1
|
Zielkiewicz J. Solvation of molecules from the family of "domain of unknown function" 3494 and their ability to bind to ice. J Chem Phys 2024; 161:165101. [PMID: 39435831 DOI: 10.1063/5.0222179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
In 2012, the molecular structure of a new, broad class of ice-binding proteins, classified as "domain of unknown function" (DUF) 3494, was described for the first time. These proteins have a common tertiary structure and are characterized by a very wide spectrum of antifreeze activity (from weakly active to hyperactive). The ice-binding surface (IBS) region of these molecules differs significantly in its structure from the IBS of previously known antifreeze proteins (AFPs), showing a complete lack of regularity and high hydrophilicity. The presence of a regular, repeating structural motif in the IBS region of hitherto known AFP molecules, combined with the hydrophobic nature of this surface, promotes the formation of an ice-like ordering of the solvation water layer and, as a result, facilitates the process of transformation of this water layer into ice. It is, therefore, surprising that the newly discovered DUF3494 class of proteins clearly breaks out of this characteristic. In this paper, using molecular dynamics simulations, we analyze the solvation water structure of the IBS region of both DUF3494 family molecules and AFPs. As we show, although the IBS of DUF3494 molecules does not form an ice-like water structure in the solvation layer, this is compensated by the formation of the equivalent of "anchored clathrate water," in the form of a relatively large number of water molecules bound to the surface of the protein molecule and providing potential binding sites for it to the ice surface.
Collapse
Affiliation(s)
- Jan Zielkiewicz
- Faculty of Chemistry, Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
2
|
Gerhäuser J, Hale J, Wefers D, Gaukel V. Furcellaran: Impact of Concentration, Rheological Properties, and Structure on Ice Recrystallization Inhibition Activity. Biomacromolecules 2024; 25:4535-4544. [PMID: 38973364 DOI: 10.1021/acs.biomac.4c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Recrystallization is considered the main damaging mechanism during the frozen storage of biologic materials. In this study, furcellaran, a polysaccharide related to κ-carrageenan, was studied for its concentration-dependent effect on ice crystal growth and recrystallization. The structure and sulfate content of the utilized furcellaran was analyzed by 1H nuclear magnetic resonance spectroscopy, ion chromatography, and high-performance size-exclusion chromatography. Additionally, the rheological properties of furcellaran solutions were investigated. Our findings demonstrate that furcellaran inhibits ice growth as effectively as κ-carrageenan. Furthermore, the rheological properties change with increasing furcellaran concentration, resulting in a gel-like consistency at 5 g/L, which coincides with decreased recrystallization inhibition activity and larger crystals. This suggests that gel formation or a gel-like consistency has to be avoided for optimal recrystallization inhibition activity.
Collapse
Affiliation(s)
- Julian Gerhäuser
- Institute of Process Engineering in Life Sciences, Food Process Engineering, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Julia Hale
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Daniel Wefers
- Institute of Chemistry, Food Chemistry, Martin Luther University Halle Wittenberg, Universitätsplatz 10, 06108 Halle, Germany
| | - Volker Gaukel
- Institute of Process Engineering in Life Sciences, Food Process Engineering, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
3
|
Kimijima J, Inagawa A, Miyagawa A, Nasuno E, Uehara N. Probing the interaction between biomolecules under sub-zero temperature conditions by electrophoresis in ice grain boundaries. Anal Chim Acta 2024; 1311:342713. [PMID: 38816152 DOI: 10.1016/j.aca.2024.342713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Psychrophiles can survive under cryogenic conditions because of various biomolecules. These molecules interact with cells, ice crystals, and lipid bilayers to enhance their functionality. Previous studies typically measured these interactions by thawing frozen samples and conducting biological assays at room temperature; however, studying these interactions under cryogenic conditions is crucial. This is because these biomolecules can function at lower temperatures. Therefore, a platform for measuring chemical interactions under sub-zero temperature conditions must be established. RESULTS The chemical interactions between biomolecules under sub-zero temperature conditions were evaluated within ice grain boundaries with a channel-like structure, which circumvents the need for thawing. An aqueous solution of sucrose was frozen within a microfluidic channel, facilitating the formation of freeze-concentrated solutions (FCSs) that functioned as size-tunable electrophoretic fields. Avidin proteins or single-stranded DNA (ssDNA) were introduced into the FCS in advance. Probe micro/nanospheres whose surfaces were modified with molecules complementary to the target analytes were introduced into the FCS. If the targets have functionalities under sub-zero temperature conditions, they interact with complementary molecules. The chemical interactions between the target molecules and nanospheres led to the aggregation of the particles. The size tunability of the diameter of the FCS channels enabled the recognition of aggregation levels, which is indicative of interaction reactivity. The avidin-biotin interaction and ssDNA hybridization served as models for chemical interactions, demonstrating interactivity under sub-zero temperature conditions. The results presented herein suggest the potential for in situ measurement of biochemical assays in the frozen state, elucidating the functionality of bio-related macromolecules at or slightly below 0 °C. SIGNIFICANCE This is the first methodology to evaluate chemical interactions under sub-zero temperature conditions without employing the freeze-and-thaw process. This method has the advantage of revealing the chemical interactions only at low temperatures. Therefore, it can be used to screen and evaluate the functionality of cryo-related biomolecules, including cold-shock and antifreeze proteins.
Collapse
Affiliation(s)
- Junya Kimijima
- School of Engineering, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi, 321-8585, Japan
| | - Arinori Inagawa
- School of Engineering, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi, 321-8585, Japan.
| | - Akihisa Miyagawa
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Eri Nasuno
- School of Engineering, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi, 321-8585, Japan
| | - Nobuo Uehara
- School of Engineering, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi, 321-8585, Japan
| |
Collapse
|
4
|
Thosar AU, Cai Y, Marks SM, Vicars Z, Choi J, Pallath A, Patel AJ. On the engulfment of antifreeze proteins by ice. Proc Natl Acad Sci U S A 2024; 121:e2320205121. [PMID: 38833468 PMCID: PMC11181090 DOI: 10.1073/pnas.2320205121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/16/2024] [Indexed: 06/06/2024] Open
Abstract
Antifreeze proteins (AFPs) are remarkable biomolecules that suppress ice formation at trace concentrations. To inhibit ice growth, AFPs must not only bind to ice crystals, but also resist engulfment by ice. The highest supercooling, [Formula: see text], for which AFPs are able to resist engulfment is widely believed to scale as the inverse of the separation, [Formula: see text], between bound AFPs, whereas its dependence on the molecular characteristics of the AFP remains poorly understood. By using specialized molecular simulations and interfacial thermodynamics, here, we show that in contrast with conventional wisdom, [Formula: see text] scales as [Formula: see text] and not as [Formula: see text]. We further show that [Formula: see text] is proportional to AFP size and that diverse naturally occurring AFPs are optimal at resisting engulfment by ice. By facilitating the development of AFP structure-function relationships, we hope that our findings will pave the way for the rational design of AFPs.
Collapse
Affiliation(s)
- Aniket U. Thosar
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Yusheng Cai
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Sean M. Marks
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Zachariah Vicars
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Jeongmoon Choi
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Akash Pallath
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Amish J. Patel
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
5
|
Grabowska J, Kuffel A, Zielkiewicz J. Long-range, water-mediated interaction between a moderately active antifreeze protein molecule and the surface of ice. J Chem Phys 2024; 160:095101. [PMID: 38445741 DOI: 10.1063/5.0187663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Using molecular dynamics simulations, we show that a molecule of moderately active antifreeze protein (type III AFP, QAE HPLC-12 isoform) is able to interact with ice in an indirect manner. This interaction occurs between the ice binding site (IBS) of the AFP III molecule and the surface of ice, and it is mediated by liquid water, which separates these surfaces. As a result, the AFP III molecule positions itself at a specific orientation and distance relative to the surface of ice, which enables the effective binding (via hydrogen bonds) of the molecule with the nascent ice surface. Our results show that the final adsorption of the AFP III molecule on the surface of ice is not achieved by chaotic diffusion movements, but it is preceded by a remote, water-mediated interaction between the IBS and the surface of ice. The key factor that determines the existence of this interaction is the ability of water molecules to spontaneously form large, high-volume aggregates that can be anchored to both the IBS of the AFP molecule and the surface of ice. The results presented in this work for AFP III are in full agreement with the ones obtained by us previously for hyperactive CfAFP, which indicates that the mechanism of the remote interaction of these molecules with ice remains unchanged despite significant differences in the molecular structure of their ice binding sites. For that reason, we can expect that also other types of AFPs interact with the ice surface according to an analogous mechanism.
Collapse
Affiliation(s)
- Joanna Grabowska
- Faculty of Chemistry, Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Anna Kuffel
- Faculty of Chemistry, Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Jan Zielkiewicz
- Faculty of Chemistry, Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
6
|
Midya US, Bandyopadhyay S. Ice Recrystallization Unveils the Binding Mechanism Operating at a Diffused Interface. J Phys Chem B 2024; 128:1170-1178. [PMID: 38287221 DOI: 10.1021/acs.jpcb.3c05934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Recrystallization of ice is a natural phenomenon that causes adverse effects in cryopreservation, agriculture, and in frozen food industry. It has long been recognized that ice recrystallization occurs through the Ostwald ripening and accretion processes. However, neither of these processes has been explored in microscopic detail by state-of-the-art experimental techniques. We carried out atomistic molecular dynamics (MD) simulations to explore ice recrystallization through the accretion process. Attempts have been made to elucidate the binding mechanism that is operating at the diffused ice-water interface. It is demonstrated that two ice crystals spontaneously recognize each other and bind together to form a large crystal in liquid water, resulting in ice recrystallization by accretion. Interestingly, the study reveals that the binding occurs due to the freezing of the interfacial water layer present between the two ice planes, even at a temperature above the melting point of the ice crystal. The synergistically enhanced ordering effect of two ice surfaces on the interfacial water leads to such freezing occurring during the binding process. However, proper crystallographic alignment is not necessarily required for the binding of the two crystals. Simulations have also been carried out to study the binding between an ice crystal and the model ice-binding surface (IBS) of an antifreeze protein above the melting point of the ice crystal. It is found that such binding at the IBS is accompanied by freezing of the interfacial water. This establishes that the synergetic ordering-driven freezing of interfacial water is a common binding mechanism at the diffused surfaces of ice crystals. We believe that this mechanism will provide a microscopic understanding of the process of recrystallization inhibition and thus help in designing suitable materials for potent applications in recrystallization inhibition.
