1
|
Moraes B, Gomes H, Saramago L, Braz V, Parizi LF, Braz G, da Silva Vaz I, Logullo C, Moraes J. Aurora kinase as a putative target to tick control. Parasitology 2024:1-9. [PMID: 39542861 DOI: 10.1017/s003118202400101x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Aurora kinases (AURK) play a central role in controlling cell cycle in a wide range of organisms. They belong to the family of serine-threonine kinase proteins. Their role in the cell cycle includes, among others, the entry into mitosis, maturation of the centrosome and formation of the mitotic spindle. In mammals, 3 isoforms have been described: A, B and C, which are distinguished mainly by their function throughout the cell cycle. Two aurora kinase coding sequences have been identified in the transcriptome of the cattle tick Rhipicephalus microplus (Rm-AURKA and Rm-AURKB) containing the aurora kinase-specific domain. For both isoforms, the highest number of AURK coding transcripts is found in ovaries. Based on deduced amino acid sequences, it was possible to identify non-conserved threonine residues which are essential to AURK functions in vertebrates and which are not present in R. microplus sequences. A pan AURK inhibitor (CCT137690) caused cell viability decline in the BME26 tick embryonic cell line. In silico docking assay showed an interaction between Aurora kinase and CCT137690 with exclusive interaction sites in Rm-AURKA. The characterization of exclusive regions of the enzyme will enable new studies aimed at promoting species-specific enzymatic inhibition in ectoparasites.
Collapse
Affiliation(s)
- Bruno Moraes
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM-Universidade Federal do Rio de Janeiro campus Macaé, Brazil
| | - Helga Gomes
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Luiz Saramago
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM-Universidade Federal do Rio de Janeiro campus Macaé, Brazil
| | - Valdir Braz
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM-Universidade Federal do Rio de Janeiro campus Macaé, Brazil
| | - Luís Fernando Parizi
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gloria Braz
- Instituto de Química, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Carlos Logullo
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Jorge Moraes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM-Universidade Federal do Rio de Janeiro campus Macaé, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Holder J, Miles JA, Batchelor M, Popple H, Walko M, Yeung W, Kannan N, Wilson AJ, Bayliss R, Gergely F. CEP192 localises mitotic Aurora-A activity by priming its interaction with TPX2. EMBO J 2024; 43:5381-5420. [PMID: 39327527 PMCID: PMC11574021 DOI: 10.1038/s44318-024-00240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Aurora-A is an essential cell-cycle kinase with critical roles in mitotic entry and spindle dynamics. These functions require binding partners such as CEP192 and TPX2, which modulate both kinase activity and localisation of Aurora-A. Here we investigate the structure and role of the centrosomal Aurora-A:CEP192 complex in the wider molecular network. We find that CEP192 wraps around Aurora-A, occupies the binding sites for mitotic spindle-associated partners, and thus competes with them. Comparison of two different Aurora-A conformations reveals how CEP192 modifies kinase activity through the site used for TPX2-mediated activation. Deleting the Aurora-A-binding interface in CEP192 prevents centrosomal accumulation of Aurora-A, curtails its activation-loop phosphorylation, and reduces spindle-bound TPX2:Aurora-A complexes, resulting in error-prone mitosis. Thus, by supplying the pool of phosphorylated Aurora-A necessary for TPX2 binding, CEP192:Aurora-A complexes regulate spindle function. We propose an evolutionarily conserved spatial hierarchy, which protects genome integrity through fine-tuning and correctly localising Aurora-A activity.
Collapse
Affiliation(s)
- James Holder
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jennifer A Miles
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Matthew Batchelor
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Harrison Popple
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Martin Walko
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Wayland Yeung
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - Natarajan Kannan
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - Andrew J Wilson
- School of Chemistry, University of Birmingham, Birmingham, United Kingdom
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
| | - Fanni Gergely
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
3
|
Mattsson J, Rogne P, Landström M, Wolf-Watz M. Robust approach for production of the human oncology target Aurora kinase B in complex with its binding partner INCENP. Biochimie 2024:S0300-9084(24)00237-2. [PMID: 39424257 DOI: 10.1016/j.biochi.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/24/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Protein kinases are key players in many eukaryotic signal transduction cascades and are as a result often linked to human disease. In humans, the mitotic protein kinase family of Aurora kinases consist of three members: Aurora A, B and C. All three members are involved in cell division with proposed implications in various human cancers. The human Aurora kinase B has in particular proven challenging to study with structural biology approaches, and this is mainly due to difficulties in producing the large quantities of active enzyme required for such studies. Here, we present a novel and E. coli-based production system that allows for production of milligram quantities of well-folded and active human Aurora B in complex with its binding partner INCENP. The complex is produced as a continuous polypeptide chain and the resulting fusion protein is cleaved with TEV protease to generate a stable and native heterodimer of the Aurora B:INCENP complex. The activity, stability and degree of phosphorylation of the protein complex was quantified by using a coupled ATPase assay, 31P NMR spectroscopy and mass spectrometry. The developed production system enables isotope labeling and we here report the first 1H-15N-HSQC of the human Aurora B:INCENP complex. Our developed production strategy paves the way for future structural and functional studies of Aurora B and can as such assist the development of novel anticancer drugs targeting this important mitotic protein kinase.
Collapse
Affiliation(s)
- Jonna Mattsson
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Per Rogne
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Maréne Landström
- Department of Medical Biosciences 6M, Pathology, Umeå University, 901 85, Umeå, Sweden
| | | |
Collapse
|
4
|
Liu X, Wang W, Chen B, Wang S. Integrative analysis based on the cell cycle-related genes identifies TPX2 as a novel prognostic biomarker associated with tumor immunity in breast cancer. Aging (Albany NY) 2024; 16:7188-7216. [PMID: 38643462 PMCID: PMC11087105 DOI: 10.18632/aging.205752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND This study aims to identify the essential cell cycle-related genes associated with prognosis in breast cancer (BRCA), and to verify the relationship between the central gene and immune infiltration, so as to provide detailed and comprehensive information for the treatment of BRCA. MATERIALS AND METHODS Gene expression profiles (GSE10780, GSE21422, GSE61304) and the Cancer Genome Atlas (TCGA) BRCA data were used to identify differentially expressed genes (DEGs) and further functional enrichment analysis. STRING and Cytoscape were employed for the protein-protein interaction (PPI) network construction. TPX2 was viewed as the crucial prognostic gene by the Survival and Cox analysis. Furthermore, the connection between TPX2 expression and immune infiltrating cells and immune checkpoints in BRCA was also performed by the TIMER online database and R software. RESULTS A total of 18 cell cycle-related DEGs were identified in this study. Subsequently, an intersection analysis based on TCGA-BRCA prognostic genes and the above DEGs identified three genes (TPX2, UBE2C, CCNE2) as crucial prognostic candidate biomarkers. Moreover, we also demonstrated that TPX2 is closely associated with immune infiltration in BRCA and a positive relation between TPX2 and PD-L1 expression was firstly detected. CONCLUSIONS These results revealed that TPX2 is a potential prognostic biomarker and closely correlated with immune infiltration in BRCA, which could provide powerful and efficient strategies for breast cancer immunotherapy.
Collapse
Affiliation(s)
- Xinli Liu
- Department of Medical Oncology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, China
| | - Wenyi Wang
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361026, China
| | - Bing Chen
- Department of Thyroid and Breast Surgery, Xiamen Humanity Hospital Fujian Medical University, Xiamen 361006, China
| | - Shengjie Wang
- Department of Thyroid and Breast Surgery, Xiamen Humanity Hospital Fujian Medical University, Xiamen 361006, China
| |
Collapse
|
5
|
Tham MS, Cottle DL, Zylberberg AK, Short KM, Jones LK, Chan P, Conduit SE, Dyson JM, Mitchell CA, Smyth IM. Deletion of Aurora kinase A prevents the development of polycystic kidney disease in mice. Nat Commun 2024; 15:371. [PMID: 38191531 PMCID: PMC10774271 DOI: 10.1038/s41467-023-44410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 12/09/2023] [Indexed: 01/10/2024] Open
Abstract
Aurora Kinase A (AURKA) promotes cell proliferation and is overexpressed in different types of polycystic kidney disease (PKD). To understand AURKA's role in regulating renal cyst development we conditionally deleted the gene in mouse models of Autosomal Dominant PKD (ADPKD) and Joubert Syndrome, caused by Polycystin 1 (Pkd1) and Inositol polyphosphate-5-phosphatase E (Inpp5e) mutations respectively. We show that while Aurka is dispensable for collecting duct development and homeostasis, its deletion prevents cyst formation in both disease models. Cross-comparison of transcriptional changes implicated AKT signaling in cyst prevention and we show that (i) AURKA and AKT physically interact, (ii) AURKA regulates AKT activity in a kinase-independent manner and (iii) inhibition of AKT can reduce disease severity. AKT activation also regulates Aurka expression, creating a feed-forward loop driving renal cystogenesis. We find that the AURKA kinase inhibitor Alisertib stabilises the AURKA protein, agonizing its cystogenic functions. These studies identify AURKA as a master regulator of renal cyst development in different types of PKD, functioning in-part via AKT.
Collapse
Affiliation(s)
- Ming Shen Tham
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Denny L Cottle
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Allara K Zylberberg
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Kieran M Short
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lynelle K Jones
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Perkin Chan
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sarah E Conduit
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jennifer M Dyson
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ian M Smyth
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
6
|
Liu G, Zhang S, Lin R, Cao X, Yuan L. Anti-tumor target screening of sea cucumber saponin Frondoside A: a bioinformatics and molecular docking analysis. Front Oncol 2023; 13:1307838. [PMID: 38144520 PMCID: PMC10739435 DOI: 10.3389/fonc.2023.1307838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Cancer remains the leading cause of death worldwide. In spite of significant advances in targeted and immunotherapeutic approaches, clinical outcomes for cancer remain poor. The aim of the present study was to investigate the potential mechanisms and therapeutic targets of Frondoside A for the treatment of liver, pancreatic, and bladder cancers. The data presented in our study demonstrated that Frondoside A reduced the viability and migration of HepG2, Panc02, and UM-UC-3 cancer cell in vitro. Moreover, we utilized the GEO database to screen and identify for differentially expressed genes (DEGs) in liver, pancreatic, and bladder cancers, which resulted in the identification of 714, 357, and 101 DEGs, respectively. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation were performed using the Metascape database for DEGs that were significantly associated with cancer development. The protein-protein interaction (PPI) networks of the identified DEGs in liver, pancreatic, and bladder cancers were analyzed using Cytoscape 3.9.0 software, and subsequently identified potential key genes that were associated with these networks. Subsequently, their prognostic values were assessed by gene expression level analysis and Kaplan-Meier survival analysis (GEPIA). Furthermore, we utilized TIMER 2.0 to investigate the correlation between the expression of the identified key gene and cancer immune infiltration. Finally, molecular docking simulations were performed to assess the affinity of Frondoside A and key genes. Our results showed a significant correlation between these DEGs and cancer progression. Combined, these analyses revealed that Frondoside A involves in the regulation of multiple pathways, such as drug metabolism, cell cycle in liver cancer by inhibiting the expression of CDK1, TOP2A, CDC20, and KIF20A, and regulates protein digestion and absorption, receptor interaction in pancreatic cancer by down-regulation of ASPM, TOP2A, DLGAP5, TPX2, KIF23, MELK, LAMA3, and ANLN. While in bladder cancer, Frondoside A regulates muscle contraction, complement and coagulation cascade by increase FLNC expression. In conclusion, the present study offers valuable insights into the molecular mechanism underlying the anticancer effects of Frondoside A, and suggests that Frondoside A can be used as a functional food supplement or further developed as a natural anti-cancer drug.
