1
|
Rahmati M, Chebli J, Kumar Banote R, Roselli S, Agholme L, Zetterberg H, Abramsson A. Fine-Tuning Amyloid Precursor Protein Expression through Nonsense-Mediated mRNA Decay. eNeuro 2024; 11:ENEURO.0034-24.2024. [PMID: 38789273 PMCID: PMC11164851 DOI: 10.1523/eneuro.0034-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024] Open
Abstract
Studies on genetic robustness recently revealed transcriptional adaptation (TA) as a mechanism by which an organism can compensate for genetic mutations through activation of homologous genes. Here, we discovered that genetic mutations, introducing a premature termination codon (PTC) in the amyloid precursor protein-b (appb) gene, activated TA of two other app family members, appa and amyloid precursor-like protein-2 (aplp2), in zebrafish. The observed transcriptional response of appa and aplp2 required degradation of mutant mRNA and did not depend on Appb protein level. Furthermore, TA between amyloid precursor protein (APP) family members was observed in human neuronal progenitor cells; however, compensation was only present during early neuronal differentiation and could not be detected in a more differentiated neuronal stage or adult zebrafish brain. Using knockdown and chemical inhibition, we showed that nonsense-mediated mRNA decay (NMD) is involved in degradation of mutant mRNA and that Upf1 and Upf2, key proteins in the NMD pathway, regulate the endogenous transcript levels of appa, appb, aplp1, and aplp2 In conclusion, our results suggest that the expression level of App family members is regulated by the NMD pathway and that mutations destabilizing app/APP mRNA can induce genetic compensation by other family members through TA in both zebrafish and human neuronal progenitors.
Collapse
Affiliation(s)
- Maryam Rahmati
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Jasmine Chebli
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Rakesh Kumar Banote
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Sandra Roselli
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Lotta Agholme
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N #BG, United Kingdom
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 41, Sweden
- United Kingdom Dementia Research Institute, London W1T 7NF, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, 17 Science Park W Ave, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53792
| | - Alexandra Abramsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| |
Collapse
|
2
|
Ransom LS, Liu CS, Dunsmore E, Palmer CR, Nicodemus J, Ziomek D, Williams N, Chun J. Human brain small extracellular vesicles contain selectively packaged, full-length mRNA. Cell Rep 2024; 43:114061. [PMID: 38578831 DOI: 10.1016/j.celrep.2024.114061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/12/2024] [Accepted: 03/20/2024] [Indexed: 04/07/2024] Open
Abstract
Brain cells release and take up small extracellular vesicles (sEVs) containing bioactive nucleic acids. sEV exchange is hypothesized to contribute to stereotyped spread of neuropathological changes in the diseased brain. We assess mRNA from sEVs of postmortem brain from non-diseased (ND) individuals and those with Alzheimer's disease (AD) using short- and long-read sequencing. sEV transcriptomes are distinct from those of bulk tissue, showing enrichment for genes including mRNAs encoding ribosomal proteins and transposable elements such as human-specific LINE-1 (L1Hs). AD versus ND sEVs show enrichment of inflammation-related mRNAs and depletion of synaptic signaling mRNAs. sEV mRNAs from cultured murine primary neurons, astrocytes, or microglia show similarities to human brain sEVs and reveal cell-type-specific packaging. Approximately 80% of neural sEV transcripts sequenced using long-read sequencing are full length. Motif analyses of sEV-enriched isoforms elucidate RNA-binding proteins that may be associated with sEV loading. Collectively, we show that mRNA in brain sEVs is intact, selectively packaged, and altered in disease.
Collapse
Affiliation(s)
- Linnea S Ransom
- Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Christine S Liu
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Emily Dunsmore
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Carter R Palmer
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Juliet Nicodemus
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Derya Ziomek
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Nyssa Williams
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jerold Chun
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
3
|
Chow TW, Raupp M, Reynolds MW, Li S, Kaeser GE, Chun J. Nucleoside Reverse Transcriptase Inhibitor Exposure Is Associated with Lower Alzheimer's Disease Risk: A Retrospective Cohort Proof-of-Concept Study. Pharmaceuticals (Basel) 2024; 17:408. [PMID: 38675371 PMCID: PMC11053431 DOI: 10.3390/ph17040408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/02/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Brain somatic gene recombination (SGR) and the endogenous reverse transcriptases (RTs) that produce it have been implicated in the etiology of Alzheimer's disease (AD), suggesting RT inhibitors as novel prophylactics or therapeutics. This retrospective, proof-of-concept study evaluated the incidence of AD in people with human immunodeficiency virus (HIV) with or without exposure to nucleoside RT inhibitors (NRTIs) using de-identified medical claims data. Eligible participants were aged ≥60 years, without pre-existing AD diagnoses, and pursued medical services in the United States from October 2015 to September 2016. Cohorts 1 (N = 46,218) and 2 (N = 32,923) had HIV. Cohort 1 had prescription claims for at least one NRTI within the exposure period; Cohort 2 did not. Cohort 3 (N = 150,819) had medical claims for the common cold without evidence of HIV or antiretroviral therapy. The cumulative incidence of new AD cases over the ensuing 2.75-year observation period was lowest in patients with NRTI exposure and highest in controls. Age- and sex-adjusted hazard ratios showed a significantly decreased risk for AD in Cohort 1 compared with Cohorts 2 (HR 0.88, p < 0.05) and 3 (HR 0.84, p < 0.05). Sub-grouping identified a decreased AD risk in patients with NRTI exposure but without protease inhibitor (PI) exposure. Prospective clinical trials and the development of next-generation agents targeting brain RTs are warranted.
Collapse
Affiliation(s)
- Tiffany W. Chow
- IQVIA, Durham, NC 27703, USA; (T.W.C.); (M.R.)
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark Raupp
- IQVIA, Durham, NC 27703, USA; (T.W.C.); (M.R.)
| | | | - Siying Li
- IQVIA, Durham, NC 27703, USA; (T.W.C.); (M.R.)
| | - Gwendolyn E. Kaeser
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jerold Chun
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
4
|
Zou W, Yang L, Lu H, Li M, Ji D, Slone J, Huang T. Application of super-resolution microscopy in mitochondria-dynamic diseases. Adv Drug Deliv Rev 2023; 200:115043. [PMID: 37536507 DOI: 10.1016/j.addr.2023.115043] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Limited by spatial and temporal resolution, traditional optical microscopy cannot image the delicate ultra-structure organelles and sub-organelles. The emergence of super-resolution microscopy makes it possible. In this review, we focus on mitochondria. We summarize the process of mitochondrial dynamics, the primary proteins that regulate mitochondrial morphology, the diseases related to mitochondrial dynamics. The purpose is to apply super-resolution microscopy developed during recent years to the mitochondrial research. By providing the right research tools, we will help to promote the application of this technique to the in-depth elucidation of the pathogenesis of diseases related to mitochondrial dynamics, assistdiagnosis and develop the therapeutic treatment.
Collapse
Affiliation(s)
- Weiwei Zou
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Hedong Lu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Min Li
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jesse Slone
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Taosheng Huang
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA.
| |
Collapse
|
5
|
Elangovan A, Babu HWS, Iyer M, Gopalakrishnan AV, Vellingiri B. Untangle the mystery behind DS-associated AD - Is APP the main protagonist? Ageing Res Rev 2023; 87:101930. [PMID: 37031726 DOI: 10.1016/j.arr.2023.101930] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Amyloid precursor protein profusion in Trisomy 21, also called Down Syndrome (DS), is rooted in the genetic determination of Alzheimer's disease (AD). With the recent development in patient care, the life expectancy of DS patients has gradually increased, leading to the high prospect of AD development, consequently leading to the development of plaques of amyloid proteins and neurofibrillary tangles made of tau by the fourth decade of the patient leading to dementia. The altered gene expression resulted in cellular dysfunction due to impairment of autophagy, mitochondrial and lysosomal dysfunction, and copy number variation controlled by the additional genes in Trisomy 21. The cognitive impairment and mechanistic insights underlying DS-AD conditions have been reviewed in this article. Some recent findings regarding biomarkers and therapeutics of DS-AD conditions were highlighted in this review.
Collapse
Affiliation(s)
- Ajay Elangovan
- Stem cell and Regenerative Medicine/ Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India; Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Harysh Winster Suresh Babu
- Stem cell and Regenerative Medicine/ Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India; Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore-641021, India
| | | | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/ Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India; Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| |
Collapse
|
6
|
Denechaud M, Geurs S, Comptdaer T, Bégard S, Garcia-Núñez A, Pechereau LA, Bouillet T, Vermeiren Y, De Deyn PP, Perbet R, Deramecourt V, Maurage CA, Vanderhaegen M, Vanuytven S, Lefebvre B, Bogaert E, Déglon N, Voet T, Colin M, Buée L, Dermaut B, Galas MC. Tau promotes oxidative stress-associated cycling neurons in S phase as a pro-survival mechanism: Possible implication for Alzheimer's disease. Prog Neurobiol 2023; 223:102386. [PMID: 36481386 DOI: 10.1016/j.pneurobio.2022.102386] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Multiple lines of evidence have linked oxidative stress, tau pathology and neuronal cell cycle re-activation to Alzheimer's disease (AD). While a prevailing idea is that oxidative stress-induced neuronal cell cycle reactivation acts as an upstream trigger for pathological tau phosphorylation, others have identified tau as an inducer of cell cycle abnormalities in both mitotic and postmitotic conditions. In addition, nuclear hypophosphorylated tau has been identified as a key player in the DNA damage response to oxidative stress. Whether and to what extent these observations are causally linked remains unclear. Using immunofluorescence, fluorescence-activated nucleus sorting and single-nucleus sequencing, we report an oxidative stress-associated accumulation of nuclear hypophosphorylated tau in a subpopulation of cycling neurons confined in S phase in AD brains, near amyloid plaques. Tau downregulation in murine neurons revealed an essential role for tau to promote cell cycle progression to S phase and prevent apoptosis in response to oxidative stress. Our results suggest that tau holds oxidative stress-associated cycling neurons in S phase to escape cell death. Together, this study proposes a tau-dependent protective effect of neuronal cell cycle reactivation in AD brains and challenges the current view that the neuronal cell cycle is an early mediator of tau pathology.
