1
|
Hiya HJ, Nakashima Y, Takeuchi A, Nakamura T, Nakamura Y, Murata Y, Munemasa S. Outward-rectifying potassium channels GORK and SKOR function in regulation of root growth under salt stress in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2024; 302:154322. [PMID: 39137481 DOI: 10.1016/j.jplph.2024.154322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
Plants often face high salinity as a significant environmental challenge with roots being the first responders to this stress. Maintaining K+/Na+ ratio within plant cells is crucial for survival, as the intracellular K+ level decreases and the intracellular Na+ level increases under saline conditions. However, knowledge about the molecular regulatory mechanisms of K+ loss in response to salt stress through outward-rectifying K+ channels in plants is largely unknown. In this study, we found that the Arabidopsis double mutant gorkskor, in which the GORK and SKOR genes are disrupted, showed an improved primary root growth under salt stress compared to wild-type (WT) and the gork and skor single-mutant plants. No significant differences in the sensitivity to mannitol stress between the WT and gorkskor mutant were observed. Accumulation of ROS induced by salt stress was reduced in the gorkskor roots. The gorkskor mutant seedlings had significantly higher K+ content, lower Na+ content, and a greater resultant K+/Na+ ratio than the WT under salt stress. Moreover, salt-stress-induced elevation of cytosolic free Ca2+ concentration was reduced in the gorkskor roots. Taken together, these results suggest that Arabidopsis Shaker-type outward-rectifying K+ channels GORK and SKOR may redundantly function in regulation of primary root growth under salt stress and are involved in not only the late-stage response (e.g. K+ leakage) but also the early response including ROS production and [Ca2+]cyt elevation.
Collapse
Affiliation(s)
- Hafsa Jahan Hiya
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Yoshitaka Nakashima
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Airi Takeuchi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
2
|
Beltrán J, Wurtzel ET. Carotenoids: resources, knowledge, and emerging tools to advance apocarotenoid research. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 350:112298. [PMID: 39442633 DOI: 10.1016/j.plantsci.2024.112298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Carotenoids are a large class of isoprenoid compounds which are biosynthesized by plants, algae, along with certain fungi, bacteria and insects. In plants, carotenoids provide crucial functions in photosynthesis and photoprotection. Furthermore, carotenoids also serve as precursors to apocarotenoids, which are derived through enzymatic and non-enzymatic cleavage reactions. Apocarotenoids encompass a diverse set of compounds, including hormones, growth regulators, and signaling molecules which play vital roles in pathways associated with plant development, stress responses, and plant-organismic interactions. Regulation of carotenoid biosynthesis indirectly influences the formation of apocarotenoids and bioactive effects on target pathways. Recent discovery of a plethora of new bioactive apocarotenoids across kingdoms has increased interest in expanding knowledge of the breadth of apocarotenoid function and regulation. In this review, we provide insights into the regulation of carotenogenesis, specifically linked to the biosynthesis of apocarotenoid precursors. We highlight plant studies, including useful heterologous platforms and synthetic biology tools, which hold great value in expanding discoveries, knowledge and application of bioactive apocarotenoids for crop improvement and human health. Moreover, we discuss how this field has recently flourished with the discovery of diverse functions of apocarotenoids, thereby prompting us to propose new directions for future research.
Collapse
Affiliation(s)
- Jesús Beltrán
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, University of Delaware, Newark, DE 19713, USA.
| | - Eleanore T Wurtzel
- Department of Biological Sciences, Lehman College, City University of New York (CUNY), Bronx, NY, United States; Graduate School and University Center, CUNY, New York, NY, United States.
| |
Collapse
|
3
|
Wu Y, Hu L, Wu L, Yang Y, Li Y. Real-time monitoring abscisic acid release from single rice protoplast by amperometry at microelectrodes modified with abscisic acid receptor PYL2. Bioelectrochemistry 2024; 159:108733. [PMID: 38761493 DOI: 10.1016/j.bioelechem.2024.108733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
It was previously reported that stress induces a cellular production of abscisic acid in plants, but no direct method shows the evidence. Here, an electrochemical microsensor involving an abscisic acid receptor PYL2 modified carbon fiber microelectrode was fabricated by self-assembly method, where the Cu2+ combined with the histidine tag of PYL2 on the surface of microelectrode was used as the detection probe, the mediated reaction between Cu+ and ferricyanide realized the amplification responses and provided the microsensor with a high sensitivity for detection of abscisic acid with a detection limit of 0.8 nM. With use of this microsensor, an increase of extracellular abscisic acid from single rice protoplast induced by sulfate, osmotic and salinity stress was real-time monitored. Direct measurement of free extracellular abscisic acid in single plant cells might offer important new insights into its role in plants challenged by abiotic stresses.
Collapse
Affiliation(s)
- Yunhua Wu
- College of Life Science, South-Central Minzu University, Wuhan 430074, PR China.
| | - Liuzhe Hu
- College of Life Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Lvliang Wu
- College of Life Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yong Li
- College of Life Science, South-Central Minzu University, Wuhan 430074, PR China
| |
Collapse
|
4
|
Cuadrado AF, Van Damme D. Unlocking protein-protein interactions in plants: a comprehensive review of established and emerging techniques. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5220-5236. [PMID: 38437582 DOI: 10.1093/jxb/erae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Protein-protein interactions orchestrate plant development and serve as crucial elements for cellular and environmental communication. Understanding these interactions offers a gateway to unravel complex protein networks that will allow a better understanding of nature. Methods for the characterization of protein-protein interactions have been around over 30 years, yet the complexity of some of these interactions has fueled the development of new techniques that provide a better understanding of the underlying dynamics. In many cases, the application of these techniques is limited by the nature of the available sample. While some methods require an in vivo set-up, others solely depend on protein sequences to study protein-protein interactions via an in silico set-up. The vast number of techniques available to date calls for a way to select the appropriate tools for the study of specific interactions. Here, we classify widely spread tools and new emerging techniques for the characterization of protein-protein interactions based on sample requirements while providing insights into the information that they can potentially deliver. We provide a comprehensive overview of commonly used techniques and elaborate on the most recent developments, showcasing their implementation in plant research.
Collapse
Affiliation(s)
- Alvaro Furones Cuadrado
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
5
|
Yuan H, Sun S, Hu H, Wang Y. Light-emitting probes for in situ sensing of plant information. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00154-7. [PMID: 39068067 DOI: 10.1016/j.tplants.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/21/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024]
Abstract
Monitoring plant physiological information for gaining a comprehensive understanding of plant growth and stress responses contributes to safeguarding plant health. Light-emitting probes - in terms of small-molecule, nanomaterials-based, and genetically protein-based probes - can be introduced into plants through foliar and root treatment or genetic transformation. These probes offer exciting opportunities for sensitive and in situ monitoring of dynamic plant chemical information - for example, reactive oxygen species (ROS), calcium ions, phytohormones - with spatiotemporal resolution. In this review we explore the sensing mechanisms of these light-emitting probes and their applications in monitoring various chemical information in plants in situ. These probes can be used as part of a sentinel plant approach to provide stress warning in the field or to explore plant signaling pathways.
Collapse
Affiliation(s)
- Hao Yuan
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Shengchun Sun
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Hong Hu
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Yixian Wang
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, PR China.
| |
Collapse
|
6
|
Meneses-Reyes GI, Rodriguez-Bustos DL, Cuevas-Velazquez CL. Macromolecular crowding sensing during osmotic stress in plants. Trends Biochem Sci 2024; 49:480-493. [PMID: 38514274 DOI: 10.1016/j.tibs.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/23/2024]
Abstract
Osmotic stress conditions occur at multiple stages of plant life. Changes in water availability caused by osmotic stress induce alterations in the mechanical properties of the plasma membrane, its interaction with the cell wall, and the concentration of macromolecules in the cytoplasm. We summarize the reported players involved in the sensing mechanisms of osmotic stress in plants. We discuss how changes in macromolecular crowding are perceived intracellularly by intrinsically disordered regions (IDRs) in proteins. Finally, we review methods for dynamically monitoring macromolecular crowding in living cells and discuss why their implementation is required for the discovery of new plant osmosensors. Elucidating the osmosensing mechanisms will be essential for designing strategies to improve plant productivity in the face of climate change.
Collapse
Affiliation(s)
- G I Meneses-Reyes
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - D L Rodriguez-Bustos
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - C L Cuevas-Velazquez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| |
Collapse
|
7
|
Borghi M, Pacifico D, Crucitti D, Squartini A, Berger MMJ, Gamboni M, Carimi F, Lehad A, Costa A, Gallusci P, Fernie AR, Zottini M. Smart selection of soil microbes for resilient and sustainable viticulture. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1258-1267. [PMID: 38329213 DOI: 10.1111/tpj.16674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
The grapevine industry is of high economic importance in several countries worldwide. Its growing market demand led to an acceleration of the entire production processes, implying increasing use of water resources at the expense of environmental water balance and the hydrological cycle. Furthermore, in recent decades climate change and the consequent expansion of drought have further compromised water availability, making current agricultural systems even more fragile from ecological and economical perspectives. Consequently, farmers' income and welfare are increasingly unpredictable and unstable. Therefore, it is urgent to improve the resilience of vineyards, and of agro-ecosystems in general, by developing sustainable and environmentally friendly farming practices by more rational biological and natural resources use. The PRIMA project PROSIT addresses these challenges by characterizing and harnessing grapevine-associated microbiota to propose innovative and sustainable agronomic practices. PROSIT aims to determine the efficacy of natural microbiomes transferred from grapevines adapted to arid climate to commonly cultivated grapevine cultivars. In doing so it will test those natural microbiome effects on drought tolerance. This multidisciplinary project will utilize in vitro culture techniques, bioimaging, microbiological tests, metabolomics, metabarcoding and epigenetic analyses. These will be combined to shed light on molecular mechanisms triggered in plants by microbial associations upon water stress. To this end it is hoped that the project will serve as a blueprint not only for studies uncovering the microbiome role in drought stress in a wide range of species, but also for analyzing its effect on a wide range of stresses commonly encountered in modern agricultural systems.