Collapse
Affiliation(s)
- Guangchun Liu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shenglin Zhang
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ruoyan Lin
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xudong Cao
- Deparment of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Lihong Yuan
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
7
|
Kim C, Ludewig H, Hadzipasic A, Kutter S, Nguyen V, Kern D. A biophysical framework for double-drugging kinases. Proc Natl Acad Sci U S A 2023; 120:e2304611120. [PMID: 37590418 PMCID: PMC10450579 DOI: 10.1073/pnas.2304611120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/06/2023] [Indexed: 08/19/2023] Open
Abstract
Selective orthosteric inhibition of kinases has been challenging due to the conserved active site architecture of kinases and emergence of resistance mutants. Simultaneous inhibition of distant orthosteric and allosteric sites, which we refer to as "double-drugging", has recently been shown to be effective in overcoming drug resistance. However, detailed biophysical characterization of the cooperative nature between orthosteric and allosteric modulators has not been undertaken. Here, we provide a quantitative framework for double-drugging of kinases employing isothermal titration calorimetry, Förster resonance energy transfer, coupled-enzyme assays, and X-ray crystallography. We discern positive and negative cooperativity for Aurora A kinase (AurA) and Abelson kinase (Abl) with different combinations of orthosteric and allosteric modulators. We find that a conformational equilibrium shift is the main principle governing cooperativity. Notably, for both kinases, we find a synergistic decrease of the required orthosteric and allosteric drug dosages when used in combination to inhibit kinase activities to clinically relevant inhibition levels. X-ray crystal structures of the double-drugged kinase complexes reveal the molecular principles underlying the cooperative nature of double-drugging AurA and Abl with orthosteric and allosteric inhibitors. Finally, we observe a fully closed conformation of Abl when bound to a pair of positively cooperative orthosteric and allosteric modulators, shedding light on the puzzling abnormality of previously solved closed Abl structures. Collectively, our data provide mechanistic and structural insights into rational design and evaluation of double-drugging strategies.
Collapse
Affiliation(s)
- Chansik Kim
- Department of Biochemistry, Brandeis University, Waltham, MA02454
- HHMI, Brandeis University, Waltham, MA02454
| | - Hannes Ludewig
- Department of Biochemistry, Brandeis University, Waltham, MA02454
- HHMI, Brandeis University, Waltham, MA02454
| | - Adelajda Hadzipasic
- Department of Biochemistry, Brandeis University, Waltham, MA02454
- HHMI, Brandeis University, Waltham, MA02454
| | - Steffen Kutter
- Department of Biochemistry, Brandeis University, Waltham, MA02454
- HHMI, Brandeis University, Waltham, MA02454
| | - Vy Nguyen
- Department of Biochemistry, Brandeis University, Waltham, MA02454
- HHMI, Brandeis University, Waltham, MA02454
| | - Dorothee Kern
- Department of Biochemistry, Brandeis University, Waltham, MA02454
- HHMI, Brandeis University, Waltham, MA02454
| |
Collapse
|
8
|
Reinhardt R, Leonard TA. A critical evaluation of protein kinase regulation by activation loop autophosphorylation. eLife 2023; 12:e88210. [PMID: 37470698 PMCID: PMC10359097 DOI: 10.7554/elife.88210] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
Phosphorylation of proteins is a ubiquitous mechanism of regulating their function, localization, or activity. Protein kinases, enzymes that use ATP to phosphorylate protein substrates are, therefore, powerful signal transducers in eukaryotic cells. The mechanism of phosphoryl-transfer is universally conserved among protein kinases, which necessitates the tight regulation of kinase activity for the orchestration of cellular processes with high spatial and temporal fidelity. In response to a stimulus, many kinases enhance their own activity by autophosphorylating a conserved amino acid in their activation loop, but precisely how this reaction is performed is controversial. Classically, kinases that autophosphorylate their activation loop are thought to perform the reaction in trans, mediated by transient dimerization of their kinase domains. However, motivated by the recently discovered regulation mechanism of activation loop cis-autophosphorylation by a kinase that is autoinhibited in trans, we here review the various mechanisms of autoregulation that have been proposed. We provide a framework for critically evaluating biochemical, kinetic, and structural evidence for protein kinase dimerization and autophosphorylation, and share some thoughts on the implications of these mechanisms within physiological signaling networks.
Collapse
Affiliation(s)
- Ronja Reinhardt
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- Medical University of Vienna, Center for Medical BiochemistryViennaAustria
| | - Thomas A Leonard
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- Medical University of Vienna, Center for Medical BiochemistryViennaAustria
| |
Collapse
|
9
|
Park JG, Jeon H, Shin S, Song C, Lee H, Kim NK, Kim EE, Hwang KY, Lee BJ, Lee IG. Structural basis for CEP192-mediated regulation of centrosomal AURKA. SCIENCE ADVANCES 2023; 9:eadf8582. [PMID: 37083534 PMCID: PMC10121170 DOI: 10.1126/sciadv.adf8582] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Aurora kinase A (AURKA) performs critical functions in mitosis. Thus, the activity and subcellular localization of AURKA are tightly regulated and depend on diverse factors including interactions with the multiple binding cofactors. How these different cofactors regulate AURKA to elicit different levels of activity at distinct subcellular locations and times is poorly understood. Here, we identified a conserved region of CEP192, the major cofactor of AURKA, that mediates the interaction with AURKA. Quantitative binding studies were performed to map the interactions of a conserved helix (Helix-1) within CEP192. The crystal structure of Helix-1 bound to AURKA revealed a distinct binding site that is different from other cofactor proteins such as TPX2. Inhibiting the interaction between Helix-1 and AURKA in cells led to the mitotic defects, demonstrating the importance of the interaction. Collectively, we revealed a structural basis for the CEP192-mediated AURKA regulation at the centrosome, which is distinct from TPX2-mediated regulation on the spindle microtubule.
Collapse
Affiliation(s)
- Jin-Gyeong Park
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, South Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Hanul Jeon
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Sangchul Shin
- Technology Support Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Chiman Song
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, South Korea
- Department of Biological Chemistry, University of Science and Technology, Daejeon 34113, South Korea
| | - Hyomin Lee
- Department of Biological Chemistry, University of Science and Technology, Daejeon 34113, South Korea
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Kwang Yeon Hwang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - In-Gyun Lee
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, South Korea
- Department of Biological Chemistry, University of Science and Technology, Daejeon 34113, South Korea
- Corresponding author.
| |
Collapse
|
10
|
Kovacs AH, Zhao D, Hou J. Aurora B Inhibitors as Cancer Therapeutics. Molecules 2023; 28:3385. [PMID: 37110619 PMCID: PMC10144992 DOI: 10.3390/molecules28083385] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The Aurora kinases (A, B, and C) are a family of three isoform serine/threonine kinases that regulate mitosis and meiosis. The Chromosomal Passenger Complex (CPC), which contains Aurora B as an enzymatic component, plays a critical role in cell division. Aurora B in the CPC ensures faithful chromosome segregation and promotes the correct biorientation of chromosomes on the mitotic spindle. Aurora B overexpression has been observed in several human cancers and has been associated with a poor prognosis for cancer patients. Targeting Aurora B with inhibitors is a promising therapeutic strategy for cancer treatment. In the past decade, Aurora B inhibitors have been extensively pursued in both academia and industry. This paper presents a comprehensive review of the preclinical and clinical candidates of Aurora B inhibitors as potential anticancer drugs. The recent advances in the field of Aurora B inhibitor development will be highlighted, and the binding interactions between Aurora B and inhibitors based on crystal structures will be presented and discussed to provide insights for the future design of more selective Aurora B inhibitors.
Collapse
Affiliation(s)
- Antal H. Kovacs
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Dong Zhao
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Jinqiang Hou
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
- Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON P7B 6V4, Canada
| |
Collapse
|
11
|
Kim C, Ludewig H, Hadzipasic A, Kutter S, Nguyen V, Kern D. A biophysical framework for double-drugging kinases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533217. [PMID: 36993258 PMCID: PMC10055307 DOI: 10.1101/2023.03.17.533217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Orthosteric inhibition of kinases has been challenging due to the conserved active site architecture of kinases and emergence of resistance mutants. Simultaneous inhibition of distant orthosteric and allosteric sites, which we refer to as "double-drugging", has recently been shown to be effective in overcoming drug resistance. However, detailed biophysical characterization of the cooperative nature between orthosteric and allosteric modulators has not been undertaken. Here, we provide a quantitative framework for double-drugging of kinases employing isothermal titration calorimetry, Förster resonance energy transfer, coupled-enzyme assays, and X-ray crystallography. We discern positive and negative cooperativity for Aurora A kinase (AurA) and Abelson kinase (Abl) with different combinations of orthosteric and allosteric modulators. We find that a conformational equilibrium shift is the main principle governing this cooperative effect. Notably, for both kinases, we find a synergistic decrease of the required orthosteric and allosteric drug dosages when used in combination to inhibit kinase activities to clinically relevant inhibition levels. X-ray crystal structures of the doubledrugged kinase complexes reveal the molecular principles underlying the cooperative nature of double-drugging AurA and Abl with orthosteric and allosteric inhibitors. Finally, we observe the first fully-closed conformation of Abl when bound to a pair of positively cooperative orthosteric and allosteric modulators, shedding light onto the puzzling abnormality of previously solved closed Abl structures. Collectively, our data provide mechanistic and structural insights into rational design and evaluation of doubledrugging strategies.
Collapse
Affiliation(s)
- C. Kim
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA 02454, USA
| | - H. Ludewig
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA 02454, USA
| | - A. Hadzipasic
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA 02454, USA
| | - S. Kutter
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA 02454, USA
| | - V. Nguyen
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA 02454, USA
| | - D. Kern
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA 02454, USA
| |
Collapse
|
12
|
Ghosh G, Misra S, Ray R, Chowdhury SG, Karmakar P. Phospho PTEN mediated dephosphorylation of mitotic kinase PLK1 and Aurora Kinase A prevents aneuploidy and preserves genomic stability. Med Oncol 2023; 40:119. [PMID: 36930246 DOI: 10.1007/s12032-023-01985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
PTEN, dual phosphatase tumor suppressor protein, is found to be frequently mutated in various cancers. Post-translational modification of PTEN is important for its sub-cellular localization and catalytic functions. But how these modifications affect cytological damage and aneuploidy is not studied in detail. We focus on the role of phosphatase activity along with C-terminal phosphorylation of PTEN in perspective of cytological damage like micronucleus, nuclear bud, and nuclear bridge formation. Our data suggest that wild-type PTEN, but not phospho-mutant PTEN significantly reduces cytological damage in PTEN null PC3 cells. In case of phosphatase-dead PTEN, cytological damage markers are increased during 24 h recovery after DNA damage. When we use phosphorylation and phosphatase-dead dual mutant PTEN, the extent of different cytological DNA damage parameters are similar to phosphatase-dead PTEN. We also find that both of those activities are essential for maintaining chromosome numbers. PTEN null cells exhibit significantly aberrant γ-tubulin pole formation during metaphase. Interestingly, we observed that p-PTEN localized to spindle poles along with PLK1 and Aurora Kinase A. Further depletion of phosphorylation and phosphatase activity of PTEN increases the expression of p-Aurora Kinase A (T288) and p-PLK1 (T210), compared to cells expressing wild-type PTEN. Again, wild-type PTEN but not phosphorylation-dead mutant is able to physically interact with PLK1 and Aurora Kinase A. Thus, our study suggests that the phosphorylation-dependent interaction of PTEN with PLK1 and Aurora Kinase A causes dephosphorylation of those mitotic kinases and by lowering their hyperphosphorylation status, PTEN prevents aberrant chromosome segregation in metaphase.
Collapse
Affiliation(s)
- Ginia Ghosh
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal, India
| | - Sandip Misra
- Department of Microbiology, Bidhannagar College, Salt Lake, Kolkata, West Bengal, India
| | - Rachayeeta Ray
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal, India
| | - Sougata Ghosh Chowdhury
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal, India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal, India.
| |
Collapse
|
13
|
Zheng D, Li J, Yan H, Zhang G, Li W, Chu E, Wei N. Emerging roles of Aurora-A kinase in cancer therapy resistance. Acta Pharm Sin B 2023. [PMID: 37521867 PMCID: PMC10372834 DOI: 10.1016/j.apsb.2023.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Aurora kinase A (Aurora-A), a serine/threonine kinase, plays a pivotal role in various cellular processes, including mitotic entry, centrosome maturation and spindle formation. Overexpression or gene-amplification/mutation of Aurora-A kinase occurs in different types of cancer, including lung cancer, colorectal cancer, and breast cancer. Alteration of Aurora-A impacts multiple cancer hallmarks, especially, immortalization, energy metabolism, immune escape and cell death resistance which are involved in cancer progression and resistance. This review highlights the most recent advances in the oncogenic roles and related multiple cancer hallmarks of Aurora-A kinase-driving cancer therapy resistance, including chemoresistance (taxanes, cisplatin, cyclophosphamide), targeted therapy resistance (osimertinib, imatinib, sorafenib, etc.), endocrine therapy resistance (tamoxifen, fulvestrant) and radioresistance. Specifically, the mechanisms of Aurora-A kinase promote acquired resistance through modulating DNA damage repair, feedback activation bypass pathways, resistance to apoptosis, necroptosis and autophagy, metastasis, and stemness. Noticeably, our review also summarizes the promising synthetic lethality strategy for Aurora-A inhibitors in RB1, ARID1A and MYC gene mutation tumors, and potential synergistic strategy for mTOR, PAK1, MDM2, MEK inhibitors or PD-L1 antibodies combined with targeting Aurora-A kinase. In addition, we discuss the design and development of the novel class of Aurora-A inhibitors in precision medicine for cancer treatment.
