1
|
Zhang H, Zhu JK. Epigenetic gene regulation in plants and its potential applications in crop improvement. Nat Rev Mol Cell Biol 2025; 26:51-67. [PMID: 39192154 DOI: 10.1038/s41580-024-00769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
DNA methylation, also known as 5-methylcytosine, is an epigenetic modification that has crucial functions in plant growth, development and adaptation. The cellular DNA methylation level is tightly regulated by the combined action of DNA methyltransferases and demethylases. Protein complexes involved in the targeting and interpretation of DNA methylation have been identified, revealing intriguing roles of methyl-DNA binding proteins and molecular chaperones. Structural studies and in vitro reconstituted enzymatic systems have provided mechanistic insights into RNA-directed DNA methylation, the main pathway catalysing de novo methylation in plants. A better understanding of the regulatory mechanisms will enable locus-specific manipulation of the DNA methylation status. CRISPR-dCas9-based epigenome editing tools are being developed for this goal. Given that DNA methylation patterns can be stably transmitted through meiosis, and that large phenotypic variations can be contributed by epimutations, epigenome editing holds great promise in crop breeding by creating additional phenotypic variability on the same genetic material.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
2
|
Joldersma D, Guo L, Alger EI, Ippoliti C, Luo X, Platts AE, Edger PP, Liu Z. Identification and analysis of imprinted genes in wild strawberry uncover a regulatory pathway in endosperm development. PLANT PHYSIOLOGY 2024; 196:2599-2613. [PMID: 39331513 DOI: 10.1093/plphys/kiae496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/29/2024]
Abstract
Fertilization is a fundamental process that triggers seed and fruit development, but the molecular mechanisms underlying fertilization-induced seed development are poorly understood. Previous research has established AGamous-Like62 (AGL62) activation and auxin biosynthesis in the endosperm as key events following fertilization in Arabidopsis (Arabidopsis thaliana) and wild strawberry (Fragaria vesca). To test the hypothesis that epigenetic mechanisms are critical in mediating the effect of fertilization on the activation of AGL62 and auxin biosynthesis in the endosperm, we first identified and analyzed imprinted genes from the endosperm of wild strawberries. We isolated endosperm tissues from F1 seeds of 2 wild strawberry F. vesca subspecies, generated endosperm-enriched transcriptomes, and identified candidate Maternally Expressed and Paternally Expressed Genes (MEGs and PEGs). Through bioinformatic analyses, we identified 4 imprinted genes that may be involved in regulating the expression of FveAGL62 and auxin biosynthesis genes. We conducted functional analysis of a maternally expressed gene FveMYB98 through CRISPR-knockout and over-expression in transgenic strawberries as well as analysis in heterologous systems. FveMYB98 directly repressed FveAGL62 at stage 3 endosperm, which likely serves to limit auxin synthesis and endosperm proliferation. These results provide an inroad into the regulation of early-stage seed development by imprinted genes in strawberries, suggest the potential function of imprinted genes in parental conflict, and identify FveMYB98 as a regulator of a key transition point in endosperm development.
Collapse
Affiliation(s)
- Dirk Joldersma
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Lei Guo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Elizabeth I Alger
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Christina Ippoliti
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Xi Luo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Adrian E Platts
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
3
|
Soliman HK, Coughlan JM. United by conflict: Convergent signatures of parental conflict in angiosperms and placental mammals. J Hered 2024; 115:625-642. [PMID: 38366852 PMCID: PMC11498613 DOI: 10.1093/jhered/esae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Endosperm in angiosperms and placenta in eutherians are convergent innovations for efficient embryonic nutrient transfer. Despite advantages, this reproductive strategy incurs metabolic costs that maternal parents disproportionately shoulder, leading to potential inter-parental conflict over optimal offspring investment. Genomic imprinting-parent-of-origin-biased gene expression-is fundamental for endosperm and placenta development and has convergently evolved in angiosperms and mammals, in part, to resolve parental conflict. Here, we review the mechanisms of genomic imprinting in these taxa. Despite differences in the timing and spatial extent of imprinting, these taxa exhibit remarkable convergence in the molecular machinery and genes governing imprinting. We then assess the role of parental conflict in shaping evolution within angiosperms and eutherians using four criteria: 1) Do differences in the extent of sibling relatedness cause differences in the inferred strength of parental conflict? 2) Do reciprocal crosses between taxa with different inferred histories of parental conflict exhibit parent-of-origin growth effects? 3) Are these parent-of-origin growth effects caused by dosage-sensitive mechanisms and do these loci exhibit signals of positive selection? 4) Can normal development be restored by genomic perturbations that restore stoichiometric balance in the endosperm/placenta? Although we find evidence for all criteria in angiosperms and eutherians, suggesting that parental conflict may help shape their evolution, many questions remain. Additionally, myriad differences between the two taxa suggest that their respective biologies may shape how/when/where/to what extent parental conflict manifests. Lastly, we discuss outstanding questions, highlighting the power of comparative work in quantifying the role of parental conflict in evolution.
Collapse
Affiliation(s)
- Hagar K Soliman
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, United States
- Department of Biotechnology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Jenn M Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, United States
| |
Collapse
|
4
|
Khouider S, Gehring M. Parental dialectic: Epigenetic conversations in endosperm. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102591. [PMID: 38944896 PMCID: PMC11392645 DOI: 10.1016/j.pbi.2024.102591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
Endosperm is a major evolutionary innovation of flowering plants, and its proper development critically impacts seed growth and viability. Epigenetic regulators have a key function in parental control of endosperm development. Notably, epigenetic regulation of parental genome dosage is a major determinant of seed development success, and disruption of this balance can produce inviable seed, as observed in some interploidy and interspecific crosses. These postzygotic reproduction barriers are also a potent driver of speciation. The molecular machinery and regulatory architecture governing endosperm development is proposed to have evolved under parental conflict. In this review, we emphasize parental conflict as a dialectic conflict and discuss recent findings about the epigenetic molecular machinery that mediates parental conflict in the endosperm.
Collapse
Affiliation(s)
- Souraya Khouider
- Whitehead Institute for Biomedical Research, Cambridge MA 02142, USA
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139, USA.
| |
Collapse
|
5
|
Del Toro-De León G, van Boven J, Santos-González J, Jiao WB, Peng H, Schneeberger K, Köhler C. Epigenetic and transcriptional consequences in the endosperm of chemically induced transposon mobilization in Arabidopsis. Nucleic Acids Res 2024; 52:8833-8848. [PMID: 38967011 PMCID: PMC11347142 DOI: 10.1093/nar/gkae572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
Genomic imprinting, an epigenetic phenomenon leading to parent-of-origin-specific gene expression, has independently evolved in the endosperm of flowering plants and the placenta of mammals-tissues crucial for nurturing embryos. While transposable elements (TEs) frequently colocalize with imprinted genes and are implicated in imprinting establishment, direct investigations of the impact of de novo TE transposition on genomic imprinting remain scarce. In this study, we explored the effects of chemically induced transposition of the Copia element ONSEN on genomic imprinting in Arabidopsis thaliana. Through the combination of chemical TE mobilization and doubled haploid induction, we generated a line with 40 new ONSEN copies. Our findings reveal a preferential targeting of maternally expressed genes (MEGs) for transposition, aligning with the colocalization of H2A.Z and H3K27me3 in MEGs-both previously identified as promoters of ONSEN insertions. Additionally, we demonstrate that chemically-induced DNA hypomethylation induces global transcriptional deregulation in the endosperm, leading to the breakdown of MEG imprinting. This study provides insights into the consequences of chemically induced TE remobilization in the endosperm, revealing that chemically-induced epigenome changes can have long-term consequences on imprinted gene expression.
Collapse
Affiliation(s)
- Gerardo Del Toro-De León
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Joram van Boven
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala 75007, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala 75007, Sweden
| | - Wen-Biao Jiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoran Peng
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Korbinian Schneeberger
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
- Faculty for Biology, LMU Munich, Planegg-Martinsried 82152, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Claudia Köhler
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala 75007, Sweden
| |
Collapse
|
6
|
Cao D. Cross-specific imprinting tells the seed size of hybrids. PLANT PHYSIOLOGY 2024; 195:1094-1096. [PMID: 38478463 PMCID: PMC11142329 DOI: 10.1093/plphys/kiae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 06/02/2024]
Affiliation(s)
- Dechang Cao
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
7
|
June V, Song X, Chen ZJ. Imprinting but not cytonuclear interactions determines seed size heterosis in Arabidopsis hybrids. PLANT PHYSIOLOGY 2024; 195:1214-1228. [PMID: 38319651 PMCID: PMC11142339 DOI: 10.1093/plphys/kiae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024]
Abstract
The parent-of-origin effect on seeds can result from imprinting (unequal expression of paternal and maternal alleles) or combinational effects between cytoplasmic and nuclear genomes, but their relative contributions remain unknown. To discern these confounding factors, we produced cytoplasmic-nuclear substitution (CNS) lines using recurrent backcrossing in Arabidopsis (Arabidopsis thaliana) ecotypes Col-0 and C24. These CNS lines differed only in the nuclear genome (imprinting) or cytoplasm. The CNS reciprocal hybrids with the same cytoplasm displayed ∼20% seed size difference, whereas the seed size was similar between the reciprocal hybrids with fixed imprinting. Transcriptome analyses in the endosperm of CNS hybrids using laser-capture microdissection identified 104 maternally expressed genes (MEGs) and 90 paternally expressed genes (PEGs). These imprinted genes were involved in pectin catabolism and cell wall modification in the endosperm. Homeodomain Glabrous9 (HDG9), an epiallele and one of 11 cross-specific imprinted genes, affected seed size. In the embryo, there were a handful of imprinted genes in the CNS hybrids but only 1 was expressed at higher levels than in the endosperm. AT4G13495 was found to encode a long-noncoding RNA (lncRNA), but no obvious seed phenotype was observed in lncRNA knockout lines. Nuclear RNA Polymerase D1 (NRPD1), encoding the largest subunit of RNA Pol IV, was involved in the biogenesis of small interfering RNAs. Seed size and embryos were larger in the cross using nrpd1 as the maternal parent than in the reciprocal cross, supporting a role of the maternal NRPD1 allele in seed development. Although limited ecotypes were tested, these results suggest that imprinting and the maternal NRPD1-mediated small RNA pathway play roles in seed size heterosis in plant hybrids.