Collapse
Affiliation(s)
- Monica Borghi
- Department of Biology, Utah State University, Logan, Utah, 84321-5305, USA
| | - Davide Pacifico
- IBBR CNR - Institute of Biosciences and Bioresources, via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Dalila Crucitti
- IBBR CNR - Institute of Biosciences and Bioresources, via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Andrea Squartini
- Department of Agronomy, Animals, Food, Natural Resources, and Environment, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, Padua, Italy
| | - Margot M J Berger
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, University of Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leyssottes, 33882, Villenave d'Ornon, France
| | - Mauro Gamboni
- IBBR CNR - Institute of Biosciences and Bioresources, via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Francesco Carimi
- IBBR CNR - Institute of Biosciences and Bioresources, via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Arezki Lehad
- ENSA, Rue Hassan Badi, Belfort, El Harrach, 16000, Algeria
| | - Alex Costa
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milano, Italy
| | - Philippe Gallusci
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, University of Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leyssottes, 33882, Villenave d'Ornon, France
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Michela Zottini
- Department of Biology, Università degli Studi di Padova, via U. Bassi 58b, 35131, Padova, Italy
| |
Collapse
|
8
|
Dixon RA, Dickinson AJ. A century of studying plant secondary metabolism-From "what?" to "where, how, and why?". PLANT PHYSIOLOGY 2024; 195:48-66. [PMID: 38163637 PMCID: PMC11060662 DOI: 10.1093/plphys/kiad596] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/15/2023] [Indexed: 01/03/2024]
Abstract
Over the past century, early advances in understanding the identity of the chemicals that collectively form a living plant have led scientists to deeper investigations exploring where these molecules localize, how they are made, and why they are synthesized in the first place. Many small molecules are specific to the plant kingdom and have been termed plant secondary metabolites, despite the fact that they can play primary and essential roles in plant structure, development, and response to the environment. The past 100 yr have witnessed elucidation of the structure, function, localization, and biosynthesis of selected plant secondary metabolites. Nevertheless, many mysteries remain about the vast diversity of chemicals produced by plants and their roles in plant biology. From early work characterizing unpurified plant extracts, to modern integration of 'omics technology to discover genes in metabolite biosynthesis and perception, research in plant (bio)chemistry has produced knowledge with substantial benefits for society, including human medicine and agricultural biotechnology. Here, we review the history of this work and offer suggestions for future areas of exploration. We also highlight some of the recently developed technologies that are leading to ongoing research advances.
Collapse
Affiliation(s)
- Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Alexandra Jazz Dickinson
- Department of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
9
|
Zhang J, Chen X, Song Y, Gong Z. Integrative regulatory mechanisms of stomatal movements under changing climate. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:368-393. [PMID: 38319001 DOI: 10.1111/jipb.13611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
Global climate change-caused drought stress, high temperatures and other extreme weather profoundly impact plant growth and development, restricting sustainable crop production. To cope with various environmental stimuli, plants can optimize the opening and closing of stomata to balance CO2 uptake for photosynthesis and water loss from leaves. Guard cells perceive and integrate various signals to adjust stomatal pores through turgor pressure regulation. Molecular mechanisms and signaling networks underlying the stomatal movements in response to environmental stresses have been extensively studied and elucidated. This review focuses on the molecular mechanisms of stomatal movements mediated by abscisic acid, light, CO2 , reactive oxygen species, pathogens, temperature, and other phytohormones. We discussed the significance of elucidating the integrative mechanisms that regulate stomatal movements in helping design smart crops with enhanced water use efficiency and resilience in a climate-changing world.
Collapse
Affiliation(s)
- Jingbo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Xuexue Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yajing Song
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Institute of Life Science and Green Development, School of Life Sciences, Hebei University, Baoding, 071001, China
| |
Collapse
|
10
|
Ahkami AH, Qafoku O, Roose T, Mou Q, Lu Y, Cardon ZG, Wu Y, Chou C, Fisher JB, Varga T, Handakumbura P, Aufrecht JA, Bhattacharjee A, Moran JJ. Emerging sensing, imaging, and computational technologies to scale nano-to macroscale rhizosphere dynamics - Review and research perspectives. SOIL BIOLOGY & BIOCHEMISTRY 2024; 189:109253. [PMID: 39238778 PMCID: PMC11376622 DOI: 10.1016/j.soilbio.2023.109253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The soil region influenced by plant roots, i.e., the rhizosphere, is one of the most complex biological habitats on Earth and significantly impacts global carbon flow and transformation. Understanding the structure and function of the rhizosphere is critically important for maintaining sustainable plant ecosystem services, designing engineered ecosystems for long-term soil carbon storage, and mitigating the effects of climate change. However, studying the biological and ecological processes and interactions in the rhizosphere requires advanced integrated technologies capable of decoding such a complex system at different scales. Here, we review how emerging approaches in sensing, imaging, and computational modeling can advance our understanding of the complex rhizosphere system. Particularly, we provide our perspectives and discuss future directions in developing in situ rhizosphere sensing technologies that could potentially correlate local-scale interactions to ecosystem scale impacts. We first review integrated multimodal imaging techniques for tracking inorganic elements and organic carbon flow at nano- to microscale in the rhizosphere, followed by a discussion on the use of synthetic soil and plant habitats that bridge laboratory-to-field studies on the rhizosphere processes. We then describe applications of genetically encoded biosensors in monitoring nutrient and chemical exchanges in the rhizosphere, and the novel nanotechnology-mediated delivery approaches for introducing biosensors into the root tissues. Next, we review the recent progress and express our vision on field-deployable sensing technologies such as planar optodes for quantifying the distribution of chemical and analyte gradients in the rhizosphere under field conditions. Moreover, we provide perspectives on the challenges of linking complex rhizosphere interactions to ecosystem sensing for detecting biological traits across scales, which arguably requires using the best-available model predictions including the model-experiment and image-based modeling approaches. Experimental platforms relevant to field conditions like SMART (Sensors at Mesoscales with Advanced Remote Telemetry) soils testbed, coupled with ecosystem sensing and predictive models, can be effective tools to explore coupled ecosystem behavior and responses to environmental perturbations. Finally, we envision that with the advent of novel high-resolution imaging capabilities at nano- to macroscale, and remote biosensing technologies, combined with advanced computational models, future studies will lead to detection and upscaling of rhizosphere processes toward ecosystem and global predictions.
Collapse
Affiliation(s)
- Amir H Ahkami
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - Odeta Qafoku
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - Tiina Roose
- Bioengineering Sciences Research Group, Faculty of Engineering and Environment, University of Southampton, University Road, Southampton, England, SO17 1BJ
| | - Quanbing Mou
- Department of Chemistry, The University of Texas at Austin, 105 East 24 Street, Austin, TX 78712, USA
| | - Yi Lu
- Department of Chemistry, The University of Texas at Austin, 105 East 24 Street, Austin, TX 78712, USA
| | - Zoe G Cardon
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Yuxin Wu
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
| | - Chunwei Chou
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
| | - Joshua B Fisher
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA, 92866, USA
| | - Tamas Varga
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - Pubudu Handakumbura
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - Jayde A Aufrecht
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - Arunima Bhattacharjee
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - James J Moran
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
- Michigan State University, Department of Integrative Biology and Department of Plant, Soil, and Microbial Sciences, East Lansing, MI, 48824, USA
| |
Collapse
|
11
|
Qin H, Yang W, Liu Z, Ouyang Y, Wang X, Duan H, Zhao B, Wang S, Zhang J, Chang Y, Jiang K, Yu K, Zhang X. Mitochondrial VOLTAGE-DEPENDENT ANION CHANNEL 3 regulates stomatal closure by abscisic acid signaling. PLANT PHYSIOLOGY 2024; 194:1041-1058. [PMID: 37772952 DOI: 10.1093/plphys/kiad516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), stomatal closure mediated by abscisic acid (ABA) is redundantly controlled by ABA receptor family proteins (PYRABACTIN RESISTANCE 1 [PYR1]/PYR1-LIKE [PYLs]) and subclass III SUCROSE NONFERMENTING 1 (SNF1)-RELATED PROTEIN KINASES 2 (SnRK2s). Among these proteins, the roles of PYR1, PYL2, and SnRK2.6 are more dominant. A recent discovery showed that ABA-induced accumulation of reactive oxygen species (ROS) in mitochondria promotes stomatal closure. By analyzing stomatal movements in an array of single and higher order mutants, we revealed that the mitochondrial protein VOLTAGE-DEPENDENT ANION CHANNEL 3 (VDAC3) jointly regulates ABA-mediated stomatal closure with a specialized set of PYLs and SnRK2s by affecting cellular and mitochondrial ROS accumulation. VDAC3 interacted with 9 PYLs and all 3 subclass III SnRK2s. Single mutation in VDAC3, PYLs (except PYR1 and PYL2), or SnRK2.2/2.3 had little effect on ABA-mediated stomatal closure. However, knocking out PYR1, PYL1/2/4/8, or SnRK2.2/2.3 in vdac3 mutants resulted in significantly delayed or attenuated ABA-mediated stomatal closure, despite the presence of other PYLs or SnRK2s conferring redundant functions. We found that cellular and mitochondrial accumulation of ROS induced by ABA was altered in vdac3pyl1 mutants. Moreover, H2O2 treatment restored ABA-induced stomatal closure in mutants with decreased stomatal sensitivity to ABA. Our work reveals that VDAC3 ensures redundant control of ABA-mediated stomatal closure by canonical ABA signaling components.