Collapse
|
14
|
Lee IG, Lee BJ. Aurora Kinase A Regulation by Cysteine Oxidative Modification. Antioxidants (Basel) 2023; 12:antiox12020531. [PMID: 36830089 PMCID: PMC9952272 DOI: 10.3390/antiox12020531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Aurora kinase A (AURKA), which is a member of serine/threonine kinase family, plays a critical role in regulating mitosis. AURKA has drawn much attention as its dysregulation is critically associated with various cancers, leading to the development of AURKA inhibitors, a new class of anticancer drugs. As the spatiotemporal activity of AURKA critically depends on diverse intra- and inter-molecular factors, including its interaction with various protein cofactors and post-translational modifications, each of these pathways should be exploited for the development of a novel class of AURKA inhibitors other than ATP-competitive inhibitors. Several lines of evidence have recently shown that redox-active molecules can modify the cysteine residues located on the kinase domain of AURKA, thereby regulating its activity. In this review, we present the current understanding of how oxidative modifications of cysteine residues of AURKA, induced by redox-active molecules, structurally and functionally regulate AURKA and discuss their implications in the discovery of novel AURKA inhibitors.
Collapse
Affiliation(s)
- In-Gyun Lee
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence:
| |
Collapse
|
15
|
Abdelbaki A, Ascanelli C, Okoye CN, Akman HB, Janson G, Min M, Marcozzi C, Hagting A, Grant R, De Luca M, Asteriti IA, Guarguaglini G, Paiardini A, Lindon C. Revisiting degron motifs in human AURKA required for its targeting by APC/C FZR1. Life Sci Alliance 2023; 6:6/2/e202201372. [PMID: 36450448 PMCID: PMC9713472 DOI: 10.26508/lsa.202201372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022] Open
Abstract
Mitotic kinase Aurora A (AURKA) diverges from other kinases in its multiple active conformations that may explain its interphase roles and the limited efficacy of drugs targeting the kinase pocket. Regulation of AURKA activity by the cell is critically dependent on destruction mediated by the anaphase-promoting complex (APC/CFZR1) during mitotic exit and G1 phase and requires an atypical N-terminal degron in AURKA called the "A-box" in addition to a reported canonical D-box degron in the C-terminus. Here, we find that the reported C-terminal D-box of AURKA does not act as a degron and instead mediates essential structural features of the protein. In living cells, the N-terminal intrinsically disordered region of AURKA containing the A-box is sufficient to confer FZR1-dependent mitotic degradation. Both in silico and in cellulo assays predict the QRVL short linear interacting motif of the A-box to be a phospho-regulated D-box. We propose that degradation of full-length AURKA also depends on an intact C-terminal domain because of critical conformational parameters permissive for both activity and mitotic degradation of AURKA.
Collapse
Affiliation(s)
- Ahmed Abdelbaki
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - Cynthia N Okoye
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - H Begum Akman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Giacomo Janson
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Mingwei Min
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Chiara Marcozzi
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Anja Hagting
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Rhys Grant
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Maria De Luca
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Italia Anna Asteriti
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | | | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Tang X, Wei W, Snowball JM, Nakayasu ES, Bell SM, Ansong C, Lin X, Whitsett JA. EMC3 regulates mesenchymal cell survival via control of the mitotic spindle assembly. iScience 2022; 26:105667. [PMID: 36624844 PMCID: PMC9823123 DOI: 10.1016/j.isci.2022.105667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 08/15/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Eukaryotic cells transit through the cell cycle to produce two daughter cells. Dysregulation of the cell cycle leads to cell death or tumorigenesis. Herein, we found a subunit of the ER membrane complex, EMC3, as a key regulator of cell cycle. Conditional deletion of Emc3 in mouse embryonic mesoderm led to reduced size and patterning defects of multiple organs. Emc3 deficiency impaired cell proliferation, causing spindle assembly defects, chromosome mis-segregation, cell cycle arrest at G2/M, and apoptosis. Upon entry into mitosis, mesenchymal cells upregulate EMC3 protein levels and localize EMC3 to the mitotic centrosomes. Further analysis indicated that EMC3 works together with VCP to tightly regulate the levels and activity of Aurora A, an essential factor for centrosome function and mitotic spindle assembly: while overexpression of EMC3 or VCP degraded Aurora A, their loss led to increased Aurora A stability but reduced Aurora A phosphorylation in mitosis.
Collapse
Affiliation(s)
- Xiaofang Tang
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7029, Cincinnati, OH 45229, USA,Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, 2nd Nanjiang Rd, Nansha District, Guangzhou 511458, China
| | - Wei Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, No. 2005 Songhu Rd, Shanghai 200438, China
| | - John M. Snowball
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7029, Cincinnati, OH 45229, USA
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Sheila M. Bell
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7029, Cincinnati, OH 45229, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Xinhua Lin
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, 2nd Nanjiang Rd, Nansha District, Guangzhou 511458, China,State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, No. 2005 Songhu Rd, Shanghai 200438, China,Corresponding author
| | - Jeffrey A. Whitsett
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7029, Cincinnati, OH 45229, USA,Corresponding author
| |
Collapse
|
17
|
Intracellular infection by symbiotic bacteria requires the mitotic kinase AURORA1. Proc Natl Acad Sci U S A 2022; 119:e2202606119. [PMID: 36252014 PMCID: PMC9618073 DOI: 10.1073/pnas.2202606119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The subcellular events occurring in cells of legume plants as they form transcellular symbiotic-infection structures have been compared with those occurring in premitotic cells. Here, we demonstrate that Aurora kinase 1 (AUR1), a highly conserved mitotic regulator, is required for intracellular infection by rhizobia in Medicago truncatula. AUR1 interacts with microtubule-associated proteins of the TPXL and MAP65 families, which, respectively, activate and are phosphorylated by AUR1, and localizes with them within preinfection structures. MYB3R1, a rhizobia-induced mitotic transcription factor, directly regulates AUR1 through two closely spaced, mitosis-specific activator cis elements. Our data are consistent with a model in which the MYB3R1-AUR1 regulatory module serves to properly orient preinfection structures to direct the transcellular deposition of cell wall material for the growing infection thread, analogous to its role in cell plate formation. Our findings indicate that the eukaryotically conserved MYB3R1-TPXL-AUR1-MAP65 mitotic module was conscripted to support endosymbiotic infection in legumes.
Collapse
|
18
|
Li H, Wang Y, Lin K, Venkadakrishnan VB, Bakht M, Shi W, Meng C, Zhang J, Tremble K, Liang X, Song JH, Feng X, Van V, Deng P, Burks JK, Aparicio A, Keyomarsi K, Chen J, Lu Y, Beltran H, Zhao D. CHD1 Promotes Sensitivity to Aurora Kinase Inhibitors by Suppressing Interaction of AURKA with Its Coactivator TPX2. Cancer Res 2022; 82:3088-3101. [PMID: 35771632 PMCID: PMC9444962 DOI: 10.1158/0008-5472.can-22-0631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/27/2022] [Accepted: 06/22/2022] [Indexed: 02/03/2023]
Abstract
Clinical studies have shown that subsets of patients with cancer achieve a significant benefit from Aurora kinase inhibitors, suggesting an urgent need to identify biomarkers for predicting drug response. Chromodomain helicase DNA binding protein 1 (CHD1) is involved in chromatin remodeling, DNA repair, and transcriptional plasticity. Prior studies have demonstrated that CHD1 has distinct expression patterns in cancers with different molecular features, but its impact on drug responsiveness remains understudied. Here, we show that CHD1 promotes the susceptibility of prostate cancer cells to inhibitors targeting Aurora kinases, while depletion of CHD1 impairs their efficacy in vitro and in vivo. Pan-cancer drug sensitivity analyses revealed that high expression of CHD1 was associated with increased sensitivity to Aurora kinase A (AURKA) inhibitors. Mechanistically, KPNA2 served as a direct target of CHD1 and suppressed the interaction of AURKA with the coactivator TPX2, thereby rendering cancer cells more vulnerable to AURKA inhibitors. Consistent with previous research reporting that loss of PTEN elevates CHD1 levels, studies in a genetically engineered mouse model, patient-derived organoids, and patient samples showed that PTEN defects are associated with a better response to AURKA inhibition in advanced prostate cancer. These observations demonstrate that CHD1 plays an important role in modulating Aurora kinases and drug sensitivities, providing new insights into biomarker-driven therapies targeting Aurora kinases for future clinical studies. SIGNIFICANCE CHD1 plays a critical role in controlling AURKA activation and promoting Aurora kinase inhibitor sensitivity, providing a potential clinical biomarker to guide cancer treatment.
Collapse
Affiliation(s)
- Haoyan Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yin Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Martin Bakht
- Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Wei Shi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chenling Meng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kaitlyn Tremble
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Honors College, Baylor University, Waco, TX 76706, USA
| | - Xin Liang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian H. Song
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vivien Van
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pingna Deng
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jared K. Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Himisha Beltran
- Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Di Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
19
|
Song J, Zhou Y, Yakymovych I, Schmidt A, Li C, Heldin CH, Landström M. The ubiquitin-ligase TRAF6 and TGFβ type I receptor form a complex with Aurora kinase B contributing to mitotic progression and cytokinesis in cancer cells. EBioMedicine 2022; 82:104155. [PMID: 35853811 PMCID: PMC9386726 DOI: 10.1016/j.ebiom.2022.104155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Transforming growth factor β (TGFβ) is overexpressed in several advanced cancer types and promotes tumor progression. We have reported that the intracellular domain (ICD) of TGFβ receptor (TβR) I is cleaved by proteolytic enzymes in cancer cells, and then translocated to the nucleus in a manner dependent on the endosomal adaptor proteins APPL1/2, driving an invasiveness program. How cancer cells evade TGFβ-induced growth inhibition is unclear. Methods We performed microarray analysis to search for genes regulated by APPL1/2 proteins in castration-resistant prostate cancer (CRPC) cells. We investigated the role of TβRI and TRAF6 in mitosis in cancer cell lines cultured in 10% FBS in the absence of exogenous TGFβ. The molecular mechanism of the ubiquitination of AURKB by TRAF6 in mitosis and the formation of AURKB–TβRI complex in cancer cell lines and tissue microarrays was also studied. Findings During mitosis and cytokinesis, AURKB–TβRI complexes formed in midbodies in CRPC and KELLY neuroblastoma cells. TRAF6 induced polyubiquitination of AURKB on K85 and K87, protruding on the surface of AURKB to facilitate its activation. AURKB–TβRI complexes in patient's tumor tissue sections correlated with the malignancy of prostate cancer. Interpretation The AURKB–TβRI complex may become a prognostic biomarker for patients with risk of developing aggressive PC. Funding Swedish Medical Research Council (2019-01598, ML; 2015-02757 and 2020-01291, CHH), the Swedish Cancer Society (20 0964, ML), a regional agreement between Umeå University and Region Västerbotten (ALF; RV-939377, -967041, -970057, ML). The European Research Council (787472, CHH). KAW 2019.0345, and the Kempe Foundation SMK-1866; ML. National Microscopy Infrastructure (NMI VR-RFI 2016-00968).
