consequently, deregulation of HDAC6 activity was associated to a variety of diseases including cancer, neurodegenerative diseases and pathological autoimmune response. Therefore, HDAC6 represents an interesting potential therapeutic target. In this review, we discuss structural features of this histone deacetylase, regulation of its expression and activity, biological functions, implication in human disease initiation and progression. Finally will describe novel and selective HDAC6 inhibitors.
Collapse
Affiliation(s)
- Carole Seidel
- Laboratory of Molecular & Cellular Biology of Cancer, Hôpital Kirchberg, L-2540 Luxembourg, Luxembourg
| | | | | | | |
Collapse
|
42
|
Kearns NA, Pham H, Tabak B, Genga RM, Silverstein NJ, Garber M, Maehr R. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat Methods 2015; 12:401-403. [PMID: 25775043 PMCID: PMC4414811 DOI: 10.1038/nmeth.3325] [Citation(s) in RCA: 491] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/26/2015] [Indexed: 02/06/2023]
Abstract
Understanding of mammalian enhancers is limited by the lack of a technology to rapidly and thoroughly test the cell type-specific function. Here, we use a nuclease-deficient Cas9 (dCas9)-histone demethylase fusion to functionally characterize previously described and new enhancer elements for their roles in the embryonic stem cell state. Further, we distinguish the mechanism of action of dCas9-LSD1 at enhancers from previous dCas9-effectors.
Collapse
Affiliation(s)
- Nicola A Kearns
- Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Hannah Pham
- Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Barbara Tabak
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ryan M Genga
- Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Noah J Silverstein
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Manuel Garber
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - René Maehr
- Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
43
|
Boo K, Bhin J, Jeon Y, Kim J, Shin HJR, Park JE, Kim K, Kim CR, Jang H, Kim IH, Kim VN, Hwang D, Lee H, Baek SH. Pontin functions as an essential coactivator for Oct4-dependent lincRNA expression in mouse embryonic stem cells. Nat Commun 2015; 6:6810. [PMID: 25857206 PMCID: PMC4403444 DOI: 10.1038/ncomms7810] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 02/27/2015] [Indexed: 01/05/2023] Open
Abstract
The actions of transcription factors, chromatin modifiers and noncoding RNAs are crucial for the programming of cell states. Although the importance of various epigenetic machineries for controlling pluripotency of embryonic stem (ES) cells has been previously studied, how chromatin modifiers cooperate with specific transcription factors still remains largely elusive. Here, we find that Pontin chromatin remodelling factor plays an essential role as a coactivator for Oct4 for maintenance of pluripotency in mouse ES cells. Genome-wide analyses reveal that Pontin and Oct4 share a substantial set of target genes involved in ES cell maintenance. Intriguingly, we find that the Oct4-dependent coactivator function of Pontin extends to the transcription of large intergenic noncoding RNAs (lincRNAs) and in particular linc1253, a lineage programme repressing lincRNA, is a Pontin-dependent Oct4 target lincRNA. Together, our findings demonstrate that the Oct4-Pontin module plays critical roles in the regulation of genes involved in ES cell fate determination. Long non-coding RNAs or lincRNAs identified in embryonic stem (ES) cells have been shown to regulate ES cell states; however, how these lincRNAs are regulated remains unclear. Here the authors show that the transcriptional coactivator Pontin regulates the expression of lincRNAs involved in ES cell maintenance in an Oct4-dependent manner.