Collapse
Affiliation(s)
- Haixia Qin
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wenqi Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Zile Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yi Ouyang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Haiyang Duan
- State Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shujie Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yuankai Chang
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Kun Jiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ke Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
12
|
Liese A, Eichstädt B, Lederer S, Schulz P, Oehlschläger J, Matschi S, Feijó JA, Schulze WX, Konrad KR, Romeis T. Imaging of plant calcium-sensor kinase conformation monitors real time calcium-dependent decoding in planta. THE PLANT CELL 2024; 36:276-297. [PMID: 37433056 PMCID: PMC11210078 DOI: 10.1093/plcell/koad196] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/14/2023] [Accepted: 07/10/2023] [Indexed: 07/13/2023]
Abstract
Changes in cytosolic calcium (Ca2+) concentration are among the earliest reactions to a multitude of stress cues. While a plethora of Ca2+-permeable channels may generate distinct Ca2+ signatures and contribute to response specificities, the mechanisms by which Ca2+ signatures are decoded are poorly understood. Here, we developed a genetically encoded Förster resonance energy transfer (FRET)-based reporter that visualizes the conformational changes in Ca2+-dependent protein kinases (CDPKs/CPKs). We focused on two CDPKs with distinct Ca2+-sensitivities, highly Ca2+-sensitive Arabidopsis (Arabidopsis thaliana) AtCPK21 and rather Ca2+-insensitive AtCPK23, to report conformational changes accompanying kinase activation. In tobacco (Nicotiana tabacum) pollen tubes, which naturally display coordinated spatial and temporal Ca2+ fluctuations, CPK21-FRET, but not CPK23-FRET, reported oscillatory emission ratio changes mirroring cytosolic Ca2+ changes, pointing to the isoform-specific Ca2+-sensitivity and reversibility of the conformational change. In Arabidopsis guard cells, CPK21-FRET-monitored conformational dynamics suggest that CPK21 serves as a decoder of signal-specific Ca2+ signatures in response to abscisic acid and the flagellin peptide flg22. Based on these data, CDPK-FRET is a powerful approach for tackling real-time live-cell Ca2+ decoding in a multitude of plant developmental and stress responses.
Collapse
Affiliation(s)
- Anja Liese
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Bernadette Eichstädt
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Sarah Lederer
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Philipp Schulz
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Jan Oehlschläger
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Susanne Matschi
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - José A Feijó
- Department of Cell Biology & Molecular Genetics, University of Maryland, 2136 Bioscience Research Bldg, College Park, MD 20742-5815, USA
| | - Waltraud X Schulze
- Plant Systems Biology, Universität Hohenheim, D-70593 Stuttgart, Germany
| | - Kai R Konrad
- Julius-Von-Sachs Institute for Biosciences, Julius Maximilians Universität Würzburg, D-97082 Würzburg, Germany
| | - Tina Romeis
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| |
Collapse
|
13
|
Seller CA, Schroeder JI. Distinct guard cell-specific remodeling of chromatin accessibility during abscisic acid- and CO 2-dependent stomatal regulation. Proc Natl Acad Sci U S A 2023; 120:e2310670120. [PMID: 38113262 PMCID: PMC10756262 DOI: 10.1073/pnas.2310670120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023] Open
Abstract
In plants, epidermal guard cells integrate and respond to numerous environmental signals to control stomatal pore apertures, thereby regulating gas exchange. Chromatin structure controls transcription factor (TF) access to the genome, but whether large-scale chromatin remodeling occurs in guard cells during stomatal movements, and in response to the hormone abscisic acid (ABA) in general, remains unknown. Here, we isolate guard cell nuclei from Arabidopsis thaliana plants to examine whether the physiological signals, ABA and CO2 (carbon dioxide), regulate guard cell chromatin during stomatal movements. Our cell type-specific analyses uncover patterns of chromatin accessibility specific to guard cells and define cis-regulatory sequences supporting guard cell-specific gene expression. We find that ABA triggers extensive and dynamic chromatin remodeling in guard cells, roots, and mesophyll cells with clear patterns of cell type specificity. DNA motif analyses uncover binding sites for distinct TFs enriched in ABA-induced and ABA-repressed chromatin. We identify the Abscisic Acid Response Element (ABRE) Binding Factor (ABF) bZIP-type TFs that are required for ABA-triggered chromatin opening in guard cells and roots and implicate the inhibition of a clade of bHLH-type TFs in controlling ABA-repressed chromatin. Moreover, we demonstrate that ABA and CO2 induce distinct programs of chromatin remodeling, whereby elevated atmospheric CO2 had only minimal impact on chromatin dynamics. We provide insight into the control of guard cell chromatin dynamics and propose that ABA-induced chromatin remodeling primes the genome for abiotic stress resistance.
Collapse
Affiliation(s)
- Charles A. Seller
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA92093-0116
| | - Julian I. Schroeder
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA92093-0116
| |
Collapse
|
14
|
Seller CA, Schroeder JI. Distinct guard cell specific remodeling of chromatin accessibility during abscisic acid and CO 2 dependent stomatal regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540345. [PMID: 37215031 PMCID: PMC10197618 DOI: 10.1101/2023.05.11.540345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In plants, epidermal guard cells integrate and respond to numerous environmental signals to control stomatal pore apertures thereby regulating gas exchange. Chromatin structure controls transcription factor access to the genome, but whether large-scale chromatin remodeling occurs in guard cells during stomatal movements, and in response to the hormone abscisic acid (ABA) in general, remain unknown. Here we isolate guard cell nuclei from Arabidopsis thaliana plants to examine whether the physiological signals, ABA and CO2, regulate guard cell chromatin during stomatal movements. Our cell type specific analyses uncover patterns of chromatin accessibility specific to guard cells and define novel cis-regulatory sequences supporting guard cell specific gene expression. We find that ABA triggers extensive and dynamic chromatin remodeling in guard cells, roots, and mesophyll cells with clear patterns of cell-type specificity. DNA motif analyses uncover binding sites for distinct transcription factors enriched in ABA-induced and ABA-repressed chromatin. We identify the ABF/AREB bZIP-type transcription factors that are required for ABA-triggered chromatin opening in guard cells and implicate the inhibition of a set of bHLH-type transcription factors in controlling ABA-repressed chromatin. Moreover, we demonstrate that ABA and CO2 induce distinct programs of chromatin remodeling. We provide insight into the control of guard cell chromatin dynamics and propose that ABA-induced chromatin remodeling primes the genome for abiotic stress resistance.
Collapse
Affiliation(s)
- Charles A. Seller
- School of Biological Sciences, Cell and Developmental Biology Department University of California San Diego, La Jolla, CA 92093-0116
| | - Julian I. Schroeder
- School of Biological Sciences, Cell and Developmental Biology Department University of California San Diego, La Jolla, CA 92093-0116
| |
Collapse
|
15
|
Wong C, Alabadí D, Blázquez MA. Spatial regulation of plant hormone action. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6089-6103. [PMID: 37401809 PMCID: PMC10575700 DOI: 10.1093/jxb/erad244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Although many plant cell types are capable of producing hormones, and plant hormones can in most cases act in the same cells in which they are produced, they also act as signaling molecules that coordinate physiological responses between different parts of the plant, indicating that their action is subject to spatial regulation. Numerous publications have reported that all levels of plant hormonal pathways, namely metabolism, transport, and perception/signal transduction, can help determine the spatial ranges of hormone action. For example, polar auxin transport or localized auxin biosynthesis contribute to creating a differential hormone accumulation across tissues that is instrumental for specific growth and developmental responses. On the other hand, tissue specificity of cytokinin actions has been proposed to be regulated by mechanisms operating at the signaling stages. Here, we review and discuss current knowledge about the contribution of the three levels mentioned above in providing spatial specificity to plant hormone action. We also explore how new technological developments, such as plant hormone sensors based on FRET (fluorescence resonance energy transfer) or single-cell RNA-seq, can provide an unprecedented level of resolution in defining the spatial domains of plant hormone action and its dynamics.
Collapse
Affiliation(s)
- Cynthia Wong
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022-Valencia, Spain
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022-Valencia, Spain
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022-Valencia, Spain
| |
Collapse
|
16
|
Ying W, Liao L, Wei H, Gao Y, Liu X, Sun L. Structural basis for abscisic acid efflux mediated by ABCG25 in Arabidopsis thaliana. NATURE PLANTS 2023; 9:1697-1708. [PMID: 37666962 PMCID: PMC10581904 DOI: 10.1038/s41477-023-01510-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/02/2023] [Indexed: 09/06/2023]
Abstract
Abscisic acid (ABA) is a phytohormone essential to the regulation of numerous aspects of plant growth and development. The cellular level of ABA is critical to its signalling and is determined by its rate of biosynthesis, catabolism and the rates of ABA transport. ABCG25 in Arabidopsis thaliana has been identified to be an ABA exporter and play roles in regulating stomatal closure and seed germination. However, its ABA transport mechanism remains unknown. Here we report the structures of ABCG25 under different states using cryo-electron microscopy single particle analysis: the apo state and ABA-bound state of the wild-type ABCG25 and the ATP-bound state of the ATPase catalytic mutant. ABCG25 forms a homodimer. ABA binds to a cone-shaped, cytosolic-facing cavity formed in the middle of the transmembrane domains. Key residues in ABA binding are identified and verified by a cell-based ABA transport assay. ATP binding leads to closing of the nucleotide-binding domains of opposing monomers and conformational transitions of the transmembrane domains. Together, these results provide insights into the substrate recognition and transport mechanisms of ABCG25 in Arabidopsis, and facilitate our understanding of the ABA transport and signalling pathway in plants.