Collapse
Affiliation(s)
- Marine Denechaud
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Sarah Geurs
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium; Department of Human Genetics, University of Leuven (KU Leuven), 3000 Leuven, Belgium.
| | - Thomas Comptdaer
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Séverine Bégard
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Alejandro Garcia-Núñez
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Louis-Adrien Pechereau
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Thomas Bouillet
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Yannick Vermeiren
- Laboratory of Neurochemistry and Behavior, and Biobank, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerpen, Belgium.
| | - Peter P De Deyn
- Laboratory of Neurochemistry and Behavior, and Biobank, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerpen, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, eindendreef 1, 2020 Antwerpen, Belgium.
| | - Romain Perbet
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Vincent Deramecourt
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; Department of Pathological Anatomy, University of Lille, CHU Lille, Lille, France.
| | - Claude-Alain Maurage
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; Department of Pathological Anatomy, University of Lille, CHU Lille, Lille, France.
| | - Michiel Vanderhaegen
- Department of Human Genetics, University of Leuven (KU Leuven), 3000 Leuven, Belgium.
| | - Sebastiaan Vanuytven
- Department of Human Genetics, University of Leuven (KU Leuven), 3000 Leuven, Belgium.
| | - Bruno Lefebvre
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Elke Bogaert
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Nicole Déglon
- Lausanne University Hospital (CHUV) and University of Lausanne, Neuroscience Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies, 1011 Lausanne, Switzerland.
| | - Thierry Voet
- Department of Human Genetics, University of Leuven (KU Leuven), 3000 Leuven, Belgium; KU Leuven, Institute for Single Cell Omics (LISCO), KU Leuven, 3000 Leuven, Belgium.
| | - Morvane Colin
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Bart Dermaut
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Marie-Christine Galas
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| |
Collapse
|
7
|
Pan X, Coban Akdemir ZH, Gao R, Jiang X, Sheynkman GM, Wu E, Huang JH, Sahni N, Yi SS. AD-Syn-Net: systematic identification of Alzheimer's disease-associated mutation and co-mutation vulnerabilities via deep learning. Brief Bioinform 2023; 24:bbad030. [PMID: 36752347 PMCID: PMC10025433 DOI: 10.1093/bib/bbad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most challenging neurodegenerative diseases because of its complicated and progressive mechanisms, and multiple risk factors. Increasing research evidence demonstrates that genetics may be a key factor responsible for the occurrence of the disease. Although previous reports identified quite a few AD-associated genes, they were mostly limited owing to patient sample size and selection bias. There is a lack of comprehensive research aimed to identify AD-associated risk mutations systematically. To address this challenge, we hereby construct a large-scale AD mutation and co-mutation framework ('AD-Syn-Net'), and propose deep learning models named Deep-SMCI and Deep-CMCI configured with fully connected layers that are capable of predicting cognitive impairment of subjects effectively based on genetic mutation and co-mutation profiles. Next, we apply the customized frameworks to data sets to evaluate the importance scores of the mutations and identified mutation effectors and co-mutation combination vulnerabilities contributing to cognitive impairment. Furthermore, we evaluate the influence of mutation pairs on the network architecture to dissect the genetic organization of AD and identify novel co-mutations that could be responsible for dementia, laying a solid foundation for proposing future targeted therapy for AD precision medicine. Our deep learning model codes are available open access here: https://github.com/Pan-Bio/AD-mutation-effectors.
Collapse
Affiliation(s)
- Xingxin Pan
- Livestrong Cancer Institutes, and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Zeynep H Coban Akdemir
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ruixuan Gao
- Departments of Chemistry and Biological Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Xiaoqian Jiang
- School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Gloria M Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Center for Public Health Genomics, and UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Erxi Wu
- Livestrong Cancer Institutes, and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA
- Department of Surgery, Texas A & M University Health Science Center, College of Medicine, Temple, TX 76508, USA
- Department of Pharmaceutical Sciences, Texas A & M University Health Science Center, College of Pharmacy, College Station, TX 77843, USA
| | - Jason H Huang
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA
- Department of Surgery, Texas A & M University Health Science Center, College of Medicine, Temple, TX 76508, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - S Stephen Yi
- Livestrong Cancer Institutes, and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX 78712, USA
- Interdisciplinary Life Sciences Graduate Programs (ILSGP), College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
8
|
Gong J, Jin Z, Chen H, He J, Zhang Y, Yang X. Super-resolution fluorescence microscopic imaging in pathogenesis and drug treatment of neurological disease. Adv Drug Deliv Rev 2023; 196:114791. [PMID: 37004939 DOI: 10.1016/j.addr.2023.114791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023]
Abstract
Since super-resolution fluorescence microscopic technology breaks the diffraction limit that has existed for a long time in optical imaging, it can observe the process of synapses formed between nerve cells and the protein aggregation related to neurological disease. Thus, super-resolution fluorescence microscopic imaging has significantly impacted several industries, including drug development and pathogenesis research, and it is anticipated that it will significantly alter the future of life science research. Here, we focus on several typical super-resolution fluorescence microscopic technologies, introducing their benefits and drawbacks, as well as applications in several common neurological diseases, in the hope that their services will be expanded and improved in the pathogenesis and drug treatment of neurological diseases.
Collapse
|
9
|
Li Z, Min S, Alliey-Rodriguez N, Giase G, Cheng L, Craig DW, Faulkner GJ, Asif H, Liu C, Gershon ES. Single-neuron whole genome sequencing identifies increased somatic mutation burden in Alzheimer's disease related genes. Neurobiol Aging 2023; 123:222-232. [PMID: 36599749 DOI: 10.1016/j.neurobiolaging.2022.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/15/2022]
Abstract
Accumulation of somatic mutations in human neurons is associated with aging and neurodegeneration. To shed light on the somatic mutational burden in Alzheimer's disease (AD) neurons and get more insight into the role of somatic mutations in AD pathogenesis, we performed single-neuron whole genome sequencing to detect genome-wide somatic mutations (single nucleotide variants (SNVs) and Indels) in 96 single prefrontal cortex neurons from 8 AD patients and 8 elderly controls. We found that the mutational burden is ∼3000 somatic mutations per neuron genome in elderly subjects. AD patients have increased somatic mutation burden in AD-related annotation categories, including AD risk genes and differentially expressed genes in AD neurons. Mutational signature analysis showed somatic SNVs (sSNVs) primarily caused by aging and oxidative DNA damage processes but no significant difference was detected between AD and controls. Additionally, functional somatic mutations identified in AD patients showed significant enrichment in several AD-related pathways, including AD pathway, Notch-signaling pathway and Calcium-signaling pathway. These findings provide genetic insights into how somatic mutations may alter the function of single neurons and exert their potential roles in the pathogenesis of AD.
Collapse
Affiliation(s)
- Zongchang Li
- Department of Psychiatry, The Second Xiangya Hospital; Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China; Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL, USA
| | - Shishi Min
- Department of Psychiatry, The Second Xiangya Hospital; Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China; Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ney Alliey-Rodriguez
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL, USA
| | - Gina Giase
- School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Lijun Cheng
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - David Wesley Craig
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Geoffrey J Faulkner
- Mater Research Institute - University of Queensland, Woolloongabba, Queensland, Australia; Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Huma Asif
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL, USA.
| | - Chunyu Liu
- Department of Psychiatry, The Second Xiangya Hospital; Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China; Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA; School of Psychology, Shaanxi Normal University, Xi'an, China.
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL, USA; Department of Human Genetics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
10
|
Palmer CR, Chun J. Extraction and Purification of Single Nuclei from Frozen Human Brain Tissue. Methods Mol Biol 2023; 2561:31-42. [PMID: 36399263 DOI: 10.1007/978-1-0716-2655-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Resolving the complexity of the human brain at the level of single cells is essential to gaining an understanding of the immense diversity of cell types and functional states in both healthy and diseased brains. To exploit fully the technologies available for such studies, one must extract and isolate pure nuclei from unfixed postmortem tissue while preserving the molecules to be interrogated. Currently, nuclei are necessary substitutes for individual brain cells, since myriad cell types/sub-types constituting the human brain are embedded within the neuropil-a complex milieu of interconnected cells, processes, and synapses-which precludes intact and selective isolation of single brain cells. Here, we describe a protocol for the extraction and purification of intact single nuclei from frozen human brain tissue along with modifications to accommodate numerous downstream analyses, particularly for transcriptomic applications.
Collapse
Affiliation(s)
- Carter R Palmer
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Biomedical Sciences Program, School of Medicine, La Jolla, CA, USA
| | - Jerold Chun
- Translational Neuroscience Initiative, Neuroscience Drug Discovery, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
11
|
Yurov YB, Vorsanova SG, Iourov IY. FISHing for Chromosome Instability and Aneuploidy in the Alzheimer's Disease Brain. Methods Mol Biol 2022; 2561:191-204. [PMID: 36399271 DOI: 10.1007/978-1-0716-2655-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fluorescence in situ hybridization (FISH) is the method of choice for visualizing chromosomal DNA in post-mitotic cells. The availability of chromosome-enumeration (centromeric), site-specific, and multicolor-banding DNA probes offers opportunities to uncover genomic changes, at the chromosomal level, in single interphase nuclei. Alzheimer's disease (AD) has been associated repeatedly with (sub)chromosome instability and aneuploidy, likely affecting the brain. Although the types and rates of chromosome instability in the AD brain remain a matter of debate, molecular cytogenetic analysis of brain cells appears to be important for uncovering mechanisms of neurodegeneration. Here, we describe a FISH protocol for studying chromosome instability and aneuploidy in the AD brain.