Collapse
Affiliation(s)
- Jie Song
- Department of Medical Biosciences, Pathology, Umeå University, SE-901 85 Umeå, Sweden
| | - Yang Zhou
- Department of Medical Biosciences, Pathology, Umeå University, SE-901 85 Umeå, Sweden
| | - Ihor Yakymovych
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | - Alexej Schmidt
- Department of Medical Biosciences, Pathology, Umeå University, SE-901 85 Umeå, Sweden
| | - Chunyan Li
- Department of Medical Biosciences, Pathology, Umeå University, SE-901 85 Umeå, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | - Maréne Landström
- Department of Medical Biosciences, Pathology, Umeå University, SE-901 85 Umeå, Sweden.
| |
Collapse
|
20
|
Tomlinson L, Batchelor M, Sarsby J, Byrne DP, Brownridge PJ, Bayliss R, Eyers PA, Eyers CE. Exploring the Conformational Landscape and Stability of Aurora A Using Ion-Mobility Mass Spectrometry and Molecular Modeling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:420-435. [PMID: 35099954 PMCID: PMC9007459 DOI: 10.1021/jasms.1c00271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 05/06/2023]
Abstract
Protein kinase inhibitors are highly effective in treating diseases driven by aberrant kinase signaling and as chemical tools to help dissect the cellular roles of kinase signaling complexes. Evaluating the effects of binding of small molecule inhibitors on kinase conformational dynamics can assist in understanding both inhibition and resistance mechanisms. Using gas-phase ion-mobility mass spectrometry (IM-MS), we characterize changes in the conformational landscape and stability of the protein kinase Aurora A (Aur A) driven by binding of the physiological activator TPX2 or small molecule inhibition. Aided by molecular modeling, we establish three major conformations, the relative abundances of which were dependent on the Aur A activation status: one highly populated compact conformer similar to that observed in most crystal structures, a second highly populated conformer possessing a more open structure infrequently found in crystal structures, and an additional low-abundance conformer not currently represented in the protein databank. Notably, inhibitor binding induces more compact configurations of Aur A, as adopted by the unbound enzyme, with both IM-MS and modeling revealing inhibitor-mediated stabilization of active Aur A.
Collapse
Affiliation(s)
- Lauren
J. Tomlinson
- Centre
for Proteome Research, Department of Biochemistry & Systems Biology,
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
- Department
of Biochemistry & Systems Biology, Institute of Systems, Molecular
& Integrative Biology, University of
Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Matthew Batchelor
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Joscelyn Sarsby
- Centre
for Proteome Research, Department of Biochemistry & Systems Biology,
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Dominic P. Byrne
- Department
of Biochemistry & Systems Biology, Institute of Systems, Molecular
& Integrative Biology, University of
Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Philip J. Brownridge
- Centre
for Proteome Research, Department of Biochemistry & Systems Biology,
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Richard Bayliss
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Patrick A. Eyers
- Department
of Biochemistry & Systems Biology, Institute of Systems, Molecular
& Integrative Biology, University of
Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Claire E. Eyers
- Centre
for Proteome Research, Department of Biochemistry & Systems Biology,
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
- Department
of Biochemistry & Systems Biology, Institute of Systems, Molecular
& Integrative Biology, University of
Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| |
Collapse
|
21
|
Novel Aurora A Kinase Inhibitor Fangchinoline Enhances Cisplatin-DNA Adducts and Cisplatin Therapeutic Efficacy in OVCAR-3 Ovarian Cancer Cells-Derived Xenograft Model. Int J Mol Sci 2022; 23:ijms23031868. [PMID: 35163790 PMCID: PMC8836832 DOI: 10.3390/ijms23031868] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Aurora A kinase (Aurora A) is a serine/threonine kinase regulating control of multiple events during cell-cycle progression. Playing roles in promoting proliferation and inhibiting cell death in cancer cells leads Aurora A to become a target for cancer therapy. It is overexpressed and associated with a poor prognosis in ovarian cancer. Improving cisplatin therapy outcomes remains an important issue for advanced-stage ovarian cancer treatment, and Aurora A inhibitors may improve it. In the present study, we identified natural compounds with higher docking scores than the known Aurora A ligand through structure-based virtual screening, including the natural compound fangchinoline, which has been associated with anticancer activities but not yet investigated in ovarian cancer. The binding and inhibition of Aurora A by fangchinoline were verified using cellular thermal shift and enzyme activity assays. Fangchinoline reduced viability and proliferation in ovarian cancer cell lines. Combination fangchinoline and cisplatin treatment enhanced cisplatin-DNA adduct levels, and the combination index revealed synergistic effects on cell viability. An in vivo study showed that fangchinoline significantly enhanced cisplatin therapeutic effects in OVCAR-3 ovarian cancer-bearing mice. Fangchinoline may inhibit tumor growth and enhance cisplatin therapy in ovarian cancer. This study reveals a novel Aurora A inhibitor, fangchinoline, as a potentially viable adjuvant for ovarian cancer therapy.
Collapse
|
22
|
Baltzer S, Bulatov T, Schmied C, Krämer A, Berger BT, Oder A, Walker-Gray R, Kuschke C, Zühlke K, Eichhorst J, Lehmann M, Knapp S, Weston J, von Kries JP, Süssmuth RD, Klussmann E. Aurora Kinase A Is Involved in Controlling the Localization of Aquaporin-2 in Renal Principal Cells. Int J Mol Sci 2022; 23:ijms23020763. [PMID: 35054947 PMCID: PMC8776063 DOI: 10.3390/ijms23020763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/30/2021] [Accepted: 01/08/2022] [Indexed: 02/01/2023] Open
Abstract
The cAMP-dependent aquaporin-2 (AQP2) redistribution from intracellular vesicles into the plasma membrane of renal collecting duct principal cells induces water reabsorption and fine-tunes body water homeostasis. However, the mechanisms controlling the localization of AQP2 are not understood in detail. Using immortalized mouse medullary collecting duct (MCD4) and primary rat inner medullary collecting duct (IMCD) cells as model systems, we here discovered a key regulatory role of Aurora kinase A (AURKA) in the control of AQP2. The AURKA-selective inhibitor Aurora-A inhibitor I and novel derivatives as well as a structurally different inhibitor, Alisertib, prevented the cAMP-induced redistribution of AQP2. Aurora-A inhibitor I led to a depolymerization of actin stress fibers, which serve as tracks for the translocation of AQP2-bearing vesicles to the plasma membrane. The phosphorylation of cofilin-1 (CFL1) inactivates the actin-depolymerizing function of CFL1. Aurora-A inhibitor I decreased the CFL1 phosphorylation, accounting for the removal of the actin stress fibers and the inhibition of the redistribution of AQP2. Surprisingly, Alisertib caused an increase in actin stress fibers and did not affect CFL1 phosphorylation, indicating that AURKA exerts its control over AQP2 through different mechanisms. An involvement of AURKA and CFL1 in the control of the localization of AQP2 was hitherto unknown.
Collapse
Affiliation(s)
- Sandrine Baltzer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (S.B.); (R.W.-G.); (C.K.); (K.Z.)
- Institute of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany; (T.B.); (R.D.S.)
| | - Timur Bulatov
- Institute of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany; (T.B.); (R.D.S.)
| | - Christopher Schmied
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (C.S.); (A.O.); (J.E.); (M.L.); (J.P.v.K.)
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany; (A.K.); (B.-T.B.); (S.K.)
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
- DKTK (German Translational Research Network), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
| | - Benedict-Tilman Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany; (A.K.); (B.-T.B.); (S.K.)
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - Andreas Oder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (C.S.); (A.O.); (J.E.); (M.L.); (J.P.v.K.)
| | - Ryan Walker-Gray
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (S.B.); (R.W.-G.); (C.K.); (K.Z.)
| | - Christin Kuschke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (S.B.); (R.W.-G.); (C.K.); (K.Z.)
| | - Kerstin Zühlke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (S.B.); (R.W.-G.); (C.K.); (K.Z.)
| | - Jenny Eichhorst
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (C.S.); (A.O.); (J.E.); (M.L.); (J.P.v.K.)
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (C.S.); (A.O.); (J.E.); (M.L.); (J.P.v.K.)
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany; (A.K.); (B.-T.B.); (S.K.)
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
- DKTK (German Translational Research Network), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany
| | - John Weston
- JQuest Consulting, Carl-Orff-Weg 25, 65779 Kelkheim, Germany;
| | - Jens Peter von Kries
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (C.S.); (A.O.); (J.E.); (M.L.); (J.P.v.K.)
| | - Roderich D. Süssmuth
- Institute of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany; (T.B.); (R.D.S.)
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (S.B.); (R.W.-G.); (C.K.); (K.Z.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Correspondence: ; Tel.: +49-30-9406-2596
| |
Collapse
|
23
|
Longhini KM, Glotzer M. Aurora A and cortical flows promote polarization and cytokinesis by inducing asymmetric ECT-2 accumulation. eLife 2022; 11:83992. [PMID: 36533896 PMCID: PMC9799973 DOI: 10.7554/elife.83992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
In the early Caenorhabditis elegans embryo, cell polarization and cytokinesis are interrelated yet distinct processes. Here, we sought to understand a poorly understood aspect of cleavage furrow positioning. Early C. elegans embryos deficient in the cytokinetic regulator centralspindlin form furrows, due to an inhibitory activity that depends on aster positioning relative to the polar cortices. Here, we show polar relaxation is associated with depletion of cortical ECT-2, a RhoGEF, specifically at the posterior cortex. Asymmetric ECT-2 accumulation requires intact centrosomes, Aurora A (AIR-1), and myosin-dependent cortical flows. Within a localization competent ECT-2 fragment, we identified three putative phospho-acceptor sites in the PH domain of ECT-2 that render ECT-2 responsive to inhibition by AIR-1. During both polarization and cytokinesis, our results suggest that centrosomal AIR-1 breaks symmetry via ECT-2 phosphorylation; this local inhibition of ECT-2 is amplified by myosin-driven flows that generate regional ECT-2 asymmetry. Together, these mechanisms cooperate to induce polarized assembly of cortical myosin, contributing to both embryo polarization and cytokinesis.
Collapse
Affiliation(s)
- Katrina M Longhini
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
| |
Collapse
|
24
|
Ponia SS, Robertson SJ, McNally KL, Subramanian G, Sturdevant GL, Lewis M, Jessop F, Kendall C, Gallegos D, Hay A, Schwartz C, Rosenke R, Saturday G, Bosio CM, Martens C, Best SM. Mitophagy antagonism by ZIKV reveals Ajuba as a regulator of PINK1 signaling, PKR-dependent inflammation, and viral invasion of tissues. Cell Rep 2021; 37:109888. [PMID: 34706234 DOI: 10.1016/j.celrep.2021.109888] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/16/2021] [Accepted: 10/05/2021] [Indexed: 12/30/2022] Open
Abstract
Dysregulated inflammation dominated by chemokine expression is a key feature of disease following infection with the globally important human pathogens Zika virus (ZIKV) and dengue virus, but a mechanistic understanding of how pro-inflammatory responses are initiated is lacking. Mitophagy is a quality-control mechanism that regulates innate immune signaling and cytokine production through selective degradation of damaged mitochondria. Here, we demonstrate that ZIKV nonstructural protein 5 (NS5) antagonizes mitophagy by binding to the host protein Ajuba and preventing its translocation to depolarized mitochondria where it is required for PINK1 activation and downstream signaling. Consequent mitophagy suppression amplifies the production of pro-inflammatory chemokines through protein kinase R (PKR) sensing of mitochondrial RNA. In Ajuba-/- mice, ZIKV induces early expression of pro-inflammatory chemokines associated with significantly enhanced dissemination to tissues. This work identifies Ajuba as a critical regulator of mitophagy and demonstrates a role for mitophagy in limiting systemic inflammation following infection by globally important human viruses.
Collapse
Affiliation(s)
- Sanket S Ponia
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Shelly J Robertson
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Kristin L McNally
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Gayatri Subramanian
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Gail L Sturdevant
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Matthew Lewis
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Forrest Jessop
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Catherine Kendall
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA; School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Dylan Gallegos
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Arielle Hay
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Cindi Schwartz
- Research Technology Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Catherine M Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Craig Martens
- Research Technology Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Sonja M Best
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA.
| |
Collapse
|
25
|
Wang R, Ascanelli C, Abdelbaki A, Fung A, Rasmusson T, Michaelides I, Roberts K, Lindon C. Selective targeting of non-centrosomal AURKA functions through use of a targeted protein degradation tool. Commun Biol 2021; 4:640. [PMID: 34050235 PMCID: PMC8163823 DOI: 10.1038/s42003-021-02158-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 04/29/2021] [Indexed: 12/22/2022] Open
Abstract
Targeted protein degradation tools are becoming a new therapeutic modality, allowing small molecule ligands to be reformulated as heterobifunctional molecules (PROteolysis Targeting Chimeras, PROTACs) that recruit ubiquitin ligases to targets of interest, leading to ubiquitination and destruction of the targets. Several PROTACs against targets of clinical interest have been described, but detailed descriptions of the cell biology modulated by PROTACs are missing from the literature. Here we describe the functional characterization of a PROTAC derived from AURKA inhibitor MLN8237 (alisertib). We demonstrate efficient and specific destruction of both endogenous and overexpressed AURKA by Cereblon-directed PROTACs. At the subcellular level, we find differential targeting of AURKA on the mitotic spindle compared to centrosomes. The phenotypic consequences of PROTAC treatment are therefore distinct from those mediated by alisertib, and in mitotic cells differentially regulate centrosome- and chromatin- based microtubule spindle assembly pathways. In interphase cells PROTAC-mediated clearance of non-centrosomal AURKA modulates the cytoplasmic role played by AURKA in mitochondrial dynamics, whilst the centrosomal pool is refractory to PROTAC-mediated clearance. Our results point to differential sensitivity of subcellular pools of substrate, governed by substrate conformation or localization-dependent accessibility to PROTAC action, a phenomenon not previously described for this new class of degrader compounds. Wang et al develop tools to target the mitotic regulator AURKA by synthesising PROTACs based on the inhibitor MLN8237. They find that the new PROTAC compound efficiently clears cytoplasmic and mitotic spindle-associated AURKA but does not eliminate AURKA activity from centrosomes, demonstrating the possibility of targeting subpopulations.