Collapse
Affiliation(s)
- Viviana June
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Xiaoya Song
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
8
|
Bente H, Köhler C. Molecular basis and evolutionary drivers of endosperm-based hybridization barriers. PLANT PHYSIOLOGY 2024; 195:155-169. [PMID: 38298124 PMCID: PMC11060687 DOI: 10.1093/plphys/kiae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 02/02/2024]
Abstract
The endosperm, a transient seed tissue, plays a pivotal role in supporting embryo growth and germination. This unique feature sets flowering plants apart from gymnosperms, marking an evolutionary innovation in the world of seed-bearing plants. Nevertheless, the importance of the endosperm extends beyond its role in providing nutrients to the developing embryo by acting as a versatile protector, preventing hybridization events between distinct species and between individuals with different ploidy. This phenomenon centers on growth and differentiation of the endosperm and the speed at which both processes unfold. Emerging studies underscore the important role played by type I MADS-box transcription factors, including the paternally expressed gene PHERES1. These factors, along with downstream signaling pathways involving auxin and abscisic acid, are instrumental in regulating endosperm development and, consequently, the establishment of hybridization barriers. Moreover, mutations in various epigenetic regulators mitigate these barriers, unveiling a complex interplay of pathways involved in their formation. In this review, we discuss the molecular underpinnings of endosperm-based hybridization barriers and their evolutionary drivers.
Collapse
Affiliation(s)
- Heinrich Bente
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Claudia Köhler
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| |
Collapse
|
9
|
Pliota P, Marvanova H, Koreshova A, Kaufman Y, Tikanova P, Krogull D, Hagmüller A, Widen SA, Handler D, Gokcezade J, Duchek P, Brennecke J, Ben-David E, Burga A. Selfish conflict underlies RNA-mediated parent-of-origin effects. Nature 2024; 628:122-129. [PMID: 38448590 PMCID: PMC10990930 DOI: 10.1038/s41586-024-07155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Genomic imprinting-the non-equivalence of maternal and paternal genomes-is a critical process that has evolved independently in many plant and mammalian species1,2. According to kinship theory, imprinting is the inevitable consequence of conflictive selective forces acting on differentially expressed parental alleles3,4. Yet, how these epigenetic differences evolve in the first place is poorly understood3,5,6. Here we report the identification and molecular dissection of a parent-of-origin effect on gene expression that might help to clarify this fundamental question. Toxin-antidote elements (TAs) are selfish elements that spread in populations by poisoning non-carrier individuals7-9. In reciprocal crosses between two Caenorhabditis tropicalis wild isolates, we found that the slow-1/grow-1 TA is specifically inactive when paternally inherited. This parent-of-origin effect stems from transcriptional repression of the slow-1 toxin by the PIWI-interacting RNA (piRNA) host defence pathway. The repression requires PIWI Argonaute and SET-32 histone methyltransferase activities and is transgenerationally inherited via small RNAs. Remarkably, when slow-1/grow-1 is maternally inherited, slow-1 repression is halted by a translation-independent role of its maternal mRNA. That is, slow-1 transcripts loaded into eggs-but not SLOW-1 protein-are necessary and sufficient to counteract piRNA-mediated repression. Our findings show that parent-of-origin effects can evolve by co-option of the piRNA pathway and hinder the spread of selfish genes that require sex for their propagation.
Collapse
Affiliation(s)
- Pinelopi Pliota
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Hana Marvanova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alevtina Koreshova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Yotam Kaufman
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Polina Tikanova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Daniel Krogull
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Andreas Hagmüller
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Sonya A Widen
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Dominik Handler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Joseph Gokcezade
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Peter Duchek
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Eyal Ben-David
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
- Illumina Artificial Intelligence Laboratory, Illumina, San Diego, CA, USA
| | - Alejandro Burga
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
10
|
Dong X, Luo H, Yao J, Guo Q, Yu S, Ruan Y, Li F, Jin W, Meng D. The conservation of allelic DNA methylation and its relationship with imprinting in maize. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1376-1389. [PMID: 37935439 PMCID: PMC10901201 DOI: 10.1093/jxb/erad440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
Genomic imprinting refers to allele-specific expression of genes depending on parental origin, and it is regulated by epigenetic modifications. Intraspecific allelic variation for imprinting has been detected; however, the intraspecific genome-wide allelic epigenetic variation in maize and its correlation with imprinting variants remain unclear. Here, three reciprocal hybrids were generated by crossing Zea mays inbred lines CAU5, B73, and Mo17 in order to examine the intraspecific conservation of the imprinted genes in the kernel. The majority of imprinted genes exhibited intraspecific conservation, and these genes also exhibited interspecific conservation (rice, sorghum, and Arabidopsis) and were enriched in some specific pathways. By comparing intraspecific allelic DNA methylation in the endosperm, we found that nearly 15% of DNA methylation existed as allelic variants. The intraspecific whole-genome correlation between DNA methylation and imprinted genes indicated that DNA methylation variants play an important role in imprinting variants. Disruption of two conserved imprinted genes using CRISPR/Cas9 editing resulted in a smaller kernel phenotype. Our results shed light on the intraspecific correlation of DNA methylation variants and variation for imprinting in maize, and show that imprinted genes play an important role in kernel development.
Collapse
Affiliation(s)
- Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang 110866, Liaoning, China
| | - Haishan Luo
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Jiabin Yao
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Qingfeng Guo
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Shuai Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang 110866, Liaoning, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang 110866, Liaoning, China
| | - Fenghai Li
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Department of Agronomy, College of Agriculture & Resources and Environmental Sciences, Tianjin Agricultural University, Tianjin 300392, China
| | - Dexuan Meng
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| |
Collapse
|
11
|
Han B, Li Y, Wu D, Li DZ, Liu A, Xu W. Dynamics of imprinted genes and their epigenetic mechanisms in castor bean seed with persistent endosperm. THE NEW PHYTOLOGIST 2023; 240:1868-1882. [PMID: 37717216 DOI: 10.1111/nph.19265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023]
Abstract
Genomic imprinting refers to parent-of-origin-dependent gene expression and primarily occurs in the endosperm of flowering plants, but its functions and epigenetic mechanisms remain to be elucidated in eudicots. Castor bean, a eudicot with large and persistent endosperm, provides an excellent system for studying the imprinting. Here, we identified 131 imprinted genes in developing endosperms and endosperm at seed germination phase of castor bean, involving into the endosperm development, accumulation of storage compounds and specially seed germination. Our results showed that the transcriptional repression of maternal allele of DNA METHYLTRANSFERASE 1 (MET1) may be required for maternal genome demethylation in the endosperm. DNA methylation analysis showed that only a small fraction of imprinted genes was associated with allele-specific DNA methylation, and most of them were closely associated with constitutively unmethylated regions (UMRs), suggesting a limited role for DNA methylation in controlling genomic imprinting. Instead, histone modifications can be asymmetrically deposited in maternal and paternal genomes in a DNA methylation-independent manner to control expression of most imprinted genes. These results expanded our understanding of the occurrence and biological functions of imprinted genes and showed the evolutionary flexibility of the imprinting machinery and mechanisms in plants.
Collapse
Affiliation(s)
- Bing Han
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yelan Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Di Wu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Wei Xu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| |
Collapse
|
12
|
Zumajo-Cardona C, Gabrieli F, Anire J, Albertini E, Ezquer I, Colombo L. Evolutionary studies of the bHLH transcription factors belonging to MBW complex: their role in seed development. ANNALS OF BOTANY 2023; 132:383-400. [PMID: 37467144 PMCID: PMC10667011 DOI: 10.1093/aob/mcad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND AND AIMS The MBW complex consist of proteins belonging to three major families (MYB, bHLH and WDR) involved in various processes throughout plant development: epidermal cell development, mucilage secretory cells and flavonoid biosynthesis. Recently, it has been reported that TT8, encoding a bHLH transcription factor, is involved in the biosynthesis of flavonoids in the seed coat and it also plays a role in bypassing the postzygotic barrier resulting from an unbalance in genetic loads of the parental lines. Here, we focus on the functional evolution, in seed development, of the bHLH proteins that are part of the MBW complex, complemented with a literature review. METHODS Phylogenetic analyses performed across seed plants and expression analyses in the reproductive tissues of four selected angiosperms (Arabidopsis thaliana, Brassica napus, Capsella rubella and Solanum lycopersicum) allow us to hypothesize on the evolution of its functions. KEY RESULTS TT8 expression in the innermost layer of the seed coat is conserved in the selected angiosperms. However, except for Arabidopsis, TT8 is also expressed in ovules, carpels and fruits. The homologues belonging to the sister clade of TT8, EGL3/GL3, involved in trichome development, are expressed in the outermost layer of the seed coat, suggesting potential roles in mucilage. CONCLUSIONS The ancestral function of these genes appears to be flavonoid biosynthesis, and the conservation of TT8 expression patterns in the innermost layer of the seed coat in angiosperms suggests that their function in postzygotic barriers might also be conserved. Moreover, the literature review and the results of the present study suggest a sophisticated association, linking the mechanisms of action of these genes to the cross-communication activity between the different tissues of the seed. Thus, it provides avenues to study the mechanisms of action of TT8 in the postzygotic triploid block, which is crucial because it impacts seed development in unbalanced crosses.
Collapse
Affiliation(s)
- Cecilia Zumajo-Cardona
- Department of BioScience, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Flavio Gabrieli
- Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, Perugia, Italy
- Dipartimento di Ingegneria Industriale DII, University of Padua, via Gradenigo, 6/a, Padova, Italy
| | - Jovannemar Anire
- Department of BioScience, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
- Wageningen UR Plant Breeding, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
- National Coconut Research Center – Visayas, Visayas State University, Baybay City, Leyte, Philippines
| | - Emidio Albertini
- Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, Perugia, Italy
| | - Ignacio Ezquer
- Department of BioScience, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Lucia Colombo
- Department of BioScience, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
13
|
Briffa A, Hollwey E, Shahzad Z, Moore JD, Lyons DB, Howard M, Zilberman D. Millennia-long epigenetic fluctuations generate intragenic DNA methylation variance in Arabidopsis populations. Cell Syst 2023; 14:953-967.e17. [PMID: 37944515 DOI: 10.1016/j.cels.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 07/18/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Methylation of CG dinucleotides (mCGs), which regulates eukaryotic genome functions, is epigenetically propagated by Dnmt1/MET1 methyltransferases. How mCG is established and transmitted across generations despite imperfect enzyme fidelity is unclear. Whether mCG variation in natural populations is governed by genetic or epigenetic inheritance also remains mysterious. Here, we show that MET1 de novo activity, which is enhanced by existing proximate methylation, seeds and stabilizes mCG in Arabidopsis thaliana genes. MET1 activity is restricted by active demethylation and suppressed by histone variant H2A.Z, producing localized mCG patterns. Based on these observations, we develop a stochastic mathematical model that precisely recapitulates mCG inheritance dynamics and predicts intragenic mCG patterns and their population-scale variation given only CG site spacing. Our results demonstrate that intragenic mCG establishment, inheritance, and variance constitute a unified epigenetic process, revealing that intragenic mCG undergoes large, millennia-long epigenetic fluctuations and can therefore mediate evolution on this timescale.