Collapse
Affiliation(s)
- Yuri B Yurov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia.,Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, Russia
| | - Svetlana G Vorsanova
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia.,Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ivan Y Iourov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia. .,Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, Russia.
| |
Collapse
|
12
|
Vojtechova I, Machacek T, Kristofikova Z, Stuchlik A, Petrasek T. Infectious origin of Alzheimer’s disease: Amyloid beta as a component of brain antimicrobial immunity. PLoS Pathog 2022; 18:e1010929. [PMCID: PMC9671327 DOI: 10.1371/journal.ppat.1010929] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The amyloid cascade hypothesis, focusing on pathological proteins aggregation, has so far failed to uncover the root cause of Alzheimer’s disease (AD), or to provide an effective therapy. This traditional paradigm essentially explains a mechanism involved in the development of sporadic AD rather than its cause. The failure of an overwhelming majority of clinical studies (99.6%) demonstrates that a breakthrough in therapy would be difficult if not impossible without understanding the etiology of AD. It becomes more and more apparent that the AD pathology might originate from brain infection. In this review, we discuss a potential role of bacteria, viruses, fungi, and eukaryotic parasites as triggers of AD pathology. We show evidence from the current literature that amyloid beta, traditionally viewed as pathological, actually acts as an antimicrobial peptide, protecting the brain against pathogens. However, in case of a prolonged or excessive activation of a senescent immune system, amyloid beta accumulation and aggregation becomes damaging and supports runaway neurodegenerative processes in AD. This is paralleled by the recent study by Alam and colleagues (2022) who showed that alpha-synuclein, the protein accumulating in synucleinopathies, also plays a critical physiological role in immune reactions and inflammation, showing an unforeseen link between the 2 unrelated classes of neurodegenerative disorders. The multiplication of the amyloid precursor protein gene, recently described by Lee and collegues (2018), and possible reactivation of human endogenous retroviruses by pathogens fits well into the same picture. We discuss these new findings from the viewpoint of the infection hypothesis of AD and offer suggestions for future research. More than a century after its discovery, Alzheimer’s disease (AD) remains incurable and mysterious. The dominant hypothesis of amyloid cascade has succeeded in explaining the key pathological mechanism, but not its trigger. Amyloid beta has been traditionally considered a pathological peptide, and its physiological functions remain poorly known. These knowledge gaps have contributed to repeated failures of clinical studies. The emerging infectious hypothesis of AD considers central nervous system (CNS) infection the primary trigger of sporadic AD. A closely connected hypothesis claims that amyloid beta is an antimicrobial peptide. In this review, we discuss the available evidence for the involvement of infections in AD, coming from epidemiological studies, post mortem analyses of brain tissue, and experiments in vitro and in vivo. We argue there is no unique “Alzheimer’s germ,” instead, AD is a general reaction of the CNS to chronic infections, in the milieu of an aged immune system. The pathology may become self-sustained even without continuous presence of microbes in the brain. Importantly, the infectious hypothesis leads to testable predictions. Targeting amyloid beta should be ineffective, unless the triggering pathogen and inflammatory response are addressed as well. Meticulous control of selected infections might be the best near-term strategy for AD prevention.
Collapse
Affiliation(s)
- Iveta Vojtechova
- National Institute of Mental Health, Klecany, Czech Republic
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- * E-mail: , (IV); , (TP)
| | - Tomas Machacek
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Ales Stuchlik
- National Institute of Mental Health, Klecany, Czech Republic
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Petrasek
- National Institute of Mental Health, Klecany, Czech Republic
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- * E-mail: , (IV); , (TP)
| |
Collapse
|
13
|
Guo Y, Chomiak A, Hong Y, Lowe CC, Kopsidas CA, Chan WC, Andrade J, Pan H, Zhou X, Monuki ES, Feng Y. Histone H2A ubiquitination resulting from Brap loss of function connects multiple aging hallmarks and accelerates neurodegeneration. iScience 2022; 25:104519. [PMID: 35754718 PMCID: PMC9213774 DOI: 10.1016/j.isci.2022.104519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/06/2022] [Accepted: 05/29/2022] [Indexed: 01/10/2023] Open
Abstract
Aging is an intricate process characterized by multiple hallmarks including stem cell exhaustion, genome instability, epigenome alteration, impaired proteostasis, and cellular senescence. Whereas each of these traits is detrimental at the cellular level, it remains unclear how they are interconnected to cause systemic organ deterioration. Here we show that abrogating Brap, a BRCA1-associated protein essential for neurogenesis, results in persistent DNA double-strand breaks and elevation of histone H2A mono- and poly-ubiquitination (H2Aub). These defects extend to cellular senescence and proteasome-mediated histone H2A proteolysis with alterations in cells' proteomic and epigenetic states. Brap deletion in the mouse brain causes neuroinflammation, impaired proteostasis, accelerated neurodegeneration, and substantially shortened the lifespan. We further show the elevation of H2Aub also occurs in human brain tissues with Alzheimer's disease. These data together suggest that chromatin aberrations mediated by H2Aub may act as a nexus of multiple aging hallmarks and promote tissue-wide degeneration.
Collapse
Affiliation(s)
- Yan Guo
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Alison.A. Chomiak
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Ye Hong
- University of Turku, Turku 20500, Finland
| | - Clara C. Lowe
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Caroline A. Kopsidas
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Wen-Ching Chan
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA
| | - Jorge Andrade
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA
| | - Hongna Pan
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Xiaoming Zhou
- Department of Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Edwin S. Monuki
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Yuanyi Feng
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
14
|
Sato K, Takayama KI, Hashimoto M, Inoue S. Transcriptional and Post-Transcriptional Regulations of Amyloid-β Precursor Protein (APP ) mRNA. FRONTIERS IN AGING 2022; 2:721579. [PMID: 35822056 PMCID: PMC9261399 DOI: 10.3389/fragi.2021.721579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023]
Abstract
Alzheimer’s disease (AD) is an age-associated neurodegenerative disorder characterized by progressive impairment of memory, thinking, behavior, and dementia. Based on ample evidence showing neurotoxicity of amyloid-β (Aβ) aggregates in AD, proteolytically derived from amyloid precursor protein (APP), it has been assumed that misfolding of Aβ plays a crucial role in the AD pathogenesis. Additionally, extra copies of the APP gene caused by chromosomal duplication in patients with Down syndrome can promote AD pathogenesis, indicating the pathological involvement of the APP gene dose in AD. Furthermore, increased APP expression due to locus duplication and promoter mutation of APP has been found in familial AD. Given this background, we aimed to summarize the mechanism underlying the upregulation of APP expression levels from a cutting-edge perspective. We first reviewed the literature relevant to this issue, specifically focusing on the transcriptional regulation of APP by transcription factors that bind to the promoter/enhancer regions. APP expression is also regulated by growth factors, cytokines, and hormone, such as androgen. We further evaluated the possible involvement of post-transcriptional regulators of APP in AD pathogenesis, such as RNA splicing factors. Indeed, alternative splicing isoforms of APP are proposed to be involved in the increased production of Aβ. Moreover, non-coding RNAs, including microRNAs, post-transcriptionally regulate the APP expression. Collectively, elucidation of the novel mechanisms underlying the upregulation of APP would lead to the development of clinical diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Kaoru Sato
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Ken-Ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Makoto Hashimoto
- Department of Basic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
15
|
A retrotransposon storm marks clinical phenoconversion to late-onset Alzheimer's disease. GeroScience 2022; 44:1525-1550. [PMID: 35585302 PMCID: PMC9213607 DOI: 10.1007/s11357-022-00580-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
Recent reports have suggested that the reactivation of otherwise transcriptionally silent transposable elements (TEs) might induce brain degeneration, either by dysregulating the expression of genes and pathways implicated in cognitive decline and dementia or through the induction of immune-mediated neuroinflammation resulting in the elimination of neural and glial cells. In the work we present here, we test the hypothesis that differentially expressed TEs in blood could be used as biomarkers of cognitive decline and development of AD. To this aim, we used a sample of aging subjects (age > 70) that developed late-onset Alzheimer’s disease (LOAD) over a relatively short period of time (12–48 months), for which blood was available before and after their phenoconversion, and a group of cognitive stable subjects as controls. We applied our developed and validated customized pipeline that allows the identification, characterization, and quantification of the differentially expressed (DE) TEs before and after the onset of manifest LOAD, through analyses of RNA-Seq data. We compared the level of DE TEs within more than 600,000 TE-mapping RNA transcripts from 25 individuals, whose specimens we obtained before and after their phenotypic conversion (phenoconversion) to LOAD, and discovered that 1790 TE transcripts showed significant expression differences between these two timepoints (logFC ± 1.5, logCMP > 5.3, nominal p value < 0.01). These DE transcripts mapped both over- and under-expressed TE elements. Occurring before the clinical phenoconversion, this TE storm features significant increases in DE transcripts of LINEs, LTRs, and SVAs, while those for SINEs are significantly depleted. These dysregulations end with signs of manifest LOAD. This set of highly DE transcripts generates a TE transcriptional profile that accurately discriminates the before and after phenoconversion states of these subjects. Our findings suggest that a storm of DE TEs occurs before phenoconversion from normal cognition to manifest LOAD in risk individuals compared to controls, and may provide useful blood-based biomarkers for heralding such a clinical transition, also suggesting that TEs can indeed participate in the complex process of neurodegeneration.
Collapse
|
16
|
Delport A, Hewer R. The amyloid precursor protein: a converging point in Alzheimer's disease. Mol Neurobiol 2022; 59:4501-4516. [PMID: 35579846 DOI: 10.1007/s12035-022-02863-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 04/30/2022] [Indexed: 11/30/2022]
Abstract
The decades of evidence that showcase the role of amyloid precursor protein (APP), and its fragment amyloidβ (Aβ), in Alzheimer's disease (AD) pathogenesis are irrefutable. However, the absolute focus on the single APP metabolite Aβ as the cause for AD has resulted in APP and its other fragments that possess toxic propensity, to be overlooked as targets for treatment. The complexity of its processing and its association with systematic metabolism suggests that, if misregulated, APP has the potential to provoke an array of metabolic dysfunctions. This review discusses APP and several of its cleaved products with a particular focus on their toxicity and ability to disrupt healthy cellular function, in relation to AD development. We subsequently argue that the reduction of APP, which would result in a concurrent decrease in Aβ as well as all other toxic APP metabolites, would alleviate the toxic environment associated with AD and slow disease progression. A discussion of those drug-like compounds already identified to possess this capacity is also included.
