1
|
Li J, Luo Y, Li M, Li J, Zeng T, Luo J, Chang X, Wang M, Jongsma MA, Hu H, Wang C. Nocturnal burst emissions of germacrene D from the open disk florets of pyrethrum flowers induce moths to oviposit on a nonhost and improve pollination success. THE NEW PHYTOLOGIST 2024; 244:2036-2048. [PMID: 39205445 DOI: 10.1111/nph.20060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Recent studies show that nocturnal pollinators may be more important to ecosystem function and food production than is currently appreciated. Here, we describe an agricultural field study of pyrethrum (Tanacetum cinerariifolium) flower pollination. Pyrethrum is genetically self-incompatible and thus is reliant on pollinators for seed set. Our pollinator exclusion experiment showed that nocturnal insects, particularly moths, significantly contribute to seed set and quality. We discovered that the most abundant floral volatile, the sesquiterpene (-)-germacrene D (GD), is key in attracting the noctuid moths Peridroma saucia and Helicoverpa armigera. Germacrene D synthase (GDS) gene expression regulates the specific GD production and accumulation in flowers, which, in contrast to related species, lose the habit of closing at night. We did observe that female moths also oviposited on pyrethrum leaves and flower peduncles, but found that only a small fraction of those eggs hatched. Larvae were severely stunted in development, most likely due to the presence of pyrethrin defense compounds. This example of exploitative mutualism, which blocks the reproductive success of the moth pollinator and depends on nocturnal interactions, is placed into an ecological context to explain why it may have developed.
Collapse
Affiliation(s)
- Jinjin Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanyuan Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Maoyuan Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiawen Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tuo Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiangqian Chang
- Institute of Plant Protection & Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
| | - Manqun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Maarten A Jongsma
- Business Unit Bioscience, Wageningen Plant Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Hao Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- School of Life Sciences, Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Caiyun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
2
|
Bai Y, Liu X, Baldwin IT. Using Synthetic Biology to Understand the Function of Plant Specialized Metabolites. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:629-653. [PMID: 38424065 DOI: 10.1146/annurev-arplant-060223-013842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Plant specialized metabolites (PSMs) are variably distributed across taxa, tissues, and ecological contexts; this variability has inspired many theories about PSM function, which, to date, remain poorly tested because predictions have outpaced the available data. Advances in mass spectrometry-based metabolomics have enabled unbiased PSM profiling, and molecular biology techniques have produced PSM-free plants; the combination of these methods has accelerated our understanding of the complex ecological roles that PSMs play in plants. Synthetic biology techniques and workflows are producing high-value, structurally complex PSMs in quantities and purities sufficient for both medicinal and functional studies. These workflows enable the reengineering of PSM transport, externalization, structural diversity, and production in novel taxa, facilitating rigorous tests of long-standing theoretical predictions about why plants produce so many different PSMs in particular tissues and ecological contexts. Plants use their chemical prowess to solve ecological challenges, and synthetic biology workflows are accelerating our understanding of these evolved functions.
Collapse
Affiliation(s)
- Yuechen Bai
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China; ,
| | - Xinyu Liu
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China; ,
| | - Ian T Baldwin
- Max Planck Institute for Chemical Ecology, Jena, Germany;
| |
Collapse
|
3
|
Shibata A, Kudo G. Night and day: Contributions of diurnal and nocturnal visitors to pollen dispersal, paternity diversity, and fruit set in an early-blooming shrub, Daphne jezoensis. AMERICAN JOURNAL OF BOTANY 2023; 110:e16239. [PMID: 37668113 DOI: 10.1002/ajb2.16239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
PREMISE Under uncertain pollinator visit conditions, plants often exhibit long flowering periods and generalized pollination systems. Flowering of the gynodioecious shrub Daphne jezoensis occurs in early spring in cool temperate forests. Pollination by nocturnal moths is expected, given the species' tubular-shaped flowers with sweet fragrance and nectar. However, the effectiveness of nocturnal moths under cool conditions is unknown. We evaluated the relative importance of diurnal and nocturnal visitors as pollinators in early spring. METHODS We investigated flowering duration, flower visitors, and floral scents in a natural population. We experimentally exposed flowers to visitors only during daytime or nighttime using bagging treatments and evaluated the contributions of diurnal and nocturnal insects to fruit set, pollen dispersal distance, and paternity diversity using 16 microsatellite markers. RESULTS Female flowers lasted ~3 wk, which was ~8 d longer than the flowering period of hermaphrodites. Various insects, including Coleoptera, Diptera, Hymenoptera, and Lepidoptera, visited the flowers during both daytime and nighttime. Flowers emitted volatiles, such as lilac aldehyde isomers and β-ocimene, which are known to attract moths. Fruit-set rate in the night-open treatment was similar to or higher than that in the day-open treatment. However, pollen dispersal distance in the night-open treatment was shorter than that in the day-open treatment. Paternity diversity was similar in day-open and night-open treatments. CONCLUSIONS Early-blooming plants ensure pollen receipt and dispersal by having a long flowering period and using both diurnal and nocturnal flower visitors, suggesting the importance of a generalized pollination system under uncertain pollinator visit conditions.