Collapse
Affiliation(s)
- Wei Ying
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lianghuan Liao
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hong Wei
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yongxiang Gao
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xin Liu
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| | - Linfeng Sun
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
17
|
Liu Y, Wu P, Li B, Wang W, Zhu B. Phosphoribosyltransferases and Their Roles in Plant Development and Abiotic Stress Response. Int J Mol Sci 2023; 24:11828. [PMID: 37511586 PMCID: PMC10380321 DOI: 10.3390/ijms241411828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Glycosylation is a widespread glycosyl modification that regulates gene expression and metabolite bioactivity in all life processes of plants. Phosphoribosylation is a special glycosyl modification catalyzed by phosphoribosyltransferase (PRTase), which functions as a key step in the biosynthesis pathway of purine and pyrimidine nucleotides, histidine, tryptophan, and coenzyme NAD(P)+ to control the production of these essential metabolites. Studies in the past decades have reported that PRTases are indispensable for plant survival and thriving, whereas the complicated physiological role of PRTases in plant life and their crosstalk is not well understood. Here, we comprehensively overview and critically discuss the recent findings on PRTases, including their classification, as well as the function and crosstalk in regulating plant development, abiotic stress response, and the balance of growth and stress responses. This review aims to increase the understanding of the role of plant PRTase and also contribute to future research on the trade-off between plant growth and stress response.
Collapse
Affiliation(s)
- Ye Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Peiwen Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bowen Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Weihao Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Benzhong Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
18
|
Rowe J, Grangé-Guermente M, Exposito-Rodriguez M, Wimalasekera R, Lenz MO, Shetty KN, Cutler SR, Jones AM. Next-generation ABACUS biosensors reveal cellular ABA dynamics driving root growth at low aerial humidity. NATURE PLANTS 2023:10.1038/s41477-023-01447-4. [PMID: 37365314 PMCID: PMC10356609 DOI: 10.1038/s41477-023-01447-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/18/2023] [Indexed: 06/28/2023]
Abstract
The plant hormone abscisic acid (ABA) accumulates under abiotic stress to recast water relations and development. To overcome a lack of high-resolution sensitive reporters, we developed ABACUS2s-next-generation Förster resonance energy transfer (FRET) biosensors for ABA with high affinity, signal-to-noise ratio and orthogonality-that reveal endogenous ABA patterns in Arabidopsis thaliana. We mapped stress-induced ABA dynamics in high resolution to reveal the cellular basis for local and systemic ABA functions. At reduced foliar humidity, root cells accumulated ABA in the elongation zone, the site of phloem-transported ABA unloading. Phloem ABA and root ABA signalling were both essential to maintain root growth at low humidity. ABA coordinates a root response to foliar stresses, enabling plants to maintain foraging of deeper soil for water uptake.
Collapse
Affiliation(s)
- James Rowe
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | | | | | - Rinukshi Wimalasekera
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Department of Botany, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Martin O Lenz
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Cambridge Advanced Imaging Centre, University of Cambridge, Anatomy Building, Cambridge, UK
| | | | - Sean R Cutler
- Center for Plant Cell Biology and Institute for Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | | |
Collapse
|
19
|
Tungsirisurp S, O'Reilly R, Napier R. Nucleic acid aptamers as aptasensors for plant biology. TRENDS IN PLANT SCIENCE 2023; 28:359-371. [PMID: 36357246 DOI: 10.1016/j.tplants.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Our knowledge of cell- and tissue-specific quantification of phytohormones is heavily reliant on laborious mass spectrometry techniques. Genetically encoded biosensors have allowed spatial and some temporal quantification of phytohormones intracellularly, but there is still limited information on their intercellular distributions. Here, we review nucleic acid aptamers as an emerging biosensing platform for the detection and quantification of analytes with high affinity and specificity. Options for DNA aptamer technology are explained through selection, sequencing analysis and techniques for evaluating affinity and specificity, and we focus on previously developed DNA aptamers against various plant analytes. We suggest how these tools might be applied in planta for quantification of molecules of interest both intracellularly and intercellularly.
Collapse
Affiliation(s)
| | - Rachel O'Reilly
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Richard Napier
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
20
|
Xu W, Sato H, Bente H, Santos-González J, Köhler C. Endosperm cellularization failure induces a dehydration-stress response leading to embryo arrest. THE PLANT CELL 2023; 35:874-888. [PMID: 36427255 PMCID: PMC9940880 DOI: 10.1093/plcell/koac337] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
The endosperm is a nutritive tissue supporting embryo growth in flowering plants. Most commonly, the endosperm initially develops as a coenocyte (multinucleate cell) and then cellularizes. This process of cellularization is frequently disrupted in hybrid seeds generated by crosses between different flowering plant species or plants that differ in ploidy, resulting in embryo arrest and seed lethality. The reason for embryo arrest upon cellularization failure remains unclear. In this study, we show that triploid Arabidopsis thaliana embryos surrounded by uncellularized endosperm mount an osmotic stress response that is connected to increased levels of abscisic acid (ABA) and enhanced ABA responses. Impairing ABA biosynthesis and signaling aggravated triploid seed abortion, while increasing endogenous ABA levels as well as the exogenous application of ABA-induced endosperm cellularization and suppressed embryo growth arrest. Taking these results together, we propose that endosperm cellularization is required to establish dehydration tolerance in the developing embryo, ensuring its survival during seed maturation.
Collapse
Affiliation(s)
- Wenjia Xu
- Swedish University of Agricultural Sciences & Linnean Center for Plant Biology, Uppsala BioCenter, Almas Allé 5, SE-750 07 Uppsala, Sweden
| | - Hikaru Sato
- Swedish University of Agricultural Sciences & Linnean Center for Plant Biology, Uppsala BioCenter, Almas Allé 5, SE-750 07 Uppsala, Sweden
| | - Heinrich Bente
- Swedish University of Agricultural Sciences & Linnean Center for Plant Biology, Uppsala BioCenter, Almas Allé 5, SE-750 07 Uppsala, Sweden
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Juan Santos-González
- Swedish University of Agricultural Sciences & Linnean Center for Plant Biology, Uppsala BioCenter, Almas Allé 5, SE-750 07 Uppsala, Sweden
| | - Claudia Köhler
- Swedish University of Agricultural Sciences & Linnean Center for Plant Biology, Uppsala BioCenter, Almas Allé 5, SE-750 07 Uppsala, Sweden
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
21
|
Hirayama T, Mochida K. Plant Hormonomics: A Key Tool for Deep Physiological Phenotyping to Improve Crop Productivity. PLANT & CELL PHYSIOLOGY 2023; 63:1826-1839. [PMID: 35583356 PMCID: PMC9885943 DOI: 10.1093/pcp/pcac067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/07/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Agriculture is particularly vulnerable to climate change. To cope with the risks posed by climate-related stressors to agricultural production, global population growth, and changes in food preferences, it is imperative to develop new climate-smart crop varieties with increased yield and environmental resilience. Molecular genetics and genomic analyses have revealed that allelic variations in genes involved in phytohormone-mediated growth regulation have greatly improved productivity in major crops. Plant science has remarkably advanced our understanding of the molecular basis of various phytohormone-mediated events in plant life. These findings provide essential information for improving the productivity of crops growing in changing climates. In this review, we highlight the recent advances in plant hormonomics (multiple phytohormone profiling) and discuss its application to crop improvement. We present plant hormonomics as a key tool for deep physiological phenotyping, focusing on representative plant growth regulators associated with the improvement of crop productivity. Specifically, we review advanced methodologies in plant hormonomics, highlighting mass spectrometry- and nanosensor-based plant hormone profiling techniques. We also discuss the applications of plant hormonomics in crop improvement through breeding and agricultural management practices.
Collapse
Affiliation(s)
- Takashi Hirayama
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046 Japan
| | - Keiichi Mochida
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumiku, Yokohama, Kanagawa, 230-0045 Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maiokacho, Totsukaku, Yokohama, Kanagawa, 244-0813 Japan
- School of Information and Data Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521 Japan
- RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehirocho, Tsurumiku, Yokohama, Kanagawa 230-0045 Japan
| |
Collapse
|
22
|
Neelam A, Tabassum S. Optical Sensing Technologies to Elucidate the Interplay between Plant and Microbes. MICROMACHINES 2023; 14:195. [PMID: 36677256 PMCID: PMC9866067 DOI: 10.3390/mi14010195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Plant-microbe interactions are critical for ecosystem functioning and driving rhizosphere processes. To fully understand the communication pathways between plants and rhizosphere microbes, it is crucial to measure the numerous processes that occur in the plant and the rhizosphere. The present review first provides an overview of how plants interact with their surrounding microbial communities, and in turn, are affected by them. Next, different optical biosensing technologies that elucidate the plant-microbe interactions and provide pathogenic detection are summarized. Currently, most of the biosensors used for detecting plant parameters or microbial communities in soil are centered around genetically encoded optical and electrochemical biosensors that are often not suitable for field applications. Such sensors require substantial effort and cost to develop and have their limitations. With a particular focus on the detection of root exudates and phytohormones under biotic and abiotic stress conditions, novel low-cost and in-situ biosensors must become available to plant scientists.
Collapse
Affiliation(s)
| | - Shawana Tabassum
- Department of Electrical Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| |
Collapse
|
23
|
Premachandran Y, Ugalde JM. Let the sunshine in: Abscisic acid modulates shade avoidance by inducing hyponasty movement in Arabidopsis. PLANT PHYSIOLOGY 2023; 191:15-17. [PMID: 36308447 PMCID: PMC9806603 DOI: 10.1093/plphys/kiac500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Yadukrishnan Premachandran
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | | |
Collapse
|
24
|
Abstract
Time is an often-neglected variable in biological research. Plants respond to biotic and abiotic stressors with a range of chemical signals, but as plants are non-equilibrium systems, single-point measurements often cannot provide sufficient temporal resolution to capture these time-dependent signals. In this article, we critically review the advances in continuous monitoring of chemical signals in living plants under stress. We discuss methods for sustained measurement of the most important chemical species, including ions, organic molecules, inorganic molecules and radicals. We examine analytical and modelling approaches currently used to identify and predict stress in plants. We also explore how the methods discussed can be used for applications beyond a research laboratory, in agricultural settings. Finally, we present the current challenges and future perspectives for the continuous monitoring of chemical signals in plants.