Collapse
Affiliation(s)
- Richard Wang
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - Ahmed Abdelbaki
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Alex Fung
- Department of Pharmacology, University of Cambridge, Cambridge, UK.,University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Tim Rasmusson
- Discovery Sciences, R&D, AstraZeneca, Cambridge, UK.,Bristol Myers Squibb, Cambridge, MA, USA
| | | | | | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
26
|
Iemura K, Natsume T, Maehara K, Kanemaki MT, Tanaka K. Chromosome oscillation promotes Aurora A-dependent Hec1 phosphorylation and mitotic fidelity. J Cell Biol 2021; 220:212099. [PMID: 33988677 PMCID: PMC8129796 DOI: 10.1083/jcb.202006116] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 03/10/2021] [Accepted: 04/21/2021] [Indexed: 12/30/2022] Open
Abstract
Most cancer cells show chromosomal instability, a condition where chromosome missegregation occurs frequently. We found that chromosome oscillation, an iterative chromosome motion during metaphase, is attenuated in cancer cell lines. We also found that metaphase phosphorylation of Hec1 at serine 55, which is mainly dependent on Aurora A on the spindle, is reduced in cancer cell lines. The Aurora A-dependent Hec1-S55 phosphorylation level was regulated by the chromosome oscillation amplitude and vice versa: Hec1-S55 and -S69 phosphorylation by Aurora A is required for efficient chromosome oscillation. Furthermore, enhancement of chromosome oscillation reduced the number of erroneous kinetochore-microtubule attachments and chromosome missegregation, whereas inhibition of Aurora A during metaphase increased such errors. We propose that Aurora A-mediated metaphase Hec1-S55 phosphorylation through chromosome oscillation, together with Hec1-S69 phosphorylation, ensures mitotic fidelity by eliminating erroneous kinetochore-microtubule attachments. Attenuated chromosome oscillation and the resulting reduced Hec1-S55 phosphorylation may be a cause of CIN in cancer cell lines.
Collapse
Affiliation(s)
- Kenji Iemura
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan.,Department of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka, Japan
| | - Kayoko Maehara
- Department of Nutrition, Graduate School of Health Sciences, Kio University, Kitakatsuragi, Nara, Japan
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan.,Department of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka, Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
27
|
Blengini CS, Ibrahimian P, Vaskovicova M, Drutovic D, Solc P, Schindler K. Aurora kinase A is essential for meiosis in mouse oocytes. PLoS Genet 2021; 17:e1009327. [PMID: 33901174 PMCID: PMC8102010 DOI: 10.1371/journal.pgen.1009327] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/06/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
The Aurora protein kinases are well-established regulators of spindle building and chromosome segregation in mitotic and meiotic cells. In mouse oocytes, there is significant Aurora kinase A (AURKA) compensatory abilities when the other Aurora kinase homologs are deleted. Whether the other homologs, AURKB or AURKC can compensate for loss of AURKA is not known. Using a conditional mouse oocyte knockout model, we demonstrate that this compensation is not reciprocal because female oocyte-specific knockout mice are sterile, and their oocytes fail to complete meiosis I. In determining AURKA-specific functions, we demonstrate that its first meiotic requirement is to activate Polo-like kinase 1 at acentriolar microtubule organizing centers (aMTOCs; meiotic spindle poles). This activation induces fragmentation of the aMTOCs, a step essential for building a bipolar spindle. We also show that AURKA is required for regulating localization of TACC3, another protein required for spindle building. We conclude that AURKA has multiple functions essential to completing MI that are distinct from AURKB and AURKC.
Collapse
Affiliation(s)
- Cecilia S. Blengini
- Department of Genetics; Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- Human Genetics Institute of New Jersey; Piscataway, New Jersey, United States of America
| | - Patricia Ibrahimian
- Department of Genetics; Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Michaela Vaskovicova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - David Drutovic
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Petr Solc
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Karen Schindler
- Department of Genetics; Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- Human Genetics Institute of New Jersey; Piscataway, New Jersey, United States of America
| |
Collapse
|
28
|
Tavernier N, Thomas Y, Vigneron S, Maisonneuve P, Orlicky S, Mader P, Regmi SG, Van Hove L, Levinson NM, Gasmi-Seabrook G, Joly N, Poteau M, Velez-Aguilera G, Gavet O, Castro A, Dasso M, Lorca T, Sicheri F, Pintard L. Bora phosphorylation substitutes in trans for T-loop phosphorylation in Aurora A to promote mitotic entry. Nat Commun 2021; 12:1899. [PMID: 33771996 PMCID: PMC7997955 DOI: 10.1038/s41467-021-21922-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
Polo-like kinase 1 (Plk1) is instrumental for mitotic entry and progression. Plk1 is activated by phosphorylation on a conserved residue Thr210 in its activation segment by the Aurora A kinase (AURKA), a reaction that critically requires the co-factor Bora phosphorylated by a CyclinA/B-Cdk1 kinase. Here we show that phospho-Bora is a direct activator of AURKA kinase activity. We localize the key determinants of phospho-Bora function to a 100 amino acid region encompassing two short Tpx2-like motifs and a phosphoSerine-Proline motif at Serine 112, through which Bora binds AURKA. The latter substitutes in trans for the Thr288 phospho-regulatory site of AURKA, which is essential for an active conformation of the kinase domain. We demonstrate the importance of these determinants for Bora function in mitotic entry both in Xenopus egg extracts and in human cells. Our findings unveil the activation mechanism of AURKA that is critical for mitotic entry.
Collapse
Affiliation(s)
- N Tavernier
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - Y Thomas
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - S Vigneron
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237, Université de Montpellier, CNRS, Montpellier, France
| | - P Maisonneuve
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - S Orlicky
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - P Mader
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - S G Regmi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - L Van Hove
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - N M Levinson
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - G Gasmi-Seabrook
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - N Joly
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - M Poteau
- Institut Gustave Roussy CNRS UMR9019, Villejuif, France
| | - G Velez-Aguilera
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - O Gavet
- Institut Gustave Roussy CNRS UMR9019, Villejuif, France
| | - A Castro
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237, Université de Montpellier, CNRS, Montpellier, France
| | - M Dasso
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - T Lorca
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237, Université de Montpellier, CNRS, Montpellier, France
| | - F Sicheri
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| | - L Pintard
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France.
| |
Collapse
|
29
|
Ong JY, Bradley MC, Torres JZ. Phospho-regulation of mitotic spindle assembly. Cytoskeleton (Hoboken) 2020; 77:558-578. [PMID: 33280275 PMCID: PMC7898546 DOI: 10.1002/cm.21649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/08/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022]
Abstract
The assembly of the bipolar mitotic spindle requires the careful orchestration of a myriad of enzyme activities like protein posttranslational modifications. Among these, phosphorylation has arisen as the principle mode for spatially and temporally activating the proteins involved in early mitotic spindle assembly processes. Here, we review key kinases, phosphatases, and phosphorylation events that regulate critical aspects of these processes. We highlight key phosphorylation substrates that are important for ensuring the fidelity of centriole duplication, centrosome maturation, and the establishment of the bipolar spindle. We also highlight techniques used to understand kinase-substrate relationships and to study phosphorylation events. We conclude with perspectives on the field of posttranslational modifications in early mitotic spindle assembly.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Michelle C Bradley
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|
30
|
Lek SM, Li K, Tan QX, Shannon NB, Ng WH, Hendrikson J, Tan JWS, Lim HJ, Chen Y, Koh KKN, Skanthakumar T, Kwang XL, Chong FT, Leong HS, Tay G, Putri NE, Lim TKH, Hwang JSG, Ang MK, Tan DSW, Tan NC, Tan HK, Kon OL, Soo KC, Iyer NG, Ong CAJ. Pairing a prognostic target with potential therapeutic strategy for head and neck cancer. Oral Oncol 2020; 111:105035. [PMID: 33091845 DOI: 10.1016/j.oraloncology.2020.105035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 08/29/2020] [Accepted: 09/28/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVES We have previously identified and validated a panel of molecular prognostic markers (ATP13A3, SSR3, and ANO1) for Head and Neck Squamous Cell Carcinoma (HNSCC). The aim of this study was to investigate the consequence of ATP13A3 dysregulation on signaling pathways, to aid in formulating a therapeutic strategy targeting ATP13A3-overexpressing HNSCC. MATERIALS AND METHODS Gene Set Enrichment Analysis (GSEA) was performed on HNSCC microarray expression data (Internal local dataset [n = 92], TCGA [n = 232], EMBL [n = 81]) to identify pathways associated with high expression of ATP13A3. Validation was performed using immunohistochemistry (IHC) on tissue microarrays (TMAs) of head and neck cancers (n = 333), staining for ATP13A3 and phosphorylated Aurora kinase A (phospho-T288). Short interfering RNA was used to knockdown ATP13A3 expression in patient derived HNSCC cell lines. Protein expression of ATP13A3 and Aurora kinase A was then assessed by immunoblotting. RESULTS GSEA identified Aurora kinase pathway to be associated with high expression of ATP13A3 (p = 0.026). The Aurora kinase pathway was also associated with a trend towards poor prognosis and tumor aggressiveness (p = 0.086, 0.094, respectively). Furthermore, the immunohistochemical staining results revealed a significant association between Aurora kinase activity and high ATP13A3 expression (p < 0.001). Knockdown of ATP13A3 in human head and neck cell lines showed decrease in Aurora kinase A levels. CONCLUSION Tumors with high ATP13A3 are associated with high Aurora kinase activity. This suggests a potential therapeutic role of Aurora kinase inhibitors in a subset of poor prognosis HNSCC patients with overexpression of ATP13A3.
Collapse
Affiliation(s)
- Sze Min Lek
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Ke Li
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Qiu Xuan Tan
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Nicholas B Shannon
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Wai Har Ng
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Josephine Hendrikson
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Joey W S Tan
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Hui Jun Lim
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Yudong Chen
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Kelvin K N Koh
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Thakshayeni Skanthakumar
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Xue Lin Kwang
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Fui Teen Chong
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Hui Sun Leong
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Gerald Tay
- SingHealth Duke-NUS Head and Neck Centre, SingHealth, 1 Hospital Drive, Block 3 Basement 1, Singapore 169608, Singapore
| | - Natascha Ekawati Putri
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Tony Kiat Hon Lim
- Department of Anatomical Pathology, Singapore General Hospital, 20 College Road, Singapore 169856, Singapore
| | - Jacqueline S G Hwang
- Department of Anatomical Pathology, Singapore General Hospital, 20 College Road, Singapore 169856, Singapore
| | - Mei Kim Ang
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Daniel S W Tan
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Ngian Chye Tan
- SingHealth Duke-NUS Head and Neck Centre, SingHealth, 1 Hospital Drive, Block 3 Basement 1, Singapore 169608, Singapore
| | - Hiang Khoon Tan
- SingHealth Duke-NUS Head and Neck Centre, SingHealth, 1 Hospital Drive, Block 3 Basement 1, Singapore 169608, Singapore
| | - Oi Lian Kon
- Department of Anatomical Pathology, Singapore General Hospital, 20 College Road, Singapore 169856, Singapore
| | - Khee Chee Soo
- SingHealth Duke-NUS Head and Neck Centre, SingHealth, 1 Hospital Drive, Block 3 Basement 1, Singapore 169608, Singapore
| | - N Gopalakrishna Iyer
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore; SingHealth Duke-NUS Head and Neck Centre, SingHealth, 1 Hospital Drive, Block 3 Basement 1, Singapore 169608, Singapore.
| | - Chin-Ann J Ong
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore; SingHealth Duke-NUS Oncology Academic Clinical Programme, SingHealth Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore.