Collapse
Affiliation(s)
- Amy Briffa
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Elizabeth Hollwey
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK; Institute of Science and Technology, 3400 Klosterneuburg, Austria
| | - Zaigham Shahzad
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK; Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Jonathan D Moore
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - David B Lyons
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Martin Howard
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK.
| | - Daniel Zilberman
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK; Institute of Science and Technology, 3400 Klosterneuburg, Austria.
| |
Collapse
|
14
|
Dong X, Luo H, Bi W, Chen H, Yu S, Zhang X, Dai Y, Cheng X, Xing Y, Fan X, Zhu Y, Guo Y, Meng D. Transcriptome-wide identification and characterization of genes exhibit allele-specific imprinting in maize embryo and endosperm. BMC PLANT BIOLOGY 2023; 23:470. [PMID: 37803280 PMCID: PMC10557216 DOI: 10.1186/s12870-023-04473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Genomic imprinting refers to a subset of genes that are expressed from only one parental allele during seed development in plants. Studies on genomic imprinting have revealed that intraspecific variations in genomic imprinting expression exist in naturally genetic varieties. However, there have been few studies on the functional analysis of allele-specific imprinted genes. RESULTS Here, we generated three reciprocal crosses among the B73, Mo17 and CAU5 inbred lines. Based on the transcriptome-wide analysis of allele-specific expression using RNA sequencing technology, 305 allele-specific imprinting genes (ASIGs) were identified in embryos, and 655 ASIGs were identified in endosperms from three maize F1 hybrids. Of these ASIGs, most did not show consistent maternal or paternal bias between the same tissue from different hybrids or different tissues from one hybrid cross. By gene ontology (GO) analysis, five and eight categories of GO exhibited significantly higher functional enrichments for ASIGs identified in embryo and endosperm, respectively. These functional categories indicated that ASIGs are involved in intercellular nutrient transport, signaling pathways, and transcriptional regulation of kernel development. Finally, the mutation and overexpression of one ASIG (Zm305) affected the length and width of the kernel. CONCLUSION In this study, our data will be helpful in gaining further knowledge of genes exhibiting allele-specific imprinting patterns in seeds. The gain- and loss-of-function phenotypes of ASIGs associated with agronomically important seed traits provide compelling evidence for ASIGs as crucial targets to optimize seed traits in crop plants.
Collapse
Affiliation(s)
- Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Haishan Luo
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Wenjing Bi
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Hanyu Chen
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Shuai Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xiaoyu Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yuxin Dai
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xipeng Cheng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yupeng Xing
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xiaoqin Fan
- Manas Agricultural Experimental Station of Xinjiang Academy of Agricultural Sciences, Changji, 832200, Xinjiang, China
| | - Yanbin Zhu
- National Key Laboratory of Maize Biological Breeding, Key Laboratory of Genetics and Breeding of Main Crops in Northeast Region, Ministry of Agriculture and Rural Affairs, Liaoning Dongya Seed Industry Co., Ltd, Shenyang, Liaoning, 110164, China
| | - Yanling Guo
- National Key Laboratory of Maize Biological Breeding, Key Laboratory of Genetics and Breeding of Main Crops in Northeast Region, Ministry of Agriculture and Rural Affairs, Liaoning Dongya Seed Industry Co., Ltd, Shenyang, Liaoning, 110164, China
| | - Dexuan Meng
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
15
|
Liu B, Zhao M. How transposable elements are recognized and epigenetically silenced in plants? CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102428. [PMID: 37481986 DOI: 10.1016/j.pbi.2023.102428] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023]
Abstract
Plant genomes are littered with transposable elements (TEs). Because TEs are potentially highly mutagenic, host organisms have evolved a set of defense mechanisms to recognize and epigenetically silence them. Although the maintenance of TE silencing is well studied, our understanding of the initiation of TE silencing is limited, but it clearly involves small RNAs and DNA methylation. Once TEs are silent, the silent state can be maintained to subsequent generations. However, under some circumstances, such inheritance is unstable, leading to the escape of TEs to the silencing machinery, resulting in the transcriptional activation of TEs. Epigenetic control of TEs has been found to be closely linked to many other epigenetic phenomena, such as genomic imprinting, and is known to contribute to regulation of genes, especially those near TEs. Here we review and discuss the current models of TE silencing, its unstable inheritance after hybridization, and the effects of epigenetic regulation of TEs on genomic imprinting.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Meixia Zhao
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
16
|
Baduel P, Sasaki E. The genetic basis of epigenetic variation and its consequences for adaptation. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102409. [PMID: 37451221 DOI: 10.1016/j.pbi.2023.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023]
Abstract
Recent population genomic studies in plants have shed new light on natural epigenetic variation by identifying key genetic determinants, "trans modifiers," that influence epigenetic states genome-wide and their interplay with environmental factors. Here, we review this progress by focusing on the epigenetic control of transposition and life-cycle transitions to highlight the ecological consequences of this genetic architecture and its evolutionary significance. This knowledge provides new opportunities to address long-standing questions about the establishment of environment-associated epigenetic variation and its relevance in adaptation.
Collapse
Affiliation(s)
- Pierre Baduel
- Institut de Biologie de l'École Normale Supérieure (IBENS), ENS, PSL University, CNRS, 46 rue d'Ulm, Paris 75005, France
| | - Eriko Sasaki
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
17
|
June V, Song X, Jeffrey Chen Z. Imprinting but not cytonuclear interactions affects parent-of-origin effect on seed size in Arabidopsis hybrids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557997. [PMID: 37745544 PMCID: PMC10516054 DOI: 10.1101/2023.09.15.557997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The parent-of-origin effect on seed size can result from imprinting or a combinational effect between cytoplasmic and nuclear genomes, but their relative contributions remain unknown. To discern these confounding effects, we generated cytoplasmic-nuclear substitution (CNS) lines using recurrent backcrossing in the Arabidopsis thaliana ecotypes Col-0 and C24. These CNS lines differ only in the nuclear genome (imprinting) or in the cytoplasm. The CNS reciprocal hybrids with the same cytoplasm display a ~20% seed size difference as observed in the conventional hybrids. However, seed size is similar between the reciprocal cybrids with fixed imprinting. Transcriptome analyses in the endosperm of CNS hybrids using laser-capture microdissection have identified 104 maternally expressed genes (MEGs) and 90 paternally-expressed genes (PEGs). These imprinted genes are involved in pectin catabolism and cell wall modification in the endosperm. HDG9, an epiallele and one of 11 cross-specific imprinted genes, controls seed size. In the embryo, a handful of imprinted genes is found in the CNS hybrids but only one is expressed higher in the embryo than endosperm. AT4G13495 encodes a long-noncoding RNA (lncRNA), but no obvious seed phenotype is observed in the lncRNA knockout lines. NRPD1, encoding the largest subunit of RNA Pol IV, is involved in the biogenesis of small interfering RNAs. Seed size and embryo is larger in the cross using nrpd1 as the maternal parent than in the reciprocal cross. In spite of limited ecotypes tested, these results suggest potential roles of imprinting and NRPD1-mediated small RNA pathway in seed size variation in hybrids.
Collapse
Affiliation(s)
- Viviana June
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Xiaoya Song
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Z. Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
18
|
Rojek J, Ohad N. The phenomenon of autonomous endosperm in sexual and apomictic plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4324-4348. [PMID: 37155961 PMCID: PMC10433939 DOI: 10.1093/jxb/erad168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
Endosperm is a key nutritive tissue that supports the developing embryo or seedling, and serves as a major nutritional source for human and livestock feed. In sexually-reproducing flowering plants, it generally develops after fertilization. However, autonomous endosperm (AE) formation (i.e. independent of fertilization) is also possible. Recent findings of AE loci/ genes and aberrant imprinting in native apomicts, together with a successful initiation of parthenogenesis in rice and lettuce, have enhanced our understanding of the mechanisms bridging sexual and apomictic seed formation. However, the mechanisms driving AE development are not well understood. This review presents novel aspects related to AE development in sexual and asexual plants underlying stress conditions as the primary trigger for AE. Both application of hormones to unfertilized ovules and mutations that impair epigenetic regulation lead to AE development in sexual Arabidopsis thaliana, which may point to a common pathway for both phenomena. Apomictic-like AE development under experimental conditions can take place due to auxin-dependent gene expression and/or DNA methylation.
Collapse
Affiliation(s)
- Joanna Rojek
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Nir Ohad
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
19
|
Chen X, MacGregor DR, Stefanato FL, Zhang N, Barros-Galvão T, Penfield S. A VEL3 histone deacetylase complex establishes a maternal epigenetic state controlling progeny seed dormancy. Nat Commun 2023; 14:2220. [PMID: 37072400 PMCID: PMC10113200 DOI: 10.1038/s41467-023-37805-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/31/2023] [Indexed: 04/20/2023] Open
Abstract
Mother plants play an important role in the control of dormancy and dispersal characters of their progeny. In Arabidopsis seed dormancy is imposed by the embryo-surrounding tissues of the endosperm and seed coat. Here we show that VERNALIZATION5/VIN3-LIKE 3 (VEL3) maintains maternal control over progeny seed dormancy by establishing an epigenetic state in the central cell that primes the depth of primary seed dormancy later established during seed maturation. VEL3 colocalises with MSI1 in the nucleolus and associates with a histone deacetylase complex. Furthermore, VEL3 preferentially associates with pericentromeric chromatin and is required for deacetylation and H3K27me3 deposition established in the central cell. The epigenetic state established by maternal VEL3 is retained in mature seeds, and controls seed dormancy in part through repression of programmed cell death-associated gene ORE1. Our data demonstrates a mechanism by which maternal control of progeny seed physiology persists post-shedding, maintaining parental control of seed behaviour.