Collapse
Affiliation(s)
- Akari Shibata
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Gaku Kudo
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| |
Collapse
|
4
|
Spadafora ND, Eggermont D, Křešťáková V, Chenet T, Van Rossum F, Purcaro G. Comprehensive analysis of floral scent and fatty acids in nectar of Silene nutans through modern analytical gas chromatography techniques. J Chromatogr A 2023; 1696:463977. [PMID: 37054636 DOI: 10.1016/j.chroma.2023.463977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023]
Abstract
The aim of this work was to show the potential of multidimensional gas chromatography combined with mass spectrometry and suitable chemometrics means based on untargeted and profiling data analysis to strengthen the information provided by floral scent and nectar fatty acids of four genetically differentiated lineages (E1, W1, W2, and W3) of the nocturnal moth-pollinated herb Silene nutans. Volatile organic compounds emitted by flowers were trapped for a total of 42 samples by in-vivo sampling dynamic head space for analysing floral scent by untargeted approach, while 37 samples of nectar were collected for analysing fatty acids through profiling analysis. The resulting data from floral scent analysis were aligned and compared using a tile-based methodology followed by data mining to access high-level information. Based on floral scent and nectar fatty acid results, it was possible to distinguish E1 from the W lineages, and W3 from W1 and W2. This work puts the bases for a larger study aiming to clarify the existence of prezygotic barriers involved in speciation among lineages of S. nutans, and thus the possible implication of different flower scents and nectar compositions in this phenomenon.
Collapse
Affiliation(s)
- Natasha Damiana Spadafora
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Damien Eggermont
- Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, Gembloux, 5030, Belgium
| | - Veronika Křešťáková
- Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, Gembloux, 5030, Belgium; Department of Biochemistry, Faculty of Science, Masaryk University, 32500, Brno, Czech Republic
| | - Tatiana Chenet
- Department of Environment and Prevention Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Fabienne Van Rossum
- Meise Botanic Garden, Nieuwelaan 38, 1860, Meise, Belgium; Service général de l'Enseignement supérieur et de la Recherche scientifique, Fédération Wallonie-Bruxelles, rue A. Lavallée 1, 1080, Brussels, Belgium
| | - Giorgia Purcaro
- Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, Gembloux, 5030, Belgium.
| |
Collapse
|
5
|
Laurich JR, Reid CG, Biel C, Wu T, Knox C, Frederickson ME. Genetic architecture of multiple mutualisms and mating system in Turnera ulmifolia. J Evol Biol 2023; 36:280-295. [PMID: 36196911 DOI: 10.1111/jeb.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 01/11/2023]
Abstract
Plants often associate with multiple arthropod mutualists. These partners provide important services to their hosts, but multiple interactions can constrain a plant's ability to respond to complex, multivariate selection. Here, we quantified patterns of genetic variance and covariance among rewards for pollination, biotic defence and seed dispersal mutualisms in multiple populations of Turnera ulmifolia to better understand how the genetic architecture of multiple mutualisms might influence their evolution. We phenotyped plants cultivated from 17 Jamaican populations for several mutualism and mating system-related traits. We then fit genetic variance-covariance (G) matrices for the island metapopulation and the five largest individual populations. At the metapopulation level, we observed significant positive genetic correlations among stigma-anther separation, floral nectar production and extrafloral nectar production. These correlations have the potential to significantly constrain or facilitate the evolution of multiple mutualisms in T. ulmifolia and suggest that pollination, seed dispersal and defence mutualisms do not evolve independently. In particular, we found that positive genetic correlations between floral and extrafloral nectar production may help explain their stable coexistence in the face of physiological trade-offs and negative interactions between pollinators and ant bodyguards. Locally, we found only small differences in G among our T. ulmifolia populations, suggesting that geographic variation in G may not shape the evolution of multiple mutualisms.
Collapse
Affiliation(s)
- Jason R Laurich
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher G Reid
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Caroline Biel
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Tianbi Wu
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Faculty of the Environment, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christopher Knox
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Chen K, Pannell JR. Disruptive selection via pollinators and seed predators on the height of flowers on a wind-dispersed alpine herb. AMERICAN JOURNAL OF BOTANY 2022; 109:1717-1729. [PMID: 36194694 PMCID: PMC9828390 DOI: 10.1002/ajb2.16073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/28/2022] [Indexed: 05/25/2023]
Abstract
PREMISE Floral stalk height is known to affect seed dispersal of wind-dispersed grassland species, but it may also affect the attractiveness of flowers and fruits of animal-pollinated and animal-dispersed plants. Stalk height may thus be responsive to selection via interactions with both mutualist pollinators and seed dispersers, but also antagonist florivores and seed predators. In this study, we aimed to determine the effect of pollinators and seed predators on selection on floral stalk height in the insect-pollinated and wind-dispersed, alpine, andromonoecious herb Pulsatilla alpina, whose flowers also vary in their sex allocation and thus in the resources available to both mutualists and antagonists. METHODS We measured the resource status of individuals in terms of their size and the height of the vegetation surrounding plants of P. alpina at 11 sites. In one population, we recorded floral stalk height over an entire growing season and investigated its association with floral morphology and floral sex allocation (pistil and stamen number) and used leaf-removal manipulations to assess the effect of herbivory on floral stalk height. Finally, in four populations, we quantified phenotypic selection on floral stalk height in four female components of reproductive success before seed dispersal. RESULTS Stalk height was positively associated with female allocation of the respective flower, the resource status of the individual, and the height of the surrounding vegetation, and negatively affected by leaf removal. Our results point to disruptive selection on stalk height in terms of both selection differentials and selection gradients for fertilization, seed predation, and seed maturation rates and to positive selection on stalk height in terms of a selection differential for mature seed number. CONCLUSIONS Stalk height of P. alpina is a costly trait that affects female reproductive success via interactions with both mutualists and antagonists. We discuss the interplay between the resource status and selection imposed on female reproductive success and its likely role in the evolution of sex-allocation strategies, especially andromonoecy.