Collapse
Affiliation(s)
- Kyungjin Boo
- Creative Research Initiative Center for Chromatin Dynamics, School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Jinhyuk Bhin
- Department of Chemical Engineering, POSTECH, Pohang 790-784, South Korea
| | - Yoon Jeon
- Research Institute, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi-do 410-769, South Korea
| | - Joomyung Kim
- Creative Research Initiative Center for Chromatin Dynamics, School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Hi-Jai R Shin
- Creative Research Initiative Center for Chromatin Dynamics, School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Jong-Eun Park
- Institute for Basic Science, School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Kyeongkyu Kim
- Creative Research Initiative Center for Chromatin Dynamics, School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Chang Rok Kim
- Creative Research Initiative Center for Chromatin Dynamics, School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Hyonchol Jang
- Research Institute, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi-do 410-769, South Korea
| | - In-Hoo Kim
- Research Institute, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi-do 410-769, South Korea
| | - V Narry Kim
- Institute for Basic Science, School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Daehee Hwang
- 1] Department of Chemical Engineering, POSTECH, Pohang 790-784, South Korea [2] Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, South Korea
| | - Ho Lee
- Research Institute, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi-do 410-769, South Korea
| | - Sung Hee Baek
- Creative Research Initiative Center for Chromatin Dynamics, School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| |
Collapse
|
44
|
Hainer SJ, Gu W, Carone BR, Landry BD, Rando OJ, Mello CC, Fazzio TG. Suppression of pervasive noncoding transcription in embryonic stem cells by esBAF. Genes Dev 2015; 29:362-78. [PMID: 25691467 PMCID: PMC4335293 DOI: 10.1101/gad.253534.114] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hainer et al. show that esBAF, a SWI/SNF family nucleosome remodeling factor, suppresses transcription of noncoding RNAs (ncRNAs) from ∼57,000 nucleosome-depleted regions (NDRs) throughout the genome of mouse embryonic stem cells. esBAF’s function to enforce nucleosome occupancy adjacent to NDRs, but not its function to maintain NDRs in a nucleosome-free state, is necessary for silencing transcription over ncDNA. Finally, the ability of a strongly positioned nucleosome to repress ncRNA depends on its translational positioning. Approximately 75% of the human genome is transcribed, the majority of which does not encode protein. However, many noncoding RNAs (ncRNAs) are rapidly degraded after transcription, and relatively few have established functions, questioning the significance of this observation. Here we show that esBAF, a SWI/SNF family nucleosome remodeling factor, suppresses transcription of ncRNAs from ∼57,000 nucleosome-depleted regions (NDRs) throughout the genome of mouse embryonic stem cells (ESCs). We show that esBAF functions to both keep NDRs nucleosome-free and promote elevated nucleosome occupancy adjacent to NDRs. Reduction of adjacent nucleosome occupancy upon esBAF depletion is strongly correlated with ncRNA expression, suggesting that flanking nucleosomes form a barrier to pervasive transcription. Upon forcing nucleosome occupancy near two NDRs using a nucleosome-positioning sequence, we found that esBAF is no longer required to silence transcription. Therefore, esBAF’s function to enforce nucleosome occupancy adjacent to NDRs, and not its function to maintain NDRs in a nucleosome-free state, is necessary for silencing transcription over ncDNA. Finally, we show that the ability of a strongly positioned nucleosome to repress ncRNA depends on its translational positioning. These data reveal a novel role for esBAF in suppressing pervasive transcription from open chromatin regions in ESCs.
Collapse
Affiliation(s)
- Sarah J Hainer
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Weifeng Gu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Benjamin R Carone
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Benjamin D Landry
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Craig C Mello
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA;
| |
Collapse
|
45
|
The histone acetyltransferase Myst2 regulates Nanog expression, and is involved in maintaining pluripotency and self-renewal of embryonic stem cells. FEBS Lett 2015; 589:941-50. [PMID: 25743411 DOI: 10.1016/j.febslet.2015.02.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/28/2015] [Accepted: 02/23/2015] [Indexed: 11/20/2022]
Abstract
The histone acetyltransferase Myst2 plays an important role in embryogenesis, but its function in undifferentiated ES cells remains poorly understood. Here, we show that Myst2 plays a role in pluripotency and self-renewal of ES cells. Myst2 deficiency results in loss of characteristic morphology, decreased alkaline phosphatase staining and reduced histone acetylation, as well as aberrant expression of pluripotency and differentiation markers. Our ChIP data reveal a direct association of Myst2 with the Nanog promoter and Myst2-dependent Oct4 binding on the Nanog promoter. Together our data suggest that Myst2-mediated histone acetylation may be required for recruitment of Oct4 to the Nanog promoter, thereby regulating Nanog transcription in ES cells.
Collapse
|
46
|
Dhanyamraju PK, Holz PS, Finkernagel F, Fendrich V, Lauth M. Histone deacetylase 6 represents a novel drug target in the oncogenic Hedgehog signaling pathway. Mol Cancer Ther 2015; 14:727-39. [PMID: 25552369 DOI: 10.1158/1535-7163.mct-14-0481] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 12/14/2014] [Indexed: 11/16/2022]
Abstract
Uncontrolled Hedgehog (Hh) signaling is the cause of several malignancies, including the pediatric cancer medulloblastoma, a neuroectodermal tumor affecting the cerebellum. Despite the development of potent Hh pathway antagonists, medulloblastoma drug resistance is still an unresolved issue that requires the identification of novel drug targets. Following up on our observation that histone deacetylase 6 (HDAC6) expression was increased in Hh-driven medulloblastoma, we found that this enzyme is essential for full Hh pathway activation. Intriguingly, these stimulatory effects of HDAC6 are partly integrated downstream of primary cilia, a known HDAC6-regulated structure. In addition, HDAC6 is also required for the complete repression of basal Hh target gene expression. These contrasting effects are mediated by HDAC6's impact on Gli2 mRNA and GLI3 protein expression. As a result of this complex interaction with Hh signaling, global transcriptome analysis revealed that HDAC6 regulates only a subset of Smoothened- and Gli-driven genes, including all well-established Hh targets such as Ptch1 or Gli1. Importantly, medulloblastoma cell survival was severely compromised by HDAC6 inhibition in vitro and pharmacologic HDAC6 blockade strongly reduced tumor growth in an in vivo allograft model. In summary, our data describe an important role for HDAC6 in regulating the mammalian Hh pathway and encourage further studies focusing on HDAC6 as a novel drug target in medulloblastoma.