Collapse
Affiliation(s)
- Xiaochao Chen
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Dana R MacGregor
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Francesca L Stefanato
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Naichao Zhang
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Henan University, Jinming Road, Kaifeng, Henan, China
| | - Thiago Barros-Galvão
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Steven Penfield
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
20
|
van Ekelenburg YS, Hornslien KS, Van Hautegem T, Fendrych M, Van Isterdael G, Bjerkan KN, Miller JR, Nowack MK, Grini PE. Spatial and temporal regulation of parent-of-origin allelic expression in the endosperm. PLANT PHYSIOLOGY 2023; 191:986-1001. [PMID: 36437711 PMCID: PMC9922421 DOI: 10.1093/plphys/kiac520] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Genomic imprinting promotes differential expression of parental alleles in the endosperm of flowering plants and is regulated by epigenetic modification such as DNA methylation and histone tail modifications in chromatin. After fertilization, the endosperm develops through a syncytial stage before it cellularizes and becomes a nutrient source for the growing embryo. Regional compartmentalization has been shown both in early and late endosperm development, and different transcriptional domains suggest divergent spatial and temporal regional functions. The analysis of the role of parent-of-origin allelic expression in the endosperm as a whole and the investigation of domain-specific functions have been hampered by the inaccessibility of the tissue for high-throughput transcriptome analyses and contamination from surrounding tissue. Here, we used fluorescence-activated nuclear sorting (FANS) of nuclear targeted GFP fluorescent genetic markers to capture parental-specific allelic expression from different developmental stages and specific endosperm domains. This approach allowed us to successfully identify differential genomic imprinting with temporal and spatial resolution. We used a systematic approach to report temporal regulation of imprinted genes in the endosperm, as well as region-specific imprinting in endosperm domains. Analysis of our data identified loci that are spatially differentially imprinted in one domain of the endosperm, while biparentally expressed in other domains. These findings suggest that the regulation of genomic imprinting is dynamic and challenge the canonical mechanisms for genomic imprinting.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Paul E Grini
- Authors for correspondence: E-mail: (P.E.G.), (K.S.H.)
| |
Collapse
|
21
|
Lee J, Shin SY, Lee SK, Park K, Gill H, Hyun Y, Jeong C, Jeon JS, Shin C, Choi Y. Contribution of RdDM to the ecotype-specific differential methylation on conserved as well as highly variable regions between Arabidopsis ecotypes. BMC Genomics 2023; 24:36. [PMID: 36658480 PMCID: PMC9854041 DOI: 10.1186/s12864-023-09128-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Several studies showed genome-wide DNA methylation during Arabidopsis embryogenesis and germination. Although it has been known that the change of DNA methylation mainly occurs at CHH context mediated by small RNA-directed DNA methylation pathway during seed ripening and germination, the causality of the methylation difference exhibited in natural Arabidopsis ecotypes has not been thoroughly studied. RESULTS In this study we compared DNA methylation difference using comparative pairwise multi-omics dynamics in Columbia-0 (Col) and Cape Verde Island (Cvi) ecotypes. Arabidopsis genome was divided into two regions, common regions in both ecotypes and Col-specific regions, depending on the reads mapping of whole genome bisulfite sequencing libraries from both ecotypes. Ecotype comparison was conducted within common regions and the levels of DNA methylation on common regions and Col-specific regions were also compared. we confirmed transcriptome were relatively dynamic in stage-wise whereas the DNA methylome and small RNAome were more ecotype-dependent. While the global CG methylation remains steady during maturation and germination, we found genic CG methylation differs the most between the two accessions. We also found that ecotype-specific differentially methylated regions (eDMR) are positively correlated with ecotype-specifically expressed 24-nt small RNA clusters. In addition, we discovered that Col-specific regions enriched with transposable elements (TEs) and structural variants that tend to become hypermethylated, and TEs in Col-specific regions were longer in size, more pericentromeric, and more hypermethylated than those in the common regions. Through the analysis of RdDM machinery mutants, we confirmed methylation on Col-specific region as well as on eDMRs in common region are contributed by RdDM pathway. Lastly, we demonstrated that highly variable sequences between ecotypes (HOT regions) were also affected by RdDM-mediated regulation. CONCLUSIONS Through ecotype comparison, we revealed differences and similarities of their transcriptome, methylome and small RNAome both in global and local regions. We validated the contribution of RdDM causing differential methylation of common regions. Hypermethylated ecotype-specific regions contributed by RNA-directed DNA methylation pathway largely depend on the presence of TEs and copy-gain structural variations. These ecotype-specific regions are frequently associated with HOT regions, providing evolutionary insights into the epigenome dynamics within a species.
Collapse
Affiliation(s)
- Jaehoon Lee
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.31501.360000 0004 0470 5905Research Center for Plant Plasticity, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sang-Yoon Shin
- grid.31501.360000 0004 0470 5905Research Center for Plant Plasticity, Seoul National University, Seoul, 08826 Republic of Korea ,grid.31501.360000 0004 0470 5905Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sang-Kyu Lee
- grid.289247.20000 0001 2171 7818Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea ,grid.256681.e0000 0001 0661 1492Current address: Division of Life Science, Gyeongsang National University, Jinju, 52828 South Korea
| | - Kyunghyuk Park
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, Seoul National University, Seoul, 08826 South Korea
| | - Haechan Gill
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, Seoul National University, Seoul, 08826 South Korea
| | - Youbong Hyun
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.31501.360000 0004 0470 5905Research Center for Plant Plasticity, Seoul National University, Seoul, 08826 Republic of Korea
| | - Choongwon Jeong
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, Seoul National University, Seoul, 08826 South Korea
| | - Jong-Seong Jeon
- grid.289247.20000 0001 2171 7818Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea
| | - Chanseok Shin
- grid.31501.360000 0004 0470 5905Research Center for Plant Plasticity, Seoul National University, Seoul, 08826 Republic of Korea ,grid.31501.360000 0004 0470 5905Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826 Republic of Korea ,grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea ,grid.31501.360000 0004 0470 5905Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.31501.360000 0004 0470 5905Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826 South Korea
| | - Yeonhee Choi
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.31501.360000 0004 0470 5905Research Center for Plant Plasticity, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
22
|
Li T, Yin L, Stoll CE, Lisch D, Zhao M. Conserved noncoding sequences and de novo Mutator insertion alleles are imprinted in maize. PLANT PHYSIOLOGY 2023; 191:299-316. [PMID: 36173333 PMCID: PMC9806621 DOI: 10.1093/plphys/kiac459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/30/2022] [Indexed: 05/20/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon in which differential allele expression occurs in a parent-of-origin-dependent manner. Imprinting in plants is tightly linked to transposable elements (TEs), and it has been hypothesized that genomic imprinting may be a consequence of demethylation of TEs. Here, we performed high-throughput sequencing of ribonucleic acids from four maize (Zea mays) endosperms that segregated newly silenced Mutator (Mu) transposons and identified 110 paternally expressed imprinted genes (PEGs) and 139 maternally expressed imprinted genes (MEGs). Additionally, two potentially novel paternally suppressed MEGs are associated with de novo Mu insertions. In addition, we find evidence for parent-of-origin effects on expression of 407 conserved noncoding sequences (CNSs) in maize endosperm. The imprinted CNSs are largely localized within genic regions and near genes, but the imprinting status of the CNSs are largely independent of their associated genes. Both imprinted CNSs and PEGs have been subject to relaxed selection. However, our data suggest that although MEGs were already subject to a higher mutation rate prior to their being imprinted, imprinting may be the cause of the relaxed selection of PEGs. In addition, although DNA methylation is lower in the maternal alleles of both the maternally and paternally expressed CNSs (mat and pat CNSs), the difference between the two alleles in H3K27me3 levels was only observed in pat CNSs. Together, our findings point to the importance of both transposons and CNSs in genomic imprinting in maize.
Collapse
Affiliation(s)
- Tong Li
- Department of Biology, Miami University, Oxford, Ohio 45056, USA
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Liangwei Yin
- Department of Biology, Miami University, Oxford, Ohio 45056, USA
| | - Claire E Stoll
- Department of Biology, Miami University, Oxford, Ohio 45056, USA
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Meixia Zhao
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
23
|
Srikant T, Yuan W, Berendzen KW, Contreras-Garrido A, Drost HG, Schwab R, Weigel D. Canalization of genome-wide transcriptional activity in Arabidopsis thaliana accessions by MET1-dependent CG methylation. Genome Biol 2022; 23:263. [PMID: 36539836 PMCID: PMC9768921 DOI: 10.1186/s13059-022-02833-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Despite its conserved role on gene expression and transposable element (TE) silencing, genome-wide CG methylation differs substantially between wild Arabidopsis thaliana accessions. RESULTS To test our hypothesis that global reduction of CG methylation would reduce epigenomic, transcriptomic, and phenotypic diversity in A. thaliana accessions, we knock out MET1, which is required for CG methylation, in 18 early-flowering accessions. Homozygous met1 mutants in all accessions suffer from common developmental defects such as dwarfism and delayed flowering, in addition to accession-specific abnormalities in rosette leaf architecture, silique morphology, and fertility. Integrated analysis of genome-wide methylation, chromatin accessibility, and transcriptomes confirms that MET1 inactivation greatly reduces CG methylation and alters chromatin accessibility at thousands of loci. While the effects on TE activation are similarly drastic in all accessions, the quantitative effects on non-TE genes vary greatly. The global expression profiles of accessions become considerably more divergent from each other after genome-wide removal of CG methylation, although a few genes with diverse expression profiles across wild-type accessions tend to become more similar in mutants. Most differentially expressed genes do not exhibit altered chromatin accessibility or CG methylation in cis, suggesting that absence of MET1 can have profound indirect effects on gene expression and that these effects vary substantially between accessions. CONCLUSIONS Systematic analysis of MET1 requirement in different A. thaliana accessions reveals a dual role for CG methylation: for many genes, CG methylation appears to canalize expression levels, with methylation masking regulatory divergence. However, for a smaller subset of genes, CG methylation increases expression diversity beyond genetically encoded differences.
Collapse
Affiliation(s)
- Thanvi Srikant
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Present address: Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Wei Yuan
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Kenneth Wayne Berendzen
- Plant Transformation and Flow Cytometry Facility, ZMBP, University of Tübingen, Tübingen, Germany
| | | | - Hajk-Georg Drost
- Computational Biology Group, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Rebecca Schwab
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
24
|
Conservation Study of Imprinted Genes in Maize Triparental Heterozygotic Kernels. Int J Mol Sci 2022; 23:ijms232315424. [PMID: 36499766 PMCID: PMC9735609 DOI: 10.3390/ijms232315424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Genomic imprinting is a classic epigenetic phenomenon related to the uniparental expression of genes. Imprinting variability exists in seeds and can contribute to observed parent-of-origin effects on seed development. Here, we conducted allelic expression of the embryo and endosperm from four crosses at 11 days after pollination (DAP). First, the F1 progeny of B73(♀) × Mo17(♂) and the inducer line CAU5 were used as parents to obtain reciprocal crosses of BM-C/C-BM. Additionally, the F1 progeny of Mo17(♀) × B73(♂) and CAU5 were used as parents to obtain reciprocal crosses of MB-C/C-MB. In total, 192 and 181 imprinted genes were identified in the BM-C/C-BM and MB-C/C-MB crosses, respectively. Then, by comparing the allelic expression of these imprinted genes in the reciprocal crosses of B73 and CAU5 (BC/CB), fifty-one Mo17-added non-conserved genes were identified as exhibiting imprinting variability. Fifty-one B73-added non-conserved genes were also identified by comparing the allelic expression of imprinted genes identified in BM-C/C-BM, MB-C/C-MB and MC/CM crosses. Specific Gene Ontology (GO) terms were not enriched in B73-added/Mo17-added non-conserved genes. Interestingly, the imprinting status of these genes was less conserved across other species. The cis-element distribution, tissue expression and subcellular location were similar between the B73-added/Mo17-added conserved and B73-added/Mo17-added non-conserved imprinted genes. Finally, genotypic and phenotypic analysis of one non-conserved gene showed that the mutation and overexpression of this gene may affect embryo and kernel size, which indicates that these non-conserved genes may also play an important role in kernel development. The findings of this study will be helpful for elucidating the imprinting mechanism of genes involved in maize kernel development.