Collapse
Affiliation(s)
- Kai‐Hsiu Chen
- Department of Ecology and EvolutionUniversity of LausanneBiophore Building1015LausanneSwitzerland
| | - John R. Pannell
- Department of Ecology and EvolutionUniversity of LausanneBiophore Building1015LausanneSwitzerland
| |
Collapse
|
7
|
Balbuena MS, Broadhead GT, Dahake A, Barnett E, Vergara M, Skogen KA, Jogesh T, Raguso RA. Mutualism has its limits: consequences of asymmetric interactions between a well-defended plant and its herbivorous pollinator. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210166. [PMID: 35491593 DOI: 10.1098/rstb.2021.0166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Concern for pollinator health often focuses on social bees and their agricultural importance at the expense of other pollinators and their ecosystem services. When pollinating herbivores use the same plants as nectar sources and larval hosts, ecological conflicts emerge for both parties, as the pollinator's services are mitigated by herbivory and its larvae are harmed by plant defences. We tracked individual-level metrics of pollinator health-growth, survivorship, fecundity-across the life cycle of a pollinating herbivore, the common hawkmoth, Hyles lineata, interacting with a rare plant, Oenothera harringtonii, that is polymorphic for the common floral volatile (R)-(-)-linalool. Linalool had no impact on floral attraction, but its experimental addition suppressed oviposition on plants lacking linalool. Plants showed robust resistance against herbivory from leaf-disc to whole-plant scales, through poor larval growth and survivorship. Higher larval performance on other Oenothera species indicates that constitutive herbivore resistance by O. harringtonii is not a genus-wide trait. Leaf volatiles differed among populations of O. harringtonii but were not induced by larval herbivory. Similarly, elagitannins and other phenolics varied among plant tissues but were not herbivore-induced. Our findings highlight asymmetric plant-pollinator interactions and the importance of third parties, including alternative larval host plants, in maintaining pollinator health. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- Maria Sol Balbuena
- Department of Neurobiology and Behaviour, Cornell University, Ithaca, NY 14853, USA.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET, Universidad de Buenos Aires, C1428EHA, Argentina
| | - Geoffrey T Broadhead
- Department of Neurobiology and Behaviour, Cornell University, Ithaca, NY 14853, USA
| | - Ajinkya Dahake
- Department of Neurobiology and Behaviour, Cornell University, Ithaca, NY 14853, USA
| | - Emily Barnett
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
| | - Melissa Vergara
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
| | - Krissa A Skogen
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL 60035, USA
| | - Tania Jogesh
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA.,Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL 60035, USA
| | - Robert A Raguso
- Department of Neurobiology and Behaviour, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Perkins J, Peakall R. Floral economies. Curr Biol 2022; 32:R640-R644. [PMID: 35728545 DOI: 10.1016/j.cub.2022.04.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Biology and economics are surprisingly similar disciplines. At their core, both fields are the study of competitive interactions for scarce resources and the consequences of those interactions over time. Perhaps the first person to notice this similarity was Charles Darwin, who credited his reading of the influential economist Thomas Robert Malthus with catalysing his understanding of natural selection as the driving force of evolution. While it may not have been recognised at the time, this was not the only area of Darwin's thinking to parallel economic concepts.
Collapse
Affiliation(s)
- James Perkins
- Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia.
| | - Rod Peakall
- Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
9
|
Guo M, Ren X, Liu Y, Wang G. An Odorant Receptor from the Proboscis of the Cotton Bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) Narrowly Tuned to Indole. INSECTS 2022; 13:insects13040385. [PMID: 35447827 PMCID: PMC9033110 DOI: 10.3390/insects13040385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 01/18/2023]
Abstract
Simple Summary Odorant receptors (ORs) are at the core of the high-efficiency and sensitive olfactory system in insects. The expression and specific function of ORs largely contribute to the habits and speciation of one species. Although being predominantly expressed in the antennae, ORs in non-olfactory organs are suggested to have particular roles in promoting the reproduction or host fitness of insects. Our previous work has identified four ORs in the mouthpart organs of Helicoverpa armigera. Here, we amplified the full-length sequences of HarmORs from the proboscis. Further functional characterization suggested that HarmOR30 narrowly tuned to indole, the vital nitrogen-containing compounds that mediate tritrophic interactions. Our study deepens the insight into the olfactory perception of H. armigera, and explored a candidate functional receptor target for studying the interaction between insects and their plant hosts. Abstract Helicoverpa armigera is a serious agricultural pest with polyphagous diets, widespread distribution, and causing severe damage. Among sixty-five candidate ORs in H. armigera, the co-receptor HarmOrco and three specific ORs with partial sequences were identified to be expressed in the proboscis by our previous work, whereas their exact function is not known yet. In this study, we first confirmed the expression of these ORs in the proboscis by full-length cloning, which obtained the complete coding region of HarmOrco, OR24, and OR30. We then performed functional identification of HarmOR24 and OR30 by co-expressing them respectively with HarmOrco in Xenopus oocytes eukaryotic expression system combined with two-electrode voltage-clamp physiology. By testing the response of HarmOR24/OR30-expressing oocytes against eighty structural-divergent compounds, respectively, HarmOR30 was characterized to narrowly tune to indole and showed a specific tuning spectrum compared to its ortholog in Spodoptera littoralis. As indole is a distinctive herbivore-induced plant volatile and floral scent component, HarmOR30 might play roles in foraging and mediating the interactions between H. armigera with its surrounding environment.