Collapse
Affiliation(s)
- Alexandré Delport
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa.
| | - Raymond Hewer
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa
| |
Collapse
|
17
|
El-Saadi MW, Tian X, Grames M, Ren M, Keys K, Li H, Knott E, Yin H, Huang S, Lu XH. Tracing brain genotoxic stress in Parkinson's disease with a novel single-cell genetic sensor. SCIENCE ADVANCES 2022; 8:eabd1700. [PMID: 35427151 PMCID: PMC9012470 DOI: 10.1126/sciadv.abd1700] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 03/01/2022] [Indexed: 05/06/2023]
Abstract
To develop an in vivo tool to probe brain genotoxic stress, we designed a viral proxy as a single-cell genetic sensor termed PRISM that harnesses the instability of recombinant adeno-associated virus genome processing and a hypermutable repeat sequence-dependent reporter. PRISM exploits the virus-host interaction to probe persistent neuronal DNA damage and overactive DNA damage response. A Parkinson's disease (PD)-associated environmental toxicant, paraquat (PQ), inflicted neuronal genotoxic stress sensitively detected by PRISM. The most affected cell type in PD, dopaminergic (DA) neurons in substantia nigra, was distinguished by a high level of genotoxic stress following PQ exposure. Human alpha-synuclein proteotoxicity and propagation also triggered genotoxic stress in nigral DA neurons in a transgenic mouse model. Genotoxic stress is a prominent feature in PD patient brains. Our results reveal that PD-associated etiological factors precipitated brain genotoxic stress and detail a useful tool for probing the pathogenic significance in aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Madison Wynne El-Saadi
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| | - Xinli Tian
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| | - Mychal Grames
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| | - Michael Ren
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| | - Kelsea Keys
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| | - Hanna Li
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| | - Erika Knott
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| | - Hong Yin
- Feist-Weiller Cancer Center and Department of Medicine, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| | - Xiao-Hong Lu
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
18
|
Wang M, Song WM, Ming C, Wang Q, Zhou X, Xu P, Krek A, Yoon Y, Ho L, Orr ME, Yuan GC, Zhang B. Guidelines for bioinformatics of single-cell sequencing data analysis in Alzheimer's disease: review, recommendation, implementation and application. Mol Neurodegener 2022; 17:17. [PMID: 35236372 PMCID: PMC8889402 DOI: 10.1186/s13024-022-00517-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive cognitive impairment and neurodegeneration. Extensive clinical and genomic studies have revealed biomarkers, risk factors, pathways, and targets of AD in the past decade. However, the exact molecular basis of AD development and progression remains elusive. The emerging single-cell sequencing technology can potentially provide cell-level insights into the disease. Here we systematically review the state-of-the-art bioinformatics approaches to analyze single-cell sequencing data and their applications to AD in 14 major directions, including 1) quality control and normalization, 2) dimension reduction and feature extraction, 3) cell clustering analysis, 4) cell type inference and annotation, 5) differential expression, 6) trajectory inference, 7) copy number variation analysis, 8) integration of single-cell multi-omics, 9) epigenomic analysis, 10) gene network inference, 11) prioritization of cell subpopulations, 12) integrative analysis of human and mouse sc-RNA-seq data, 13) spatial transcriptomics, and 14) comparison of single cell AD mouse model studies and single cell human AD studies. We also address challenges in using human postmortem and mouse tissues and outline future developments in single cell sequencing data analysis. Importantly, we have implemented our recommended workflow for each major analytic direction and applied them to a large single nucleus RNA-sequencing (snRNA-seq) dataset in AD. Key analytic results are reported while the scripts and the data are shared with the research community through GitHub. In summary, this comprehensive review provides insights into various approaches to analyze single cell sequencing data and offers specific guidelines for study design and a variety of analytic directions. The review and the accompanied software tools will serve as a valuable resource for studying cellular and molecular mechanisms of AD, other diseases, or biological systems at the single cell level.
Collapse
Affiliation(s)
- Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Won-min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Chen Ming
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Qian Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Peng Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Yonejung Yoon
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Lap Ho
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Miranda E. Orr
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina USA
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina USA
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| |
Collapse
|
19
|
Li Y, Laws SM, Miles LA, Wiley JS, Huang X, Masters CL, Gu BJ. Genomics of Alzheimer's disease implicates the innate and adaptive immune systems. Cell Mol Life Sci 2021; 78:7397-7426. [PMID: 34708251 PMCID: PMC11073066 DOI: 10.1007/s00018-021-03986-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/14/2021] [Accepted: 10/16/2021] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease characterised by cognitive impairment, behavioural alteration, and functional decline. Over 130 AD-associated susceptibility loci have been identified by genome-wide association studies (GWAS), while whole genome sequencing (WGS) and whole exome sequencing (WES) studies have identified AD-associated rare variants. These variants are enriched in APOE, TREM2, CR1, CD33, CLU, BIN1, CD2AP, PILRA, SCIMP, PICALM, SORL1, SPI1, RIN3, and more genes. Given that aging is the single largest risk factor for late-onset AD (LOAD), the accumulation of somatic mutations in the brain and blood of AD patients have also been explored. Collectively, these genetic findings implicate the role of innate and adaptive immunity in LOAD pathogenesis and suggest that a systemic failure of cell-mediated amyloid-β (Aβ) clearance contributes to AD onset and progression. AD-associated variants are particularly enriched in myeloid-specific regulatory regions, implying that AD risk variants are likely to perturbate the expression of myeloid-specific AD-associated genes to interfere Aβ clearance. Defective phagocytosis, endocytosis, and autophagy may drive Aβ accumulation, which may be related to naturally-occurring antibodies to Aβ (Nabs-Aβ) produced by adaptive responses. Passive immunisation is providing efficiency in clearing Aβ and slowing cognitive decline, such as aducanumab, donanemab, and lecanemab (ban2401). Causation of AD by impairment of the innate immunity and treatment using the tools of adaptive immunity is emerging as a new paradigm for AD, but immunotherapy that boosts the innate immune functions of myeloid cells is highly expected to modulate disease progression at asymptomatic stage.
Collapse
Affiliation(s)
- Yihan Li
- The Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA, 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA, 6027, Australia
| | - Luke A Miles
- The Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - James S Wiley
- The Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Xin Huang
- The Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Ben J Gu
- The Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
20
|
Kuo CC, Chiang AWT, Baghdassarian HM, Lewis NE. Dysregulation of the secretory pathway connects Alzheimer's disease genetics to aggregate formation. Cell Syst 2021; 12:873-884.e4. [PMID: 34171228 PMCID: PMC8505362 DOI: 10.1016/j.cels.2021.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/24/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022]
Abstract
Amyloid disorders such as Alzheimer's disease (AD) involve the aggregation of secreted proteins. However, it is largely unclear how secretory-pathway proteins contribute to amyloid formation. We developed a systems biology framework integrating expression data with protein-protein interaction networks to estimate a tissue's fitness for producing specific secreted proteins and analyzed the fitness of the secretory pathway of various brain regions and cell types for synthesizing the AD-associated amyloid precursor protein (APP). While key amyloidogenic pathway components were not differentially expressed in AD brains, we found Aβ deposition correlates with systemic down- and upregulation of the secretory-pathway components proximal to APP and amyloidogenic secretases, respectively, in AD. Our analyses suggest that perturbations from three AD risk loci cascade through the APP secretory-support network and into the endocytosis pathway, connecting amyloidogenesis to dysregulation of secretory-pathway components supporting APP and suggesting novel therapeutic targets for AD. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Chih-Chung Kuo
- Department of Bioengineering, University of California, San Diego, San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability at UC San Diego, San Diego, La Jolla, CA 92093, USA
| | - Austin W T Chiang
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, San Diego, La Jolla, CA 92093, USA
| | - Hratch M Baghdassarian
- Department of Pediatrics, University of California, San Diego, San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, San Diego, La Jolla, CA 92093, USA
| | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego, San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability at UC San Diego, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
21
|
Rivera R, Williams NA, Kennedy GG, Sánchez-Pavón P, Chun J. Generation of an Lpar1-EGFP Fusion Knock-in Transgenic Mouse Line. Cell Biochem Biophys 2021; 79:619-627. [PMID: 34652685 PMCID: PMC8551097 DOI: 10.1007/s12013-021-01033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 10/25/2022]
Abstract
Lysophosphatidic acid (LPA) is a lysophospholipid that acts as an extracellular signal through the activation of cognate G protein-coupled receptors (GPCRs). There are six known LPA receptors (LPA1-6). The first such receptor, LPA1, was identified in the embryonic brain and has been studied extensively for gene expression throughout the body, including through studies of receptor-null mice. However, identifying receptor protein expression in situ and in vivo within living cells and tissues has been difficult because of biologically low receptor expression and variable antibody specificity. To visualize native LPA1 receptor expression in situ, we generated a knock-in mouse produced by homologous recombination in murine embryonic stem (ES) cells to replace a wildtype Lpar1 allele with a mutant allele created by in-frame fusion of EGFP to the 4th exon of Lpar1 (Lpar1-EGFP knock-in allele). Homozygous knock-in mice appeared normal and the expected mendelian ratios of knock-in allele transmission were present in females and males. Histological assessments of the fetal and adult central nervous system (CNS) demonstrated expression patterns that were consistent with prior in situ hybridization studies. This new mouse line will be useful for studies of LPA1 in the developing and adult CNS, as well as other tissues, and for receptor assessments in living tissues and disease models.
Collapse
Affiliation(s)
- Richard Rivera
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Nyssa A Williams
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Grace G Kennedy
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Paloma Sánchez-Pavón
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jerold Chun
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
22
|
Ibanez L, Cruchaga C, Fernández MV. Advances in Genetic and Molecular Understanding of Alzheimer's Disease. Genes (Basel) 2021; 12:1247. [PMID: 34440421 PMCID: PMC8394321 DOI: 10.3390/genes12081247] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 01/19/2023] Open
Abstract
Alzheimer's disease (AD) has become a common disease of the elderly for which no cure currently exists. After over 30 years of intensive research, we have gained extensive knowledge of the genetic and molecular factors involved and their interplay in disease. These findings suggest that different subgroups of AD may exist. Not only are we starting to treat autosomal dominant cases differently from sporadic cases, but we could be observing different underlying pathological mechanisms related to the amyloid cascade hypothesis, immune dysfunction, and a tau-dependent pathology. Genetic, molecular, and, more recently, multi-omic evidence support each of these scenarios, which are highly interconnected but can also point to the different subgroups of AD. The identification of the pathologic triggers and order of events in the disease processes are key to the design of treatments and therapies. Prevention and treatment of AD cannot be attempted using a single approach; different therapeutic strategies at specific disease stages may be appropriate. For successful prevention and treatment, biomarker assays must be designed so that patients can be more accurately monitored at specific points during the course of the disease and potential treatment. In addition, to advance the development of therapeutic drugs, models that better mimic the complexity of the human brain are needed; there have been several advances in this arena. Here, we review significant, recent developments in genetics, omics, and molecular studies that have contributed to the understanding of this disease. We also discuss the implications that these contributions have on medicine.
Collapse
Affiliation(s)
- Laura Ibanez
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA; (L.I.); (C.C.)
- Neurogenomics and Informatics Center, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA; (L.I.); (C.C.)
- Neurogenomics and Informatics Center, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660 S. Euclid Ave. B8111, St. Louis, MO 63110, USA
| | - Maria Victoria Fernández
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA; (L.I.); (C.C.)