Collapse
Affiliation(s)
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
7
|
Aich R, Pal P, Chakraborty S, Jana B. Preferential Ordering and Organization of Hydration Water Favor Nucleation of Ice by Ice-Nucleating Proteins over Antifreeze Proteins. J Phys Chem B 2023; 127:6038-6048. [PMID: 37395194 DOI: 10.1021/acs.jpcb.3c01641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Bacteria containing ice-nucleating proteins (INPs) evolved in nature to nucleate ice at the high sub-zero ambiance. The ability of the INPs to induce order in the hydration layer and their aggregation propensity appear to be key factors of their ice nucleation abilities. However, the mechanism of the process of ice nucleation by INPs is yet to be understood clearly. Here, we have performed all-atom molecular dynamics simulations and analyzed the structure and dynamics of the hydration layer around the proposed ice-nucleating surface of a model INP. Results are compared with the hydration of a topologically similar non-ice-binding protein (non-IBP) and another ice-growth inhibitory antifreeze protein (sbwAFP). We observed that the hydration structure around the ice-nucleating surface of INP is highly ordered and the dynamics of the hydration water are slower, compared to the non-IBP. Even the ordering of the hydration layer is more evident around the ice-binding surface of INP, compared to the antifreeze protein sbwAFP. Particularly with increasing repeat units of INP, we observe an increased population of ice-like water. Interestingly, the distances between the hydroxyl groups of the threonine ladder and its associated channel water of the ice-binding surface (IBS) of INP in the X and Y direction mimic the oxygen atom distances of the basal plane of hexagonal ice. However, the structural synergies between the hydroxyl group distances of the threonine ladder and its associated channel water of the IBS of sbwAFP and oxygen atom distances of the basal plane are less evident. This difference makes the IBS of the INP a better template for ice nucleation than AFP, although both of them bind to the ice surface efficiently.
Collapse
Affiliation(s)
- Rahul Aich
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Prasun Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institution of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 5000046, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
8
|
de Haas RJ, Tas RP, van den Broek D, Zheng C, Nguyen H, Kang A, Bera AK, King NP, Voets IK, de Vries R. De novo designed ice-binding proteins from twist-constrained helices. Proc Natl Acad Sci U S A 2023; 120:e2220380120. [PMID: 37364125 PMCID: PMC10319034 DOI: 10.1073/pnas.2220380120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/02/2023] [Indexed: 06/28/2023] Open
Abstract
Attaining molecular-level control over solidification processes is a crucial aspect of materials science. To control ice formation, organisms have evolved bewildering arrays of ice-binding proteins (IBPs), but these have poorly understood structure-activity relationships. We propose that reverse engineering using de novo computational protein design can shed light on structure-activity relationships of IBPs. We hypothesized that the model alpha-helical winter flounder antifreeze protein uses an unusual undertwisting of its alpha-helix to align its putative ice-binding threonine residues in exactly the same direction. We test this hypothesis by designing a series of straight three-helix bundles with an ice-binding helix projecting threonines and two supporting helices constraining the twist of the ice-binding helix. Our findings show that ice-recrystallization inhibition by the designed proteins increases with the degree of designed undertwisting, thus validating our hypothesis, and opening up avenues for the computational design of IBPs.
Collapse
Affiliation(s)
- Robbert J. de Haas
- Department of Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, WE6708, The Netherlands
| | - Roderick P. Tas
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, MB5600, The Netherlands
| | - Daniëlle van den Broek
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, MB5600, The Netherlands
| | - Chuanbao Zheng
- Department of Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, WE6708, The Netherlands
| | - Hannah Nguyen
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Asim K. Bera
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Ilja K. Voets
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, MB5600, The Netherlands
| | - Renko de Vries
- Department of Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, WE6708, The Netherlands
| |
Collapse
|
9
|
Nanoscopy of single antifreeze proteins reveals that reversible ice binding is sufficient for ice recrystallization inhibition but not thermal hysteresis. Proc Natl Acad Sci U S A 2023; 120:e2212456120. [PMID: 36595705 PMCID: PMC9926230 DOI: 10.1073/pnas.2212456120] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Antifreeze proteins (AFPs) bind ice to reduce freezing temperatures and arrest ice crystal ripening, making AFPs essential for the survival of many organisms in ice-laden environments and attractive as biocompatible antifreezes in many applications. While their activity was identified over 50 years ago, the physical mechanisms through which they function are still debated because experimental insights at the molecular scale remain elusive. Here, we introduce subzero nanoscopy by the design and incorporation of a freezing stage on a commercial super-resolution setup to resolve the interfacial dynamics of single AFPs with ice crystal surfaces. Using this method, we demonstrate irreversible binding and immobilization (i.e., pinning) of individual proteins to the ice/water interface. Surprisingly, pinning is lost and adsorption becomes reversible when freezing point depression activity, but not ice recrystallization inhibition, is eliminated by a single mutation in the ice-binding site of the AFP. Our results provide direct experimental evidence for the adsorption-inhibition paradigm, pivotal to all theoretical descriptions of freezing point depression activity, but also reveal that reversible binding to ice must be accounted for in an all-inclusive model for AFP activity. These mechanistic insights into the relation between interfacial interactions and activity further our understanding and may serve as leading principles in the future design of highly potent, biocompatible antifreezes with tunable affinity.
Collapse
|
10
|
Pal P, Aich R, Chakraborty S, Jana B. Molecular Factors of Ice Growth Inhibition for Hyperactive and Globular Antifreeze Proteins: Insights from Molecular Dynamics Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15132-15144. [PMID: 36450094 DOI: 10.1021/acs.langmuir.2c02149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The molecular mechanism behind the ice growth inhibition by antifreeze proteins (AFPs) is yet to be understood completely. Also, what physical parameters differentiate between the AFP and non-AFP are largely unknown. Thus, to get an atomistic overview of the differential antifreeze activities of different classes of AFPs, we have studied ice growth from different ice surfaces in the presence of a moderately active globular type III AFP and a hyperactive spruce budworm (sbw) AFP. Results are compared with the observations of ice growth simulations in the presence of topologically similar non-AFPs using all-atom molecular dynamics simulations. Simulation data suggest that the ice surface coverage is a critical factor in ice growth inhibition. Due to the presence of an ice binding surface (IBS), AFPs form a high affinity complex with ice, accompanied by a transition of hydration water around the IBS from clathrate-like to ice-like. Several residues around the periphery of the IBS anchor the AFP to the curved ice surface mediated by multiple strong hydrogen bonds, stabilizing the complex immensely. In the high surface coverage regime, the slow unbinding kinetics dominates over the ice growth kinetics and thus facilitates the ice growth inhibition. Due to the non-availability of a proper IBS, non-AFPs form a low-affinity complex with the growing ice surface. As a result, the non-AFPs are continuously repelled by the surface. If the concentration of AFPs is low, then the effective surface coverage is reduced significantly. In this low surface coverage regime, AFPs can also behave like impurities and are engulfed by the growing ice crystal.
Collapse
Affiliation(s)
- Prasun Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Rahul Aich
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
11
|
Kamat K, Naullage PM, Molinero V, Peters B. Oriented attachment kinetics for rod-like particles at a flat surface: Buffon's needle at the nanoscale. J Chem Phys 2022; 157:214113. [PMID: 36511557 DOI: 10.1063/5.0124531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The adsorption of large rod-like molecules or crystallites on a flat crystal face, similar to Buffon's needle, requires the rods to "land," with their binding sites in precise orientational alignment with matching sites on the surface. An example is provided by long, helical antifreeze proteins (AFPs), which bind at specific facets and orientations on the ice surface. The alignment constraint for adsorption, in combination with the loss in orientational freedom as the molecule diffuses toward the surface, results in an entropic barrier that hinders the adsorption. Prior kinetic models do not factor in the complete geometry of the molecule, nor explicitly enforce orientational constraints for adsorption. Here, we develop a diffusion-controlled adsorption theory for AFP molecules binding at specific orientations to flat ice surfaces. We formulate the diffusion equation with relevant boundary conditions and present analytical solutions to the attachment rate constant. The resulting rate constant is a function of the length and aspect ratio of the AFP, the distance threshold associated with binding, and solvent conditions such as temperature and viscosity. These results and methods of calculation may also be useful for predicting the kinetics of crystal growth through oriented attachment.