| |
Collapse
|
31
|
Nagel S, Pommerenke C, MacLeod RAF, Meyer C, Kaufmann M, Drexler HG. The NKL-code for innate lymphoid cells reveals deregulated expression of NKL homeobox genes HHEX and HLX in anaplastic large cell lymphoma (ALCL). Oncotarget 2020; 11:3208-3226. [PMID: 32922661 PMCID: PMC7456612 DOI: 10.18632/oncotarget.27683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/07/2020] [Indexed: 12/26/2022] Open
Abstract
NKL homeobox genes encode developmental transcription factors and display an NKL-code according to their physiological expression pattern in hematopoiesis. Here, we analyzed public transcriptome data from primary innate lymphoid cells (ILCs) for NKL homeobox gene activities and found that ILC3 expressed exclusively HHEX while in ILC1 and ILC2 these genes were silenced. Deregulation of the NKL-code promotes hematopoietic malignancies, including anaplastic large cell lymphoma (ALCL) which reportedly may derive from ILC3. Accordingly, we analyzed NKL homeobox gene activities in ALCL cell lines and investigated their role in this malignancy. Transcriptome analyses demonstrated low expression levels of HHEX but powerfully activated HLX. Forced expression of HHEX in ALCL cell lines induced genes involved in apoptosis and ILC3 differentiation, indicating tumor suppressor activity. ALCL associated NPM1-ALK and JAK-STAT3-signalling drove enhanced expression of HLX while discounting HHEX. Genomic profiling revealed copy number gains at the loci of HLX and STAT3 in addition to genes encoding both STAT3 regulators (AURKA, BCL3, JAK3, KPNB1, NAMPT, NFAT5, PIM3, ROCK1, SIX1, TPX2, WWOX) and targets (BATF3, IRF4, miR135b, miR21, RORC). Transcriptome data of ALCL cell lines showed absence of STAT3 mutations while MGA was mutated and downregulated, encoding a novel potential STAT3 repressor. Furthermore, enhanced IL17F-signalling activated HLX while TGFbeta-signalling inhibited HHEX expression. Taken together, our data extend the scope of the NKL-code for ILCs and spotlight aberrant expression of NKL homeobox gene HLX in ALCL. HLX represents a direct target of ALCL hallmark factor STAT3 and deregulates cell survival and differentiation in this malignancy.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Claudia Pommerenke
- Department of Human and Animal Cell Lines, Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Roderick A F MacLeod
- Department of Human and Animal Cell Lines, Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Maren Kaufmann
- Department of Human and Animal Cell Lines, Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans G Drexler
- Department of Human and Animal Cell Lines, Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
32
|
Byrne DP, Shrestha S, Galler M, Cao M, Daly LA, Campbell AE, Eyers CE, Veal EA, Kannan N, Eyers PA. Aurora A regulation by reversible cysteine oxidation reveals evolutionarily conserved redox control of Ser/Thr protein kinase activity. Sci Signal 2020; 13:eaax2713. [PMID: 32636306 DOI: 10.1126/scisignal.aax2713] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Reactive oxygen species (ROS) are physiological mediators of cellular signaling and play potentially damaging roles in human diseases. In this study, we found that the catalytic activity of the Ser/Thr kinase Aurora A was inhibited by the oxidation of a conserved cysteine residue (Cys290) that lies adjacent to Thr288, a critical phosphorylation site in the activation segment. Cys is present at the equivalent position in ~100 human Ser/Thr kinases, a residue that we found was important not only for the activity of human Aurora A but also for that of fission yeast MAPK-activated kinase (Srk1) and PKA (Pka1). Moreover, the presence of this conserved Cys predicted biochemical redox sensitivity among a cohort of human CAMK, AGC, and AGC-like kinases. Thus, we predict that redox modulation of the conserved Cys290 of Aurora A may be an underappreciated regulatory mechanism that is widespread in eukaryotic Ser/Thr kinases. Given the key biological roles of these enzymes, these findings have implications for understanding physiological and pathological responses to ROS and highlight the importance of protein kinase regulation through multivalent modification of the activation segment.
Collapse
Affiliation(s)
- Dominic P Byrne
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Safal Shrestha
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Martin Galler
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Min Cao
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Leonard A Daly
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Amy E Campbell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Claire E Eyers
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Elizabeth A Veal
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Patrick A Eyers
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
33
|
Kapoor S, Kotak S. Centrosome Aurora A gradient ensures single polarity axis in C. elegans embryos. Biochem Soc Trans 2020; 48:1243-1253. [PMID: 32597472 PMCID: PMC7616972 DOI: 10.1042/bst20200298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 01/31/2023]
Abstract
Cellular asymmetries are vital for generating cell fate diversity during development and in stem cells. In the newly fertilized Caenorhabditis elegans embryo, centrosomes are responsible for polarity establishment, i.e. anterior-posterior body axis formation. The signal for polarity originates from the centrosomes and is transmitted to the cell cortex, where it disassembles the actomyosin network. This event leads to symmetry breaking and the establishment of distinct domains of evolutionarily conserved PAR proteins. However, the identity of an essential component that localizes to the centrosomes and promotes symmetry breaking was unknown. Recent work has uncovered that the loss of Aurora A kinase (AIR-1 in C. elegans and hereafter referred to as Aurora A) in the one-cell embryo disrupts stereotypical actomyosin-based cortical flows that occur at the time of polarity establishment. This misregulation of actomyosin flow dynamics results in the occurrence of two polarity axes. Notably, the role of Aurora A in ensuring a single polarity axis is independent of its well-established function in centrosome maturation. The mechanism by which Aurora A directs symmetry breaking is likely through direct regulation of Rho-dependent contractility. In this mini-review, we will discuss the unconventional role of Aurora A kinase in polarity establishment in C. elegans embryos and propose a refined model of centrosome-dependent symmetry breaking.
Collapse
Affiliation(s)
- Sukriti Kapoor
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), 560012 Bangalore, India
| | - Sachin Kotak
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), 560012 Bangalore, India
| |
Collapse
|
34
|
Abdelbaki A, Akman HB, Poteau M, Grant R, Gavet O, Guarguaglini G, Lindon C. AURKA destruction is decoupled from its activity at mitotic exit but is essential to suppress interphase activity. J Cell Sci 2020; 133:jcs243071. [PMID: 32393600 PMCID: PMC7328152 DOI: 10.1242/jcs.243071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/19/2020] [Indexed: 12/22/2022] Open
Abstract
Activity of AURKA is controlled through multiple mechanisms including phosphorylation, ubiquitin-mediated degradation and allosteric interaction with TPX2. Activity peaks at mitosis, before AURKA is degraded during and after mitotic exit in a process strictly dependent on the APC/C coactivator FZR1. We used FZR1 knockout cells (FZR1KO) and a novel FRET-based AURKA biosensor to investigate how AURKA activity is regulated in the absence of destruction. We found that AURKA activity in FZR1KO cells dropped at mitotic exit as rapidly as in parental cells, despite absence of AURKA destruction. Unexpectedly, TPX2 was degraded normally in FZR1KO cells. Overexpression of an N-terminal TPX2 fragment sufficient for AURKA binding, but that is not degraded at mitotic exit, caused delay in AURKA inactivation. We conclude that inactivation of AURKA at mitotic exit is determined not by AURKA degradation but by degradation of TPX2 and therefore is dependent on CDC20 rather than FZR1. The biosensor revealed that FZR1 instead suppresses AURKA activity in interphase and is critically required for assembly of the interphase mitochondrial network after mitosis.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Ahmed Abdelbaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - H Begum Akman
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Marion Poteau
- Institut Gustave Roussy, UMR9019 - CNRS, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Rhys Grant
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Olivier Gavet
- Institut Gustave Roussy, UMR9019 - CNRS, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, CNR, Via degli Apuli 4, 00185 Roma, Italy
| | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
35
|
Byrne MJ, Nasir N, Basmadjian C, Bhatia C, Cunnison RF, Carr KH, Mas-Droux C, Yeoh S, Cano C, Bayliss R. Nek7 conformational flexibility and inhibitor binding probed through protein engineering of the R-spine. Biochem J 2020; 477:1525-1539. [PMID: 32242624 PMCID: PMC7200626 DOI: 10.1042/bcj20200128] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022]
Abstract
Nek7 is a serine/threonine-protein kinase required for proper spindle formation and cytokinesis. Elevated Nek7 levels have been observed in several cancers, and inhibition of Nek7 might provide a route to the development of cancer therapeutics. To date, no selective and potent Nek7 inhibitors have been identified. Nek7 crystal structures exhibit an improperly formed regulatory-spine (R-spine), characteristic of an inactive kinase. We reasoned that the preference of Nek7 to crystallise in this inactive conformation might hinder attempts to capture Nek7 in complex with Type I inhibitors. Here, we have introduced aromatic residues into the R-spine of Nek7 with the aim to stabilise the active conformation of the kinase through R-spine stacking. The strong R-spine mutant Nek7SRS retained catalytic activity and was crystallised in complex with compound 51, an ATP-competitive inhibitor of Nek2 and Nek7. Subsequently, we obtained the same crystal form for wild-type Nek7WT in apo form and bound to compound 51. The R-spines of the three well-ordered Nek7WT molecules exhibit variable conformations while the R-spines of the Nek7SRS molecules all have the same, partially stacked configuration. Compound 51 bound to Nek2 and Nek7 in similar modes, but differences in the precise orientation of a substituent highlights features that could be exploited in designing inhibitors that are selective for particular Nek family members. Although the SRS mutations are not required to obtain a Nek7-inhibitor structure, we conclude that it is a useful strategy for restraining the conformation of a kinase in order to promote crystallogenesis.
Collapse
Affiliation(s)
- Matthew J. Byrne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, U.K
| | - Nazia Nasir
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, U.K
| | - Christine Basmadjian
- Newcastle University Centre for Cancer, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, U.K
| | - Chitra Bhatia
- Department of Molecular and Cell Biology, University of Leicester, Leicester, U.K
| | - Rory F. Cunnison
- Department of Molecular and Cell Biology, University of Leicester, Leicester, U.K
| | - Katherine H. Carr
- Department of Molecular and Cell Biology, University of Leicester, Leicester, U.K
| | - Corine Mas-Droux
- Section of Structural Biology, The Institute of Cancer Research, London, U.K
| | - Sharon Yeoh
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, U.K
| | - Céline Cano
- Newcastle University Centre for Cancer, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, U.K
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, U.K
| |
Collapse
|
36
|
Hadzipasic A, Wilson C, Nguyen V, Kern N, Kim C, Pitsawong W, Villali J, Zheng Y, Kern D. Ancient origins of allosteric activation in a Ser-Thr kinase. Science 2020; 367:912-917. [PMID: 32079772 DOI: 10.1126/science.aay9959] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/09/2019] [Accepted: 01/15/2020] [Indexed: 12/23/2022]
Abstract
A myriad of cellular events are regulated by allostery; therefore, evolution of this process is of fundamental interest. Here, we use ancestral sequence reconstruction to resurrect ancestors of two colocalizing proteins, Aurora A kinase and its allosteric activator TPX2 (targeting protein for Xklp2), to experimentally characterize the evolutionary path of allosteric activation. Autophosphorylation of the activation loop is the most ancient activation mechanism; it is fully developed in the oldest kinase ancestor and has remained stable over 1 billion years of evolution. As the microtubule-associated protein TPX2 appeared, efficient kinase binding to TPX2 evolved, likely owing to increased fitness by virtue of colocalization. Subsequently, TPX2-mediated allosteric kinase regulation gradually evolved. Surprisingly, evolution of this regulation is encoded in the kinase and did not arise by a dominating mechanism of coevolution.