- Neurogenomics and Informatics Center, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
| |
Collapse
|
23
|
Luo Z, Xu H, Liu L, Ohulchanskyy TY, Qu J. Optical Imaging of Beta-Amyloid Plaques in Alzheimer's Disease. BIOSENSORS 2021; 11:255. [PMID: 34436057 PMCID: PMC8392287 DOI: 10.3390/bios11080255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 02/02/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial, irreversible, and incurable neurodegenerative disease. The main pathological feature of AD is the deposition of misfolded β-amyloid protein (Aβ) plaques in the brain. The abnormal accumulation of Aβ plaques leads to the loss of some neuron functions, further causing the neuron entanglement and the corresponding functional damage, which has a great impact on memory and cognitive functions. Hence, studying the accumulation mechanism of Aβ in the brain and its effect on other tissues is of great significance for the early diagnosis of AD. The current clinical studies of Aβ accumulation mainly rely on medical imaging techniques, which have some deficiencies in sensitivity and specificity. Optical imaging has recently become a research hotspot in the medical field and clinical applications, manifesting noninvasiveness, high sensitivity, absence of ionizing radiation, high contrast, and spatial resolution. Moreover, it is now emerging as a promising tool for the diagnosis and study of Aβ buildup. This review focuses on the application of the optical imaging technique for the determination of Aβ plaques in AD research. In addition, recent advances and key operational applications are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Junle Qu
- Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (Z.L.); (H.X.); (L.L.); (T.Y.O.)
| |
Collapse
|
24
|
Costantino I, Nicodemus J, Chun J. Genomic Mosaicism Formed by Somatic Variation in the Aging and Diseased Brain. Genes (Basel) 2021; 12:1071. [PMID: 34356087 PMCID: PMC8305509 DOI: 10.3390/genes12071071] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
Over the past 20 years, analyses of single brain cell genomes have revealed that the brain is composed of cells with myriad distinct genomes: the brain is a genomic mosaic, generated by a host of DNA sequence-altering processes that occur somatically and do not affect the germline. As such, these sequence changes are not heritable. Some processes appear to occur during neurogenesis, when cells are mitotic, whereas others may also function in post-mitotic cells. Here, we review multiple forms of DNA sequence alterations that have now been documented: aneuploidies and aneusomies, smaller copy number variations (CNVs), somatic repeat expansions, retrotransposons, genomic cDNAs (gencDNAs) associated with somatic gene recombination (SGR), and single nucleotide variations (SNVs). A catch-all term of DNA content variation (DCV) has also been used to describe the overall phenomenon, which can include multiple forms within a single cell's genome. A requisite step in the analyses of genomic mosaicism is ongoing technology development, which is also discussed. Genomic mosaicism alters one of the most stable biological molecules, DNA, which may have many repercussions, ranging from normal functions including effects of aging, to creating dysfunction that occurs in neurodegenerative and other brain diseases, most of which show sporadic presentation, unlinked to causal, heritable genes.
Collapse
Affiliation(s)
- Isabel Costantino
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (I.C.); (J.N.)
- Neurosciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Juliet Nicodemus
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (I.C.); (J.N.)
- Neurosciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jerold Chun
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (I.C.); (J.N.)
| |
Collapse
|
25
|
Assessment of the gene mosaicism burden in blood and its implications for immune disorders. Sci Rep 2021; 11:12940. [PMID: 34155260 PMCID: PMC8217568 DOI: 10.1038/s41598-021-92381-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/09/2021] [Indexed: 12/23/2022] Open
Abstract
There are increasing evidences showing the contribution of somatic genetic variants to non-cancer diseases. However, their detection using massive parallel sequencing methods still has important limitations. In addition, the relative importance and dynamics of somatic variation in healthy tissues are not fully understood. We performed high-depth whole-exome sequencing in 16 samples from patients with a previously determined pathogenic somatic variant for a primary immunodeficiency and tested different variant callers detection ability. Subsequently, we explored the load of somatic variants in the whole blood of these individuals and validated it by amplicon-based deep sequencing. Variant callers allowing low frequency read thresholds were able to detect most of the variants, even at very low frequencies in the tissue. The genetic load of somatic coding variants detectable in whole blood is low, ranging from 1 to 2 variants in our dataset, except for one case with 17 variants compatible with clonal haematopoiesis under genetic drift. Because of the ability we demonstrated to detect this type of genetic variation, and its relevant role in disorders such as primary immunodeficiencies, we suggest considering this model of gene mosaicism in future genetic studies and considering revisiting previous massive parallel sequencing data in patients with negative results.
Collapse
|
26
|
Abstract
Somatic mutations arise postzygotically, producing genetic differences between cells in an organism. Well established as a driver of cancer, somatic mutations also exist in nonneoplastic cells, including in the brain. Technological advances in nucleic acid sequencing have enabled recent break-throughs that illuminate the roles of somatic mutations in aging and degenerative diseases of the brain. Somatic mutations accumulate during aging in human neurons, a process termed genosenium. A number of recent studies have examined somatic mutations in Alzheimer’s disease (AD), primarily from the perspective of genes causing familial AD. We have also gained new information on genome-wide mutations, providing insights into the cellular events driving somatic mutation and cellular dysfunction. This review highlights recent concepts, methods, and findings in the progress to understand the role of brain somatic mutation in aging and AD.
Collapse
Affiliation(s)
- Michael B Miller
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Hannah C Reed
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Allegheny College, Meadville, Pennsylvania 16335, USA;
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
27
|
The contribution of CNVs to the most common aging-related neurodegenerative diseases. Aging Clin Exp Res 2021; 33:1187-1195. [PMID: 32026430 DOI: 10.1007/s40520-020-01485-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/17/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer and Parkinson's diseases are neurodegenerative aging-related pathological conditions, mainly caused by the interplay of genetic and non-genetic factors and whose incidence rate is going to drastically increase given the growing life expectancy. To address these complex multifactorial traits, a systems biology strategy is needed to highlight genotype-phenotype correlations as well as overlapping gene signatures. Copy number variants (CNVs) are structural chromosomal imbalances that can have pathogenic nature causing or contributing to the disease onset or progression. Moreover, neurons affected by CNVs have been found to decline in number depending on age in healthy controls and may be selectively vulnerable to aging-related cell-death. In this review, we aim to update the reader on the role of these variations in the pathogenesis of Alzheimer and Parkinson diseases. To widen the comprehension of pathogenic mechanisms underlying them, we discuss variations detected from blood or brain specimens, as well as overlapped signatures between the two pathologies.
Collapse
|
28
|
Nuebling GS, Prix C, Brendel M, Beyer L, Wlasich E, Loosli SV, Barthel H, Sabri O, Bartenstein P, Vöglein J, Danek A, Rominger A, Edbauer D, Haass C, Levin J. Low-degree trisomy 21 mosaicism promotes early-onset Alzheimer disease. Neurobiol Aging 2021; 103:147.e1-147.e5. [PMID: 33789815 DOI: 10.1016/j.neurobiolaging.2021.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/31/2021] [Accepted: 02/25/2021] [Indexed: 11/15/2022]
Abstract
Trisomy-21 mosaicism (mT21) with subclinical intellectual development disorder or physical phenotype has very rarely been associated with early-onset cognitive decline. Notably, early-onset Alzheimer's disease (EOAD) patients' family histories frequently suggest genetic causes other than autosomal-dominant APP/PSEN-1/2 mutations. We present an EOAD patient in his late fifties newly diagnosed with low-degree mT21 (13%/21% blood lymphocytes/ectodermal cells). We applied fluorescence in-situ hybridization to confirm a diagnosis of mT21. Multimodal positron-emission-tomography applying 18F-fluodesoxyglucose (metabolism), 18F-florbetaben (amyloid-β deposits) and 18F-PI-2620 (tau-deposits) tracers was used to confirm a diagnosis of EOAD according to the ATN-criteria of AD. Initial PET-studies revealed marked cerebral amyloid-β- and tau-pathology and parietotemporal hypometabolism, confirming EOAD according to the ATN-criteria of AD. A marked cognitive decline was accompanied by an increase in tau pathology in follow-up studies. This is the first case demonstrating that a low-degree APP gene-dose increase suffices to cause EOAD with prominent amyloid-β/tau pathology.
Collapse
Affiliation(s)
- Georg S Nuebling
- Department of Neurology, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany; Department of Palliative Medicine, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Germany
| | - Catharina Prix
- Department of Neurology, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Matthias Brendel
- Department of Nuclear medicine, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear medicine, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany
| | - Elisabeth Wlasich
- Department of Neurology, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany
| | - Sandra V Loosli
- Department of Neurology, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany
| | - Henryk Barthel
- Department of Nuclear medicine, University Hospital Leipzig, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear medicine, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear medicine, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany
| | - Jonathan Vöglein
- Department of Neurology, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Adrian Danek
- Department of Neurology, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany
| | - Axel Rominger
- Department of Nuclear medicine, Inselspital Bern, Bern, Switzerland
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology, Munich, Germany; Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University Munich, Germany
| | - Johannes Levin
- Department of Neurology, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology, Munich, Germany.
| |
Collapse
|
29
|
Abstract
Alzheimer’s disease (AD) is the leading cause of neurodegeneration in the elderly and is clinically characterized by slowly progressing cognitive decline, which most commonly affects episodic memory function. This eventually leads to difficulties in activities of daily living. Biomarker studies show that the underlying pathology of AD begins 20 years before clinical symptoms. This results in the need to define specific targets and preclinical stages in order to address the problems of this disease at an earlier point in time. Genetic studies are indispensable for gaining insight into the etiology of neurodegenerative diseases and can play a major role in the early definition of the individual disease risk. This review provides an overview of the currently known genetic features of AD.
Collapse
Affiliation(s)
- Theresa König
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
30
|
Hoogmartens J, Cacace R, Van Broeckhoven C. Insight into the genetic etiology of Alzheimer's disease: A comprehensive review of the role of rare variants. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12155. [PMID: 33665345 PMCID: PMC7896636 DOI: 10.1002/dad2.12155] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
Early-onset Alzheimer's disease (EOAD) is generally known as a dominant disease due to highly penetrant pathogenic mutations in the amyloid precursor protein, presenilin 1 and 2. However, they explain only a fraction of EOAD patients (5% to 10%). Furthermore, only 10% to 15% of EOAD families present with clear autosomal dominant inheritance. Studies showed that only 35% to 60% of EOAD patients have at least one affected first-degree relative. Parent-offspring concordance in EOAD was estimated to be <10%, indicating that full penetrant dominant alleles are not the sole players in EOAD. We aim to summarize current knowledge of rare variants underlying familial and seemingly sporadic Alzheimer's disease (AD) patients. Genetic findings indicate that in addition to the amyloid beta pathway, other pathways are of importance in AD pathophysiology. We discuss the difficulties in interpreting the influence of rare variants on disease onset and we underline the value of carefully selected ethnicity-matched cohorts in AD genetic research.