Collapse
Affiliation(s)
- Mengbo Guo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.R.); (Y.L.)
| | - Xueting Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.R.); (Y.L.)
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.R.); (Y.L.)
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.R.); (Y.L.)
- Correspondence: ; Tel.: +86-010-628-16947
| |
Collapse
|
10
|
Bechen LL, Johnson MG, Broadhead GT, Levin RA, Overson RP, Jogesh T, Fant JB, Raguso RA, Skogen KA, Wickett NJ. Differential gene expression associated with a floral scent polymorphism in the evening primrose Oenothera harringtonii (Onagraceae). BMC Genomics 2022; 23:124. [PMID: 35151274 PMCID: PMC8840323 DOI: 10.1186/s12864-022-08370-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022] Open
Abstract
Background Plant volatiles play an important role in both plant-pollinator and plant-herbivore interactions. Intraspecific polymorphisms in volatile production are ubiquitous, but studies that explore underlying differential gene expression are rare. Oenothera harringtonii populations are polymorphic in floral emission of the monoterpene (R)-(−)-linalool; some plants emit (R)-(−)-linalool (linalool+ plants) while others do not (linalool- plants). However, the genes associated with differential production of this floral volatile in Oenothera are unknown. We used RNA-Seq to broadly characterize differential gene expression involved in (R)-(−)-linalool biosynthesis. To identify genes that may be associated with the polymorphism for this trait, we used RNA-Seq to compare gene expression in six different Oenothera harringtonii tissues from each of three linalool+ and linalool- plants. Results Three clusters of differentially expressed genes were enriched for terpene synthase activity: two were characterized by tissue-specific upregulation and one by upregulation only in plants with flowers that produce (R)-(−)-linalool. A molecular phylogeny of all terpene synthases identified two putative (R)-(−)-linalool synthase transcripts in Oenothera harringtonii, a single allele of which is found exclusively in linalool+ plants. Conclusions By using a naturally occurring polymorphism and comparing different tissues, we were able to identify candidate genes putatively involved in the biosynthesis of (R)-(−)-linalool. Expression of these genes in linalool- plants, while low, suggests a regulatory polymorphism, rather than a population-specific loss-of-function allele. Additional terpene biosynthesis-related genes that are up-regulated in plants that emit (R)-(−)-linalool may be associated with herbivore defense, suggesting a potential economy of scale between plant reproduction and defense. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08370-6.
Collapse
|
11
|
Knauer AC, Kokko H, Schiestl FP. Pollinator behaviour and resource limitation maintain honest floral signalling. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anina C. Knauer
- Department of Systematic and Evolutionary Botany University of Zurich Zürich Switzerland
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland
| | - Florian P. Schiestl
- Department of Systematic and Evolutionary Botany University of Zurich Zürich Switzerland
| |
Collapse
|
12
|
Adaptive mechanisms of plant specialized metabolism connecting chemistry to function. Nat Chem Biol 2021; 17:1037-1045. [PMID: 34552220 DOI: 10.1038/s41589-021-00822-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/21/2021] [Indexed: 12/29/2022]
Abstract
As sessile organisms, plants evolved elaborate metabolic systems that produce a plethora of specialized metabolites as a means to survive challenging terrestrial environments. Decades of research have revealed the genetic and biochemical basis for a multitude of plant specialized metabolic pathways. Nevertheless, knowledge is still limited concerning the selective advantages provided by individual and collective specialized metabolites to the reproductive success of diverse host plants. Here we review the biological functions conferred by various classes of plant specialized metabolites in the context of the interaction of plants with their surrounding environment. To achieve optimal multifunctionality of diverse specialized metabolic processes, plants use various adaptive mechanisms at subcellular, cellular, tissue, organ and interspecies levels. Understanding these mechanisms and the evolutionary trajectories underlying their occurrence in nature will ultimately enable efficient bioengineering of desirable metabolic traits in chassis organisms.
Collapse
|
13
|
Adam E, Hansson BS, Knaden M. Moths sense but do not learn flower odors with their proboscis during flower investigation. J Exp Biol 2021; 224:271919. [PMID: 34427309 PMCID: PMC8467027 DOI: 10.1242/jeb.242780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022]
Abstract
Insect pollinators, such as the tobacco hawkmoth Manduca sexta, are known for locating flowers and learning floral odors by using their antennae. A recent study revealed, however, that the tobacco hawkmoth additionally possesses olfactory sensilla at the tip of its proboscis. Here, we asked whether this second ‘nose’ of the hawkmoth is involved in odor learning, similar to the antennae. We first show that M. sexta foraging efficiency at Nicotiana attenuata flowers increases with experience. This raises the question whether olfactory learning with the proboscis plays a role during flower handling. By rewarding the moths at an artificial flower, we show that, although moths learn an odor easily when they perceive it with their antennae, experiencing the odor just with the proboscis is not sufficient for odor learning. Furthermore, experiencing the odor with the antennae during training does not affect the behavior of the moths when they later detect the learned odor with the proboscis only. Therefore, there seems to be no cross-talk between the antennae and proboscis, and information learnt by the antennae cannot be retrieved by the proboscis. Highlighted Article: The hawkmoth Manduca sexta is able to detect odors with the tip of its tongue: this ‘second nose’ is not used for olfactory learning during flower investigation.