Collapse
|
25
|
Alaniz-Fabián J, Orozco-Nieto A, Abreu-Goodger C, Gillmor CS. Hybridization alters maternal and paternal genome contributions to early plant embryogenesis. Development 2022; 149:281772. [PMID: 36314727 DOI: 10.1242/dev.201025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
After fertilization, zygotic genome activation results in a transcriptionally competent embryo. Hybrid transcriptome experiments in Arabidopsis have concluded that the maternal and paternal genomes make equal contributions to zygotes and embryos, yet embryo defective (emb) mutants in the Columbia (Col) ecotype display early maternal effects. Here, we show that hybridization of Col with Landsberg erecta (Ler) or Cape Verde Islands (Cvi) ecotypes decreases the maternal effects of emb mutants. Reanalysis of Col/Ler and Col/Cvi transcriptomes confirmed equal parental contributions in Col/Cvi early embryos. By contrast, thousands of genes in Col/Ler zygotes and one-cell embryos were biallelic in one cross and monoallelic in the reciprocal cross, with analysis of intron reads pointing to active transcription as responsible for this parent-of-origin bias. Our analysis shows that, contrary to previous conclusions, the maternal and paternal genomes in Col/Ler zygotes are activated in an asymmetric manner. The decrease in maternal effects in hybrid embryos compared with those in isogenic Col along with differences in genome activation between Col/Cvi and Col/Ler suggest that neither of these hybrids accurately reflects the general trends of parent-of-origin regulation in Arabidopsis embryogenesis.
Collapse
Affiliation(s)
- Jaime Alaniz-Fabián
- Langebio, Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato 36824, México
| | - Axel Orozco-Nieto
- Langebio, Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato 36824, México
| | - Cei Abreu-Goodger
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - C Stewart Gillmor
- Langebio, Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato 36824, México
| |
Collapse
|
26
|
Sato H, Köhler C. Genomic imprinting regulates establishment and release of seed dormancy. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102264. [PMID: 35872392 DOI: 10.1016/j.pbi.2022.102264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/12/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Seed dormancy enables plant seeds to time germination until environmental conditions become favorable for seedling survival. This trait has high adaptive value and is of great agricultural relevance. The endosperm is a reproductive tissue formed after fertilization that in addition to support embryo growth has major roles in establishing seed dormancy. Many genes adopt parent-of-origin specific expression patterns in the endosperm, a phenomenon that has been termed genomic imprinting. Imprinted genes are targeted by epigenetic mechanisms acting before and after fertilization. Recent studies revealed that imprinted genes are involved in establishing seed dormancy, highlighting a new mechanism of parental control over this adaptive trait. Here, we review the regulatory mechanisms establishing genomic imprinting and their effect on seed dormancy.
Collapse
Affiliation(s)
- Hikaru Sato
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala, Sweden; Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| |
Collapse
|
27
|
Tonosaki K, Fujimoto R, Dennis ES, Raboy V, Osabe K. Will epigenetics be a key player in crop breeding? FRONTIERS IN PLANT SCIENCE 2022; 13:958350. [PMID: 36247549 PMCID: PMC9562705 DOI: 10.3389/fpls.2022.958350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
If food and feed production are to keep up with world demand in the face of climate change, continued progress in understanding and utilizing both genetic and epigenetic sources of crop variation is necessary. Progress in plant breeding has traditionally been thought to be due to selection for spontaneous DNA sequence mutations that impart desirable phenotypes. These spontaneous mutations can expand phenotypic diversity, from which breeders can select agronomically useful traits. However, it has become clear that phenotypic diversity can be generated even when the genome sequence is unaltered. Epigenetic gene regulation is a mechanism by which genome expression is regulated without altering the DNA sequence. With the development of high throughput DNA sequencers, it has become possible to analyze the epigenetic state of the whole genome, which is termed the epigenome. These techniques enable us to identify spontaneous epigenetic mutations (epimutations) with high throughput and identify the epimutations that lead to increased phenotypic diversity. These epimutations can create new phenotypes and the causative epimutations can be inherited over generations. There is evidence of selected agronomic traits being conditioned by heritable epimutations, and breeders may have historically selected for epiallele-conditioned agronomic traits. These results imply that not only DNA sequence diversity, but the diversity of epigenetic states can contribute to increased phenotypic diversity. However, since the modes of induction and transmission of epialleles and their stability differ from that of genetic alleles, the importance of inheritance as classically defined also differs. For example, there may be a difference between the types of epigenetic inheritance important to crop breeding and crop production. The former may depend more on longer-term inheritance whereas the latter may simply take advantage of shorter-term phenomena. With the advances in our understanding of epigenetics, epigenetics may bring new perspectives for crop improvement, such as the use of epigenetic variation or epigenome editing in breeding. In this review, we will introduce the role of epigenetic variation in plant breeding, largely focusing on DNA methylation, and conclude by asking to what extent new knowledge of epigenetics in crop breeding has led to documented cases of its successful use.
Collapse
Affiliation(s)
- Kaoru Tonosaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Elizabeth S. Dennis
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Canberra, ACT, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Victor Raboy
- Independent Researcher Portland, Portland, OR, United States
| | - Kenji Osabe
- Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan
| |
Collapse
|
28
|
Gent JI, Higgins KM, Swentowsky KW, Fu FF, Zeng Y, Kim DW, Dawe RK, Springer NM, Anderson SN. The maize gene maternal derepression of r1 encodes a DNA glycosylase that demethylates DNA and reduces siRNA expression in the endosperm. THE PLANT CELL 2022; 34:3685-3701. [PMID: 35775949 PMCID: PMC9516051 DOI: 10.1093/plcell/koac199] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/27/2022] [Indexed: 06/01/2023]
Abstract
Demethylation of transposons can activate the expression of nearby genes and cause imprinted gene expression in the endosperm; this demethylation is hypothesized to lead to expression of transposon small interfering RNAs (siRNAs) that reinforce silencing in the next generation through transfer either into egg or embryo. Here we describe maize (Zea mays) maternal derepression of r1 (mdr1), which encodes a DNA glycosylase with homology to Arabidopsis thaliana DEMETER and which is partially responsible for demethylation of thousands of regions in endosperm. Instead of promoting siRNA expression in endosperm, MDR1 activity inhibits it. Methylation of most repetitive DNA elements in endosperm is not significantly affected by MDR1, with an exception of Helitrons. While maternally-expressed imprinted genes preferentially overlap with MDR1 demethylated regions, the majority of genes that overlap demethylated regions are not imprinted. Double mutant megagametophytes lacking both MDR1 and its close homolog DNG102 result in early seed failure, and double mutant microgametophytes fail pre-fertilization. These data establish DNA demethylation by glycosylases as essential in maize endosperm and pollen and suggest that neither transposon repression nor genomic imprinting is its main function in endosperm.
Collapse
Affiliation(s)
| | - Kaitlin M Higgins
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Kyle W Swentowsky
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Fang-Fang Fu
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
- Co‐Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yibing Zeng
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Dong won Kim
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - R Kelly Dawe
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Sarah N Anderson
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
29
|
RNA Pol IV induces antagonistic parent-of-origin effects on Arabidopsis endosperm. PLoS Biol 2022; 20:e3001602. [PMID: 35389984 PMCID: PMC9017945 DOI: 10.1371/journal.pbio.3001602] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/19/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022] Open
Abstract
Gene expression in endosperm-a seed tissue that mediates transfer of maternal resources to offspring-is under complex epigenetic control. We show here that plant-specific RNA polymerase IV (Pol IV) mediates parental control of endosperm gene expression. Pol IV is required for the production of small interfering RNAs that typically direct DNA methylation. We compared small RNAs (sRNAs), DNA methylation, and mRNAs in Arabidopsis thaliana endosperm from heterozygotes produced by reciprocally crossing wild-type (WT) plants to Pol IV mutants. We find that maternally and paternally acting Pol IV induce distinct effects on endosperm. Loss of maternal or paternal Pol IV impacts sRNAs and DNA methylation at different genomic sites. Strikingly, maternally and paternally acting Pol IV have antagonistic impacts on gene expression at some loci, divergently promoting or repressing endosperm gene expression. Antagonistic parent-of-origin effects have only rarely been described and are consistent with a gene regulatory system evolving under parental conflict.
Collapse
|
30
|
Williams BP, Bechen LL, Pohlmann DA, Gehring M. Somatic DNA demethylation generates tissue-specific methylation states and impacts flowering time. THE PLANT CELL 2022; 34:1189-1206. [PMID: 34954804 PMCID: PMC8972289 DOI: 10.1093/plcell/koab319] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/21/2021] [Indexed: 05/29/2023]
Abstract
Cytosine methylation is a reversible epigenetic modification of DNA. In plants, removal of cytosine methylation is accomplished by the four members of the DEMETER (DME) family of 5-methylcytosine DNA glycosylases, named DME, DEMETER-LIKE2 (DML2), DML3, and REPRESSOR OF SILENCING1 (ROS1) in Arabidopsis thaliana. Demethylation by DME is critical for seed development, preventing experiments to determine the function of the entire gene family in somatic tissues by mutant analysis. Here, we bypassed the reproductive defects of dme mutants to create somatic quadruple homozygous mutants of the entire DME family. dme; ros1; dml2; and dml3 (drdd) leaves exhibit hypermethylated regions compared with wild-type leaves and rdd triple mutants, indicating functional redundancy among all four demethylases. Targets of demethylation include regions co-targeted by RNA-directed DNA methylation and, surprisingly, CG gene body methylation, indicating dynamic methylation at these less-understood sites. Additionally, many tissue-specific methylation differences are absent in drdd, suggesting a role for active demethylation in generating divergent epigenetic states across wild-type tissues. Furthermore, drdd plants display an early flowering phenotype, which involves 5'-hypermethylation and transcriptional down-regulation of FLOWERING LOCUS C. Active DNA demethylation is therefore required for proper methylation across somatic tissues and defines the epigenetic landscape of intergenic and coding regions.