Collapse
Affiliation(s)
- Julie Hoogmartens
- Neurodegenerative Brain DiseasesVIB Center for Molecular NeurologyAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | - Rita Cacace
- Neurodegenerative Brain DiseasesVIB Center for Molecular NeurologyAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain DiseasesVIB Center for Molecular NeurologyAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| |
Collapse
|
31
|
van Rooij J, Mol MO, Melhem S, van der Wal P, Arp P, Paron F, Donker Kaat L, Seelaar H, Miedema SSM, Oshima T, Eggen BJL, Uitterlinden A, van Meurs J, van Kesteren RE, Smit AB, Buratti E, van Swieten JC. Somatic TARDBP variants as a cause of semantic dementia. Brain 2020; 143:3827-3841. [PMID: 33155043 PMCID: PMC7805802 DOI: 10.1093/brain/awaa317] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/13/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
The aetiology of late-onset neurodegenerative diseases is largely unknown. Here we investigated whether de novo somatic variants for semantic dementia can be detected, thereby arguing for a more general role of somatic variants in neurodegenerative disease. Semantic dementia is characterized by a non-familial occurrence, early onset (<65 years), focal temporal atrophy and TDP-43 pathology. To test whether somatic variants in neural progenitor cells during brain development might lead to semantic dementia, we compared deep exome sequencing data of DNA derived from brain and blood of 16 semantic dementia cases. Somatic variants observed in brain tissue and absent in blood were validated using amplicon sequencing and digital PCR. We identified two variants in exon one of the TARDBP gene (L41F and R42H) at low level (1-3%) in cortical regions and in dentate gyrus in two semantic dementia brains, respectively. The pathogenicity of both variants is supported by demonstrating impaired splicing regulation of TDP-43 and by altered subcellular localization of the mutant TDP-43 protein. These findings indicate that somatic variants may cause semantic dementia as a non-hereditary neurodegenerative disease, which might be exemplary for other late-onset neurodegenerative disorders.
Collapse
Affiliation(s)
- Jeroen van Rooij
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Merel O Mol
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Shamiram Melhem
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Pelle van der Wal
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Pascal Arp
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Francesca Paron
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Laura Donker Kaat
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Suzanne S M Miedema
- Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| | - Takuya Oshima
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - André Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Joyce van Meurs
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ronald E van Kesteren
- Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| | - August B Smit
- Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
32
|
Advances in transcriptome analysis of human brain aging. Exp Mol Med 2020; 52:1787-1797. [PMID: 33244150 PMCID: PMC8080664 DOI: 10.1038/s12276-020-00522-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Aging is associated with gradual deterioration of physiological and biochemical functions, including cognitive decline. Transcriptome profiling of brain samples from individuals of varying ages has identified the whole-transcriptome changes that underlie age-associated cognitive declines. In this review, we discuss transcriptome-based research on human brain aging performed by using microarray and RNA sequencing analyses. Overall, decreased synaptic function and increased immune function are prevalent in most regions of the aged brain. Age-associated gene expression changes are also cell dependent and region dependent and are affected by genotype. In addition, the transcriptome changes that occur during brain aging include different splicing events, intersample heterogeneity, and altered levels of various types of noncoding RNAs. Establishing transcriptome-based hallmarks of human brain aging will improve the understanding of cognitive aging and neurodegenerative diseases and eventually lead to interventions that delay or prevent brain aging.
Collapse
|
33
|
Peli1 impairs microglial Aβ phagocytosis through promoting C/EBPβ degradation. PLoS Biol 2020; 18:e3000837. [PMID: 33017390 PMCID: PMC7561136 DOI: 10.1371/journal.pbio.3000837] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 10/15/2020] [Accepted: 08/26/2020] [Indexed: 12/29/2022] Open
Abstract
Amyloid-β (Aβ) accumulation in the brain is a hallmark of Alzheimer’s disease (AD) pathology. However, the molecular mechanism controlling microglial Aβ phagocytosis is poorly understood. Here we found that the E3 ubiquitin ligase Pellino 1 (Peli1) is induced in the microglia of AD-like five familial AD (5×FAD) mice, whose phagocytic efficiency for Aβ was then impaired, and therefore Peli1 depletion suppressed the Aβ deposition in the brains of 5×FAD mice. Mechanistic characterizations indicated that Peli1 directly targeted CCAAT/enhancer-binding protein (C/EBP)β, a major transcription factor responsible for the transcription of scavenger receptor CD36. Peli1 functioned as a direct E3 ubiquitin ligase of C/EBPβ and mediated its ubiquitination-induced degradation. Consequently, loss of Peli1 increased the protein levels of C/EBPβ and the expression of CD36 and thus, promoted the phagocytic ability in microglial cells. Together, our findings established Peli1 as a critical regulator of microglial phagocytosis and highlighted the therapeutic potential by targeting Peli1 for the treatment of microglia-mediated neurological diseases. This study identifies Peli1, an E3 ubiqitin ligase enriched in microglia, as a restraining factor that curtails microglial phagocytosis of the amyloid Aβ. Correspondingly, deletion of Peli1 enhances Aβ phagocytosis and clearance in Alzheimer’s disease, implicating Peli1 as a therapeutic target with significant potential for the treatment of microglia-mediated neurological disease.
Collapse
|
34
|
Riemens RJM, Kenis G, van den Beucken T. Human-induced pluripotent stem cells as a model for studying sporadic Alzheimer's disease. Neurobiol Learn Mem 2020; 175:107318. [PMID: 32977028 DOI: 10.1016/j.nlm.2020.107318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022]
Abstract
The discovery of induced pluripotent stem cell (iPSC) technology has the potential to accelerate scientific research for Alzheimer's disease (AD). iPSCs are therefore increasingly considered for AD modeling and drug development. Nevertheless, most of the work conducted so far has mainly focused on iPSC models from patients with familial AD (fAD), while actually sporadic AD (sAD) is more prevalent and represents over 90% of the AD cases in the population. The development of more sAD models is therefore key for studying this multifactorial disorder. In fact, probing the unique genomes of sAD patients and their interaction with AD-associated environmental factors could contribute to a better understanding of this disease. However, initial iPSC-based models for sAD have shown a high degree of variability and inconsistencies in terms of AD hallmarks. In this review, we provide an overview of the studies that have been conducted for sAD so far. In addition, we critically assess important sources of variability related to the model in addition to those that might be explained by the heterogeneous nature of sAD. These considerations might aid in developing more consistent iPSC models of sAD, which could help in developing a better understanding of the molecular mechanisms underlying the disease.
Collapse
Affiliation(s)
- R J M Riemens
- Institute of Human Genetics, Julius Maximilian University, Wuerzburg, Germany; Department of Psychiatry & Neuropsychology, Graduate School MHeNS (School for Mental Health and Neuroscience), allocated with the Faculty Health Medicine and Life Sciences of Maastricht University, Maastricht, the Netherlands
| | - G Kenis
- Department of Psychiatry & Neuropsychology, Graduate School MHeNS (School for Mental Health and Neuroscience), allocated with the Faculty Health Medicine and Life Sciences of Maastricht University, Maastricht, the Netherlands
| | - T van den Beucken
- Department of Toxicogenomics, Graduate School GROW (Research School for Oncology and Developmental Biology), allocated with the Faculty Health Medicine and Life Sciences of Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
35
|
Kaeser G, Chun J. Brain cell somatic gene recombination and its phylogenetic foundations. J Biol Chem 2020; 295:12786-12795. [PMID: 32699111 PMCID: PMC7476723 DOI: 10.1074/jbc.rev120.009192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
A new form of somatic gene recombination (SGR) has been identified in the human brain that affects the Alzheimer's disease gene, amyloid precursor protein (APP). SGR occurs when a gene sequence is cut and recombined within a single cell's genomic DNA, generally independent of DNA replication and the cell cycle. The newly identified brain SGR produces genomic complementary DNAs (gencDNAs) lacking introns, which integrate into locations distinct from germline loci. This brief review will present an overview of likely related recombination mechanisms and genomic cDNA-like sequences that implicate evolutionary origins for brain SGR. Similarities and differences exist between brain SGR and VDJ recombination in the immune system, the first identified SGR form that now has a well-defined enzymatic machinery. Both require gene transcription, but brain SGR uses an RNA intermediate and reverse transcriptase (RT) activity, which are characteristics shared with endogenous retrotransposons. The identified gencDNAs have similarities to other cDNA-like sequences existing throughout phylogeny, including intron-less genes and inactive germline processed pseudogenes, with likely overlapping biosynthetic processes. gencDNAs arise somatically in an individual to produce multiple copies; can be functional; appear most frequently within postmitotic cells; have diverse sequences; change with age; and can change with disease state. Normally occurring brain SGR may represent a mechanism for gene optimization and long-term cellular memory, whereas its dysregulation could underlie multiple brain disorders and, potentially, other diseases like cancer. The involvement of RT activity implicates already Food and Drug Administration-approved RT inhibitors as possible near-term interventions for managing SGR-associated diseases and suggest next-generation therapeutics targeting SGR elements.
Collapse
Affiliation(s)
- Gwendolyn Kaeser
- Degenerative Disease Program at the Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jerold Chun
- Degenerative Disease Program at the Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| |
Collapse
|
36
|
Neuner SM, Tcw J, Goate AM. Genetic architecture of Alzheimer's disease. Neurobiol Dis 2020; 143:104976. [PMID: 32565066 PMCID: PMC7409822 DOI: 10.1016/j.nbd.2020.104976] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/30/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Advances in genetic and genomic technologies over the last thirty years have greatly enhanced our knowledge concerning the genetic architecture of Alzheimer's disease (AD). Several genes including APP, PSEN1, PSEN2, and APOE have been shown to exhibit large effects on disease susceptibility, with the remaining risk loci having much smaller effects on AD risk. Notably, common genetic variants impacting AD are not randomly distributed across the genome. Instead, these variants are enriched within regulatory elements active in human myeloid cells, and to a lesser extent liver cells, implicating these cell and tissue types as critical to disease etiology. Integrative approaches are emerging as highly effective for identifying the specific target genes through which AD risk variants act and will likely yield important insights related to potential therapeutic targets in the coming years. In the future, additional consideration of sex- and ethnicity-specific contributions to risk as well as the contribution of complex gene-gene and gene-environment interactions will likely be necessary to further improve our understanding of AD genetic architecture.