Collapse
Affiliation(s)
- Kartik Kamat
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Pavithra M Naullage
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112, USA
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112, USA
| | - Baron Peters
- Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
12
|
Du X, Wang B, Li H, Liu H, Shi S, Feng J, Pan N, Xia X. Research progress on quality deterioration mechanism and control technology of frozen muscle foods. Compr Rev Food Sci Food Saf 2022; 21:4812-4846. [PMID: 36201389 DOI: 10.1111/1541-4337.13040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 01/28/2023]
Abstract
Freezing can prolong the shelf life of muscle foods and is widely used in their preservation. However, inevitable quality deterioration can occur during freezing, frozen storage, and thawing. This review explores the eating quality deterioration characteristics (color, water holding capacity, tenderness, and flavor) and mechanisms (irregular ice crystals, oxidation, and hydrolysis of lipids and proteins) of frozen muscle foods. It also summarizes and classifies the novel physical-field-assisted-freezing technologies (high-pressure, ultrasound, and electromagnetic) and bioactive antifreeze (ice nucleation proteins, antifreeze proteins, natural deep eutectic solvents, carbohydrate, polyphenol, phosphate, and protein hydrolysates), regulating the dynamic process from water to ice. Moreover, some novel thermal and nonthermal thawing technologies to resolve the loss of water and nutrients caused by traditional thawing methods were also reviewed. We concluded that the physical damage caused by ice crystals was the primary reason for the deterioration in eating quality, and these novel techniques promoted the eating quality of frozen muscle foods under proper conditions, including appropriate parameters (power, time, and intermittent mode mentioned in ultrasound-assisted techniques; pressure involved in high-pressure-assisted techniques; and field strength involved in electromagnetic-assisted techniques) and the amounts of bioactive antifreeze. To obtain better quality frozen muscle foods, more efficient technologies and substances must be developed. The synergy of novel freezing/thawing technology may be more effective than individual applications. This knowledge may help improve the eating quality of frozen muscle foods.
Collapse
Affiliation(s)
- Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Bo Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haijing Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuo Shi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jia Feng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
13
|
Lee SY, Kim M, Won TK, Back SH, Hong Y, Kim BS, Ahn DJ. Janus regulation of ice growth by hyperbranched polyglycerols generating dynamic hydrogen bonding. Nat Commun 2022; 13:6532. [PMID: 36319649 PMCID: PMC9626502 DOI: 10.1038/s41467-022-34300-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, a new phenomenon describing the Janus effect on ice growth by hyperbranched polyglycerols, which can align the surrounding water molecules, has been identified. Even with an identical polyglycerol, we not only induced to inhibit ice growth and recrystallization, but also to promote the growth rate of ice that is more than twice that of pure water. By investigating the polymer architecture and population, we found that the stark difference in the generation of quasi-structured H2O molecules at the ice/water interface played a crucial role in the outcome of these opposite effects. Inhibition activity was induced when polymers at nearly fixed loci formed steady hydrogen bonding with the ice surface. However, the formation-and-dissociation dynamics of the interfacial hydrogen bonds, originating from and maintained by migrating polymers, resulted in an enhanced quasi-liquid layer that facilitated ice growth. Such ice growth activity is a unique property unseen in natural antifreeze proteins or their mimetic materials.
Collapse
Affiliation(s)
- Sang Yup Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
- The w:i Interface Augmentation Center, Korea University, Seoul, Republic of Korea
| | - Minseong Kim
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea
| | - Tae Kyung Won
- The w:i Interface Augmentation Center, Korea University, Seoul, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Seung Hyuk Back
- The w:i Interface Augmentation Center, Korea University, Seoul, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Youngjoo Hong
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea.
| | - Dong June Ahn
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.
- The w:i Interface Augmentation Center, Korea University, Seoul, Republic of Korea.
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Duran T, Minatovicz B, Bellucci R, Bai J, Chaudhuri B. Molecular Dynamics Modeling Based Investigation of the Effect of Freezing Rate on Lysozyme Stability. Pharm Res 2022; 39:2585-2596. [PMID: 35948746 DOI: 10.1007/s11095-022-03358-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE The stability of protein drug products frozen during fill finish operations is greatly affected by the freezing rate applied. Non-optimal freezing rates may lead to the denaturation of protein's complex macromolecular conformation. However, limited work has been done to address the effect of different freezing rates on protein stability at nano-scale level. METHODS The stability of a model protein, lysozyme, was investigated at atomic and molecular scale under varying freezing rates and moving ice-water interface. Ice seeding approach was adopted to initiate ice formation in this present simulation. RESULTS The faster freezing rate (11-12 K/490 ns) applied resulted in overall smaller ice fraction within the simulation box with a larger freeze-concentrated liquid (FCL) region. Consequently, the faster freezing rate better maintained protein stability with less secondary structure deviations, higher hydration level and structural compactness, and less fluctuations at individual residues than observed following slow (5-6 K/490 ns) and medium (7-8 K/490 ns) freezing rates. The present study also identified the residues near and within helices 3, 6, 7, and 8 dominate the structural instability of the lysozyme at 247 K freezing temperature. CONCLUSIONS For the first time, ice formation in therapeutic protein solution was studied "non-isothermally" at different freezing rates using molecular dynamics simulations. Thus, a good understanding of freezing rates on protein instability was revealed by applying the developed computational model.
Collapse
Affiliation(s)
- Tibo Duran
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, 06269, USA
| | - Bruna Minatovicz
- Drug Product Development, BioTherapeutics Development, Janssen Research and Development, Malvern, PA, 19355, USA
| | - Ryan Bellucci
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Jun Bai
- Department of Computer Sciences and Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Bodhisattwa Chaudhuri
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, 06269, USA. .,Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA. .,Institute of Material Sciences (IMS), University of Connecticut, 69 N. Eagleville Road, Storrs, CT, 06269, USA.
| |
Collapse
|
15
|
Jing X, Luo Q, Cui X, Wang Q, Liu Y, Fu Z. Molecular Dynamics Simulation of CO2 Hydrate Growth in Salt Water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Zhu K, Zheng Z, Dai Z. Identification of antifreeze peptides in shrimp byproducts autolysate using peptidomics and bioinformatics. Food Chem 2022; 383:132568. [PMID: 35255363 DOI: 10.1016/j.foodchem.2022.132568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/04/2022]
Abstract
In the present study, a novel method based on peptidomics and bioinformatic was applied to identification and characterization of antifreeze peptides (AFPs) from shrimp byproducts autolysate (SBPA). According to the results of in silico prediction and high peptide structural inflexibility, DEYEESGPGIVH and EQICINFCNEK were picked as potential AFP-1 and AFP-2, respectively. The outcomes of DSC determination indicated that TH of synthesized AFP-1 and AFP-2 (10 mg/mL) were 1.37 °C and 1.57 °C, respectively. Besides, 0.1 %-3 % AFPs showed significant cryoprotection in shrimp muscle after 3 and 6 freeze-thaw cycles, evidenced by higher SSP content, Ca2+-ATPase activity, sulfhydryl content and lower surface hydrophobicity than control; while the higher concentration resulted in better protection against freeze induced denaturation. Both AFP-1&2 showed favorable hydrogen bonding affinity which facilitated ice binding and ice crystal growth inhibition. This work could provide new ideals for identification and characterization of AFPs.
Collapse
Affiliation(s)
- Kai Zhu
- The Joint Key Laboratory of Aquatic Products Processing of Zhejiang Province, 310012 Hangzhou, China; Institute of Seafood, Zhejiang Gongshang University, 310012 Hangzhou, China
| | - Zhenxiao Zheng
- The Joint Key Laboratory of Aquatic Products Processing of Zhejiang Province, 310012 Hangzhou, China; Institute of Seafood, Zhejiang Gongshang University, 310012 Hangzhou, China
| | - Zhiyuan Dai
- The Joint Key Laboratory of Aquatic Products Processing of Zhejiang Province, 310012 Hangzhou, China; Institute of Seafood, Zhejiang Gongshang University, 310012 Hangzhou, China.
| |
Collapse
|
17
|
Marcantonini G, Bartolini D, Zatini L, Costa S, Passerini M, Rende M, Luca G, Basta G, Murdolo G, Calafiore R, Galli F. Natural Cryoprotective and Cytoprotective Agents in Cryopreservation: A Focus on Melatonin. Molecules 2022; 27:3254. [PMID: 35630729 PMCID: PMC9145333 DOI: 10.3390/molecules27103254] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 01/31/2023] Open
Abstract
Cryoprotective and cytoprotective agents (Cytoprotective Agents) are fundamental components of the cryopreservation process. This review presents the essentials of the cryopreservation process by examining its drawbacks and the role of cytoprotective agents in protecting cell physiology. Natural cryoprotective and cytoprotective agents, such as antifreeze proteins, sugars and natural deep eutectic systems, have been compared with synthetic ones, addressing their mechanisms of action and efficacy of protection. The final part of this article focuses melatonin, a hormonal substance with antioxidant properties, and its emerging role as a cytoprotective agent for somatic cells and gametes, including ovarian tissue, spermatozoa and spermatogonial stem cells.
Collapse
Affiliation(s)
- Giada Marcantonini
- Department of Pharmaceutical Sciences, Lipidomics and Micronutrient Vitamins Laboratory and Human Anatomy Laboratory, University of Perugia, 06126 Perugia, Italy; (G.M.); (D.B.); (L.Z.)
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, Lipidomics and Micronutrient Vitamins Laboratory and Human Anatomy Laboratory, University of Perugia, 06126 Perugia, Italy; (G.M.); (D.B.); (L.Z.)
| | - Linda Zatini
- Department of Pharmaceutical Sciences, Lipidomics and Micronutrient Vitamins Laboratory and Human Anatomy Laboratory, University of Perugia, 06126 Perugia, Italy; (G.M.); (D.B.); (L.Z.)
| | - Stefania Costa
- Angelantoni Life Science S.r.l., 06056 Massa Martana, Italy; (S.C.); (M.P.)
| | | | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinic and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy;
| | - Giovanni Luca
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (G.L.); (G.B.); (G.M.); (R.C.)
- Centro Biotecnologico Internazionale di Ricerca Traslazionale ad Indirizzo Endocrino, Metabolico ed Embrio-Riproduttivo (CIRTEMER), 06132 Perugia, Italy
| | - Giuseppe Basta
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (G.L.); (G.B.); (G.M.); (R.C.)