Collapse
Affiliation(s)
- Adelajda Hadzipasic
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.,Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA
| | - Christopher Wilson
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.,Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA
| | - Vy Nguyen
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.,Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA
| | - Nadja Kern
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.,Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA
| | - Chansik Kim
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.,Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA
| | - Warintra Pitsawong
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.,Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA
| | - Janice Villali
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.,Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA
| | - Yuejiao Zheng
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.,Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA
| | - Dorothee Kern
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA. .,Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
37
|
Gomes-Filho SM, Dos Santos EO, Bertoldi ERM, Scalabrini LC, Heidrich V, Dazzani B, Levantini E, Reis EM, Bassères DS. Aurora A kinase and its activator TPX2 are potential therapeutic targets in KRAS-induced pancreatic cancer. Cell Oncol (Dordr) 2020; 43:445-460. [PMID: 32193808 DOI: 10.1007/s13402-020-00498-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Oncogenic KRAS mutations are found in over 90% of pancreatic ductal adenocarcinomas (PDACs). As yet, however, no effective therapies are available for KRAS-induced malignancies. Therefore, research aimed at the identification of KRAS targets with therapeutic potential is warranted. Our goal was to investigate Aurora A (AURKA) and targeting protein for Xklp2 (TPX2) as potential therapeutic targets in PDAC. METHODS AURKA and TPX2 expression was assessed using RNAseq and qRT-PCR in PDAC patient samples and matched non-tumor pancreatic tissues. Publicly available PDAC datasets were used to investigate associations of AURKA and TPX2 expression levels with patient survival and the presence of KRAS mutations. Next, we used an Aurora kinase inhibitor, or KRAS, AURKA and TPX2 targeting using RNA interference in KRAS-mutant PDAC cells and, subsequently, analyzed their clonogenic and anchorage-independent growth and migration. RESULTS We found that relative to matched non-tumor tissues, PDAC tumors displayed significantly higher expression levels of AURKA and TPX2. In addition, we found that AURKA and TPX2 were co-expressed in PDAC datasets, and that high expression levels of AURKA and TPX2 were associated with a shorter patient survival and with the presence of oncogenic KRAS mutations. In addition, we found that siRNA-mediated KRAS targeting in KRAS-mutant PDAC cells reduced AURKA and TPX2 expression. Furthermore, targeting AURKA or TPX2 in KRAS-mutant PDAC cells reduced their clonogenic and anchorage-independent growth, as well their migration. CONCLUSIONS From our data we conclude that AURKA and TPX2 may act as KRAS biomarkers in PDAC that can predict a worse prognosis, and that AURKA or TPX2 targeting in PDAC cells may reduce their transformed phenotype. These results indicate that AURKA and TPX2 may serve as promising targets to be explored for KRAS-mutant PDAC therapy.
Collapse
Affiliation(s)
- Sandro Mascena Gomes-Filho
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, Bloco 12 inferior, sala 1200, São Paulo, SP, 05508-000, Brazil
| | | | - Ester Risério Matos Bertoldi
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, Bloco 12 inferior, sala 1200, São Paulo, SP, 05508-000, Brazil
| | - Luiza Coimbra Scalabrini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, Bloco 12 inferior, sala 1200, São Paulo, SP, 05508-000, Brazil
| | - Vitor Heidrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, Bloco 12 inferior, sala 1200, São Paulo, SP, 05508-000, Brazil
| | - Bianca Dazzani
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, Bloco 12 inferior, sala 1200, São Paulo, SP, 05508-000, Brazil
| | - Elena Levantini
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Institute of Biomedical Technologies, National Research Council (CNR), Pisa, Italy
| | - Eduardo Moraes Reis
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, Bloco 12 inferior, sala 1200, São Paulo, SP, 05508-000, Brazil
| | - Daniela Sanchez Bassères
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, Bloco 12 inferior, sala 1200, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
38
|
Bertolin G, Tramier M. Insights into the non-mitotic functions of Aurora kinase A: more than just cell division. Cell Mol Life Sci 2020; 77:1031-1047. [PMID: 31562563 PMCID: PMC11104877 DOI: 10.1007/s00018-019-03310-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 02/02/2023]
Abstract
AURKA is a serine/threonine kinase overexpressed in several cancers. Originally identified as a protein with multifaceted roles during mitosis, improvements in quantitative microscopy uncovered several non-mitotic roles as well. In physiological conditions, AURKA regulates cilia disassembly, neurite extension, cell motility, DNA replication and senescence programs. In cancer-like contexts, AURKA actively promotes DNA repair, it acts as a transcription factor, promotes cell migration and invasion, and it localises at mitochondria to regulate mitochondrial dynamics and ATP production. Here we review the non-mitotic roles of AURKA, and its partners outside of cell division. In addition, we give an insight into how structural data and quantitative fluorescence microscopy allowed to understand AURKA activation and its interaction with new substrates, highlighting future developments in fluorescence microscopy needed to better understand AURKA functions in vivo. Last, we will recapitulate the most significant AURKA inhibitors currently in clinical trials, and we will explore how the non-mitotic roles of the kinase may provide new insights to ameliorate current pharmacological strategies against AURKA overexpression.
Collapse
Affiliation(s)
- Giulia Bertolin
- Univ Rennes, CNRS, IGDR (Genetics and Development Institute of Rennes), UMR 6290, F-35000, Rennes, France.
| | - Marc Tramier
- Univ Rennes, CNRS, IGDR (Genetics and Development Institute of Rennes), UMR 6290, F-35000, Rennes, France.
| |
Collapse
|
39
|
Yu TT, Chang MY, Hsieh YJ, Chang CJ. Suppression of multiple processes relevant to cancer progression by benzyl isothiocyanate may result from the inhibition of Aurora A kinase activity. Food Funct 2020; 11:9010-9019. [DOI: 10.1039/d0fo01565b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The anti-cancer properties of BITC may result from the inhibition of Aurora A kinase activity.
Collapse
Affiliation(s)
- Tzu-Tung Yu
- Department of Molecular biology and Human genetics
- Tzu Chi University
- Hualien
- Taiwan
| | - Meng-Ya Chang
- Institute of Medical Science
- Tzu Chi University
- Hualien
- Taiwan
| | - Yi-Jen Hsieh
- Division of Nephrology
- Buddhist Tzu Chi General Hospital
- Hualien
- Taiwan
| | - Chih-Jui Chang
- Department of Molecular biology and Human genetics
- Tzu Chi University
- Hualien
- Taiwan
| |
Collapse
|
40
|
Shen S, Feng H, Le Y, Ni J, Yu L, Wu J, Bai M. RACK1 affects the progress of G2/M by regulating Aurora-A. Cell Cycle 2019; 18:2228-2238. [PMID: 31357906 DOI: 10.1080/15384101.2019.1642065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aurora-A is a serine/threonine kinase, which is overexpressed in multiple human cancers and plays a key role in tumorigenesis and tumor development. In this study, we found that the receptor of activated C-kinase1 (RACK1), an important regulator of biological functions, interacted with Aurora-A and co-localized with Aurora-A at centrosomes. Moreover, RACK1 induces the auto-phosphorylation of Aurora-A in vitro and in vivo. Depletion of RACK1 impaired the activation of Aurora-A in late G2 phase, then inhibited the mitotic entry and leaded to multi-polarity, severe chromosome alignment defects, or centrosome amplification. Taken together, these results suggest that RACK1 is a new partner of Aurora-A and play a critical role in the regulation of the Aurora-A activity during mitosis, which may provide a basis for future anticancer studies targeting Aurora-A.
Collapse
Affiliation(s)
- Suqin Shen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University , Shanghai , P. R. China
| | - Huan Feng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University , Shanghai , P. R. China
| | - Yichen Le
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University , Shanghai , P. R. China
| | - Jun Ni
- Department Oncology, Hutchison Medi Pharma , Shanghai , China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University , Shanghai , P. R. China
| | - Jiaxue Wu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University , Shanghai , P. R. China
| | - Meirong Bai
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University , Shanghai , P. R. China.,Cardiovascular Research Institute and Department of Physiology, University of California San Francisco , San Francisco , CA , USA
| |
Collapse
|
41
|
Yueh C, Rettenmaier J, Xia B, Hall DR, Alekseenko A, Porter KA, Barkovich K, Keseru G, Whitty A, Wells JA, Vajda S, Kozakov D. Kinase Atlas: Druggability Analysis of Potential Allosteric Sites in Kinases. J Med Chem 2019; 62:6512-6524. [PMID: 31274316 DOI: 10.1021/acs.jmedchem.9b00089] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The inhibition of kinases has been pursued by the pharmaceutical industry for over 20 years. While the locations of the sites that bind type II and III inhibitors at or near the adenosine 5'-triphosphate binding sites are well defined, the literature describes 10 different regions that were reported as regulatory hot spots in some kinases and thus are potential target sites for type IV inhibitors. Kinase Atlas is a systematic collection of binding hot spots located at the above ten sites in 4910 structures of 376 distinct kinases available in the Protein Data Bank. The hot spots are identified by FTMap, a computational analogue of experimental fragment screening. Users of Kinase Atlas ( https://kinase-atlas.bu.edu ) may view summarized results for all structures of a particular kinase, such as which binding sites are present and how druggable they are, or they may view hot spot information for a particular kinase structure of interest.
Collapse
Affiliation(s)
| | - Justin Rettenmaier
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology , University of California , 1700 Fourth Street , San Francisco , California 9415 , United States
| | | | - David R Hall
- Acpharis Incorporated , Holliston , Massachusetts 01746 , United States
| | | | | | - Krister Barkovich
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology , University of California , 1700 Fourth Street , San Francisco , California 9415 , United States
| | - Gyorgy Keseru
- Medicinal Chemistry Research Group , Research Center for Natural Sciences , Magyar tudósok krt. 2 , H-1117 Budapest , Hungary
| | | | - James A Wells
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology , University of California , 1700 Fourth Street , San Francisco , California 9415 , United States
| | | | | |
Collapse
|
42
|
Magescas J, Zonka JC, Feldman JL. A two-step mechanism for the inactivation of microtubule organizing center function at the centrosome. eLife 2019; 8:47867. [PMID: 31246171 PMCID: PMC6684319 DOI: 10.7554/elife.47867] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/26/2019] [Indexed: 01/18/2023] Open
Abstract
The centrosome acts as a microtubule organizing center (MTOC), orchestrating microtubules into the mitotic spindle through its pericentriolar material (PCM). This activity is biphasic, cycling through assembly and disassembly during the cell cycle. Although hyperactive centrosomal MTOC activity is a hallmark of some cancers, little is known about how the centrosome is inactivated as an MTOC. Analysis of endogenous PCM proteins in C. elegans revealed that the PCM is composed of partially overlapping territories organized into an inner and outer sphere that are removed from the centrosome at different rates and using different behaviors. We found that phosphatases oppose the addition of PCM by mitotic kinases, ultimately catalyzing the dissolution of inner sphere PCM proteins at the end of mitosis. The nature of the PCM appears to change such that the remaining aging PCM outer sphere is mechanically ruptured by cortical pulling forces, ultimately inactivating MTOC function at the centrosome. New cells are created when existing cells divide, a process that is critical for life. A structure called the spindle is an important part of cell division, helping to orient the division and separate parts of the old cell into the newly generated ones. The spindle is built using filamentous protein structures called microtubules which are arranged by microtubule organizing centers (or MTOCs for short). In animals, an MTOC forms at each end of the spindle around two structures called centrosomes. A network of proteins called the pericentriolar material (PCM) form around centrosomes, converting them into MTOCs. The PCM grows around centrosomes as a cell prepares to divide and is removed again afterward. Enzymes called kinases are important in controlling cell division and PCM assembly; they are opposed by other enzymes known as phosphatases. The processes involved in organization and removal of the PCM are not well understood. The microscopic worm Caenorhabditis elegans provides an opportunity to study details of cell division in a living animal. Magescas et al. used fluorescent labels to view proteins from the PCM under a microscope. The images showed two partially overlapping spherical parts to the PCM – inner and outer. Further examination revealed that the inner PCM is maintained by a careful balance of kinase and phosphatase activity. When kinases shut down at the end of cell division, the phosphatases break down the inner PCM. By contrast, the outer PCM is physically torn apart by forces acting through the attached microtubules. Future work will seek to examine which proteins are specifically affected by phosphatases to identify the key regulators of PCM persistence in the cell and to reveal the proteins needed for MTOC activity at the centrosome. Since poor MTOC regulation can play a part in the growth and spread of cancer, this could lead to targets for new treatments.
Collapse
Affiliation(s)
- Jérémy Magescas
- Department of Biology, Stanford University, Stanford, United States
| | - Jenny C Zonka
- Department of Biology, Stanford University, Stanford, United States
| | | |
Collapse
|
43
|
Allosteric modulation of a human protein kinase with monobodies. Proc Natl Acad Sci U S A 2019; 116:13937-13942. [PMID: 31239342 DOI: 10.1073/pnas.1906024116] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Despite being the subject of intense effort and scrutiny, kinases have proven to be consistently challenging targets in inhibitor drug design. A key obstacle has been promiscuity and consequent adverse effects of drugs targeting the ATP binding site. Here we introduce an approach to controlling kinase activity by using monobodies that bind to the highly specific regulatory allosteric pocket of the oncoprotein Aurora A (AurA) kinase, thereby offering the potential for more specific kinase modulators. Strikingly, we identify a series of highly specific monobodies acting either as strong kinase inhibitors or activators via differential recognition of structural motifs in the allosteric pocket. X-ray crystal structures comparing AurA bound to activating vs inhibiting monobodies reveal the atomistic mechanism underlying allosteric modulation. The results reveal 3 major advantages of targeting allosteric vs orthosteric sites: extreme selectivity, ability to inhibit as well as activate, and avoidance of competing with ATP that is present at high concentrations in the cells. We envision that exploiting allosteric networks for inhibition or activation will provide a general, powerful pathway toward rational drug design.