Collapse
Affiliation(s)
- Ben P Williams
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Lindsey L Bechen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Deborah A Pohlmann
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
31
|
Castillo-Bravo R, Fort A, Cashell R, Brychkova G, McKeown PC, Spillane C. Parent-of-Origin Effects on Seed Size Modify Heterosis Responses in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:835219. [PMID: 35330872 PMCID: PMC8940307 DOI: 10.3389/fpls.2022.835219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 05/05/2023]
Abstract
Parent-of-origin effects arise when a phenotype depends on whether it is inherited maternally or paternally. Parent-of-origin effects can exert a strong influence on F1 seed size in flowering plants, an important agronomic and life-history trait that can contribute to biomass heterosis. Here we investigate the natural variation in the relative contributions of the maternal and paternal genomes to F1 seed size across 71 reciprocal pairs of F1 hybrid diploids and the parental effect on F1 seed size heterosis. We demonstrate that the paternally derived genome influences F1 seed size more significantly than previously appreciated. We further demonstrate (by disruption of parental genome dosage balance in F1 triploid seeds) that hybridity acts as an enhancer of genome dosage effects on F1 seed size, beyond that observed from hybridity or genome dosage effects on their own. Our findings indicate that interactions between genetic hybridity and parental genome dosage can enhance heterosis effects in plants, opening new avenues for boosting heterosis breeding in crop plants.
Collapse
|
32
|
Huc J, Dziasek K, Pachamuthu K, Woh T, Köhler C, Borges F. Bypassing reproductive barriers in hybrid seeds using chemically induced epimutagenesis. THE PLANT CELL 2022; 34:989-1001. [PMID: 34792584 PMCID: PMC8894923 DOI: 10.1093/plcell/koab284] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/09/2021] [Indexed: 05/13/2023]
Abstract
The triploid block, which prevents interploidy hybridizations in flowering plants, is characterized by a failure in endosperm development, arrest in embryogenesis, and seed collapse. Many genetic components of triploid seed lethality have been successfully identified in the model plant Arabidopsis thaliana, most notably the paternally expressed genes (PEGs), which are upregulated in tetraploid endosperm with paternal excess. Previous studies have shown that the paternal epigenome is a key determinant of the triploid block response, as the loss of DNA methylation in diploid pollen suppresses the triploid block almost completely. Here, we demonstrate that triploid seed collapse is bypassed in Arabidopsis plants treated with the DNA methyltransferase inhibitor 5-Azacytidine during seed germination and early growth. We identified strong suppressor lines showing stable transgenerational inheritance of hypomethylation in the CG context, as well as normalized expression of PEGs in triploid seeds. Importantly, differentially methylated loci segregate in the progeny of "epimutagenized" plants, which may allow epialleles involved in the triploid block response to be identified in future studies. Finally, we demonstrate that chemically induced epimutagenesis facilitates hybridization between different Capsella species, thus potentially emerging as a strategy for producing triploids and interspecific hybrids with high agronomic interest.
Collapse
Affiliation(s)
- Jonathan Huc
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Katarzyna Dziasek
- Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Linnean Center of Plant Biology, Uppsala, Sweden
| | - Kannan Pachamuthu
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Tristan Woh
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Claudia Köhler
- Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Linnean Center of Plant Biology, Uppsala, Sweden
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Filipe Borges
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
- Author for correspondence:
| |
Collapse
|
33
|
Lu D, Zhai J, Xi M. Regulation of DNA Methylation During Plant Endosperm Development. Front Genet 2022; 13:760690. [PMID: 35222527 PMCID: PMC8867698 DOI: 10.3389/fgene.2022.760690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
The endosperm is a vital storage tissue in plant seeds. It provides nutrients to the embryos or the seedlings during seed development and germination. Although the genetic information in the endosperm cannot be passed directly to the next generation, its inherited epigenetic marks affect gene expression and its development and, consequently, embryo and seed growth. DNA methylation is a major form of epigenetic modification that can be investigated to understand the epigenome changes during reproductive development. Therefore, it is of great significance to explore the effects of endosperm DNA methylation on crop yield and traits. In this review, we discuss the changes in DNA methylation and the resulting imprinted gene expression levels during plant endosperm development, as well as their effects on seed development.
Collapse
Affiliation(s)
- Dongdong Lu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Jixian Zhai
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Jixian Zhai, ; Mengli Xi,
| | - Mengli Xi
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- *Correspondence: Jixian Zhai, ; Mengli Xi,
| |
Collapse
|
34
|
Ren Y, Li M, Wang W, Lan W, Schenke D, Cai D, Miao Y. MicroRNA840 (MIR840) accelerates leaf senescence by targeting the overlapping 3'UTRs of PPR and WHIRLY3 in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:126-143. [PMID: 34724261 DOI: 10.1111/tpj.15559] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
MicroRNAs negatively regulate gene expression by promoting target mRNA cleavage and/or impairing its translation, thereby playing a crucial role in plant development and environmental stress responses. In Arabidopsis, the MIR840 gene is located within the overlapping 3'UTR of the PPR and WHIRLY3 (WHY3) genes, both being predicted targets of miR840* and miR840, the short maturation products of MIR840. Gain- and loss-of-function of MIR840 in Arabidopsis resulted in opposite senescence phenotypes. The highest expression levels of the MIR840 precursor transcript pre-miR840 were observed at senescence initiation, and pre-miR840 expression is significantly correlated with a reduction in PPR, but not WHY3, transcript levels. Although a reduction of transcript level of PPR, but not WHY3 transcript levels were not significantly affected by MIR840 overexpression, its protein levels were strongly reduced. Mutating the cleavage sites or replacing the target sequences abolishes the miR840*/miR840-mediated degradation of PPR transcripts and accumulation of WHY3 protein. In support for this, concurrent knockdown of both PPR and WHY3 in wild-type plants resulted in a senescence phenotype resembling that of the MIR840-overexpressing plant. This indicates that both PRR and WHY3 are targets in the MIR840-mediated senescence pathway. Moreover, single knockout mutants of PPR and WHY3 show a convergent upregulated subset of senescence-associated genes, which are also found among those induced by MIR840 overexpression. Our data provide evidence for a regulatory role of MIR840 in plant senescence.
Collapse
Affiliation(s)
- Yujun Ren
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengsi Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wanzhen Wang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Lan
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dirk Schenke
- Department of Molecular Phytopathology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Daguang Cai
- Department of Molecular Phytopathology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
35
|
Zhang Z, Yu S, Li J, Zhu Y, Jiang S, Xia H, Zhou Y, Sun D, Liu M, Li C, Zhu Y, Ruan Y, Dong X. Epigenetic modifications potentially controlling the allelic expression of imprinted genes in sunflower endosperm. BMC PLANT BIOLOGY 2021; 21:570. [PMID: 34863098 PMCID: PMC8642925 DOI: 10.1186/s12870-021-03344-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/26/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Genomic imprinting is an epigenetic phenomenon mainly occurs in endosperm of flowering plants. Genome-wide identification of imprinted genes have been completed in several dicot Cruciferous plant and monocot crops. RESULTS Here, we analyzed global patterns of allelic gene expression in developing endosperm of sunflower which belongs to the composite family. Totally, 691 imprinted loci candidates were identified in 12 day-after-pollination sunflower endosperm including 79 maternally expressed genes (MEG) and 596 paternally expressed genes (PEG), 6 maternally expressed noncoding RNAs (MNC) and 10 paternally expressed noncoding RNAs (PNC). And a clear clustering of imprinted genes throughout the rapeseed genome was identified. Generally, imprinting in sunflower is conserved within a species, but intraspecific variation also was detected. Limited loci in sunflower are imprinted in other several different species. The DNA methylation pattern around imprinted genes were investigated in embryo and endosperm tissues. In CG context, the imprinted genes were significantly associated with differential methylated regions exhibiting hypomethylation in endosperm and hypermethylation in embryo, which indicated that the maternal demethylation in CG context potentially induce the genomic imprinting in endosperm. CONCLUSION Our study would be helpful for understanding of genomic imprinting in plants and provide potential basis for further research in imprinting in sunflower.
Collapse
Affiliation(s)
- Zhichao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Shuai Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Jing Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanbin Zhu
- State Key Laboratory of Maize Bio-Breeding, Shenyang, China
- State Key Laboratory of the Northeast Crop Genetics and Breeding, Shenyang, China
| | - Siqi Jiang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Haoran Xia
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yue Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Daqiu Sun
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Meiling Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yanshu Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China.
- State Key Laboratory of Maize Bio-Breeding, Shenyang, China.
| |
Collapse
|
36
|
Montgomery SA, Berger F. The evolution of imprinting in plants: beyond the seed. PLANT REPRODUCTION 2021; 34:373-383. [PMID: 33914165 PMCID: PMC8566399 DOI: 10.1007/s00497-021-00410-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/12/2021] [Indexed: 05/14/2023]
Abstract
Genomic imprinting results in the biased expression of alleles depending on if the allele was inherited from the mother or the father. Despite the prevalence of sexual reproduction across eukaryotes, imprinting is only found in placental mammals, flowering plants, and some insects, suggesting independent evolutionary origins. Numerous hypotheses have been proposed to explain the selective pressures that favour the innovation of imprinted gene expression and each differs in their experimental support and predictions. Due to the lack of investigation of imprinting in land plants, other than angiosperms with triploid endosperm, we do not know whether imprinting occurs in species lacking endosperm and with embryos developing on maternal plants. Here, we discuss the potential for uncovering additional examples of imprinting in land plants and how these observations may provide additional support for one or more existing imprinting hypotheses.
Collapse
Affiliation(s)
- Sean A Montgomery
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr Gasse 3, 1030, Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr Gasse 3, 1030, Vienna, Austria.
| |
Collapse
|
37
|
Evolution of CG Methylation Maintenance Machinery in Plants. EPIGENOMES 2021; 5:epigenomes5030019. [PMID: 34968368 PMCID: PMC8594673 DOI: 10.3390/epigenomes5030019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Cytosine methylation is an epigenetic mark present in most eukaryotic genomes that contributes to the regulation of gene expression and the maintenance of genome stability. DNA methylation mostly occurs at CG sequences, where it is initially deposited by de novo DNA methyltransferases and propagated by maintenance DNA methyltransferases (DNMT) during DNA replication. In this review, we first summarize the mechanisms maintaining CG methylation in mammals that involve the DNA Methyltransferase 1 (DNMT1) enzyme and its cofactor, UHRF1 (Ubiquitin-like with PHD and RING Finger domain 1). We then discuss the evolutionary conservation and diversification of these two core factors in the plant kingdom and speculate on potential functions of novel homologues typically observed in land plants but not in mammals.