Collapse
Affiliation(s)
- Elisabeth Adam
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745Jena, Germany
| |
Collapse
|
14
|
Bing J, Li X, Haverkamp A, Baldwin IT, Hansson BS, Knaden M, Yon F. Variation in Manduca sexta Pollination-Related Floral Traits and Reproduction in a Wild Tobacco Plant. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.680463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most flowering plants depend on animal pollination for successful sexual reproduction. Floral signals such as color, shape, and odor are crucial in establishing this (often mutualistic) interaction. Plant and pollinator phenotypes can vary temporally but also spatially, thus creating mosaic-like patterns of local adaptations. Here, we investigated natural variation in floral morphology, flower volatile emission, and phenology in four accessions of a self-compatible wild tobacco, Nicotiana attenuata, to assess how these traits match the sensory perception of a known pollinator, the hawkmoth Manduca sexta. These accessions differ in floral traits and also in their habitat altitudes. Based on habitat temperatures, the accession occurring at the highest altitude (California) is less likely to be visited by M. sexta, while the others (Arizona, Utah 1, and Utah 2) are known to receive M. sexta pollinations. The accessions varied significantly in flower morphologies, volatile emissions, flower opening, and phenology, traits likely important for M. sexta perception and floral handling. In wind tunnel assays, we assessed the seed set of emasculated flowers after M. sexta visitation and of natural selfed and hand-pollinated selfed flowers. After moth visitations, plants of two accessions (Arizona and Utah 2) produced more capsules than the other two, consistent with predictions that accessions co-occurring with M. sexta would benefit more from the pollination services of this moth. We quantified flower and capsule production in four accessions in a glasshouse assay without pollinators to assess the potential for self-pollination. The two Utah accessions set significantly more seeds after pollen supplementation compared with those of autonomous selfing flowers, suggesting a greater opportunistic benefit from efficient pollinators than the other two. Moreover, emasculated flowers of the accession with the most exposed stigma (Utah 2) produced the greatest seed set after M. sexta visitation. This study reveals intraspecific variation in pollination syndromes that illuminate the potential of a plant species to adapt to local pollinator communities, changing environments, and altered pollination networks.
Collapse
|
15
|
Broadhead GT, Raguso RA. Associative learning of non-sugar nectar components: amino acids modify nectar preference in a hawkmoth. J Exp Biol 2021; 224:269206. [PMID: 34142140 PMCID: PMC8246342 DOI: 10.1242/jeb.234633] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 05/20/2021] [Indexed: 11/20/2022]
Abstract
The nearly ubiquitous presence of amino acids in the nectar of flowering plants has led to significant interest in the relevance of these compounds to pollinator behavior and physiology. A number of flower-visiting animals exhibit behavioral preferences for nectar solutions containing amino acids, but these preferences vary by species and are often context or condition dependent. Furthermore, the relative strength of these preferences and potential influence on the foraging behavior of flower-visiting animals remains unclear. Here, we used innate preference tests and associative learning paradigms to examine the nectar preferences of the flower-visiting hawkmoth Manduca sexta, in relation to both sugar and amino acid content. Manduca sexta exhibited a strong preference for higher sucrose concentrations, while the effect of amino acids on innate feeding preference was only marginally significant. However, with experience, moths were able to learn nectar composition and flower color associations and to forage preferentially (against innate color preference) for nectar with a realistic amino acid composition. Foraging moths responding to learned color cues of nectar amino acid content exhibited a behavioral preference comparable to that observed in response to a 5% difference in nectar sucrose concentration. These results demonstrate that experienced foragers may assess nectar amino acid content in addition to nectar sugar content and caloric value during nectar-foraging bouts.
Collapse
Affiliation(s)
- Geoffrey T Broadhead
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY14853, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY14853, USA
| |
Collapse
|
16
|
Ohashi K, Jürgens A, Thomson JD. Trade-off mitigation: a conceptual framework for understanding floral adaptation in multispecies interactions. Biol Rev Camb Philos Soc 2021; 96:2258-2280. [PMID: 34096158 PMCID: PMC8518848 DOI: 10.1111/brv.12754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/26/2022]
Abstract
Explanations of floral adaptation to diverse pollinator faunas have often invoked visitor‐mediated trade‐offs in which no intermediate, generalized floral phenotype is optimal for pollination success, i.e. fitness valleys are created. In such cases, plant species are expected to specialize on particular groups of flower visitors. Contrary to this expectation, it is commonly observed that flowers interact with various groups of visitors, while at the same time maintaining distinct phenotypes among ecotypes, subspecies, or congeners. This apparent paradox may be due to a gap in our understanding of how visitor‐mediated trade‐offs could affect floral adaptation. Here we provide a conceptual framework for analysing visitor‐mediated trade‐offs with the hope of stimulating empirical and theoretical studies to fill this gap. We propose two types of visitor‐mediated trade‐offs to address negative correlations among fitness contributions of different visitors: visitor‐mediated phenotypic trade‐offs (phenotypic trade‐offs) and visitor‐mediated opportunity trade‐offs (opportunity trade‐offs). Phenotypic trade‐offs occur when different groups of visitors impose conflicting selection pressures on a floral trait. By contrast, opportunity trade‐offs emerge only when some visitors’ actions (e.g. pollen collection) remove opportunities for fitness contribution by more beneficial visitors. Previous studies have observed disruptive selection due to phenotypic trade‐offs less often than expected. In addition to existing explanations, we propose that some flowers have achieved ‘adaptive generalization’ by evolving features to avoid or eliminate the fitness valleys that phenotypic trade‐offs tend to produce. The literature suggests a variety of pathways to such ‘trade‐off mitigation’. Trade‐off mitigation may also evolve as an adaptation to opportunity trade‐offs. We argue that active exclusion, or floral specialization, can be viewed as a trade‐off mitigation, occurring only when flowers cannot otherwise avoid strong opportunity trade‐offs. These considerations suggest that an evolutionary strategy for trade‐off mitigation is achieved often by acquiring novel combinations of traits. Thus, phenotypic diversification of flowers through convergent evolution of certain trait combinations may have been enhanced not only through adaptive specialization for particular visitors, but also through adaptive generalization for particular visitor communities. Explorations of how visitor‐mediated trade‐offs explain the recurrent patterns of floral phenotypes may help reconcile the long‐lasting controversy on the validity of pollination syndromes.