Collapse
|
25
|
Liu Y, Wang J, Liu B, Xu ZY. Dynamic regulation of DNA methylation and histone modifications in response to abiotic stresses in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2252-2274. [PMID: 36149776 DOI: 10.1111/jipb.13368] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
DNA methylation and histone modification are evolutionarily conserved epigenetic modifications that are crucial for the expression regulation of abiotic stress-responsive genes in plants. Dynamic changes in gene expression levels can result from changes in DNA methylation and histone modifications. In the last two decades, how epigenetic machinery regulates abiotic stress responses in plants has been extensively studied. Here, based on recent publications, we review how DNA methylation and histone modifications impact gene expression regulation in response to abiotic stresses such as drought, abscisic acid, high salt, extreme temperature, nutrient deficiency or toxicity, and ultraviolet B exposure. We also review the roles of epigenetic mechanisms in the formation of transgenerational stress memory. We posit that a better understanding of the epigenetic underpinnings of abiotic stress responses in plants may facilitate the design of more stress-resistant or -resilient crops, which is essential for coping with global warming and extreme environments.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
26
|
Holsteens K, De Jaegere I, Wynants A, Prinsen ELJ, Van de Poel B. Mild and severe salt stress responses are age-dependently regulated by abscisic acid in tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:982622. [PMID: 36275599 PMCID: PMC9585276 DOI: 10.3389/fpls.2022.982622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Salt stress hampers plant growth and development through both osmotic and ionic imbalances. One of the key players in modulating physiological responses towards salinity is the plant hormone abscisic acid (ABA). How plants cope with salinity largely depends on the magnitude of the soil salt content (stress severity), but also on age-related developmental processes (ontogeny). Here we studied how ABA directs salt stress responses in tomato plants for both mild and severe salt stress in leaves of different ages. We used the ABA-deficient mutant notabilis, which contains a null-mutation in the gene of a rate-limiting ABA biosynthesis enzyme 9-cis-epoxycarotenoid dioxygenase (NCED1), leading to impaired stomatal closure. We showed that both old and young leaves of notabilis plants keep a steady-state transpiration and photosynthesis rate during salt stress, probably due to their dysfunctional stomatal closure. At the whole plant level, transpiration declined similar to the wild-type, impacting final growth. Notabilis leaves were able to produce osmolytes and accumulate ions in a similar way as wild-type plants, but accumulated more proline, indicating that osmotic responses were not impaired by the NCED1 mutation. Besides NCED1, also NCED2 and NCED6 are strongly upregulated under salt stress, which could explain why the notabilis mutant did not show a lower ABA content upon salt stress, except in young leaves. This might be indicative of a salt-mediated feedback mechanism on NCED2/6 in notabilis and might explain why notabilis plants seem to perform better under salt stress compared to wild-type plants with respect to biomass and water content accumulation.
Collapse
Affiliation(s)
- Kristof Holsteens
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| | - Isabel De Jaegere
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| | - Arne Wynants
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| | | | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
- KU Leuven Plant Institute, (LPI), University of Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Chen Z, Li S, Wan X, Liu S. Strategies of tree species to adapt to drought from leaf stomatal regulation and stem embolism resistance to root properties. FRONTIERS IN PLANT SCIENCE 2022; 13:926535. [PMID: 36237513 PMCID: PMC9552884 DOI: 10.3389/fpls.2022.926535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Considerable evidences highlight the occurrence of increasing widespread tree mortality as a result of global climate change-associated droughts. However, knowledge about the mechanisms underlying divergent strategies of various tree species to adapt to drought has remained remarkably insufficient. Leaf stomatal regulation and embolism resistance of stem xylem serves as two important strategies for tree species to prevent hydraulic failure and carbon starvation, as comprising interconnected physiological mechanisms underlying drought-induced tree mortality. Hence, the physiological and anatomical determinants of leaf stomatal regulation and stems xylem embolism resistance are evaluated and discussed. In addition, root properties related to drought tolerance are also reviewed. Species with greater investment in leaves and stems tend to maintain stomatal opening and resist stem embolism under drought conditions. The coordination between stomatal regulation and stem embolism resistance are summarized and discussed. Previous studies showed that hydraulic safety margin (HSM, the difference between minimum water potential and that causing xylem dysfunction) is a significant predictor of tree species mortality under drought conditions. Compared with HSM, stomatal safety margin (the difference between water potential at stomatal closure and that causing xylem dysfunction) more directly merge stomatal regulation strategies with xylem hydraulic strategies, illustrating a comprehensive framework to characterize plant response to drought. A combination of plant traits reflecting species' response and adaptation to drought should be established in the future, and we propose four specific urgent issues as future research priorities.
Collapse
Affiliation(s)
- Zhicheng Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Shan Li
- Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Xianchong Wan
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
28
|
Jedličková V, Ebrahimi Naghani S, Robert HS. On the trail of auxin: Reporters and sensors. THE PLANT CELL 2022; 34:3200-3213. [PMID: 35708654 PMCID: PMC9421466 DOI: 10.1093/plcell/koac179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/07/2022] [Indexed: 05/22/2023]
Abstract
The phytohormone auxin is a master regulator of plant growth and development in response to many endogenous and environmental signals. The underlying coordination of growth is mediated by the formation of auxin maxima and concentration gradients. The visualization of auxin dynamics and distribution can therefore provide essential information to increase our understanding of the mechanisms by which auxin orchestrates these growth and developmental processes. Several auxin reporters have been developed to better perceive the auxin distribution and signaling machinery in vivo. This review focuses on different types of auxin reporters and biosensors used to monitor auxin distribution and its dynamics, as well as auxin signaling, at the cellular and tissue levels in different plant species. We provide a brief history of each reporter and biosensor group and explain their principles and utilities.
Collapse
|
29
|
Yang JF, Chen WJ, Zhou LM, Hewage KAH, Fu YX, Chen MX, He B, Pei RJ, Song K, Zhang JH, Yin J, Hao GF, Yang GF. Real-Time Fluorescence Imaging of the Abscisic Acid Receptor Allows Nondestructive Visualization of Plant Stress. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28489-28500. [PMID: 35642545 DOI: 10.1021/acsami.2c02156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Environmental stress greatly decreases crop yield. The application of noninvasive techniques is one of the most practical and feasible ways of monitoring the health condition of plants under stress. However, it remains largely unsolved. A chemical fluorescent probe can be applied as a typical nondestructive method, but it has not been applied in living plants for stress detection to date. The abscisic acid (ABA) receptor plays a central role in conferring tolerance to environmental stresses and is an excellent target for developing fluorescent probes. Herein, we developed a fluorescence molecular imaging technology to monitor live plant stress by visualizing the protein expression level of the ABA receptor PYR1. A computer-aided designed indicator dye, flubactin, exhibited an 8-fold enhancement in fluorescence intensity upon interaction with PYR1. In vitro and in vivo experiments showed that flubactin is suitable to be used to detect salt stress in plants in real time. Moreover, the low toxicity of flubactin promotes its application in the future. Our work opens a new era for the nondestructive visualization of plant stress in vivo.
Collapse
Affiliation(s)
- Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Wei-Jie Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Li-Ming Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Kamalani Achala H Hewage
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Yi-Xuan Fu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China & Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Bo He
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Rong-Jie Pei
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Ke Song
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Jian-Hua Zhang
- Department of Biology, Hong Kong Baptist University and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong 300072, China
| | - Jun Yin
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
30
|
Wang Y, Zhou Y, Liang J. Characterization of Organellar-Specific ABA Responses during Environmental Stresses in Tobacco Cells and Arabidopsis Plants. Cells 2022; 11:2039. [PMID: 35805123 PMCID: PMC9265483 DOI: 10.3390/cells11132039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Abscisic acid (ABA) is a critical phytohormone involved in multifaceted processes in plant metabolism and growth under both stressed and nonstressed conditions. Its accumulation in various tissues and cells has long been established as a biomarker for plant stress responses. To date, a comprehensive understanding of ABA distribution and dynamics at subcellular resolution in response to environmental cues is still lacking. Here, we modified the previously developed ABA sensor ABAleon2.1_Tao3 (Tao3) and targeted it to different organelles including the endoplasmic reticulum (ER), chloroplast/plastid, and nucleus through the addition of corresponding signal peptides. Together with the cytosolic Tao3, we show distinct ABA distribution patterns in different tobacco cells with the chloroplast showing a lower level of ABA in both cell types. In a tobacco mesophyll cell, organellar ABA displayed specific alterations depending on osmotic stimulus, with ABA levels being generally enhanced under a lower and higher concentration of salt and mannitol treatment, respectively. In Arabidopsis roots, cells from both the meristem and elongation zone accumulated ABA considerably in the cytoplasm upon mannitol treatment, while the plastid and nuclear ABA was generally reduced dependent upon specific cell types. In Arabidopsis leaf tissue, subcellular ABA seemed to be less responsive when stressed, with notable increases of ER ABA in epidermal cells and a reduction of nuclear ABA in guard cells. Together, our results present a detailed characterization of stimulus-dependent cell type-specific organellar ABA responses in tobacco and Arabidopsis plants, supporting a highly coordinated regulatory network for mediating subcellular ABA homeostasis during plant adaptation processes.
Collapse
Affiliation(s)
- Yuzhu Wang
- Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China;
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yeling Zhou
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiansheng Liang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
31
|
Kim SW, Alci K, Van Gaever F, Driege Y, Bicalho K, Goeminne G, Libert C, Goossens A, Beyaert R, Staal J. Engineering a highly sensitive biosensor for abscisic acid in mammalian cells. FEBS Lett 2022; 596:2576-2590. [PMID: 35727199 DOI: 10.1002/1873-3468.14431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
Abscisic acid (ABA) is a signaling molecule conserved in plants, bacteria, fungi and animals. Recently, ABA has gained attention for its pharmacological activities and its potential as a biomarker for the severity of chronic obstructive pulmonary disease (COPD) and glioma. This prompts the development of a reliable, sensitive, rapid, and cost-effective method to quantify ABA levels in mammalian cells and tissues. The previously described ABA biosensor system based on the ABA-dependent interaction between the plant ABA receptor PYL1 and co-receptor ABI1 is not sensitive enough for the low ABA levels seen in mammals. Therefore, we optimized this system by replacing PYL1 with other high-affinity plant PYL proteins. The optimized biosensor system engineered with the PYL8 receptor enabled the quantification of ABA at low concentrations in HEK293T cells.