- Centro Biotecnologico Internazionale di Ricerca Traslazionale ad Indirizzo Endocrino, Metabolico ed Embrio-Riproduttivo (CIRTEMER), 06132 Perugia, Italy
| | - Giuseppe Murdolo
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (G.L.); (G.B.); (G.M.); (R.C.)
| | - Riccardo Calafiore
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (G.L.); (G.B.); (G.M.); (R.C.)
- Centro Biotecnologico Internazionale di Ricerca Traslazionale ad Indirizzo Endocrino, Metabolico ed Embrio-Riproduttivo (CIRTEMER), 06132 Perugia, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, Lipidomics and Micronutrient Vitamins Laboratory and Human Anatomy Laboratory, University of Perugia, 06126 Perugia, Italy; (G.M.); (D.B.); (L.Z.)
| |
Collapse
|
18
|
Majorina MA, Veselova VR, Melnik BS. The influence of Pseudomonas syringae on water freezing and ice melting. PLoS One 2022; 17:e0265683. [PMID: 35551271 PMCID: PMC9098023 DOI: 10.1371/journal.pone.0265683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/06/2022] [Indexed: 11/21/2022] Open
Abstract
Pseudomonas syringae is a widely spread plant pathogen known to have ice-nucleating proteins that serve as crystallization sites promoting ice growth at near-zero temperatures. Three temperatures that characterize water freezing and ice melting are (i) the freezing point of water, (ii) the temperature of coexistence of ice and water, and (iii) the melting point of ice. Here we show the influence of different concentrations of P. syringae on these three parameters. P. syringae appears to affect both the freezing point of water and the temperature of the coexistence of ice and water. Additionally, we propose a research technique for studying the freezing/melting process that is simple and requires no complex equipment.
Collapse
Affiliation(s)
- Maria A. Majorina
- Institute of Protein Research, RAS, Pushchino, Moscow Region, Russia
| | | | - Bogdan S. Melnik
- Institute of Protein Research, RAS, Pushchino, Moscow Region, Russia
- * E-mail:
| |
Collapse
|
19
|
Davies PL. Reflections on antifreeze proteins and their evolution. Biochem Cell Biol 2022; 100:282-291. [PMID: 35580352 DOI: 10.1139/bcb-2022-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The discovery of radically different antifreeze proteins (AFPs) in fishes during the 1970s and 1980s suggested that these proteins had recently and independently evolved to protect teleosts from freezing in icy seawater. Early forays into the isolation and characterization of AFP genes in these fish showed they were massively amplified, often in long tandem repeats. The work of many labs in the 1980s onward led to the discovery and characterization of AFPs in other kingdoms, such as insects, plants, and many different microorganisms. The distinct ice-binding property that these ice-binding proteins (IBPs) share has facilitated their purification through adsorption to ice, and the ability to produce recombinant versions of IBPs has enabled their structural characterization and the mapping of their ice-binding sites (IBSs) using site-directed mutagenesis. One hypothesis for their ice affinity is that the IBS organizes surface waters into an ice-like pattern that freezes the protein onto ice. With access now to a rapidly expanding database of genomic sequences, it has been possible to trace the origins of some fish AFPs through the process of gene duplication and divergence, and to even show the horizontal transfer of an AFP gene from one species to another.
Collapse
Affiliation(s)
- Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
20
|
Deeva AA, Glukhova KA, Isoyan LS, Okulova YD, Uversky VN, Melnik BS. Design and Analysis of a Mutant form of the Ice-Binding Protein from Choristoneura fumiferana. Protein J 2022; 41:304-314. [PMID: 35366124 DOI: 10.1007/s10930-022-10049-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2022] [Indexed: 10/18/2022]
Abstract
Ice-binding proteins are expressed in the cells of some cold adapted organisms, helping them to survive at extremely low temperatures. One of the problems in studying such proteins is the difficulty of their isolation and purification. For example, eight cysteine residues in the cfAF (antifreeze protein from the eastern spruce budworm Choristoneura fumiferana) form intermolecular bridges during the overexpression of this protein. This impedes the process of the protein purification dramatically. To overcome this issue, in this work, we designed a mutant form of the ice-binding protein cfAFP, which is much easier to isolate that the wild-type protein. The mutant form named mIBP83 did not lose the ability to bind to ice surface. Besides, observation of the processes of freezing and melting of ice in the presence of mIBP83 showed that this protein affects the process of ice melting, increasing its melting temperature, and does not decrease the water freezing temperature.
Collapse
Affiliation(s)
- Anna A Deeva
- Biophysics Department, Siberian Federal University, Svobodny 79, Krasnoyarsk, Russia, 660041
| | - Ksenia A Glukhova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Puschino, Russia
| | - Lala S Isoyan
- Biophysics Department, Siberian Federal University, Svobodny 79, Krasnoyarsk, Russia, 660041
| | - Yuliya D Okulova
- Institute of Protein Research of the Russian Academy of Sciences, 4 Institutskaya Str., Pushchino, Moscow Region, Russia, 142290
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institure, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Bogdan S Melnik
- Institute of Protein Research of the Russian Academy of Sciences, 4 Institutskaya Str., Pushchino, Moscow Region, Russia, 142290.
| |
Collapse
|
21
|
Cui S, Zhang W, Shao X, Cai W. Do antifreeze proteins generally possess the potential to promote ice growth? Phys Chem Chem Phys 2022; 24:7901-7908. [PMID: 35311839 DOI: 10.1039/d1cp05431g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding of antifreeze proteins (AFPs) to ice needs to be mediated by interfacial water molecules. Our previous study of the effect of AFPs on the dynamics of the interfacial water of freezing at its initial stage has shown that AFPs can promote the growth of ice before binding to it. However, whether different AFPs can promote the freezing of water molecules on the basal and the prismatic surfaces of ice still needs further study. In the present contribution, five representative natural AFPs with different structures and different activities that can be adsorbed on the basal and/or prismatic surfaces of ice are investigated at the atomic level. Our results show that the phenomenon of promoting the growth of ice crystals is not universal. Only hyperactive AFPs (hypAFPs) can promote the growth of the basal plane of ice, while moderately active AFPs cannot. Moreover, this significant promotion is not observed on the prismatic plane regardless of their activity. Further analysis indicates that this promotion may result from the thicker ice/water interface of the basal plane, and the synergy of hypAFPs with ice crystals.
Collapse
Affiliation(s)
- Shaoli Cui
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China.
| | - Weijia Zhang
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China.
| | - Xueguang Shao
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China.
| | - Wensheng Cai
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China.
| |
Collapse
|
22
|
Kuramochi M, Dong Y, Yang Y, Arai T, Okada R, Shinkai Y, Doi M, Aoyama K, Sekiguchi H, Mio K, Tsuda S, Sasaki YC. Dynamic motions of ice-binding proteins in living Caenorhabditis elegans using diffracted X-ray blinking and tracking. Biochem Biophys Rep 2022; 29:101224. [PMID: 35146137 PMCID: PMC8819013 DOI: 10.1016/j.bbrep.2022.101224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Masahiro Kuramochi
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, 316-8511, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, 277-8565, Japan
- Corresponding author. Graduate School of Science and Engineering, Ibaraki University, Hitachi, 316-8511, Japan.
| | - Yige Dong
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Yue Yang
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Tatsuya Arai
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Rio Okada
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Yoichi Shinkai
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Japan
| | - Motomichi Doi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Japan
| | - Kouki Aoyama
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Hiroshi Sekiguchi
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Kazuhiro Mio
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, 277-8565, Japan
| | - Sakae Tsuda
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, 277-8565, Japan
| | - Yuji C. Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, 277-8565, Japan
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
- Corresponding author. Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan.
| |
Collapse
|
23
|
Hwang J, Kim B, Lee MJ, Kim EJ, Cho SM, Lee SG, Han SJ, Kim K, Lee JH, Do H. Importance of rigidity of ice-binding protein (FfIBP) for hyperthermal hysteresis activity and microbial survival. Int J Biol Macromol 2022; 204:485-499. [PMID: 35149098 DOI: 10.1016/j.ijbiomac.2022.02.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 01/18/2023]
Abstract
Ice-binding proteins (IBPs) are well-characterized proteins responsible for the cold-adaptation mechanisms. Despite extensive structural and biological investigation of IBPs and antifreeze proteins, only a few studies have considered the relationship between protein stabilization and thermal hysteresis (TH) activity as well as the implication of hyperactivity. Here, we investigated the important role of the head capping region in stabilization and the hyper-TH activity of FfIBP using molecular dynamics simulation. Data comparison revealed that residues on the ice-binding site of the hyperactive FfIBP are immobilized, which could be correlated with TH activity. Further comparison analysis indicated the disulfide bond in the head region is mainly involved in protein stabilization and is crucial for hyper-TH activity. This finding could also be generalized to known hyperactive IBPs. Furthermore, in mimicking the physiological conditions, bacteria with membrane-anchored FfIBP formed brine pockets in a TH activity-dependent manner. Cells with a higher number of TH-active IBPs showed an increased number of brine pockets, which may be beneficial for short- and long-term survival in cold environments by reducing the salt concentration. The newly identified conditions for hyper-TH activity and their implications on bacterial survival provide insights into novel mechanistic aspects of cold adaptation in polar microorganisms.
Collapse
Affiliation(s)
- Jisub Hwang
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Bomi Kim
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Min Ju Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Eun Jae Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Sung Mi Cho
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Sung Gu Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Se Jong Han
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea; Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Kitae Kim
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea.