Collapse
Affiliation(s)
- Kazuharu Ohashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.,Department of Biology, Chemical Plant Ecology, Technische Universität Darmstadt, Schnittspahnstrasse 4, 64287 Darmstadt, Germany
| | - Andreas Jürgens
- Department of Biology, Chemical Plant Ecology, Technische Universität Darmstadt, Schnittspahnstrasse 4, 64287 Darmstadt, Germany
| | - James D Thomson
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Harbord St., Toronto, ON, M5S 3G5, Canada
| |
Collapse
|
17
|
Rering CC, Rudolph AB, Beck JJ. Pollen and yeast change nectar aroma and nutritional content alone and together, but honey bee foraging reflects only the avoidance of yeast. Environ Microbiol 2021; 23:4141-4150. [PMID: 33876542 DOI: 10.1111/1462-2920.15528] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/12/2021] [Indexed: 11/28/2022]
Abstract
Floral nectar often contains pollen and microorganisms, which may change nectar's chemical composition, and in turn impact pollinator affinity. However, their individual and combined effects remain understudied. Here, we examined the impacts of the nectar specialist yeast, Metschnikowia reukaufii, and the addition of sunflower (Hellianthus annus) pollen. Pollen grains remained intact, yet still increased yeast growth and amino acid concentrations in nectar, whereas yeast depleted amino acids. Pollen, but not yeast, changed nectar sugar concentrations by converting sucrose to its monomers. Both pollen and yeast contributed emissions from nectar, though yeast volatiles were more abundant than pollen volatiles. Yeast volatile emission was positively correlated with pollen concentration and cell density, and yeast depleted a subset of pollen-derived volatiles. Honey bees avoided foraging on yeast-inoculated nectar and foraged equally among uninoculated nectars regardless of pollen content, underscoring the importance of microbial metabolites in mediating pollinator foraging.
Collapse
Affiliation(s)
- Caitlin C Rering
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, FL, 32608, USA
| | - Arthur B Rudolph
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, FL, 32608, USA
| | - John J Beck
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, FL, 32608, USA
| |
Collapse
|
18
|
Deora T, Ahmed MA, Daniel TL, Brunton BW. Tactile active sensing in an insect plant pollinator. J Exp Biol 2021; 224:jeb.239442. [PMID: 33441388 DOI: 10.1242/jeb.239442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/03/2021] [Indexed: 11/20/2022]
Abstract
The interaction between insects and the flowers they pollinate has driven the evolutionary diversity of both insects and flowering plants, two groups with the most numerous species on Earth. Insects use vision and olfaction to localize host plants, but we know relatively little about how they find the tiny nectary opening in the flower, which can be well beyond their visual resolution. Especially when vision is limited, touch becomes crucial in successful insect-plant pollination interactions. Here, we studied the remarkable feeding behavior of crepuscular hawkmoths Manduca sexta, which use their long, actively controlled, proboscis to expertly explore flower-like surfaces. Using machine vision and 3D-printed artificial flower-like feeders, we revealed a novel behavior that shows moths actively probe surfaces, sweeping their proboscis from the feeder edge to its center repeatedly until they locate the nectary opening. Moreover, naive moths rapidly learn to exploit these flowers, and they adopt a tactile search strategy to more directly locate the nectary opening in as few as three to five consecutive visits. Our results highlight the proboscis as a unique active sensory structure and emphasize the central role of touch in nectar foraging insect-plant pollinator interactions.
Collapse
Affiliation(s)
- Tanvi Deora
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Mahad A Ahmed
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Thomas L Daniel
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Bing W Brunton
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
19
|
Solhaug EM, Roy R, Venterea RT, Carter CJ. The role of alanine synthesis and nitrate-induced nitric oxide production during hypoxia stress in Cucurbita pepo nectaries. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:580-599. [PMID: 33119149 DOI: 10.1111/tpj.15055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 05/19/2023]
Abstract
Floral nectar is a sugary solution produced by nectaries to attract and reward pollinators. Nectar metabolites, such as sugars, are synthesized within the nectary during secretion from both pre-stored and direct phloem-derived precursors. In addition to sugars, nectars contain nitrogenous compounds such as amino acids; however, little is known about the role(s) of nitrogen (N) compounds in nectary function. In this study, we investigated N metabolism in Cucurbita pepo (squash) floral nectaries in order to understand how various N-containing compounds are produced and determine the role of N metabolism in nectar secretion. The expression and activity of key enzymes involved in primary N assimilation, including nitrate reductase (NR) and alanine aminotransferase (AlaAT), were induced during secretion in C. pepo nectaries. Alanine (Ala) accumulated to about 35% of total amino acids in nectaries and nectar during peak secretion; however, alteration of vascular nitrate supply had no impact on Ala accumulation during secretion, suggesting that nectar(y) amino acids are produced by precursors other than nitrate. In addition, nitric oxide (NO) is produced from nitrate and nitrite, at least partially by NR, in nectaries and nectar. Hypoxia-related processes are induced in nectaries during secretion, including lactic acid and ethanolic fermentation. Finally, treatments that alter nitrate supply affect levels of hypoxic metabolites, nectar volume and nectar sugar composition. The induction of N metabolism in C. pepo nectaries thus plays an important role in the synthesis and secretion of nectar sugar.