Collapse
Affiliation(s)
- Seo Woo Kim
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Kübra Alci
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,BCCM/GeneCorner, Ghent University, Ghent, Belgium
| | - Femke Van Gaever
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yasmine Driege
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | | | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Alain Goossens
- Center for Plant Systems Biology, VIB, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jens Staal
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
Abstract
Plant hormones are signalling compounds that regulate crucial aspects of growth, development and environmental stress responses. Abiotic stresses, such as drought, salinity, heat, cold and flooding, have profound effects on plant growth and survival. Adaptation and tolerance to such stresses require sophisticated sensing, signalling and stress response mechanisms. In this Review, we discuss recent advances in understanding how diverse plant hormones control abiotic stress responses in plants and highlight points of hormonal crosstalk during abiotic stress signalling. Control mechanisms and stress responses mediated by plant hormones including abscisic acid, auxin, brassinosteroids, cytokinins, ethylene and gibberellins are discussed. We discuss new insights into osmotic stress sensing and signalling mechanisms, hormonal control of gene regulation and plant development during stress, hormone-regulated submergence tolerance and stomatal movements. We further explore how innovative imaging approaches are providing insights into single-cell and tissue hormone dynamics. Understanding stress tolerance mechanisms opens new opportunities for agricultural applications.
Collapse
|
33
|
Roussin-Léveillée C, Lajeunesse G, St-Amand M, Veerapen VP, Silva-Martins G, Nomura K, Brassard S, Bolaji A, He SY, Moffett P. Evolutionarily conserved bacterial effectors hijack abscisic acid signaling to induce an aqueous environment in the apoplast. Cell Host Microbe 2022; 30:489-501.e4. [PMID: 35247330 PMCID: PMC9012689 DOI: 10.1016/j.chom.2022.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/04/2021] [Accepted: 02/08/2022] [Indexed: 11/26/2022]
Abstract
High atmospheric humidity levels profoundly impact host-pathogen interactions in plants by enabling the establishment of an aqueous living space that benefits pathogens. The effectors HopM1 and AvrE1 of the bacterial pathogen Pseudomonas syringae have been shown to induce an aqueous apoplast under such conditions. However, the mechanisms by which this happens remain unknown. Here, we show that HopM1 and AvrE1 work redundantly to establish an aqueous living space by inducing a major reprogramming of the Arabidopsis thaliana transcriptome landscape. These effectors induce a strong abscisic acid (ABA) signature, which promotes stomatal closure, resulting in reduced leaf transpiration and water-soaking lesions. Furthermore, these effectors preferentially increase ABA accumulation in guard cells, which control stomatal aperture. Notably, a guard-cell-specific ABA transporter, ABCG40, is necessary for HopM1 induction of water-soaking lesions. This study provides molecular insights into a chain of events of stomatal manipulation that create an ideal microenvironment to facilitate infection.
Collapse
Affiliation(s)
| | - Gaële Lajeunesse
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Méliane St-Amand
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | - Kinya Nomura
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI, USA; Department of Biology, Duke University, Durham, NC, USA; Howard Hughes Medical Institute, Durham, NC, USA
| | - Sandrine Brassard
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ayooluwa Bolaji
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sheng Yang He
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI, USA; Department of Biology, Duke University, Durham, NC, USA; Howard Hughes Medical Institute, Durham, NC, USA
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
34
|
Lv C, Li F, Ai X, Bi H. H 2O 2 participates in ABA regulation of grafting-induced chilling tolerance in cucumber. PLANT CELL REPORTS 2022; 41:1115-1130. [PMID: 35260922 DOI: 10.1007/s00299-022-02841-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/01/2022] [Indexed: 05/20/2023]
Abstract
Rootstock provides more abscisic acid (ABA) content to scions to increase the chilling tolerance of seedlings. H2O2 is involved in ABA regulation of grafting-induced chilling tolerance of cucumber. Here we examined the role of ABA in the response of grafted cucumber to chilling stress. The data showed chilling induced an increase in leaf and root ABA content and there was a positive correlation between ABA content and the chilling tolerance of the varieties. The increase of ABA content and NCED mRNA abundance in the leaf of both Cs/Cs (self-root) and Cs/Cm (grafted with pumpkin as rootstock) showed a delay under aerial stress compared with those under whole plant and root-zone stress. Intriguingly, an increase in ABA in xylem was found under whole-plant and root-zone chilling stress but was not detected under aerial stress, implying the increases in ABA content in leaves were mainly from root ABA transportation. Compared to Cs/Cs, a higher ABA content and NCED mRNA abundance were observed in Cs/Cm, which showed that Cm could output more ABA than Cs. The removal of endogenous ABA decreased the difference in chilling tolerance induced by Cm, as evidenced by the observed similar oxidative stress levels and photosynthetic capacity between Cs/Cs and Cs/Cm after chilling stress. Moreover, we found that the H2O2 signal in grafted cucumber could respond to chilling stress earlier than the H2O2 signal in self-rooted cucumber. The inhibition of endogenous H2O2 decreased the chilling tolerance of grafted cucumber induced by ABA by reducing photosynthesis and the mRNA abundance of CBF1 and COR. Thus, our results indicate that H2O2, as the downstream signal, participated in the rootstock-induced chilling tolerance of grafted seedlings induced by ABA.
Collapse
Affiliation(s)
- Chunyu Lv
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Fude Li
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xizhen Ai
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Huangai Bi
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
35
|
Live Imaging of Abscisic Acid Dynamics Using Genetically Encoded Fluorescence Resonance Energy Transfer (FRET )-Based ABA Biosensors. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2462:135-154. [PMID: 35152386 DOI: 10.1007/978-1-0716-2156-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The phytohormone abscisic acid (ABA) regulates various aspects of plant physiology, growth, and development to maintain a balanced plant water status. Cellular ABA levels are regulated through the combined activities of biosynthesis, catabolism, and transport proteins and depend on the developmental stage, the cell-type and on environmental conditions. Genetically encoded Förster (fluorescence) Resonance Energy Transfer (FRET)-based ABA-responsive biosensors enable the direct monitoring of ABA dynamics in intact plants. Thus, ABA biosensor-based in vivo imaging can provide novel insights about the spatiotemporal patterns of biosynthesis- and transport-dependent ABA dynamics that are required for the regulation of seed dormancy and germination, root growth and hydrotropism, and stomatal closure under water limiting conditions. Here, I describe a protocol for the in vivo analysis of ABA in 5-day-old Arabidopsis seedlings (roots) expressing the FRET-based ABA biosensor ABAleonSD1-3L21.
Collapse
|
36
|
Song C, Zhao J, Guichard M, Shi D, Grossmann G, Schmitt C, Jouannet V, Greb T. Strigo-D2-a bio-sensor for monitoring spatio-temporal strigolactone signaling patterns in intact plants. PLANT PHYSIOLOGY 2022; 188:97-110. [PMID: 34718781 PMCID: PMC8774841 DOI: 10.1093/plphys/kiab504] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/09/2021] [Indexed: 05/29/2023]
Abstract
Strigolactones (SLs) are a class of plant hormones that mediate biotic interactions and modulate developmental programs in response to endogenous and exogenous stimuli. However, a comprehensive view on the spatio-temporal pattern of SL signaling has not been established, and tools for a systematic in planta analysis do not exist. Here, we present Strigo-D2, a genetically encoded ratiometric SL signaling sensor that enables the examination of SL signaling distribution at cellular resolution and is capable of rapid response to altered SL levels in intact Arabidopsis (Arabidopsis thaliana) plants. By monitoring the abundance of a truncated and fluorescently labeled SUPPRESSOR OF MAX2 1-LIKE 6 (SMXL6) protein, a proteolytic target of the SL signaling machinery, we show that all cell types investigated have the capacity to respond to changes in SL levels but with very different dynamics. In particular, SL signaling is pronounced in vascular cells but low in guard cells and the meristematic region of the root. We also show that other hormones leave Strigo-D2 activity unchanged, indicating that initial SL signaling steps work in isolation from other hormonal signaling pathways. The specificity and spatio-temporal resolution of Strigo-D2 underline the value of the sensor for monitoring SL signaling in a broad range of biological contexts with highly instructive analytical depth.
Collapse
Affiliation(s)
- Changzheng Song
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Jiao Zhao
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Marjorie Guichard
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
- Institute of Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Dongbo Shi
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
- RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-Yokohama 230-0045, Japan
| | - Guido Grossmann
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
- Institute of Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Christian Schmitt
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Virginie Jouannet
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Thomas Greb
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| |
Collapse
|
37
|
Colin L, Martin-Arevalillo R, Bovio S, Bauer A, Vernoux T, Caillaud MC, Landrein B, Jaillais Y. Imaging the living plant cell: From probes to quantification. THE PLANT CELL 2022; 34:247-272. [PMID: 34586412 PMCID: PMC8774089 DOI: 10.1093/plcell/koab237] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/20/2021] [Indexed: 05/20/2023]
Abstract
At the center of cell biology is our ability to image the cell and its various components, either in isolation or within an organism. Given its importance, biological imaging has emerged as a field of its own, which is inherently highly interdisciplinary. Indeed, biologists rely on physicists and engineers to build new microscopes and imaging techniques, chemists to develop better imaging probes, and mathematicians and computer scientists for image analysis and quantification. Live imaging collectively involves all the techniques aimed at imaging live samples. It is a rapidly evolving field, with countless new techniques, probes, and dyes being continuously developed. Some of these new methods or reagents are readily amenable to image plant samples, while others are not and require specific modifications for the plant field. Here, we review some recent advances in live imaging of plant cells. In particular, we discuss the solutions that plant biologists use to live image membrane-bound organelles, cytoskeleton components, hormones, and the mechanical properties of cells or tissues. We not only consider the imaging techniques per se, but also how the construction of new fluorescent probes and analysis pipelines are driving the field of plant cell biology.