Collapse
Affiliation(s)
- Sarah M Neuner
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Julia Tcw
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alison M Goate
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
37
|
Lee MH, Liu CS, Zhu Y, Kaeser GE, Rivera R, Romanow WJ, Kihara Y, Chun J. Reply to: APP gene copy number changes reflect exogenous contamination. Nature 2020; 584:E29-E33. [PMID: 32814882 DOI: 10.1038/s41586-020-2523-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/18/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Ming-Hsiang Lee
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Christine S Liu
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,Biomedical Sciences Program, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yunjiao Zhu
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Richard Rivera
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - William J Romanow
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
38
|
APP gene copy number changes reflect exogenous contamination. Nature 2020; 584:E20-E28. [PMID: 32814883 DOI: 10.1038/s41586-020-2522-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 05/18/2020] [Indexed: 11/08/2022]
|
39
|
Proukakis C. Somatic mutations in neurodegeneration: An update. Neurobiol Dis 2020; 144:105021. [PMID: 32712267 DOI: 10.1016/j.nbd.2020.105021] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/12/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Mosaicism, the presence of genomic differences between cells due to post-zygotic somatic mutations, is widespread in the human body, including within the brain. A role for this in neurodegenerative diseases has long been hypothesised, and technical developments are now allowing the question to be addressed in detail. The rapidly accumulating evidence is discussed in this review, with a focus on recent developments. Somatic mutations of numerous types may occur, including single nucleotide variants (SNVs), copy number variants (CNVs), and retrotransposon insertions. They could act as initiators or risk factors, especially if they arise in development, although they could also result from the disease process, potentially contributing to progression. In common sporadic neurodegenerative disorders, relevant mutations have been reported in synucleinopathies, comprising somatic gains of SNCA in Parkinson's disease and multiple system atrophy, and in Alzheimer's disease, where a novel recombination mechanism leading to somatic variants of APP, as well as an excess of somatic SNVs affecting tau phosphorylation, have been reported. In Mendelian repeat expansion disorders, mosaicism due to somatic instability, first detected 25 years ago, has come to the forefront. Brain somatic SNVs occur in DNA repair disorders, and there is evidence for a role of several ALS genes in DNA repair. While numerous challenges, and need for further validation, remain, this new, or perhaps rediscovered, area of research has the potential to transform our understanding of neurodegeneration.
Collapse
Affiliation(s)
- Christos Proukakis
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
40
|
Jourdon A, Fasching L, Scuderi S, Abyzov A, Vaccarino FM. The role of somatic mosaicism in brain disease. Curr Opin Genet Dev 2020; 65:84-90. [PMID: 32622340 DOI: 10.1016/j.gde.2020.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/26/2020] [Accepted: 05/03/2020] [Indexed: 12/25/2022]
Abstract
In this review we discuss the importance of genetic somatic mosaicism and its impact on brain diseases. We start from introducing the different types of somatic mutations, their frequencies and abundances across development and lifespan. We then describe how weakness in DNA repair mechanisms influences their prevalence. Finally, we address their functional consequences in the brain and review recent research showing their unsuspected importance in several neurodevelopmental, psychiatric, and neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Liana Fasching
- Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Soraya Scuderi
- Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Alexej Abyzov
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Flora M Vaccarino
- Child Study Center, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
41
|
Jönsson ME, Garza R, Johansson PA, Jakobsson J. Transposable Elements: A Common Feature of Neurodevelopmental and Neurodegenerative Disorders. Trends Genet 2020; 36:610-623. [PMID: 32499105 DOI: 10.1016/j.tig.2020.05.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/30/2022]
Abstract
The etiology of most neurological disorders is poorly understood and current treatments are largely ineffective. New ideas and concepts are therefore vitally important for future research in this area. This review explores the concept that dysregulation of transposable elements (TEs) contributes to the appearance and pathology of neurodevelopmental and neurodegenerative disorders. Despite TEs making up at least half of the human genome, they are vastly understudied in relation to brain disorders. However, recent advances in sequencing technologies and gene editing approaches are now starting to unravel the pathological role of TEs. Aberrant activation of TEs has been found in many neurological disorders; the resulting pathogenic effects, which include alterations of gene expression, neuroinflammation, and direct neurotoxicity, are starting to be resolved. An increased understanding of the relationship between TEs and pathological processes in the brain improves the potential for novel diagnostics and interventions for brain disorders.
Collapse
Affiliation(s)
- Marie E Jönsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
| | - Raquel Garza
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
| | - Pia A Johansson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
| | - Johan Jakobsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
42
|
Lodato MA, Walsh CA. Genome aging: somatic mutation in the brain links age-related decline with disease and nominates pathogenic mechanisms. Hum Mol Genet 2020; 28:R197-R206. [PMID: 31578549 DOI: 10.1093/hmg/ddz191] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/19/2022] Open
Abstract
Aging is a mysterious process, not only controlled genetically but also subject to random damage that can accumulate over time. While DNA damage and subsequent mutation in somatic cells were first proposed as drivers of aging more than 60 years ago, whether and to what degree these processes shape the neuronal genome in the human brain could not be tested until recent technological breakthroughs related to single-cell whole-genome sequencing. Indeed, somatic single-nucleotide variants (SNVs) increase with age in the human brain, in a somewhat stochastic process that may nonetheless be controlled by underlying genetic programs. Evidence from the literature suggests that in addition to demonstrated increases in somatic SNVs during aging in normal brains, somatic mutation may also play a role in late-onset, sporadic neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. In this review, we will discuss somatic mutation in the human brain, mechanisms by which somatic mutations occur and can be controlled, and how this process can impact human health.
Collapse
Affiliation(s)
- Michael A Lodato
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Boston, MA, USA.,Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Boston, MA, USA.,Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
43
|
Kaeser GE, Chun J. Mosaic Somatic Gene Recombination as a Potentially Unifying Hypothesis for Alzheimer's Disease. Front Genet 2020; 11:390. [PMID: 32457796 PMCID: PMC7221065 DOI: 10.3389/fgene.2020.00390] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
The recent identification of somatic gene recombination(SGR) in human neurons affecting the well-known Alzheimer's disease (AD) pathogenic gene, amyloid precursor protein (APP), has implications for the normal and the diseased human brain. The amyloid hypothesis has been the prevailing theory for sporadic AD (SAD) pathogenesis since the discovery of APP gene involvement in familial AD and Down syndrome. Yet, despite enormous scientific and clinical effort, no disease-modifying therapy has emerged. SGR offers a novel mechanism to explain AD pathogenesis and the failures of amyloid-related clinical trials, while maintaining consistency with most aspects of the amyloid hypothesis and additionally supporting possible roles for tau, oxidative stress, inflammation, infection, and prions. SGR retro-inserts novel "genomic complementary DNAs" (gencDNAs) into neuronal genomes and becomes dysregulated in SAD, producing numerous mosaic APP variants, including DNA mutations observed in familial AD. Notably, SGR requires gene transcription, DNA strand-breaks, and reverse transcriptase (RT) activity, all of which may be promoted by well-known AD risk factors and provide a framework for the pursuit of new SGR-based therapeutics. In this perspective, we review evidence for APP SGR in AD pathogenesis and discuss its possible relevance to other AD-related dementias. Further, SGR's requirement for RT activity and the relative absence of AD in aged HIV -infected patients exposed to RT inhibitors suggest that these Food and Drug Administration (FDA)-approved drugs may represent a near-term disease-modifying therapy for AD.
Collapse
Affiliation(s)
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
44
|
Hrynchak MV, Rierola M, Golovyashkina N, Penazzi L, Pump WC, David B, Sündermann F, Brandt R, Bakota L. Chronic Presence of Oligomeric Aβ Differentially Modulates Spine Parameters in the Hippocampus and Cortex of Mice With Low APP Transgene Expression. Front Synaptic Neurosci 2020; 12:16. [PMID: 32390822 PMCID: PMC7194154 DOI: 10.3389/fnsyn.2020.00016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/25/2020] [Indexed: 01/06/2023] Open
Abstract
Alzheimer’s disease is regarded as a synaptopathy with a long presymptomatic phase. Soluble, oligomeric amyloid-β (Aβ) is thought to play a causative role in this disease, which eventually leads to cognitive decline. However, most animal studies have employed mice expressing high levels of the Aβ precursor protein (APP) transgene to drive pathology. Here, to understand how the principal neurons in different brain regions cope with moderate, chronically present levels of Aβ, we employed transgenic mice expressing equal levels of mouse and human APP carrying a combination of three familial AD (FAD)-linked mutations (Swedish, Dutch, and London), that develop plaques only in old age. We analyzed dendritic spine parameters in hippocampal and cortical brain regions after targeted expression of EGFP to allow high-resolution imaging, followed by algorithm-based evaluation of mice of both sexes from adolescence to old age. We report that Aβ species gradually accumulated throughout the life of APPSDL mice, but not the oligomeric forms, and that the amount of membrane-associated oligomers decreased at the onset of plaque formation. We observed an age-dependent loss of thin spines under most conditions as an indicator of a loss of synaptic plasticity in older mice. We further found that hippocampal pyramidal neurons respond to increased Aβ levels by lowering spine density and shifting spine morphology, which reached significance in the CA1 subfield. In contrast, the spine density in cortical pyramidal neurons of APPSDL mice was unchanged. We also observed an increase in the protein levels of PSD-95 and Arc in the hippocampus and cortex, respectively. Our data demonstrated that increased concentrations of Aβ have diverse effects on dendritic spines in the brain and suggest that hippocampal and cortical neurons have different adaptive and compensatory capacity during their lifetime. Our data also indicated that spine morphology differs between sexes in a region-specific manner.