Collapse
Affiliation(s)
- Erik M Solhaug
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| | - Rahul Roy
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| | - Rodney T Venterea
- Soil and Water Management Research Unit, Agricultural Research Service, USDA, St Paul, MN, 55108, USA
| | - Clay J Carter
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| |
Collapse
|
20
|
Abstract
Some flowering plants signal the abundance of their rewards by changing their flower colour, scent or other floral traits as rewards are depleted. These floral trait changes can be regarded as honest signals of reward states for pollinators. Previous studies have hypothesized that these signals are used to maintain plant-level attractiveness to pollinators, but the evolutionary conditions leading to the development of honest signals have not been well investigated from a theoretical basis. We examined conditions leading to the evolution of honest reward signals in flowers by applying a theoretical model that included pollinator response and signal accuracy. We assumed that pollinators learn floral traits and plant locations in association with reward states and use this information to decide which flowers to visit. While manipulating the level of associative learning, we investigated optimal flower longevity, the proportion of reward and rewardless flowers, and honest- and dishonest-signalling strategies. We found that honest signals are evolutionarily stable only when flowers are visited by pollinators with both high and low learning abilities. These findings imply that behavioural variation in learning within a pollinator community can lead to the evolution of an honest signal even when there is no contribution of rewardless flowers to pollinator attractiveness.
Collapse
Affiliation(s)
- Koichi Ito
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Japan.,School of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Zoology, University of British Columbia, 4200-6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| | - Miki F Suzuki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.,URA Center, Research Promotion and Social Collaboration Department, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
| | - Ko Mochizuki
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Japan.,The Botanical Gardens, Graduate School of Science, The University of Tokyo, 3-7-1, Hakusan, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
21
|
Jacobsen DJ, Raguso RA. Leaf Induction Impacts Behavior and Performance of a Pollinating Herbivore. FRONTIERS IN PLANT SCIENCE 2021; 12:791680. [PMID: 34975977 PMCID: PMC8718909 DOI: 10.3389/fpls.2021.791680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/02/2021] [Indexed: 05/06/2023]
Abstract
Flowering plants use volatiles to attract pollinators while deterring herbivores. Vegetative and floral traits may interact to affect insect behavior. Pollinator behavior is most likely influenced by leaf traits when larval stages interact with plants in different ways than adult stages, such as when larvae are leaf herbivores but adult moths visit flowers as pollinators. Here, we determine how leaf induction and corresponding volatile differences in induced plants influence behavior in adult moths and whether these preferences align with larval performance. We manipulated vegetative induction in four Nicotiana species. Using paired induced and control plants of the same species with standardized artificial flowers, we measured foraging and oviposition choices by their ecologically and economically important herbivore/pollinator, Manduca sexta. In parallel, we measured growth rates of M. sexta larvae fed leaves from control or induced plants to determine if this was consistent with female oviposition preference. Lastly, we used plant headspace collections and gas chromatography to quantify volatile compounds from both induced and control leaves to link changes in plant chemistry with moth behavior. In the absence of floral chemical cues, vegetative defensive status influenced adult moth foraging preference from artificial flowers in one species (N. excelsior), where females nectared from induced plants more often than control plants. Plant vegetative resistance consistently influenced oviposition choice such that moths deposited more eggs on control plants than on induced plants of all four species. This oviposition preference for control plants aligned with higher larval growth rates on control leaves compared with induced leaves. Control and induced plants of each species had similar leaf volatile profiles, but induced plants had higher emission levels. Leaves of N. excelsior produced the most volatile compounds, including some inducible compounds typically associated with floral scent. We demonstrate that vegetative plant defensive volatiles play a role in host plant selection and that insects assess information from leaves differently when choosing between nectaring and oviposition locations. These results underscore the complex interactions between plants, their pollinators, and herbivores.
Collapse
Affiliation(s)
- Deidra J. Jacobsen
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
- *Correspondence: Deidra J. Jacobsen,
| | - Robert A. Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States
| |
Collapse
|
22
|
Plant Volatile Organic Compounds Evolution: Transcriptional Regulation, Epigenetics and Polyploidy. Int J Mol Sci 2020; 21:ijms21238956. [PMID: 33255749 PMCID: PMC7728353 DOI: 10.3390/ijms21238956] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
Volatile organic compounds (VOCs) are emitted by plants as a consequence of their interaction with biotic and abiotic factors, and have a very important role in plant evolution. Floral VOCs are often involved in defense and pollinator attraction. These interactions often change rapidly over time, so a quick response to those changes is required. Epigenetic factors, such as DNA methylation and histone modification, which regulate both genes and transcription factors, might trigger adaptive responses to these evolutionary pressures as well as regulating the rhythmic emission of VOCs through circadian clock regulation. In addition, transgenerational epigenetic effects and whole genome polyploidy could modify the generation of VOCs’ profiles of offspring, contributing to long-term evolutionary shifts. In this article, we review the available knowledge about the mechanisms that may act as epigenetic regulators of the main VOC biosynthetic pathways, and their importance in plant evolution.