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea.
| | - Hackwon Do
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea.
| |
Collapse
|
24
|
Ghalamara S, Silva S, Brazinha C, Pintado M. Structural diversity of marine anti-freezing proteins, properties and potential applications: a review. BIORESOUR BIOPROCESS 2022; 9:5. [PMID: 38647561 PMCID: PMC10992025 DOI: 10.1186/s40643-022-00494-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/08/2022] [Indexed: 11/10/2022] Open
Abstract
Cold-adapted organisms, such as fishes, insects, plants and bacteria produce a group of proteins known as antifreeze proteins (AFPs). The specific functions of AFPs, including thermal hysteresis (TH), ice recrystallization inhibition (IRI), dynamic ice shaping (DIS) and interaction with membranes, attracted significant interest for their incorporation into commercial products. AFPs represent their effects by lowering the water freezing point as well as preventing the growth of ice crystals and recrystallization during frozen storage. The potential of AFPs to modify ice growth results in ice crystal stabilizing over a defined temperature range and inhibiting ice recrystallization, which could minimize drip loss during thawing, improve the quality and increase the shelf-life of frozen products. Most cryopreservation studies using marine-derived AFPs have shown that the addition of AFPs can increase post-thaw viability. Nevertheless, the reduced availability of bulk proteins and the need of biotechnological techniques for industrial production, limit the possible usage in foods. Despite all these drawbacks, relatively small concentrations are enough to show activity, which suggests AFPs as potential food additives in the future. The present work aims to review the results of numerous investigations on marine-derived AFPs and discuss their structure, function, physicochemical properties, purification and potential applications.
Collapse
Affiliation(s)
- Soudabeh Ghalamara
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Sara Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Carla Brazinha
- LAQV/Requimte, Faculdade de Ciências E Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
25
|
QIAO Z, YIN M, QI X, LI Z, YU Z, CHEN M, XIAO T, WANG X. Freezing and storage on aquatic food: underlying mechanisms and implications on quality deterioration. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.91322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Zenghui QIAO
- Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, China
| | - Mingyu YIN
- Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, China
| | - Xinjuan QI
- Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, China
| | | | - Zheng YU
- Shanghai Ocean University, China
| | - Min CHEN
- Shanghai Ocean University, China
| | | | - Xichang WANG
- Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, China
| |
Collapse
|
26
|
Tessier SN, Haque O, Pendexter CA, Cronin SEJ, Hafiz EOA, Weng L, Yeh H, Markmann JF, Taylor MJ, Fahy GM, Toner M, Uygun K. The role of antifreeze glycoprotein (AFGP) and polyvinyl alcohol/polyglycerol (X/Z-1000) as ice modulators during partial freezing of rat livers. FRONTIERS IN PHYSICS 2022; 10:1033613. [PMID: 37151819 PMCID: PMC10161798 DOI: 10.3389/fphy.2022.1033613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Introduction The current liver organ shortage has pushed the field of transplantation to develop new methods to prolong the preservation time of livers from the current clinical standard of static cold storage. Our approach, termed partial freezing, aims to induce a thermodynamically stable frozen state at high subzero storage temperatures (-10°C to -15°C), while simultaneously maintaining a sufficient unfrozen fraction to limit ice-mediated injury. Methods and results Using glycerol as the main permeating cryoprotectant agent, this research first demonstrated that partially frozen rat livers showed similar outcomes after thawing from either -10°C or -15°C with respect to subnormothermic machine perfusion metrics. Next, we assessed the effect of adding ice modulators, including antifreeze glycoprotein (AFGP) or a polyvinyl alcohol/polyglycerol combination (X/Z-1000), on the viability and structural integrity of partially frozen rat livers compared to glycerol-only control livers. Results showed that AFGP livers had high levels of ATP and the least edema but suffered from significant endothelial cell damage. X/Z-1000 livers had the highest levels of ATP and energy charge (EC) but also demonstrated endothelial damage and post-thaw edema. Glycerol-only control livers exhibited the least DNA damage on Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining but also had the lowest levels of ATP and EC. Discussion Further research is necessary to optimize the ideal ice modulator cocktail for our partial-freezing protocol. Modifications to cryoprotective agent (CPA) combinations, including testing additional ice modulators, can help improve the viability of these partially frozen organs.
Collapse
Affiliation(s)
- Shannon N. Tessier
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
| | - Omar Haque
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Surgery, Division of Transplantation, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Casie A. Pendexter
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
| | - Stephanie E. J. Cronin
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
| | - Ehab O. A. Hafiz
- Department of Electron Microscopy Research, Theodor Bilharz Research Institute, Giza, Egypt
| | - Lindong Weng
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
| | - Heidi Yeh
- Department of Surgery, Division of Transplantation, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - James F. Markmann
- Department of Surgery, Division of Transplantation, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Michael J. Taylor
- Sylvatica Biotech Inc, North Charleston, SC, United States
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | | | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
- CORRESPONDENCE: Mehmet Toner, , Korkut Uygun,
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
- CORRESPONDENCE: Mehmet Toner, , Korkut Uygun,
| |
Collapse
|
27
|
Baskaran A, Kaari M, Venugopal G, Manikkam R, Joseph J, Bhaskar PV. Anti freeze proteins (Afp): Properties, sources and applications - A review. Int J Biol Macromol 2021; 189:292-305. [PMID: 34419548 DOI: 10.1016/j.ijbiomac.2021.08.105] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022]
Abstract
Extreme cold marine and freshwater temperatures (below 4 °C) induce massive deterioration to the cell membranes of organisms resulting in the formation of ice crystals, consequently causing organelle damage or cell death. One of the adaptive mechanisms organisms have evolved to thrive in cold environments is the production of antifreeze proteins with the functional capabilities to withstand frigid temperatures. Antifreeze proteins are extensively identified in different cold-tolerant species and they facilitate the persistence of cold-adapted organisms by decreasing the freezing point of their body fluids. Various structurally diverse types of antifreeze proteins detected possess the ability to modify ice crystal growth by thermal hysteresis and ice recrystallization inhibition. The unique properties of antifreeze proteins have made them a promising resource in industry, biomedicine, food storage and cryobiology. This review collates the findings of the various studies carried out in the past and the recent developments observed in the properties, functional mechanisms, classification, distinct sources and the ever-increasing applications of antifreeze proteins. This review also summarizes the possibilities of the way forward to identify new avenues of research on anti-freeze proteins.
Collapse
Affiliation(s)
- Abirami Baskaran
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India
| | - Manigundan Kaari
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India
| | - Gopikrishnan Venugopal
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India
| | - Radhakrishnan Manikkam
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India.
| | - Jerrine Joseph
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India
| | - Parli V Bhaskar
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama 403804, Goa, India
| |
Collapse
|
28
|
Cui S, Zhang W, Shao X, Cai W. Hyperactive Antifreeze Proteins Promote Ice Growth before Binding to It. J Chem Inf Model 2021; 62:5165-5174. [PMID: 34711054 DOI: 10.1021/acs.jcim.1c00915] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The antifreeze mechanism of antifreeze proteins (AFPs) evolved by organisms has been widely studied. However, detailed knowledge of the synergy between AFPs and ice crystals still remains fragmentary. In the present contribution, the cooperative effect of the hyperactive insect antifreeze protein TmAFP and ice crystals on the interfacial water during the entire process of inhibiting ice growth is systematically investigated at the atomic level and compared with its low activity mutant and a nonantifreeze protein. The results indicate a significant synergy between TmAFP and ice crystals, which enables the TmAFP to promote the ice growth before adsorbing on the surfaces of the ice crystals, while the mutant and the nonantifreeze protein cannot promote the ice growth due to the lack of this synergy. When TmAFP approaches the ice surface, the interfacial water is induced by both the AFP and the ice crystals to form the anchored clathrate motif, which binds TmAFP to the ice surface, resulting in a local increase in the curvature of the ice surface, thereby inhibiting the growth of ice. In this study, three stages, namely, promotion, adsorption, and inhibition, are observed in the complete process of TmAFP inhibiting ice growth, and the synergistic mechanism between protein and ice crystals is revealed. The results are helpful for the design of antifreeze proteins and bioinspired antifreeze materials with superior performance.
Collapse
Affiliation(s)
- Shaoli Cui
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
| | - Weijia Zhang
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
| | - Wensheng Cai
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
| |
Collapse
|
29
|
Gerhäuser J, Gaukel V. Detailed Analysis of the Ice Surface after Binding of an Insect Antifreeze Protein and Correlation with the Gibbs-Thomson Equation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11716-11725. [PMID: 34585573 DOI: 10.1021/acs.langmuir.1c01620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Antifreeze proteins (AFPs) are able to influence the ice crystal growth and the recrystallization process due to the Gibbs-Thomson effect. The binding of the AFP leads to the formation of a curved ice surface and it is generally assumed that there is a critical radius between the proteins on the ice surface that determines the maximal thermal hysteresis. Up to now, this critical radius has not yet been proven beyond doubt or only in poor agreement with the Gibbs-Thomson equation. Using molecular dynamics (MD) simulations, the resulting three-dimensional surface structure is analyzed and the location of the critical radius is identified. Our results demonstrate that the correct analysis of the geometry of the ice surface is extremely important and cannot be guessed upfront a simulation. In contrary to earlier expectations from the literature, we could show that the critical radius is not located directly between the adsorbed proteins. In addition, we showed that the minimum temperature at which the system does not freeze is in very good agreement with the value calculated with the Gibbs-Thomson equation at the critical radius, as long as dynamic system conditions are taken into account. This proves on the one hand that the Gibbs-Thomson effect is the basis of thermal hysteresis and that MD simulations are suitable for the prediction of the melting point depression.
Collapse
Affiliation(s)
- Julian Gerhäuser
- Section I: Food Process Engineering, KIT (Karlsruhe Institute of Technology), Institute of Process Engineering in Life Sciences, Kaiserstraße 12, Karlsruhe 76131, Germany
| | - Volker Gaukel
- Section I: Food Process Engineering, KIT (Karlsruhe Institute of Technology), Institute of Process Engineering in Life Sciences, Kaiserstraße 12, Karlsruhe 76131, Germany
| |
Collapse
|
30
|
Alim A, Rafay A, Naseem I. PoGB-pred: Prediction of Antifreeze Proteins Sequences Using Amino Acid Composition with Feature Selection Followed by a Sequential-based Ensemble Approach. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200707141926] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Proteins contribute significantly in every task of cellular life. Their
functions encompass the building and repairing of tissues in human bodies and other organisms.