Collapse
Affiliation(s)
- Mariya V Hrynchak
- Department of Neurobiology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Marina Rierola
- Department of Neurobiology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Nataliya Golovyashkina
- Department of Neurobiology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Lorène Penazzi
- Department of Neurobiology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Wiebke C Pump
- Department of Neurobiology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Bastian David
- Department of Neurobiology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Frederik Sündermann
- Department of Neurobiology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany.,Center for Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany.,Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Lidia Bakota
- Department of Neurobiology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
45
|
Fragola G, Mabb AM, Taylor-Blake B, Niehaus JK, Chronister WD, Mao H, Simon JM, Yuan H, Li Z, McConnell MJ, Zylka MJ. Deletion of Topoisomerase 1 in excitatory neurons causes genomic instability and early onset neurodegeneration. Nat Commun 2020; 11:1962. [PMID: 32327659 PMCID: PMC7181881 DOI: 10.1038/s41467-020-15794-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/28/2020] [Indexed: 12/14/2022] Open
Abstract
Topoisomerase 1 (TOP1) relieves torsional stress in DNA during transcription and facilitates the expression of long (>100 kb) genes, many of which are important for neuronal functions. To evaluate how loss of Top1 affected neurons in vivo, we conditionally deleted (cKO) Top1 in postmitotic excitatory neurons in the mouse cerebral cortex and hippocampus. Top1 cKO neurons develop properly, but then show biased transcriptional downregulation of long genes, signs of DNA damage, neuroinflammation, increased poly(ADP-ribose) polymerase-1 (PARP1) activity, single-cell somatic mutations, and ultimately degeneration. Supplementation of nicotinamide adenine dinucleotide (NAD+) with nicotinamide riboside partially blocked neurodegeneration, and increased the lifespan of Top1 cKO mice by 30%. A reduction of p53 also partially rescued cortical neuron loss. While neurodegeneration was partially rescued, behavioral decline was not prevented. These data indicate that reducing neuronal loss is not sufficient to limit behavioral decline when TOP1 function is disrupted. Topoisomerase 1 (TOP1) relieves DNA torsional stress during transcription and facilitates the expression of long neuronal genes. Here we show that deletion of Top1 in excitatory neurons leads to early onset neurodegeneration that is partially dependent on p53/PARP1 activation and NAD+ depletion.
Collapse
Affiliation(s)
- Giulia Fragola
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Angela M Mabb
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Bonnie Taylor-Blake
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jesse K Niehaus
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - William D Chronister
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Hanqian Mao
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jeremy M Simon
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Hong Yuan
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Biomedical Imaging Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zibo Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Biomedical Imaging Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Michael J McConnell
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Center for Public Health Genomics, University of Virginia, School of Medicine, Charlottesville, VA, 22908, USA
| | - Mark J Zylka
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
46
|
Abstract
Nitric oxide/cyclic guanosine monophosphate (cGMP) signaling is compromised in Alzheimer’s disease (AD), and phosphodiesterase 5 (PDE5), which degrades cGMP, is upregulated. Sildenafil inhibits PDE5 and increases cGMP levels. Integrating previous findings, we determine that most doses of sildenafil (especially low doses) likely activate peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α) via protein kinase G-mediated cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) phosphorylation and/or Sirtuin-1 activation and PGC1α deacetylation. Via PGC1α signaling, low-dose sildenafil likely suppresses β-secretase 1 expression and amyloid-β (Aβ) generation, upregulates antioxidant enzymes, and induces mitochondrial biogenesis. Plus, sildenafil should increase brain perfusion, insulin sensitivity, long-term potentiation, and neurogenesis while suppressing neural apoptosis and inflammation. A systematic review of sildenafil in AD was undertaken. In vitro, sildenafil protected neural mitochondria from Aβ and advanced glycation end products. In transgenic AD mice, sildenafil was found to rescue deficits in CREB phosphorylation and memory, upregulate brain-derived neurotrophic factor, reduce reactive astrocytes and microglia, decrease interleukin-1β, interleukin-6, and tumor necrosis factor-α, decrease neural apoptosis, increase neurogenesis, and reduce tau hyperphosphorylation. All studies that tested Aβ levels reported significant improvements except the two that used the highest dosage, consistent with the dose-limiting effect of cGMP-induced phosphodiesterase 2 (PDE2) activation and cAMP depletion on PGC1α signaling. In AD patients, a single dose of sildenafil decreased spontaneous neural activity, increased cerebral blood flow, and increased the cerebral metabolic rate of oxygen. A randomized control trial of sildenafil (ideally with a PDE2 inhibitor) in AD patients is warranted.
Collapse
|
47
|
Chronister WD, Burbulis IE, Wierman MB, Wolpert MJ, Haakenson MF, Smith ACB, Kleinman JE, Hyde TM, Weinberger DR, Bekiranov S, McConnell MJ. Neurons with Complex Karyotypes Are Rare in Aged Human Neocortex. Cell Rep 2020; 26:825-835.e7. [PMID: 30673605 DOI: 10.1016/j.celrep.2018.12.107] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/04/2018] [Accepted: 12/26/2018] [Indexed: 11/26/2022] Open
Abstract
A subset of human neocortical neurons harbors complex karyotypes wherein megabase-scale copy-number variants (CNVs) alter allelic diversity. Divergent levels of neurons with complex karyotypes (CNV neurons) are reported in different individuals, yet genome-wide and familial studies implicitly assume a single brain genome when assessing the genetic risk architecture of neurological disease. We assembled a brain CNV atlas using a robust computational approach applied to a new dataset (>800 neurons from 5 neurotypical individuals) and to published data from 10 additional neurotypical individuals. The atlas reveals that the frequency of neocortical neurons with complex karyotypes varies widely among individuals, but this variability is not readily accounted for by tissue quality or CNV detection approach. Rather, the age of the individual is anti-correlated with CNV neuron frequency. Fewer CNV neurons are observed in aged individuals than in young individuals.
Collapse
Affiliation(s)
- William D Chronister
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ian E Burbulis
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Universidad San Sebastian, Escuela de Medicina, Sede de la Patagonia, Puerto Montt, Chile
| | - Margaret B Wierman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Matthew J Wolpert
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mark F Haakenson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Aiden C B Smith
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Michael J McConnell
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Child Health Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
48
|
Sims R, Hill M, Williams J. The multiplex model of the genetics of Alzheimer's disease. Nat Neurosci 2020; 23:311-322. [PMID: 32112059 DOI: 10.1038/s41593-020-0599-5] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/24/2020] [Indexed: 12/25/2022]
Abstract
Genes play a strong role in Alzheimer's disease (AD), with late-onset AD showing heritability of 58-79% and early-onset AD showing over 90%. Genetic association provides a robust platform to build our understanding of the etiology of this complex disease. Over 50 loci are now implicated for AD, suggesting that AD is a disease of multiple components, as supported by pathway analyses (immunity, endocytosis, cholesterol transport, ubiquitination, amyloid-β and tau processing). Over 50% of late-onset AD heritability has been captured, allowing researchers to calculate the accumulation of AD genetic risk through polygenic risk scores. A polygenic risk score predicts disease with up to 90% accuracy and is an exciting tool in our research armory that could allow selection of those with high polygenic risk scores for clinical trials and precision medicine. It could also allow cellular modelling of the combined risk. Here we propose the multiplex model as a new perspective from which to understand AD. The multiplex model reflects the combination of some, or all, of these model components (genetic and environmental), in a tissue-specific manner, to trigger or sustain a disease cascade, which ultimately results in the cell and synaptic loss observed in AD.
Collapse
Affiliation(s)
- Rebecca Sims
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Matthew Hill
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Julie Williams
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
49
|
Mrdjen D, Fox EJ, Bukhari SA, Montine KS, Bendall SC, Montine TJ. The basis of cellular and regional vulnerability in Alzheimer's disease. Acta Neuropathol 2019; 138:729-749. [PMID: 31392412 PMCID: PMC6802290 DOI: 10.1007/s00401-019-02054-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) differentially and specifically affects brain regions and neuronal cell types in a predictable pattern. Damage to the brain appears to spread and worsens with time, taking over more regions and activating multiple stressors that can converge to promote vulnerability of certain cell types. At the same time, other cell types and brain regions remain intact in the face of this onslaught of neuropathology. Although neuropathologic descriptions of AD have been extensively expanded and mapped over the last several decades, our understanding of the mechanisms underlying how certain regions and cell populations are specifically vulnerable or resistant has lagged behind. In this review, we detail what is known about the selectivity of local initiation of AD pathology in the hippocampus, its proposed spread via synaptic connections, and the diversity of clinical phenotypes and brain atrophy patterns that may arise from different fibrillar strains of pathologic proteins or genetic predispositions. We summarize accumulated and emerging knowledge of the cellular and molecular basis for neuroanatomic selectivity, consider potential disease-relevant differences between vulnerable and resistant neuronal cell types and isolate molecular markers to identify them.
Collapse
Affiliation(s)
- Dunja Mrdjen
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Edward J Fox
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Syed A Bukhari
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Kathleen S Montine
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Sean C Bendall
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Thomas J Montine
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
50
|
Graham EJ, Vermeulen M, Vardarajan B, Bennett D, De Jager P, Pearse RV, Young-Pearse TL, Mostafavi S. Somatic mosaicism of sex chromosomes in the blood and brain. Brain Res 2019; 1721:146345. [PMID: 31348909 PMCID: PMC6717667 DOI: 10.1016/j.brainres.2019.146345] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 12/26/2022]
Abstract
In the blood, mosaic somatic aneuploidy (mSA) of all chromosomes has been found to be associated with adverse health outcomes, including hematological cancer. Sex chromosome mSA in the blood has been found to occur at a higher rate than autosomal mSA. Mosaic loss of the Y chromosome is the most common copy number alteration in males, and has been found to be associated with Alzheimer's disease (AD) in blood lymphocytes. mSA of the sex chromosomes has also been identified in the brain; however, little is known about its frequency across individuals. Using WGS data from 362 males and 719 females from the ROSMAP cohort, we quantified the relative rate of sex chromosome mSA in the dorsolateral prefrontal cortex (DLPFC), cerebellum and whole blood. To ascertain the functionality of observed sex chromosome mosaicism in the DLPFC, we examined its correlation with chromosome X and Y gene expression as well as neuropathological and clinical characteristics of AD and cognitive ageing. In males, we found that mSA of the Y chromosome occurs more frequently in blood than in the DLPFC or cerebellum. In the DLPFC, the presence of at least one APOE4 allele was associated with a reduction in read depth of the Y chromosome (p = 1.9e-02). In the female DLPFC, a reduction in chromosome X read depth was associated with reduced cognition at the last clinical visit and faster rate of cognitive decline (p = 7.8e-03; p = 1.9e-02). mSA of all sex chromosomes in the DLPFC were associated with aggregate measures of gene expression, implying functional impact. Our results provide insight into the relative rate of mSA between tissues and suggest that Y and female X chromosome read depth in the DLPFC is modestly associated with late AD risk factors and cognitive pathologies.
Collapse
Affiliation(s)
- Emma J Graham
- Department of Bioinformatics, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Michael Vermeulen
- BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Badri Vardarajan
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York City, NY, United States
| | - David Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Phil De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York City, NY, United States; Cell Circuits Program, Broad Institute, Cambridge, MA, United States; Neurodegeneration Program, New York Genome Center, New York, NY, United States
| | - Richard V Pearse
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Tracy L Young-Pearse
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Sara Mostafavi
- BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; Department of Statistics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|