Collapse
Affiliation(s)
- Pavan Kumar Dhanyamraju
- Philipps University, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Marburg, Germany
| | - Philipp Simon Holz
- Philipps University, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Marburg, Germany
| | - Florian Finkernagel
- Philipps University, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Marburg, Germany
| | - Volker Fendrich
- Department of Surgery, Philipps University, Marburg, Germany
| | - Matthias Lauth
- Philipps University, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Marburg, Germany.
| |
Collapse
|
47
|
Chen PB, Zhu LJ, Hainer SJ, McCannell KN, Fazzio TG. Unbiased chromatin accessibility profiling by RED-seq uncovers unique features of nucleosome variants in vivo. BMC Genomics 2014; 15:1104. [PMID: 25494698 PMCID: PMC4378318 DOI: 10.1186/1471-2164-15-1104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 12/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Differential accessibility of DNA to nuclear proteins underlies the regulation of numerous cellular processes. Although DNA accessibility is primarily determined by the presence or absence of nucleosomes, differences in nucleosome composition or dynamics may also regulate accessibility. Methods for mapping nucleosome positions and occupancies genome-wide (MNase-seq) have uncovered the nucleosome landscapes of many different cell types and organisms. Conversely, methods specialized for the detection of large nucleosome-free regions of chromatin (DNase-seq, FAIRE-seq) have uncovered numerous gene regulatory elements. However, these methods are less successful in measuring the accessibility of DNA sequences within nucelosome arrays. RESULTS Here we probe the genome-wide accessibility of multiple cell types in an unbiased manner using restriction endonuclease digestion of chromatin coupled to deep sequencing (RED-seq). Using this method, we identified differences in chromatin accessibility between populations of cells, not only in nucleosome-depleted regions of the genome (e.g., enhancers and promoters), but also within the majority of the genome that is packaged into nucleosome arrays. Furthermore, we identified both large differences in chromatin accessibility in distinct cell lineages and subtle but significant changes during differentiation of mouse embryonic stem cells (ESCs). Most significantly, using RED-seq, we identified differences in accessibility among nucleosomes harboring well-studied histone variants, and show that these differences depend on factors required for their deposition. CONCLUSIONS Using an unbiased method to probe chromatin accessibility genome-wide, we uncover unique features of chromatin structure that are not observed using more widely-utilized methods. We demonstrate that different types of nucleosomes within mammalian cells exhibit different degrees of accessibility. These findings provide significant insight into the regulation of DNA accessibility.
Collapse
Affiliation(s)
| | | | | | | | - Thomas G Fazzio
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
48
|
Xiao Y, Nagai Y, Deng G, Ohtani T, Zhu Z, Zhou Z, Zhang H, Ji MQ, Lough JW, Samanta A, Hancock WW, Greene MI. Dynamic interactions between TIP60 and p300 regulate FOXP3 function through a structural switch defined by a single lysine on TIP60. Cell Rep 2014; 7:1471-1480. [PMID: 24835996 PMCID: PMC4064594 DOI: 10.1016/j.celrep.2014.04.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022] Open
Abstract
The human FOXP3 molecule is an oligomeric transcriptional factor able to mediate activities that characterize T regulatory cells, a class of lymphocytes central to the regulation of immune responses. The activity of FOXP3 is regulated at the posttranslational level, in part by two histone acetyltransferases (HATs): TIP60 and p300. TIP60 and p300 work cooperatively to regulate FOXP3 activity. Initially, p300 and TIP60 interactions lead to the activation of TIP60 and facilitate acetylation of K327 of TIP60, which functions as a molecular switch to allow TIP60 to change binding partners. Subsequently, p300 is released from this complex, and TIP60 interacts with and acetylates FOXP3. Maximal induction of FOXP3 activities is observed when both p300 and TIP60 are able to undergo cooperative interactions. Conditional knockout of TIP60 in Treg cells significantly decreases the Treg population in the peripheral immune organs, leading to a scurfy-like fatal autoimmune disease.
Collapse
Affiliation(s)
- Yan Xiao
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yasuhiro Nagai
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guoping Deng
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Takuya Ohtani
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhiqiang Zhu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhaocai Zhou
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongtao Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mei Q Ji
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John W Lough
- Department of Cell Biology, Neurology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226-0509, USA
| | - Arabinda Samanta
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wayne W Hancock
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Children's Hospital, Philadelphia, Philadelphia, PA 19104, USA
| | - Mark I Greene
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|