Hence they are the building blocks of bones, muscles, cartilage, skin, and blood. Similarly, antifreeze
proteins are of prime significance for organisms that live in very cold areas. With the help of
these proteins, the cold water organisms can survive below zero temperature and resist the water
crystallization process, which may cause the rupture in the internal cells and tissues. AFP’s have
also attracted attention and interest in food industries and cryopreservation.
Objective:
With the increase in the availability of genomic sequence
data of protein, an automated and sophisticated tool for AFP recognition and identification is in dire need. The sequence
and structures of AFP are highly distinct, therefore, most of the proposed methods fail to show promising results on
different structures. A consolidated method is proposed to produce the competitive performance on highly distinct AFP
structure.
Methods:
In this study, machine learning-based algorithms including Principal Component Analysis
(PCA) followed by Gradient Boosting (GB) were proposed to be used for anti-freeze protein
identification. To analyze the performance and validation of the proposed model, various
combinations of two segments' composition of amino acid and dipeptides are used. PCA, in
particular, is proposed for dimension reduction and high variance retaining of data, which is
followed by an ensemble method named gradient boosting for modeling and classification.
Results:
The proposed method obtained the
superfluous performance on PDB, Pfam and Uniprot dataset as compared with the RAFP-Pred method. In experiment-3,
by utilizing only 150 PCA components a high accuracy of 89.63 was achieved which is superior to the 87.41 utilizing 300
significant features reported for the RAFP-Pred method. Experiment-2 is conducted using two different dataset such that
non-AFP from the PISCES server and AFPs from Protein data bank. In this experiment-2, our proposed method attained
high sensitivity of 79.16 which is 12.50 better than state-of-the-art the RAFP-pred method.
Conclusion:
AFPs have a common function with distinct structure. Therefore, the development of a single model for
different sequences often fails to AFPs. A robust results have been shown by our proposed model on the diversity of
training and testing dataset. The results of the proposed model outperformed compared to the previous AFPs prediction method such as RAFP-Pred. Our model consists of PCA for dimension reduction followed by gradient boosting for
classification. Due to simplicity, scalability properties and high performance result our model can be easily extended for
analyzing the proteomic and genomic dataset.
Collapse
Affiliation(s)
- Affan Alim
- College of Computing and Information Sciences, Karachi Institute of Economics and Technology (KIET), Karachi 75190, Pakistan
| | - Abdul Rafay
- College of Computing and Information Sciences, Karachi Institute of Economics and Technology (KIET), Karachi 75190, Pakistan
| | - Imran Naseem
- School of Electrical, Electronic and Computer Engineering, the University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
31
|
Sun Y, Giubertoni G, Bakker HJ, Liu J, Wagner M, Ng DYW, Devries AL, Meister K. Disaccharide Residues are Required for Native Antifreeze Glycoprotein Activity. Biomacromolecules 2021; 22:2595-2603. [PMID: 33957041 PMCID: PMC8207503 DOI: 10.1021/acs.biomac.1c00313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Antifreeze glycoproteins
(AFGPs) are able to bind to ice, halt
its growth, and are the most potent inhibitors of ice recrystallization
known. The structural basis for AFGP’s unique properties remains
largely elusive. Here we determined the antifreeze activities of AFGP
variants that we constructed by chemically modifying the hydroxyl
groups of the disaccharide of natural AFGPs. Using nuclear magnetic
resonance, two-dimensional infrared spectroscopy, and circular dichroism,
the expected modifications were confirmed as well as their effect
on AFGPs solution structure. We find that the presence of all the
hydroxyls on the disaccharides is a requirement for the native AFGP
hysteresis as well as the maximal inhibition of ice recrystallization.
The saccharide hydroxyls are apparently as important as the acetyl
group on the galactosamine, the α-linkage between the disaccharide
and threonine, and the methyl groups on the threonine and alanine.
We conclude that the use of hydrogen-bonding through the hydroxyl
groups of the disaccharide and hydrophobic interactions through the
polypeptide backbone are equally important in promoting the antifreeze
activities observed in the native AFGPs. These important criteria
should be considered when designing synthetic mimics.
Collapse
Affiliation(s)
- Yuling Sun
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Giulia Giubertoni
- NWO Institute AMOLF, 1098 XG Amsterdam, The Netherlands.,University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Huib J Bakker
- NWO Institute AMOLF, 1098 XG Amsterdam, The Netherlands
| | - Jie Liu
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - David Y W Ng
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Arthur L Devries
- University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Konrad Meister
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany.,University of Alaska Southeast, Juneau, Alaska 99801, United States
| |
Collapse
|
32
|
Zhu S, Yu J, Chen X, Zhang Q, Cai X, Ding Y, Zhou X, Wang S. Dual cryoprotective strategies for ice-binding and stabilizing of frozen seafood: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Roudsari G, Veshki FG, Reischl B, Pakarinen OH. Liquid Water and Interfacial, Cubic, and Hexagonal Ice Classification through Eclipsed and Staggered Conformation Template Matching. J Phys Chem B 2021; 125:3909-3917. [PMID: 33844543 DOI: 10.1021/acs.jpcb.1c01926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We propose a novel method based on template matching for the recognition of liquid water, cubic ice (ice Ic), hexagonal ice (ice Ih), clathrate hydrates, and different interfacial structures in atomistic and coarse-grained simulations of water and ice. The two template matrices represent staggered and eclipsed conformations, which are the building blocks of hexagonal and cubic ice and clathrate crystals. The algorithm is rotationally invariant and highly robust against imperfections in the ice structure, and its sensitivity for recognizing ice-like structures can be tuned for different applications. Unlike most other algorithms, it can discriminate between cubic, hexagonal, clathrate, mixed, and other interfacial ice types and is therefore well suited to study complex systems and heterogeneous ice nucleation.
Collapse
Affiliation(s)
- Golnaz Roudsari
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, Helsinki FI-00014, Finland
| | - Farshad G Veshki
- Department of Signal Processing and Acoustics, School of Electrical Engineering, Aalto University, P.O. Box 11000, Espoo FI-00076, Finland
| | - Bernhard Reischl
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, Helsinki FI-00014, Finland
| | - Olli H Pakarinen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, Helsinki FI-00014, Finland
| |
Collapse
|
34
|
Bachtiger F, Congdon TR, Stubbs C, Gibson MI, Sosso GC. The atomistic details of the ice recrystallisation inhibition activity of PVA. Nat Commun 2021; 12:1323. [PMID: 33637764 PMCID: PMC7910567 DOI: 10.1038/s41467-021-21717-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Understanding the ice recrystallisation inhibition (IRI) activity of antifreeze biomimetics is crucial to the development of the next generation of cryoprotectants. In this work, we bring together molecular dynamics simulations and quantitative experimental measurements to unravel the microscopic origins of the IRI activity of poly(vinyl)alcohol (PVA)-the most potent of biomimetic IRI agents. Contrary to the emerging consensus, we find that PVA does not require a "lattice matching" to ice in order to display IRI activity: instead, it is the effective volume of PVA and its contact area with the ice surface which dictates its IRI strength. We also find that entropic contributions may play a role in the ice-PVA interaction and we demonstrate that small block co-polymers (up to now thought to be IRI-inactive) might display significant IRI potential. This work clarifies the atomistic details of the IRI activity of PVA and provides novel guidelines for the rational design of cryoprotectants.
Collapse
Affiliation(s)
- Fabienne Bachtiger
- Department of Chemistry, University of Warwick, Coventry, UK
- Centre for Scientific Computing, University of Warwick, Coventry, UK
| | | | | | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Gabriele C Sosso
- Department of Chemistry, University of Warwick, Coventry, UK.
- Centre for Scientific Computing, University of Warwick, Coventry, UK.
| |
Collapse
|
35
|
Crystal structure of an insect antifreeze protein reveals ordered waters on the ice-binding surface. Biochem J 2021; 477:3271-3286. [PMID: 32794579 DOI: 10.1042/bcj20200539] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 11/17/2022]
Abstract
Antifreeze proteins (AFPs) are characterized by their ability to adsorb to the surface of ice crystals and prevent any further crystal growth. AFPs have independently evolved for this purpose in a variety of organisms that encounter the threat of freezing, including many species of polar fish, insects, plants and microorganisms. Despite their diverse origins and structures, it has been suggested that all AFPs can organize ice-like water patterns on one side of the protein (the ice-binding site) that helps bind the AFP to ice. Here, to test this hypothesis, we have solved the crystal structure at 2.05 Å resolution of an AFP from the longhorn beetle, Rhagium mordax with five molecules in the unit cell. This AFP is hyperactive, and its crystal structure resembles that of the R. inquisitor ortholog in having a β-solenoid fold with a wide, flat ice-binding surface formed by four parallel rows of mainly Thr residues. The key difference between these structures is that the R. inquisitor AFP crystallized with its ice-binding site (IBS) making protein-protein contacts that limited the surface water patterns. Whereas the R. mordax AFP crystallized with the IBSs exposed to solvent enabling two layers of unrestricted ordered surface waters to be seen. These crystal waters make close matches to ice lattice waters on the basal and primary prism planes.