Collapse
Affiliation(s)
- Leia Colin
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Raquel Martin-Arevalillo
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Simone Bovio
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
- LYMIC-PLATIM imaging and microscopy core facility, Univ Lyon, SFR Biosciences, ENS de Lyon, Inserm US8, CNRS UMS3444, UCBL-50 Avenue Tony Garnier, 69007 Lyon, France
| | - Amélie Bauer
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Marie-Cecile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Benoit Landrein
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| |
Collapse
|
38
|
Duan Z, Li K, Duan W, Zhang J, Xing J. Probing membrane protein interactions and signaling molecule homeostasis in plants by Förster resonance energy transfer analysis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:68-77. [PMID: 34610124 DOI: 10.1093/jxb/erab445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Membrane proteins have key functions in signal transduction, transport, and metabolism. Therefore, deciphering the interactions between membrane proteins provides crucial information on signal transduction and the spatiotemporal organization of protein complexes. However, detecting the interactions and behaviors of membrane proteins in their native environments remains difficult. Förster resonance energy transfer (FRET) is a powerful tool for quantifying the dynamic interactions and assembly of membrane proteins without disrupting their local environment, supplying nanometer-scale spatial information and nanosecond-scale temporal information. In this review, we briefly introduce the basic principles of FRET and assess the current state of progress in the development of new FRET techniques (such as FRET-FLIM, homo-FRET, and smFRET) for the analysis of plant membrane proteins. We also describe the various FRET-based biosensors used to quantify the homeostasis of signaling molecules and the active state of kinases. Furthermore, we summarize recent applications of these advanced FRET sensors in probing membrane protein interactions, stoichiometry, and protein clustering, which have shed light on the complex biological functions of membrane proteins in living plant cells.
Collapse
Affiliation(s)
- Zhikun Duan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Kaiwen Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wenwen Duan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jingjing Xing
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
39
|
Ou X, Li T, Zhao Y, Chang Y, Wu L, Chen G, Day B, Jiang K. Calcium-dependent ABA signaling functions in stomatal immunity by regulating rapid SA responses in guard cells. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153585. [PMID: 34894596 DOI: 10.1016/j.jplph.2021.153585] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Stomatal immunity is mediated by ABA, an osmotic stress-responsive phytohormone that closes stomata via calcium-dependent and -independent signaling pathways. However, the functional involvement of ABA signal transducers in stomatal immunity remains poorly understood. Here, we demonstrate that stomatal immunity was compromised in mutants of the ABA signaling core. We also found that it is a subset of calcium-dependent protein kinases (CPK4/5/6), but not the calcium-independent kinase OST1, that relay the stomatal immune signaling. Surface-inoculated bacteria caused an endogenous ABA-dependent induction of local SA responses, whilst expression of the ABA biosynthetic genes and the ABA levels were not affected in leaf epidermis. Furthermore, flg22-elicited ROS burst was attenuated by mutations in CPK4 and CPK5, and pathogen-induced SA production in leaf epidermis was compromised in cpk4, cpk5, and cpk6 mutants. Our results suggest that CPKs function in stomatal immunity through fine-tuning apoplastic ROS levels as well as reinforcing the localized SA signal in guard cells. It is also envisioned that ABA mediates stomatal responses to biotic and abiotic stresses via two distinct but partially overlapping signaling modules.
Collapse
Affiliation(s)
- Xiaobin Ou
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Life Sciences and Technology, Longdong University, Qingyang, Gansu Province, 745000, China
| | - Tianqi Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yi Zhao
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Yuankai Chang
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Lihong Wu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Guoqingzi Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA.
| | - Kun Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China.
| |
Collapse
|
40
|
Feitosa-Araujo E, da Fonseca-Pereira P, Knorr LS, Schwarzländer M, Nunes-Nesi A. NAD meets ABA: connecting cellular metabolism and hormone signaling. TRENDS IN PLANT SCIENCE 2022; 27:16-28. [PMID: 34426070 DOI: 10.1016/j.tplants.2021.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/04/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
NAD is a ubiquitous metabolic coenzyme. Although the role of NAD as a central redox shuttle remains of critical interest in plant metabolism, recent evidence indicates that NAD serves additional functions in signaling and regulation. A link with the plant stress hormone abscisic acid (ABA) has emerged on the basis of similar plant phenotypes following interference with NAD or ABA, especially in stomatal development, stomatal movements, responses to pathogens and abiotic stress insults, and seed germination. The association between NAD and ABA regulation appears specific and cannot be accounted for by pleiotropic interference. Here, we review the current picture of the NAD - ABA relationship, discuss emerging candidate mechanisms, and assess avenues to dissect interaction mechanisms.
Collapse
Affiliation(s)
- Elias Feitosa-Araujo
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, 48143 Münster, Germany.
| | - Paula da Fonseca-Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Lena S Knorr
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, 48143 Münster, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, 48143 Münster, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
41
|
Rowe JH, Rizza A, Jones AM. Quantifying Phytohormones in Vivo with FRET Biosensors and the FRETENATOR Analysis Toolset. Methods Mol Biol 2022; 2494:239-253. [PMID: 35467212 DOI: 10.1007/978-1-0716-2297-1_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ABACUS1-2 μ (ABscisic Acid Concentration and Uptake Sensor 1-2 μ) and GPS1 (Gibberellin Perception Sensor 1) are direct Förster resonance energy transfer (FRET) biosensors that can be used to measure hormone levels in planta. We provide detailed protocols to image FRET biosensors under exogenously applied hormones in roots, either as a single time point or for treatment time courses before and after hormone application. A new, free, open-source analysis toolset for Fiji is introduced and used to get full 3D segmentation of images of nuclear localized FRET biosensors and calculate emission ratios on a per nucleus basis allowing in-depth analysis of biosensor data.
Collapse
Affiliation(s)
- James H Rowe
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Annalisa Rizza
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
42
|
Rowe JH, Jones AM. Focus on biosensors: Looking through the lens of quantitative biology. QUANTITATIVE PLANT BIOLOGY 2021; 2:e12. [PMID: 37077214 PMCID: PMC10095858 DOI: 10.1017/qpb.2021.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 05/02/2023]
Abstract
In recent years, plant biologists interested in quantifying molecules and molecular events in vivo have started to complement reporter systems with genetically encoded fluorescent biosensors (GEFBs) that directly sense an analyte. Such biosensors can allow measurements at the level of individual cells and over time. This information is proving valuable to mathematical modellers interested in representing biological phenomena in silico, because improved measurements can guide improved model construction and model parametrisation. Advances in synthetic biology have accelerated the pace of biosensor development, and the simultaneous expression of spectrally compatible biosensors now allows quantification of multiple nodes in signalling networks. For biosensors that directly respond to stimuli, targeting to specific cellular compartments allows the observation of differential accumulation of analytes in distinct organelles, bringing insights to reactive oxygen species/calcium signalling and photosynthesis research. In conjunction with improved image analysis methods, advances in biosensor imaging can help close the loop between experimentation and mathematical modelling.
Collapse
Affiliation(s)
- James H. Rowe
- Sainsbury Laboratory, Cambridge University, Cambridge, United Kingdom
| | | |
Collapse
|
43
|
Balcerowicz M, Shetty KN, Jones AM. Fluorescent biosensors illuminating plant hormone research. PLANT PHYSIOLOGY 2021; 187:590-602. [PMID: 35237816 PMCID: PMC8491072 DOI: 10.1093/plphys/kiab278] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/22/2021] [Indexed: 05/20/2023]
Abstract
Phytohormones act as key regulators of plant growth that coordinate developmental and physiological processes across cells, tissues and organs. As such, their levels and distribution are highly dynamic owing to changes in their biosynthesis, transport, modification and degradation that occur over space and time. Fluorescent biosensors represent ideal tools to track these dynamics with high spatiotemporal resolution in a minimally invasive manner. Substantial progress has been made in generating a diverse set of hormone sensors with recent FRET biosensors for visualising hormone concentrations complementing information provided by transcriptional, translational and degron-based reporters. In this review, we provide an update on fluorescent biosensor designs, examine the key properties that constitute an ideal hormone biosensor, discuss the use of these sensors in conjunction with in vivo hormone perturbations and highlight the latest discoveries made using these tools.
Collapse
Affiliation(s)
| | | | - Alexander M. Jones
- Sainsbury Laboratory, Cambridge University, Cambridge CB2 1LR, UK
- Author for communication:
| |
Collapse
|
44
|
Sadoine M, Ishikawa Y, Kleist TJ, Wudick MM, Nakamura M, Grossmann G, Frommer WB, Ho CH. Designs, applications, and limitations of genetically encoded fluorescent sensors to explore plant biology. PLANT PHYSIOLOGY 2021; 187:485-503. [PMID: 35237822 PMCID: PMC8491070 DOI: 10.1093/plphys/kiab353] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/12/2021] [Indexed: 05/03/2023]
Abstract
The understanding of signaling and metabolic processes in multicellular organisms requires knowledge of the spatial dynamics of small molecules and the activities of enzymes, transporters, and other proteins in vivo, as well as biophysical parameters inside cells and across tissues. The cellular distribution of receptors, ligands, and activation state must be integrated with information about the cellular distribution of metabolites in relation to metabolic fluxes and signaling dynamics in order to achieve the promise of in vivo biochemistry. Genetically encoded sensors are engineered fluorescent proteins that have been developed for a wide range of small molecules, such as ions and metabolites, or to report biophysical processes, such as transmembrane voltage or tension. First steps have been taken to monitor the activity of transporters in vivo. Advancements in imaging technologies and specimen handling and stimulation have enabled researchers in plant sciences to implement sensor technologies in intact plants. Here, we provide a brief history of the development of genetically encoded sensors and an overview of the types of sensors available for quantifying and visualizing ion and metabolite distribution and dynamics. We further discuss the pros and cons of specific sensor designs, imaging systems, and sample manipulations, provide advice on the choice of technology, and give an outlook into future developments.