Collapse
|
44
|
Zhang M, Jang H, Nussinov R. The mechanism of PI3Kα activation at the atomic level. Chem Sci 2019; 10:3671-3680. [PMID: 30996962 PMCID: PMC6430085 DOI: 10.1039/c8sc04498h] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/19/2019] [Indexed: 12/19/2022] Open
Abstract
PI3K lipid kinases phosphorylate PIP2 to PIP3 in the PI3K/Akt/mTOR pathway to regulate cellular processes. They are frequently mutated in cancer. Here we determine the PI3Kα activation mechanism at the atomic level. Unlike protein kinases where the substrate abuts the ATP, crystal structures indicate that in PI3Kα, the distance between the γ phosphate of the ATP and the PIP2 lipid substrate is over 6 Å, much too far for the phosphoryl transfer, raising the question of how catalysis is executed. PI3Kα has two subunits, the catalytic p110α and the regulatory p85α. Our simulations show that release of the autoinhibition exerted by the nSH2 domain of the p85α triggers significant conformational change in p110α, leading to the exposure of the kinase domain for membrane interaction. Structural rearrangement in the C-lobe of the kinase domain reduces the distance between the ATP γ-phosphate and the substrate, offering an explanation as to how phosphoryl transfer is executed. An alternative mechanism may involve ATP relocation. This mechanism not only explains how oncogenic mutations promote PI3Kα activation by facilitating nSH2 release, or nSH2-release-induced, allosteric motions; it also offers an innovative, PI3K isoform-specific drug discovery principle. Rather than competing with nanomolar range ATP in the ATP-binding pocket and contending with ATP pocket conservation and massive binding targets, this mechanism suggests blocking the PI3Kα sequence-specific cavity between the ATP-binding pocket and the substrate binding site. Targeting isoform-specific residues in the cavity may prevent PIP2 phosphorylation.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Computational Structural Biology Section , Basic Science Program , Frederick National Laboratory for Cancer Research , Frederick , MD 21702 , USA .
| | - Hyunbum Jang
- Computational Structural Biology Section , Basic Science Program , Frederick National Laboratory for Cancer Research , Frederick , MD 21702 , USA .
| | - Ruth Nussinov
- Computational Structural Biology Section , Basic Science Program , Frederick National Laboratory for Cancer Research , Frederick , MD 21702 , USA . .,Department of Human Molecular Genetics and Biochemistry , Sackler School of Medicine , Tel Aviv University , Tel Aviv 69978 , Israel
| |
Collapse
|
45
|
Moura M, Conde C. Phosphatases in Mitosis: Roles and Regulation. Biomolecules 2019; 9:E55. [PMID: 30736436 PMCID: PMC6406801 DOI: 10.3390/biom9020055] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Mitosis requires extensive rearrangement of cellular architecture and of subcellular structures so that replicated chromosomes can bind correctly to spindle microtubules and segregate towards opposite poles. This process originates two new daughter nuclei with equal genetic content and relies on highly-dynamic and tightly regulated phosphorylation of numerous cell cycle proteins. A burst in protein phosphorylation orchestrated by several conserved kinases occurs as cells go into and progress through mitosis. The opposing dephosphorylation events are catalyzed by a small set of protein phosphatases, whose importance for the accuracy of mitosis is becoming increasingly appreciated. This review will focus on the established and emerging roles of mitotic phosphatases, describe their structural and biochemical properties, and discuss recent advances in understanding the regulation of phosphatase activity and function.
Collapse
Affiliation(s)
- Margarida Moura
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal.
| | - Carlos Conde
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
46
|
Magnaghi-Jaulin L, Eot-Houllier G, Gallaud E, Giet R. Aurora A Protein Kinase: To the Centrosome and Beyond. Biomolecules 2019; 9:biom9010028. [PMID: 30650622 PMCID: PMC6359016 DOI: 10.3390/biom9010028] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/25/2022] Open
Abstract
Accurate chromosome segregation requires the perfect spatiotemporal rearrangement of the cellular cytoskeleton. Isolated more than two decades ago from Drosophila, Aurora A is a widespread protein kinase that plays key roles during cell division. Numerous studies have described the localisation of Aurora A at centrosomes, the mitotic spindle, and, more recently, at mitotic centromeres. In this review, we will summarise the cytoskeletal rearrangements regulated by Aurora A during cell division. We will also discuss the recent discoveries showing that Aurora A also controls not only the dynamics of the cortical proteins but also regulates the centromeric proteins, revealing new roles for this kinase during cell division.
Collapse
Affiliation(s)
- Laura Magnaghi-Jaulin
- University of Rennes, CNRS UMR 6290, IGDR-Institute of Genetics and Development of Rennes, F-35000 Rennes, France.
| | - Grégory Eot-Houllier
- University of Rennes, CNRS UMR 6290, IGDR-Institute of Genetics and Development of Rennes, F-35000 Rennes, France.
| | - Emmanuel Gallaud
- University of Rennes, CNRS UMR 6290, IGDR-Institute of Genetics and Development of Rennes, F-35000 Rennes, France.
| | - Régis Giet
- University of Rennes, CNRS UMR 6290, IGDR-Institute of Genetics and Development of Rennes, F-35000 Rennes, France.
| |
Collapse
|
47
|
Lee KH, Avci U, Qi L, Wang H. The α-Aurora Kinases Function in Vascular Development in Arabidopsis. PLANT & CELL PHYSIOLOGY 2019; 60:188-201. [PMID: 30329113 DOI: 10.1093/pcp/pcy195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Indexed: 06/08/2023]
Abstract
The Aurora kinases are serine/threonine kinases with conserved functions in mitotic cell division in eukaryotes. In Arabidopsis, Aurora kinases play important roles in primary meristem maintenance, but their functions in vascular development are still elusive. We report a dominant xdi-d mutant showing the xylem development inhibition (XDI) phenotype. Gene identification and transgenic overexpression experiments indicated that the activation of the Arabidopsis Aurora 2 (AtAUR2) gene is responsible for the XDI phenotype. In contrast, the aur1-2 aur2-2 double mutant plants showed enhanced differentiation of phloem and xylem cells, indicating that the Aurora kinases negatively affect xylem differentiation. The transcript levels of key regulatory genes in vascular cell differentiation, i.e. ALTERED PHLOEM DEVELOPMENT (APL), VASCULAR-RELATED NAC-DOMAIN 6 (VND6) and VND7, were higher in the aur1-2 aur2-2 double mutant and lower in xdi-d mutants compared with the wild-type plants, further supporting the functions of α-Aurora kinases in vascular development. Gene mutagenesis and transgenic studies showed that protein phosphorylation and substrate binding, but not protein dimerization and ubiquitination, are critical for the biological function of AtAUR2. These results indicate that α-Aurora kinases play key roles in vascular cell differentiation in Arabidopsis.
Collapse
Affiliation(s)
- Kwang-Hee Lee
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
| | - Utku Avci
- Bioengineering Department, Faculty of Engineering, Recep Tayyip Erdogan University, Rize, Turkey
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Liying Qi
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
48
|
Knoverek CR, Amarasinghe GK, Bowman GR. Advanced Methods for Accessing Protein Shape-Shifting Present New Therapeutic Opportunities. Trends Biochem Sci 2018; 44:351-364. [PMID: 30555007 DOI: 10.1016/j.tibs.2018.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/11/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022]
Abstract
A protein is a dynamic shape-shifter whose function is determined by the set of structures it adopts. Unfortunately, atomically detailed structures are only available for a few conformations of any given protein, and these structures have limited explanatory and predictive power. Here, we provide a brief historical perspective on protein dynamics and introduce recent advances in computational and experimental methods that are providing unprecedented access to protein shape-shifting. Next, we focus on how these tools are revealing the mechanism of allosteric communication and features like cryptic pockets; both of which present new therapeutic opportunities. A major theme is the importance of considering the relative probabilities of different structures and the control one can exert over protein function by modulating this balance.
Collapse
Affiliation(s)
- Catherine R Knoverek
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Gaya K Amarasinghe
- Department of Pathology & Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Gregory R Bowman
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
49
|
Quantitative conformational profiling of kinase inhibitors reveals origins of selectivity for Aurora kinase activation states. Proc Natl Acad Sci U S A 2018; 115:E11894-E11903. [PMID: 30518564 PMCID: PMC6304972 DOI: 10.1073/pnas.1811158115] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many drugs trigger changes to the structure of their target receptor upon binding. These conformational effects are thought to be an essential part of molecular recognition but have proven challenging to quantify. Using a high-throughput method for tracking structural changes in a protein kinase in solution, we discovered that many clinically important cancer drugs trigger substantial structural changes to their target protein kinase Aurora A, and that these effects systematically account for the ability of the drugs to differentiate between different biochemical forms of Aurora A. The results provide insight into mechanisms of drug selectivity and suggest strategies for tailoring inhibitors to target certain cancers in which Aurora A has been dysregulated in different ways. Protein kinases undergo large-scale structural changes that tightly regulate function and control recognition by small-molecule inhibitors. Methods for quantifying the conformational effects of inhibitors and linking them to an understanding of selectivity patterns have long been elusive. We have developed an ultrafast time-resolved fluorescence methodology that tracks structural movements of the kinase activation loop in solution with angstrom-level precision, and can resolve multiple structural states and quantify conformational shifts between states. Profiling a panel of clinically relevant Aurora kinase inhibitors against the mitotic kinase Aurora A revealed a wide range of conformational preferences, with all inhibitors promoting either the active DFG-in state or the inactive DFG-out state, but to widely differing extents. Remarkably, these conformational preferences explain broad patterns of inhibitor selectivity across different activation states of Aurora A, with DFG-out inhibitors preferentially binding Aurora A activated by phosphorylation on the activation loop, which dynamically samples the DFG-out state, and DFG-in inhibitors binding preferentially to Aurora A constrained in the DFG-in state by its allosteric activator Tpx2. The results suggest that many inhibitors currently in clinical development may be capable of differentiating between Aurora A signaling pathways implicated in normal mitotic control and in melanoma, neuroblastoma, and prostate cancer. The technology is applicable to a wide range of clinically important kinases and could provide a wealth of valuable structure–activity information for the development of inhibitors that exploit differences in conformational dynamics to achieve enhanced selectivity.
Collapse
|
50
|
Wang S, Chen Y, Chai Y. Prognostic role of targeting protein for Xklp2 in solid tumors: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore) 2018; 97:e13018. [PMID: 30412141 PMCID: PMC6221728 DOI: 10.1097/md.0000000000013018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The prognostic role of targeting protein for Xklp2 (TPX2) in solid tumors has been investigated in several researches, but the results remain controversial. Here we present a meta-analysis to systematically review the association between TPX2 expression levels and prognosis of human solid tumors. METHODS Studies published until December 2017 were searched in PubMed, Web of Science, and EBSCO, 13 studies (2134 patients) were collected for analysis. Odds ratios (ORs) for overall survival (OS) and disease-free survival (DFS) from individual studies were calculated by the application of Mantel-Haenszel random effect model. Pooled ORs were estimated by Z test. Publication bias and interstudy heterogeneity analyses were also performed. RESULTS TPX2 overexpression was associated with poor OS at 3 and 5 years [OR = 4.63, 95% confidence interval (CI): 3.27-6.56, P < .00001; OR = 4.05, 95% CI: 2.32-7.07, P < .00001, respectively] of solid tumors. Similar results were observed with DFS at 3 and 5 years (OR = 3.35, 95% CI: 1.83-6.14, P < .0001; OR = 2.94, 95% CI: 1.74-4.98, P < .0001, respectively). Subgroup analysis revealed that increased TPX2 expression was related to worse prognosis of gastric cancer and hepatocellular cancer, while irrelevant to esophageal squamous cell cancer at 5-year survival rate. CONCLUSIONS Overexpression of TPX2 is related to poor survival rate in most solid tumors, which indicates that the expression level of TPX2 is a significant prognostic parameter and potential therapeutic target in various solid tumors.
Collapse
|