Collapse
|
36
|
Gruneberg AK, Graham LA, Eves R, Agrawal P, Oleschuk RD, Davies PL. Ice recrystallization inhibition activity varies with ice-binding protein type and does not correlate with thermal hysteresis. Cryobiology 2021; 99:28-39. [PMID: 33529683 DOI: 10.1016/j.cryobiol.2021.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/07/2021] [Accepted: 01/23/2021] [Indexed: 01/06/2023]
Abstract
Ice-binding proteins (IBPs) inhibit the growth of ice through surface adsorption. In some freeze-resistant fishes and insects, circulating IBPs serve as antifreeze proteins to stop ice growth by lowering the freezing point. Plants are less able to avoid freezing and some use IBPs to minimize the damage caused in the frozen state by ice recrystallization, which is the growth of large ice grains at the expense of small ones. Here we have accurately and reproducibly measured the ice recrystallization inhibition (IRI) activity of over a dozen naturally occurring IBPs from fishes, insects, plants, and microorganisms using a modified 'splat' method on serial dilutions of IBPs whose concentrations were determined by amino acid analysis. The endpoint of IRI, which was scored as the lowest protein concentration at which no recrystallization was observed, varied for the different IBPs over two orders of magnitude from 1000 nM to 5 nM. Moreover, there was no apparent correlation between their IRI levels and reported antifreeze activities. IBPs from insects and fishes had similar IRI activity, even though the insect IBPs are typically 10x more active in freezing point depression. Plant IBPs had weak antifreeze activity but were more effective at IRI. Bacterial IBPs involved in ice adhesion showed both strong freezing point depression and IRI. Two trends did emerge, including that basal plane binding IBPs correlated with stronger IRI activity and larger IBPs had higher IRI activity.
Collapse
Affiliation(s)
- Audrey K Gruneberg
- Department of Biomedical and Molecular Sciences, Queen's University. 18 Stuart Street, Kingston, Ontario, K7L3N6, Canada
| | - Laurie A Graham
- Department of Biomedical and Molecular Sciences, Queen's University. 18 Stuart Street, Kingston, Ontario, K7L3N6, Canada
| | - Robert Eves
- Department of Biomedical and Molecular Sciences, Queen's University. 18 Stuart Street, Kingston, Ontario, K7L3N6, Canada
| | - Prashant Agrawal
- Department of Chemistry, Queen's University. 90 Bader Lane, Kingston, Ontario, K7L2S8, Canada
| | - Richard D Oleschuk
- Department of Chemistry, Queen's University. 90 Bader Lane, Kingston, Ontario, K7L2S8, Canada
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University. 18 Stuart Street, Kingston, Ontario, K7L3N6, Canada.
| |
Collapse
|
37
|
Duran T, Minatovicz B, Bai J, Shin D, Mohammadiarani H, Chaudhuri B. Molecular Dynamics Simulation to Uncover the Mechanisms of Protein Instability During Freezing. J Pharm Sci 2021; 110:2457-2471. [PMID: 33421436 DOI: 10.1016/j.xphs.2021.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/07/2020] [Accepted: 01/03/2021] [Indexed: 11/19/2022]
Abstract
Freezing is a common process applied in the pharmaceutical industry to store and transport biotherapeutics. Herewith, multi-scale molecular dynamics simulations of Lactate dehydrogenase (LDH) protein in phosphate buffer with/without ice formation performed to uncover the still poorly understood mechanisms and molecular details of protein destabilization upon freezing. Both fast and slow ice growing conditions were simulated at 243 K from one or two-side of the simulation box, respectively. The rate of ice formation at all-atom simulations was crucial to LDH stability, as faster freezing rates resulted in enhanced structural stability maintained by a higher number of intramolecular hydrogen bonds, less flexible protein's residues, lower solvent accessibility and greater structural compactness. Further, protein aggregation investigated by coarse-grained simulations was verified to be initiated by extended protein structures and retained by electrostatic interactions of the salt bridges between charged residues and hydrogen bonds between polar residues of the protein. Lastly, the study of free energy of dissociation through steered molecular dynamics simulation revealed LDH was destabilized by the solvation of the hydrophobic core and the loss of hydrophobic interactions. For the first time, experimentally validated molecular simulations revealed the detailed mechanisms of LDH destabilization upon ice formation and cryoconcentration of solutes.
Collapse
Affiliation(s)
- Tibo Duran
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, 06269, USA
| | - Bruna Minatovicz
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, 06269, USA
| | - Jun Bai
- Department of Computer Sciences and Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Dongkwan Shin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, 06269, USA
| | - Hossein Mohammadiarani
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, 06269, USA
| | - Bodhisattwa Chaudhuri
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, 06269, USA; Institute of Material Sciences (IMS), University of Connecticut, Storrs, CT, USA; Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
38
|
Naullage PM, Metya AK, Molinero V. Computationally efficient approach for the identification of ice-binding surfaces and how they bind ice. J Chem Phys 2020; 153:174106. [DOI: 10.1063/5.0021631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Pavithra M. Naullage
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, USA
| | - Atanu K. Metya
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, USA
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, USA
| |
Collapse
|
39
|
Raju R, Bryant SJ, Wilkinson BL, Bryant G. The need for novel cryoprotectants and cryopreservation protocols: Insights into the importance of biophysical investigation and cell permeability. Biochim Biophys Acta Gen Subj 2020; 1865:129749. [PMID: 32980500 DOI: 10.1016/j.bbagen.2020.129749] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cryopreservation is a key method of preservation of biological material for both medical treatments and conservation of endangered species. In order to avoid cellular damage, cryopreservation relies on the addition of a suitable cryoprotective agent (CPA). However, the toxicity of CPAs is a serious concern and often requires rapid removal on thawing which is time consuming and expensive. SCOPE OF REVIEW The principles of Cryopreservation are reviewed and recent advances in cryopreservation methods and new CPAs are described. The importance of understanding key biophysical properties to assess the cryoprotective potential of new non-toxic compounds is discussed. MAJOR CONCLUSIONS Knowing the biophysical properties of a particular cell type is crucial for developing new cryopreservation protocols. Similarly, understanding how potential CPAs interact with cells is key for optimising protocols. For example, cells with a large osmotically inactive volume may require slower addition of CPAs. Similarly, a cell with low permeability may require a longer incubation time with the CPA to allow adequate penetration. Measuring these properties allows efficient optimisation of cryopreservation protocols. GENERAL SIGNIFICANCE Understanding the interplay between cells and biophysical properties is important not just for developing new, and better optimised, cryopreservation protocols, but also for broader research into topics such as dehydration and desiccation tolerance, chilling and heat stress, as well as membrane structure and function.
Collapse
Affiliation(s)
- Rekha Raju
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Saffron J Bryant
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia.
| | - Brendan L Wilkinson
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| | - Gary Bryant
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
40
|
Bianco V, Espinosa JR, Vega C. Antifreeze proteins and homogeneous nucleation: On the physical determinants impeding ice crystal growth. J Chem Phys 2020; 153:091102. [PMID: 32891082 DOI: 10.1063/5.0023211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Antifreeze proteins (AFPs) are biopolymers capable of interfering with ice growth. Their antifreeze action is commonly understood considering that the AFPs, by pinning the ice surface, force the crystal-liquid interface to bend forming an ice meniscus, causing an increase in the surface free energy and resulting in a decrease in the freezing point ΔTmax. Here, we present an extensive computational study for a model protein adsorbed on a TIP4P/Ice crystal, computing ΔTmax as a function of the average distance d between AFPs, with simulations spanning over 1 µs. First, we show that the lower the d, the larger the ΔTmax. Then, we find that the water-ice-protein contact angle along the line ΔTmax(d) is always larger than 0°, and we provide a theoretical interpretation. We compute the curvature radius of the stable solid-liquid interface at a given supercooling ΔT ≤ ΔTmax, connecting it with the critical ice nucleus at ΔT. Finally, we discuss the antifreeze capability of AFPs in terms of the protein-water and protein-ice interactions. Our findings establish a unified description of the AFPs in the contest of homogeneous ice nucleation, elucidating key aspects of the antifreeze mechanisms and paving the way for the design of novel ice-controlling materials.
Collapse
Affiliation(s)
- Valentino Bianco
- Faculty of Chemistry, Chemical Physics Department, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, Madrid 28040, Spain
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0H3, United Kingdom
| | - Carlos Vega
- Faculty of Chemistry, Chemical Physics Department, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, Madrid 28040, Spain
| |
Collapse
|
41
|
Gandini E, Sironi M, Pieraccini S. Modelling of short synthetic antifreeze peptides: Insights into ice-pinning mechanism. J Mol Graph Model 2020; 100:107680. [PMID: 32738619 DOI: 10.1016/j.jmgm.2020.107680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 10/23/2022]
Abstract
Organisms living in icy environments produce antifreeze proteins to control ice growth and recrystallization. It has been proposed that these molecules pin the surface of ice crystals, thus inducing the formation of a curved surface that arrests crystal growth. Such proteins are very appealing for many potential applications in food industry, material science and cryoconservation of organs and tissues. Unfortunately, their structural complexity has seriously hampered their practical use, while efficient and accessible synthetic analogues are highly desirable. In this paper, we used molecular dynamics based techniques to model the interaction of three short antifreeze synthetic peptides with an ice surface. The employed protocols succeeded in reproducing the ice pinning action of antifreeze peptides and the consequent ice growth arrest, as well as in distinguishing between antifreeze and control peptides, for which no such effect was observed. Principal components analysis of peptides trajectories in different simulation settings permitted to highlight the main structural features associated to antifreeze activity. Modeling results are highly correlated with experimentally measured properties, and insights on ice-peptide interactions and on conformational patterns favoring antifreeze activity will prompt the design of new and improved antifreeze peptides.