Collapse
Affiliation(s)
- Mayuri Sadoine
- Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Yuuma Ishikawa
- Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Thomas J. Kleist
- Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Michael M. Wudick
- Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Masayoshi Nakamura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Guido Grossmann
- Cluster of Excellence on Plant Sciences, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute for Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Wolf B. Frommer
- Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Cluster of Excellence on Plant Sciences, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Cheng-Hsun Ho
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Author for communication:
| |
Collapse
|
45
|
Waadt R, Kudla J, Kollist H. Multiparameter in vivo imaging in plants using genetically encoded fluorescent indicator multiplexing. PLANT PHYSIOLOGY 2021; 187:537-549. [PMID: 35237819 PMCID: PMC8491039 DOI: 10.1093/plphys/kiab399] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/03/2021] [Indexed: 05/20/2023]
Abstract
Biological processes are highly dynamic, and during plant growth, development, and environmental interactions, they occur and influence each other on diverse spatiotemporal scales. Understanding plant physiology on an organismic scale requires analyzing biological processes from various perspectives, down to the cellular and molecular levels. Ideally, such analyses should be conducted on intact and living plant tissues. Fluorescent protein (FP)-based in vivo biosensing using genetically encoded fluorescent indicators (GEFIs) is a state-of-the-art methodology for directly monitoring cellular ion, redox, sugar, hormone, ATP and phosphatidic acid dynamics, and protein kinase activities in plants. The steadily growing number of diverse but technically compatible genetically encoded biosensors, the development of dual-reporting indicators, and recent achievements in plate-reader-based analyses now allow for GEFI multiplexing: the simultaneous recording of multiple GEFIs in a single experiment. This in turn enables in vivo multiparameter analyses: the simultaneous recording of various biological processes in living organisms. Here, we provide an update on currently established direct FP-based biosensors in plants, discuss their functional principles, and highlight important biological findings accomplished by employing various approaches of GEFI-based multiplexing. We also discuss challenges and provide advice for FP-based biosensor analyses in plants.
Collapse
Affiliation(s)
- Rainer Waadt
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, Münster 48149, Germany
- Author for communication:
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, Münster 48149, Germany
| | - Hannes Kollist
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| |
Collapse
|
46
|
Jalakas P, Takahashi Y, Waadt R, Schroeder JI, Merilo E. Molecular mechanisms of stomatal closure in response to rising vapour pressure deficit. THE NEW PHYTOLOGIST 2021; 232:468-475. [PMID: 34197630 PMCID: PMC8455429 DOI: 10.1111/nph.17592] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/28/2021] [Indexed: 05/26/2023]
Abstract
Vapour pressure deficit (VPD), the difference between the saturation and actual air vapour pressures, indicates the level of atmospheric drought and evaporative pressure on plants. VPD increases during climate change due to changes in air temperature and relative humidity. Rising VPD induces stomatal closure to counteract the VPD-mediated evaporative water loss from plants. There are important gaps in our understanding of the molecular VPD-sensing and signalling mechanisms in stomatal guard cells. Here, we discuss recent advances, research directions and open questions with respect to the three components that participate in VPD-induced stomatal closure in Arabidopsis, including: (1) abscisic acid (ABA)-dependent and (2) ABA-independent regulation of the protein kinase OPEN STOMATA 1 (OST1), and (3) the passive hydraulic stomatal response. In the ABA-dependent component, two models are proposed: ABA may be rapidly synthesised or its basal levels may be involved in the stomatal VPD response. Further studies on stomatal VPD signalling should clarify: (1) whether OST1 activation above basal activity is needed for VPD responses, (2) which components are involved in ABA-independent regulation of OST1, (3) the role of other potential OST1 targets in VPD signalling, and (4) to which extent OST1 contributes to stomatal VPD sensitivity in other plant species.
Collapse
Affiliation(s)
- Pirko Jalakas
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Yohei Takahashi
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Rainer Waadt
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Julian I. Schroeder
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Ebe Merilo
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
47
|
Zhou Y, Wang Y, Li J, Liang J. In vivo FRET-FLIM reveals ER-specific increases in the ABA level upon environmental stresses. PLANT PHYSIOLOGY 2021; 186:1545-1561. [PMID: 33848331 PMCID: PMC8260131 DOI: 10.1093/plphys/kiab165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/28/2021] [Indexed: 05/02/2023]
Abstract
Plant hormone abscisic acid (ABA) is essential for regulating plant growth and various stress responses. ABA-mediated signaling depends on local ABA levels rather than the overall cellular ABA concentration. While cellular concentration of ABA can be detected using Förster resonance energy transfer (FRET)-based ABA probes, direct imaging of subcellular ABA levels remains unsolved. Here, we modified the previously reported ABAleon2.1 and generated a new ABA sensor, named ABAleon2.1_Tao3. Via transient expression in tobacco (Nicotiana tabacum) protoplasts, we targeted ABAleon2.1_Tao3s to the endoplasmic reticulum (ER) membrane with the ABA sensing unit facing the cytosol and the ER, respectively, through a nanobody-epitope-mediated protein interaction. Combining FRET with fluorescence lifetime imaging microscopy, ABA-triggered-specific increases in the fluorescence lifetime of the donor mTurquoise in the ABAleon2.1_Tao3 were detected in both transient assays and stably transformed Arabidopsis plants. In tobacco protoplasts, ER membrane-targeted ABAleon2.1_Tao3s showed a generally higher basal level of ABA in the ER than that in the cytosol and ER-specific alterations in the level of ABA upon environmental cues. In ABAleon2.1_Tao3-transformed Arabidopsis roots, mannitol triggered increases in cytosolic ABA in the division zone and increases in ER ABA in the elongation and maturation zone within 1 h after treatment, both of which were abolished in the bg1-2 mutant, suggesting the requirement for BG1 in osmotic stress-triggered early ABA induction in Arabidopsis roots. These data demonstrate that ABAleon2.1_Tao3s can be used to monitor ABA levels in the cytosol and the ER, providing key information on stress-induced changes in the level of ABA in different subcellular compartments.
Collapse
Affiliation(s)
- Yeling Zhou
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuzhu Wang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Jingwen Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiansheng Liang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
48
|
Au@SnO 2-vertical graphene-based microneedle sensor for in-situ determination of abscisic acid in plants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112237. [PMID: 34225877 DOI: 10.1016/j.msec.2021.112237] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/26/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022]
Abstract
For developing electrochemical plant sensors, in-situ detection of hormone levels in living plants is worth attempting. A microneedle array sensor based on Au@SnO2-vertical graphene (VG)/Ta microelectrodes was constructed for analyzing abscisic acid (ABA) in plants. Graphene was vertically grown on Ta wires with a diameter of 0.6 mm by direct current arc plasma jet chemical vapor deposition with SnO2 as the Au catalyst carrier. These VG nanosheets were embedded with core-shell Au@SnO2 nanoparticles, and the formation mechanism of the sensing layer was investigated. Three Au@SnO2-VG microelectrodes, one Ti wire, and one Pt wire were packed into a microneedle array sensor with a three-electrode system. ABA was then quantitatively detected by direct electrocatalytic oxidation, which involves the synergistic catalytic effects of the abundant catalytic active sites of the Au@SnO2 nanoparticles and the excellent conductivity of the VG nanosheets. The microneedle array sensor responds to ABA in the pH range 4-7, the response concentration range was 0.012 (or 0.024)-495.2 μM, and the detection limit varied between 0.002 and 0.005 μM. The small size, wide pH range, low detection limit, and wide linear concentration range allow the microneedle array sensor to be inserted into plants for in-situ detection of ABA.
Collapse
|
49
|
Müller-Schüssele SJ, Schwarzländer M, Meyer AJ. Live monitoring of plant redox and energy physiology with genetically encoded biosensors. PLANT PHYSIOLOGY 2021; 186:93-109. [PMID: 34623445 PMCID: PMC8154060 DOI: 10.1093/plphys/kiab019] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/07/2021] [Indexed: 05/03/2023]
Abstract
Genetically encoded biosensors pave the way for understanding plant redox dynamics and energy metabolism on cellular and subcellular levels.
Collapse
Affiliation(s)
- Stefanie J Müller-Schüssele
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| |
Collapse
|
50
|
Liu H, Xue S. Interplay between hydrogen sulfide and other signaling molecules in the regulation of guard cell signaling and abiotic/biotic stress response. PLANT COMMUNICATIONS 2021; 2:100179. [PMID: 34027393 PMCID: PMC8132131 DOI: 10.1016/j.xplc.2021.100179] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 05/05/2023]
Abstract
Stomatal aperture controls the balance between transpirational water loss and photosynthetic carbon dioxide (CO2) uptake. Stomata are surrounded by pairs of guard cells that sense and transduce environmental or stress signals to induce diverse endogenous responses for adaptation to environmental changes. In a recent decade, hydrogen sulfide (H2S) has been recognized as a signaling molecule that regulates stomatal movement. In this review, we summarize recent progress in research on the regulatory role of H2S in stomatal movement, including the dynamic regulation of phytohormones, ion homeostasis, and cell structural components. We focus especially on the cross talk among H2S, nitric oxide (NO), and hydrogen peroxide (H2O2) in guard cells, as well as on H2S-mediated post-translational protein modification (cysteine thiol persulfidation). Finally, we summarize the mechanisms by which H2S interacts with other signaling molecules in plants under abiotic or biotic stress. Based on evidence and clues from existing research, we propose some issues that need to be addressed in the future.
Collapse
Affiliation(s)
- Hai Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaowu Xue
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|