Collapse
|
38
|
Jiang H, Guo D, Ye J, Gao Y, Liu H, Wang Y, Xue M, Yan Q, Chen J, Duan L, Li G, Li X, Xie L. Genome-wide analysis of genomic imprinting in the endosperm and allelic variation in flax. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1697-1710. [PMID: 34228847 DOI: 10.1111/tpj.15411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon that causes biased expression of maternally and paternally inherited alleles. In flowering plants, genomic imprinting predominantly occurs in the triploid endosperm and plays a vital role in seed development. In this study, we identified 248 candidate imprinted genes including 114 maternally expressed imprinted genes (MEGs) and 134 paternally expressed imprinted genes (PEGs) in flax (Linum usitatissimum L.) endosperm using deep RNA sequencing. These imprinted genes were neither clustered in specific chromosomal regions nor well conserved among flax and other plant species. MEGs tended to be expressed specifically in the endosperm, whereas the expression of PEGs was not tissue-specific. Imprinted single nucleotide polymorphisms differentiated 200 flax cultivars into the oil flax, oil-fiber dual purpose flax and fiber flax subgroups, suggesting that genomic imprinting contributed to intraspecific variation in flax. The nucleotide diversity of imprinted genes in the oil flax subgroup was significantly higher than that in the fiber flax subgroup, indicating that some imprinted genes underwent positive selection during flax domestication from oil flax to fiber flax. Moreover, imprinted genes that underwent positive selection were related to flax functions. Thirteen imprinted genes related to flax seed size and weight were identified using a candidate gene-based association study. Therefore, our study provides information for further exploration of the function and genomic variation of imprinted genes in the flax population.
Collapse
Affiliation(s)
- Haixia Jiang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Dongliang Guo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jiali Ye
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanfang Gao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Huiqing Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Yue Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Min Xue
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Qingcheng Yan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jiaxun Chen
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Lepeng Duan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Gongze Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Xiao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Liqiong Xie
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| |
Collapse
|
39
|
Sato H, Santos-González J, Köhler C. Combinations of maternal-specific repressive epigenetic marks in the endosperm control seed dormancy. eLife 2021; 10:e64593. [PMID: 34427186 PMCID: PMC8456740 DOI: 10.7554/elife.64593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
Polycomb Repressive Complex 2 (PRC2)-mediated trimethylation of histone H3 on lysine 27 (H3K27me3) and methylation of histone 3 on lysine 9 (H3K9me) are two repressive epigenetic modifications that are typically localized in distinct regions of the genome. For reasons unknown, however, they co-occur in some organisms and special tissue types. In this study, we show that maternal alleles marked by H3K27me3 in the Arabidopsis endosperm were targeted by the H3K27me3 demethylase REF6 and became activated during germination. In contrast, maternal alleles marked by H3K27me3, H3K9me2, and CHG methylation (CHGm) are likely to be protected from REF6 targeting and remained silenced. Our study unveils that combinations of different repressive epigenetic modifications time a key adaptive trait by modulating access of REF6.
Collapse
Affiliation(s)
- Hikaru Sato
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant BiologyUppsalaSweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant BiologyUppsalaSweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant BiologyUppsalaSweden
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany
| |
Collapse
|
40
|
The Underlying Nature of Epigenetic Variation: Origin, Establishment, and Regulatory Function of Plant Epialleles. Int J Mol Sci 2021; 22:ijms22168618. [PMID: 34445323 PMCID: PMC8395315 DOI: 10.3390/ijms22168618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 11/17/2022] Open
Abstract
In plants, the gene expression and associated phenotypes can be modulated by dynamic changes in DNA methylation, occasionally being fixed in certain genomic loci and inherited stably as epialleles. Epiallelic variations in a population can occur as methylation changes at an individual cytosine position, methylation changes within a stretch of genomic regions, and chromatin changes in certain loci. Here, we focus on methylated regions, since it is unclear whether variations at individual methylated cytosines can serve any regulatory function, and the evidence for heritable chromatin changes independent of genetic changes is limited. While DNA methylation is known to affect and regulate wide arrays of plant phenotypes, most epialleles in the form of methylated regions have not been assigned any biological function. Here, we review how epialleles can be established in plants, serve a regulatory function, and are involved in adaptive processes. Recent studies suggest that most epialleles occur as byproducts of genetic variations, mainly from structural variants and Transposable Element (TE) activation. Nevertheless, epialleles that occur spontaneously independent of any genetic variations have also been described across different plant species. Here, we discuss how epialleles that are dependent and independent of genetic architecture are stabilized in the plant genome and how methylation can regulate a transcription relative to its genomic location.
Collapse
|
41
|
Rodrigues JA, Hsieh PH, Ruan D, Nishimura T, Sharma MK, Sharma R, Ye X, Nguyen ND, Nijjar S, Ronald PC, Fischer RL, Zilberman D. Divergence among rice cultivars reveals roles for transposition and epimutation in ongoing evolution of genomic imprinting. Proc Natl Acad Sci U S A 2021; 118:e2104445118. [PMID: 34272287 PMCID: PMC8307775 DOI: 10.1073/pnas.2104445118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Parent-of-origin-dependent gene expression in mammals and flowering plants results from differing chromatin imprints (genomic imprinting) between maternally and paternally inherited alleles. Imprinted gene expression in the endosperm of seeds is associated with localized hypomethylation of maternally but not paternally inherited DNA, with certain small RNAs also displaying parent-of-origin-specific expression. To understand the evolution of imprinting mechanisms in Oryza sativa (rice), we analyzed imprinting divergence among four cultivars that span both japonica and indica subspecies: Nipponbare, Kitaake, 93-11, and IR64. Most imprinted genes are imprinted across cultivars and enriched for functions in chromatin and transcriptional regulation, development, and signaling. However, 4 to 11% of imprinted genes display divergent imprinting. Analyses of DNA methylation and small RNAs revealed that endosperm-specific 24-nt small RNA-producing loci show weak RNA-directed DNA methylation, frequently overlap genes, and are imprinted four times more often than genes. However, imprinting divergence most often correlated with local DNA methylation epimutations (9 of 17 assessable loci), which were largely stable within subspecies. Small insertion/deletion events and transposable element insertions accompanied 4 of the 9 locally epimutated loci and associated with imprinting divergence at another 4 of the remaining 8 loci. Correlating epigenetic and genetic variation occurred at key regulatory regions-the promoter and transcription start site of maternally biased genes, and the promoter and gene body of paternally biased genes. Our results reinforce models for the role of maternal-specific DNA hypomethylation in imprinting of both maternally and paternally biased genes, and highlight the role of transposition and epimutation in rice imprinting evolution.
Collapse
Affiliation(s)
- Jessica A Rodrigues
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Ping-Hung Hsieh
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Deling Ruan
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Toshiro Nishimura
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Manoj K Sharma
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Rita Sharma
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - XinYi Ye
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Nicholas D Nguyen
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Sukhranjan Nijjar
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Pamela C Ronald
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Robert L Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720;
| | - Daniel Zilberman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720;
- Department of Cell and Developmental Biology, The John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
42
|
Novikova DD, Korosteleva AL, Mironova V, Jaillais Y. Meet your MAKR: the membrane-associated kinase regulator protein family in the regulation of plant development. FEBS J 2021; 289:6172-6186. [PMID: 34288456 DOI: 10.1111/febs.16132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/03/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022]
Abstract
A small family composed of BRI1 KINASE INHIBITOR1 (BKI1) and MEMBRANE-ASSOCIATED KINASE REGULATORS (MAKRs) has recently captured the attention of plant biologists, due to their involvement in developmental processes downstream of hormones and Receptor-Like Kinases (RLK) signalling. BKI1/MAKRs are intrinsically disordered proteins (so-called unstructured proteins) and as such lack specific domains. Instead, they are defined by the presence of two conserved linear motifs involved in the interaction with lipids and proteins, respectively. Here, we first relate the discovery of the MAKR gene family. Then, we review the individual function of characterized family members and discuss their shared and specific modes of action. Finally, we explore and summarize the structural, comparative and functional genomics data available on this gene family. Together, this review aims at building a comprehensive reference about BKI1/MAKR protein function in plants.
Collapse
Affiliation(s)
- Daria D Novikova
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, Lausanne, Switzerland.,Institute of Cytology and Genetics, Novosibirsk, Russian Federation
| | - Anastasia L Korosteleva
- Institute of Cytology and Genetics, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| | - Victoria Mironova
- Institute of Cytology and Genetics, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation.,Department of Plant Systems Physiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, CNRS, INRAE, Université de Lyon, École normale supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
43
|
Picard CL, Povilus RA, Williams BP, Gehring M. Transcriptional and imprinting complexity in Arabidopsis seeds at single-nucleus resolution. NATURE PLANTS 2021; 7:730-738. [PMID: 34059805 PMCID: PMC8217372 DOI: 10.1038/s41477-021-00922-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/15/2021] [Indexed: 05/06/2023]
Abstract
Seeds are a key life cycle stage for many plants. Seeds are also the basis of agriculture and the primary source of calories consumed by humans1. Here, we employ single-nucleus RNA-sequencing to generate a transcriptional atlas of developing Arabidopsis thaliana seeds, with a focus on endosperm. Endosperm, the primary site of gene imprinting in flowering plants, mediates the relationship between the maternal parent and the embryo2. We identify transcriptionally uncharacterized nuclei types in the chalazal endosperm, which interfaces with maternal tissue for nutrient unloading3,4. We demonstrate that the extent of parental bias of maternally expressed imprinted genes varies with cell-cycle phase, and that imprinting of paternally expressed imprinted genes is strongest in chalazal endosperm. Thus, imprinting is spatially and temporally heterogeneous. Increased paternal expression in the chalazal region suggests that parental conflict, which is proposed to drive imprinting evolution, is fiercest at the boundary between filial and maternal tissues.
Collapse
Affiliation(s)
- Colette L Picard
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Ben P Williams
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
44
|
Fang J, Leichter SM, Jiang J, Biswal M, Lu J, Zhang ZM, Ren W, Zhai J, Cui Q, Zhong X, Song J. Substrate deformation regulates DRM2-mediated DNA methylation in plants. SCIENCE ADVANCES 2021; 7:eabd9224. [PMID: 34078593 PMCID: PMC8172135 DOI: 10.1126/sciadv.abd9224] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
DNA methylation is a major epigenetic mechanism critical for gene expression and genome stability. In plants, domains rearranged methyltransferase 2 (DRM2) preferentially mediates CHH (H = C, T, or A) methylation, a substrate specificity distinct from that of mammalian DNA methyltransferases. However, the underlying mechanism is unknown. Here, we report structure-function characterization of DRM2-mediated methylation. An arginine finger from the catalytic loop intercalates into the nontarget strand of DNA through the minor groove, inducing large DNA deformation that affects the substrate preference of DRM2. The target recognition domain stabilizes the enlarged major groove via shape complementarity rather than base-specific interactions, permitting substrate diversity. The engineered DRM2 C397R mutation introduces base-specific contacts with the +2-flanking guanine, thereby shifting the substrate specificity of DRM2 toward CHG DNA. Together, this study uncovers DNA deformation as a mechanism in regulating the specificity of DRM2 toward diverse CHH substrates and illustrates methylome complexity in plants.