Collapse
Affiliation(s)
- Enrico Gandini
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Maurizio Sironi
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy; Istituto di Scienze e Tecnologie Chimiche "G. Natta" (SCITEC-CNR), CNR, INSTM, UdR Milano, Via Golgi 19, 20133, Milano, Italy.
| | - Stefano Pieraccini
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy; Istituto di Scienze e Tecnologie Chimiche "G. Natta" (SCITEC-CNR), CNR, INSTM, UdR Milano, Via Golgi 19, 20133, Milano, Italy.
| |
Collapse
|
42
|
Pal P, Chakraborty S, Jana B. Deciphering the Role of the Non-ice-binding Surface in the Antifreeze Activity of Hyperactive Antifreeze Proteins. J Phys Chem B 2020; 124:4686-4696. [PMID: 32425044 DOI: 10.1021/acs.jpcb.0c01206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antifreeze proteins (AFPs) show thermal hysteresis through specific interaction with the ice crystal. Hyperactive AFPs interact with the ice surface through a threonine-rich motif present at their ice-binding surface (IBS). Ordering of water around the IBS was extensively investigated. However, the role of non-IBS in ice growth inhibition is yet to be understood completely. The present study explores the nature of hydration and its length-scale evaluation around the non-IBS for hyperactive AFPs. We observed that the hydration layer of non-IBS is liquid-like, even in highly supercooled conditions, and the nature of hydration is drastically different from the hydration pattern of non-AFP surfaces. In similar conditions, the hydration layer around the IBS is ice-like ordered. Non-IBS of the hyperactive AFP exposes toward the bulk and is able to maintain the liquid-like character of its hydration water up to 15 Å. We also find that the amino acid compositions and their spatial distribution on the non-IBS are markedly different from those of the IBS and non-AFP surfaces. These results elucidate the combined role of IBS and non-IBS in ice-growth inhibition. While IBS is required to adsorb on ice efficiently, the exposed non-IBS may prevent ice nucleation/growth on top of the bound AFPs.
Collapse
Affiliation(s)
- Prasun Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | | | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
43
|
Short S, Díaz R, Quiñones J, Beltrán J, Farías JG, Graether SP, Bravo LA. Effect of in vitro cold acclimation of Deschampsia antarctica on the accumulation of proteins with antifreeze activity. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2933-2942. [PMID: 32060560 DOI: 10.1093/jxb/eraa071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Deschampsia antarctica has managed to colonize the maritime Antarctic. One of the main factors associated with its tolerance to low temperatures is the presence of apoplastic proteins with antifreeze activity. This work focuses on the effect of cold acclimation of D. antarctica on the accumulation of apoplastic proteins with antifreeze activity. Antifreeze proteins present in apoplastic extracts were purified by ice affinity purification, and their identity was determined by protein sequencing. D. antarctica plants were subjected to 22 days of cold acclimation at 4 °C. The highest content of apoplastic proteins with antifreeze activity was obtained at between 12 and 16 days of acclimation. Protein sequencing allowed their identification with >95% probability. Percentage coverage was 74% with D. antarctica ice recrystallization inhibition protein 1 (DaIRIP1) and 55% with DaIRIP3. Cold acclimation of D. antarctica improved the yield of apoplastic proteins, and resulted in an increase in the antifreeze activity of apoplastic extracts. An in silico analysis suggested that the fluctuations presented by the three-dimensional structures of DaIRIPs help to explain the presence of certain DaIRIPs in apoplastic extracts under the cold acclimation conditions evaluated.
Collapse
Affiliation(s)
- Stefania Short
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Rommy Díaz
- Department of Basic Science, Universidad de La Frontera, Temuco, Chile
| | - John Quiñones
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Jorge Beltrán
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Jorge G Farías
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - León A Bravo
- Department of Agronomical Sciences and Natural Resources, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
44
|
Xiang H, Yang X, Ke L, Hu Y. The properties, biotechnologies, and applications of antifreeze proteins. Int J Biol Macromol 2020; 153:661-675. [PMID: 32156540 DOI: 10.1016/j.ijbiomac.2020.03.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 01/30/2023]
Abstract
By natural selection, organisms evolve different solutions to cope with extremely cold weather. The emergence of an antifreeze protein gene is one of the most momentous solutions. Antifreeze proteins possess an importantly functional ability for organisms to survive in cold environments and are widely found in various cold-tolerant species. In this review, we summarize the origin of antifreeze proteins, describe the diversity of their species-specific properties and functions, and highlight the related biotechnology on the basis of both laboratory tests and bioinformatics analysis. The most recent advances in the applications of antifreeze proteins are also discussed. We expect that this systematic review will contribute to the comprehensive knowledge of antifreeze proteins to readers.
Collapse
Affiliation(s)
- Hong Xiang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology
| | - Xiaohu Yang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology
| | - Lei Ke
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology
| | - Yong Hu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology.
| |
Collapse
|
45
|
Naullage PM, Molinero V. Slow Propagation of Ice Binding Limits the Ice-Recrystallization Inhibition Efficiency of PVA and Other Flexible Polymers. J Am Chem Soc 2020; 142:4356-4366. [DOI: 10.1021/jacs.9b12943] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pavithra M. Naullage
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
46
|
Biggs CI, Stubbs C, Graham B, Fayter AER, Hasan M, Gibson MI. Mimicking the Ice Recrystallization Activity of Biological Antifreezes. When is a New Polymer "Active"? Macromol Biosci 2019; 19:e1900082. [PMID: 31087781 PMCID: PMC6828557 DOI: 10.1002/mabi.201900082] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/26/2019] [Indexed: 01/16/2023]
Abstract
Antifreeze proteins and ice-binding proteins have been discovered in a diverse range of extremophiles and have the ability to modulate the growth and formation of ice crystals. Considering the importance of cryoscience across transport, biomedicine, and climate science, there is significant interest in developing synthetic macromolecular mimics of antifreeze proteins, in particular to reproduce their property of ice recrystallization inhibition (IRI). This activity is a continuum rather than an "on/off" property and there may be multiple molecular mechanisms which give rise to differences in this observable property; the limiting concentrations for ice growth vary by more than a thousand between an antifreeze glycoprotein and poly(vinyl alcohol), for example. The aim of this article is to provide a concise comparison of a range of natural and synthetic materials that are known to have IRI, thus providing a guide to see if a new synthetic mimic is active or not, including emerging materials which are comparatively weak compared to antifreeze proteins, but may have technological importance. The link between activity and the mechanisms involving either ice binding or amphiphilicity is discussed and known materials assigned into classes based on this.
Collapse
Affiliation(s)
- Caroline I Biggs
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Ben Graham
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Alice E R Fayter
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Muhammad Hasan
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- Warwick Medical School, , University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
47
|
Hudait A, Qiu Y, Odendahl N, Molinero V. Hydrogen-Bonding and Hydrophobic Groups Contribute Equally to the Binding of Hyperactive Antifreeze and Ice-Nucleating Proteins to Ice. J Am Chem Soc 2019; 141:7887-7898. [DOI: 10.1021/jacs.9b02248] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Arpa Hudait
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Yuqing Qiu
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Nathan Odendahl
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
48
|
Meister K, Moll CJ, Chakraborty S, Jana B, DeVries AL, Ramløv H, Bakker HJ. Molecular structure of a hyperactive antifreeze protein adsorbed to ice. J Chem Phys 2019; 150:131101. [DOI: 10.1063/1.5090589] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- K. Meister
- Max Planck Institute for Polymer Science, 55128 Mainz, Germany
| | - C. J. Moll
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - S. Chakraborty
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Kolkata, India
| | - B. Jana
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Kolkata, India
| | - A. L. DeVries
- Department of Animal Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, USA
| | - H. Ramløv
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - H. J. Bakker
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
49
|
Weng L, Stott SL, Toner M. Exploring Dynamics and Structure of Biomolecules, Cryoprotectants, and Water Using Molecular Dynamics Simulations: Implications for Biostabilization and Biopreservation. Annu Rev Biomed Eng 2018; 21:1-31. [PMID: 30525930 DOI: 10.1146/annurev-bioeng-060418-052130] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Successful stabilization and preservation of biological materials often utilize low temperatures and dehydration to arrest molecular motion. Cryoprotectants are routinely employed to help the biological entities survive the physicochemical and mechanical stresses induced by cold or dryness. Molecular interactions between biomolecules, cryoprotectants, and water fundamentally determine the outcomes of preservation. The optimization of assays using the empirical approach is often limited in structural and temporal resolution, whereas classical molecular dynamics simulations can provide a cost-effective glimpse into the atomic-level structure and interaction of individual molecules that dictate macroscopic behavior. Computational research on biomolecules, cryoprotectants, and water has provided invaluable insights into the development of new cryoprotectants and the optimization of preservation methods. We describe the rapidly evolving state of the art of molecular simulations of these complex systems, summarize the molecular-scale protective and stabilizing mechanisms, and discuss the challenges that motivate continued innovation in this field.
Collapse
Affiliation(s)
- Lindong Weng
- Center for Engineering in Medicine and BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA; , , .,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Shannon L Stott
- Center for Engineering in Medicine and BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA; , , .,Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Mehmet Toner
- Center for Engineering in Medicine and BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA; , , .,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.,Shriners Hospital for Children, Boston, Massachusetts 02114, USA
| |
Collapse
|
50
|
Combined molecular dynamics and neural network method for predicting protein antifreeze activity. Proc Natl Acad Sci U S A 2018; 115:13252-13257. [PMID: 30530650 DOI: 10.1073/pnas.1814945115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antifreeze proteins (AFPs) are a diverse class of proteins that depress the kinetically observable freezing point of water. AFPs have been of scientific interest for decades, but the lack of an accurate model for predicting AFP activity has hindered the logical design of novel antifreeze systems. To address this, we perform molecular dynamics simulation for a collection of well-studied AFPs. By analyzing both the dynamic behavior of water near the protein surface and the geometric structure of the protein, we introduce a method that automatically detects the ice binding face of AFPs. From these data, we construct a simple neural network that is capable of quantitatively predicting experimentally observed thermal hysteresis from a trio of relevant physical variables. The model's accuracy is tested against data for 17 known AFPs and 5 non-AFP controls.
Collapse
|