Collapse
Affiliation(s)
- Jian Fang
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Sarah M Leichter
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Jianjun Jiang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Mahamaya Biswal
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Zhi-Min Zhang
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Wendan Ren
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Jixian Zhai
- Department of Biology and Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qiang Cui
- Departments of Chemistry, Physics, and Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Xuehua Zhong
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA.
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA.
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
45
|
Yadav VK, Santos-González J, Köhler C. INT-Hi-C reveals distinct chromatin architecture in endosperm and leaf tissues of Arabidopsis. Nucleic Acids Res 2021; 49:4371-4385. [PMID: 33744975 PMCID: PMC8096224 DOI: 10.1093/nar/gkab191] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/10/2021] [Accepted: 03/06/2021] [Indexed: 12/13/2022] Open
Abstract
Higher-order chromatin structure undergoes striking changes in response to various developmental and environmental signals, causing distinct cell types to adopt specific chromatin organization. High throughput chromatin conformation capture (Hi-C) allows studying higher-order chromatin structure; however, this technique requires substantial amounts of starting material, which has limited the establishment of cell type-specific higher-order chromatin structure in plants. To overcome this limitation, we established a protocol that is applicable to a limited amount of nuclei by combining the INTACT (isolation of nuclei tagged in specific cell types) method and Hi-C (INT-Hi-C). Using this INT-Hi-C protocol, we generated Hi-C data from INTACT purified endosperm and leaf nuclei. Our INT-Hi-C data from leaf accurately reiterated chromatin interaction patterns derived from conventional leaf Hi-C data. We found that the higher-order chromatin organization of mixed leaf tissues and endosperm differs and that DNA methylation and repressive histone marks positively correlate with the chromatin compaction level. We furthermore found that self-looped interacting genes have increased expression in leaves and endosperm and that interacting intergenic regions negatively impact on gene expression in the endosperm. Last, we identified several imprinted genes involved in long-range and trans interactions exclusively in endosperm. Our study provides evidence that the endosperm adopts a distinct higher-order chromatin structure that differs from other cell types in plants and that chromatin interactions influence transcriptional activity.
Collapse
Affiliation(s)
- Vikash Kumar Yadav
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala 75007, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala 75007, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala 75007, Sweden
| |
Collapse
|
46
|
Widespread imprinting of transposable elements and variable genes in the maize endosperm. PLoS Genet 2021; 17:e1009491. [PMID: 33830994 PMCID: PMC8057601 DOI: 10.1371/journal.pgen.1009491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/20/2021] [Accepted: 03/15/2021] [Indexed: 11/19/2022] Open
Abstract
Fertilization and seed development is a critical time in the plant life cycle, and coordinated development of the embryo and endosperm are required to produce a viable seed. In the endosperm, some genes show imprinted expression where transcripts are derived primarily from one parental genome. Imprinted gene expression has been observed across many flowering plant species, though only a small proportion of genes are imprinted. Understanding how imprinted expression arises has been complicated by the reliance on single nucleotide polymorphisms between alleles to enable testing for imprinting. Here, we develop a method to use whole genome assemblies of multiple genotypes to assess for imprinting of both shared and variable portions of the genome using data from reciprocal crosses. This reveals widespread maternal expression of genes and transposable elements with presence-absence variation within maize and across species. Most maternally expressed features are expressed primarily in the endosperm, suggesting that maternal de-repression in the central cell facilitates expression. Furthermore, maternally expressed TEs are enriched for maternal expression of the nearest gene, and read alignments over maternal TE-gene pairs indicate that these are fused rather than independent transcripts.
Collapse
|
47
|
Anderson SN, Zhou P, Higgins K, Brandvain Y, Springer NM. Widespread imprinting of transposable elements and variable genes in the maize endosperm. PLoS Genet 2021. [PMID: 33830994 DOI: 10.1371/journal.pgen.100949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Fertilization and seed development is a critical time in the plant life cycle, and coordinated development of the embryo and endosperm are required to produce a viable seed. In the endosperm, some genes show imprinted expression where transcripts are derived primarily from one parental genome. Imprinted gene expression has been observed across many flowering plant species, though only a small proportion of genes are imprinted. Understanding how imprinted expression arises has been complicated by the reliance on single nucleotide polymorphisms between alleles to enable testing for imprinting. Here, we develop a method to use whole genome assemblies of multiple genotypes to assess for imprinting of both shared and variable portions of the genome using data from reciprocal crosses. This reveals widespread maternal expression of genes and transposable elements with presence-absence variation within maize and across species. Most maternally expressed features are expressed primarily in the endosperm, suggesting that maternal de-repression in the central cell facilitates expression. Furthermore, maternally expressed TEs are enriched for maternal expression of the nearest gene, and read alignments over maternal TE-gene pairs indicate that these are fused rather than independent transcripts.
Collapse
Affiliation(s)
- Sarah N Anderson
- Department of Genetics, Development, and Cell Biology; Iowa State University; Ames, Iowa, United States of America
| | - Peng Zhou
- Department of Plant and Microbial Biology; University of Minnesota; St. Paul, Minnesota, United States of America
| | - Kaitlin Higgins
- Department of Genetics, Development, and Cell Biology; Iowa State University; Ames, Iowa, United States of America
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology; University of Minnesota; St. Paul, Minnesota, United States of America
| | - Nathan M Springer
- Department of Plant and Microbial Biology; University of Minnesota; St. Paul, Minnesota, United States of America
| |
Collapse
|
48
|
Liu Y, Jing X, Zhang H, Xiong J, Qiao Y. Identification of Imprinted Genes Based on Homology: An Example of Fragaria vesca. Genes (Basel) 2021; 12:genes12030380. [PMID: 33800118 PMCID: PMC7999015 DOI: 10.3390/genes12030380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 01/04/2023] Open
Abstract
Genomic imprinting has drawn increasing attention in plant biology in recent years. At present, hundreds of imprinted genes have been identified in various plants, and some of them have been reported to be evolutionarily conserved in plant species. In this research, 17 candidate genes in Fragaria vesca were obtained based on the homologous imprinted genes in Arabidopsis thaliana and other species. We further constructed reciprocal crosses of diploid strawberry (F. vesca) using the varieties 10-41 and 18-86 as the parents to investigate the conservation of these imprinted genes. Potentially informative single nucleotide polymorphisms (SNPs) were used as molecular markers of two parents obtained from candidate imprinted genes which have been cloned and sequenced. Meanwhile, we analyzed the SNP site variation ratios and parent-of-origin expression patterns of candidate imprinted genes at 10 days after pollination (DAP) endosperm and embryo for the hybrids of reciprocal cross, respectively. A total of five maternally expressed genes (MEGs), i.e., FvARI8, FvKHDP-2, FvDRIP2, FvBRO1, and FvLTP3, were identified in the endosperm, which did not show imprinting in the embryo. Finally, tissues expression analysis indicated that the five imprinted genes excluding FvDRIP2 mainly expressed in the endosperm. This is the first report on imprinted genes of Fragaria, and we provide a simple and rapid method based on homologous conservation to screen imprinted genes. The present study will provide a basis for further study of function and mechanism of genomic imprinting in F. vesca.
Collapse
|
49
|
Long Y, Liu Z, Jia J, Mo W, Fang L, Lu D, Liu B, Zhang H, Chen W, Zhai J. FlsnRNA-seq: protoplasting-free full-length single-nucleus RNA profiling in plants. Genome Biol 2021; 22:66. [PMID: 33608047 PMCID: PMC7893963 DOI: 10.1186/s13059-021-02288-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
The broad application of single-cell RNA profiling in plants has been hindered by the prerequisite of protoplasting that requires digesting the cell walls from different types of plant tissues. Here, we present a protoplasting-free approach, flsnRNA-seq, for large-scale full-length RNA profiling at a single-nucleus level in plants using isolated nuclei. Combined with 10x Genomics and Nanopore long-read sequencing, we validate the robustness of this approach in Arabidopsis root cells and the developing endosperm. Sequencing results demonstrate that it allows for uncovering alternative splicing and polyadenylation-related RNA isoform information at the single-cell level, which facilitates characterizing cell identities.
Collapse
Affiliation(s)
- Yanping Long
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhijian Liu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinbu Jia
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weipeng Mo
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liang Fang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dongdong Lu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bo Liu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hong Zhang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei Chen
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China.
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
50
|
Abstract
RNA-directed DNA methylation (RdDM) is a biological process in which non-coding RNA molecules direct the addition of DNA methylation to specific DNA sequences. The RdDM pathway is unique to plants, although other mechanisms of RNA-directed chromatin modification have also been described in fungi and animals. To date, the RdDM pathway is best characterized within angiosperms (flowering plants), and particularly within the model plant Arabidopsis thaliana. However, conserved RdDM pathway components and associated small RNAs (sRNAs) have also been found in other groups of plants, such as gymnosperms and ferns. The RdDM pathway closely resembles other sRNA pathways, particularly the highly conserved RNAi pathway found in fungi, plants, and animals. Both the RdDM and RNAi pathways produce sRNAs and involve conserved Argonaute, Dicer and RNA-dependent RNA polymerase proteins. RdDM has been implicated in a number of regulatory processes in plants. The DNA methylation added by RdDM is generally associated with transcriptional repression of the genetic sequences targeted by the pathway. Since DNA methylation patterns in plants are heritable, these changes can often be stably transmitted to progeny. As a result, one prominent role of RdDM is the stable, transgenerational suppression of transposable element (TE) activity. RdDM has also been linked to pathogen defense, abiotic stress responses, and the regulation of several key developmental transitions. Although the RdDM pathway has a number of important functions, RdDM-defective mutants in Arabidopsis thaliana are viable and can reproduce, which has enabled detailed genetic studies of the pathway. However, RdDM mutants can have a range of defects in different plant species, including lethality, altered reproductive phenotypes, TE upregulation and genome instability, and increased pathogen sensitivity. Overall, RdDM is an important pathway in plants that regulates a number of processes by establishing and reinforcing specific DNA methylation patterns, which can lead to transgenerational epigenetic effects on gene expression and phenotype.
Collapse
|