Collapse
|
23
|
Guo H, Lackus ND, Köllner TG, Li R, Bing J, Wang Y, Baldwin IT, Xu S. Evolution of a Novel and Adaptive Floral Scent in Wild Tobacco. Mol Biol Evol 2020; 37:1090-1099. [PMID: 31808808 DOI: 10.1093/molbev/msz292] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many plants emit diverse floral scents that mediate plant-environment interactions and attain reproductive success. However, how plants evolve novel and adaptive biosynthetic pathways for floral volatiles remains unclear. Here, we show that in the wild tobacco, Nicotiana attenuata, a dominant species-specific floral volatile (benzyl acetone, BA) that attracts pollinators and deters florivore is synthesized by phenylalanine ammonia-lyase 4 (NaPAL4), isoflavone reductase 3 (NaIFR3), and chalcone synthase 3 (NaCHAL3). Transient expression of NaFIR3 alone in N. attenuata leaves is sufficient and necessary for ectopic foliar BA emissions, and coexpressing NaIFR3 with NaPAL4 and NaCHAL3 increased the BA emission levels. Independent changes in transcription of NaPAL4 and NaCHAL3 contributed to intraspecific variations of floral BA emission. However, among species, the gain of expression of NaIFR3 resulted in the biosynthesis of BA, which was only found in N. attenuata. This study suggests that novel metabolic pathways associated with adaptation can arise via reconfigurations of gene expression.
Collapse
Affiliation(s)
- Han Guo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Nathalie D Lackus
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ran Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Julia Bing
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yangzi Wang
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
24
|
Greenwood M, Locke JC. The circadian clock coordinates plant development through specificity at the tissue and cellular level. CURRENT OPINION IN PLANT BIOLOGY 2020; 53:65-72. [PMID: 31783323 DOI: 10.1016/j.pbi.2019.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 05/27/2023]
Abstract
The circadian clock is a genetic circuit that allows organisms to anticipate daily events caused by the rotation of the Earth. The plant clock regulates physiology at multiple scales, from cell division to ecosystem-scale interactions. It is becoming clear that rather than being a single perfectly synchronised timer throughout the plant, the clock can be sensitive to different cues, run at different speeds, and drive distinct processes in different cell types and tissues. This flexibility may help the plant clock to regulate such a range of developmental and physiological processes. In this review, using examples from the literature, we describe how the clock regulates development at multiple scales and discuss how the clock might allow local flexibility in regulation whilst remaining coordinated across the plant.
Collapse
Affiliation(s)
- Mark Greenwood
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, UK; Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, UK
| | - James Cw Locke
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, UK.
| |
Collapse
|
25
|
Zhang L, Chen F, Zhang X, Li Z, Zhao Y, Lohaus R, Chang X, Dong W, Ho SYW, Liu X, Song A, Chen J, Guo W, Wang Z, Zhuang Y, Wang H, Chen X, Hu J, Liu Y, Qin Y, Wang K, Dong S, Liu Y, Zhang S, Yu X, Wu Q, Wang L, Yan X, Jiao Y, Kong H, Zhou X, Yu C, Chen Y, Li F, Wang J, Chen W, Chen X, Jia Q, Zhang C, Jiang Y, Zhang W, Liu G, Fu J, Chen F, Ma H, Van de Peer Y, Tang H. The water lily genome and the early evolution of flowering plants. Nature 2020; 577:79-84. [PMID: 31853069 PMCID: PMC7015852 DOI: 10.1038/s41586-019-1852-5] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/31/2019] [Indexed: 12/16/2022]
Abstract
Water lilies belong to the angiosperm order Nymphaeales. Amborellales, Nymphaeales and Austrobaileyales together form the so-called ANA-grade of angiosperms, which are extant representatives of lineages that diverged the earliest from the lineage leading to the extant mesangiosperms1-3. Here we report the 409-megabase genome sequence of the blue-petal water lily (Nymphaea colorata). Our phylogenomic analyses support Amborellales and Nymphaeales as successive sister lineages to all other extant angiosperms. The N. colorata genome and 19 other water lily transcriptomes reveal a Nymphaealean whole-genome duplication event, which is shared by Nymphaeaceae and possibly Cabombaceae. Among the genes retained from this whole-genome duplication are homologues of genes that regulate flowering transition and flower development. The broad expression of homologues of floral ABCE genes in N. colorata might support a similarly broadly active ancestral ABCE model of floral organ determination in early angiosperms. Water lilies have evolved attractive floral scents and colours, which are features shared with mesangiosperms, and we identified their putative biosynthetic genes in N. colorata. The chemical compounds and biosynthetic genes behind floral scents suggest that they have evolved in parallel to those in mesangiosperms. Because of its unique phylogenetic position, the N. colorata genome sheds light on the early evolution of angiosperms.
Collapse
Affiliation(s)
- Liangsheng Zhang
- 0000 0004 1760 2876grid.256111.0Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fei Chen
- 0000 0004 1760 2876grid.256111.0Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China ,0000 0000 9750 7019grid.27871.3bCollege of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xingtan Zhang
- 0000 0004 1760 2876grid.256111.0Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen Li
- 0000 0001 2069 7798grid.5342.0Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium ,0000000104788040grid.11486.3aVIB Center for Plant Systems Biology, Ghent, Belgium
| | - Yiyong Zhao
- 0000 0001 0125 2443grid.8547.eState Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China ,0000 0001 2097 4281grid.29857.31Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA USA
| | - Rolf Lohaus
- 0000 0001 2069 7798grid.5342.0Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium ,0000000104788040grid.11486.3aVIB Center for Plant Systems Biology, Ghent, Belgium
| | - Xiaojun Chang
- 0000 0004 1760 2876grid.256111.0Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China ,Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen, China
| | - Wei Dong
- 0000 0004 1760 2876grid.256111.0Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Simon Y. W. Ho
- 0000 0004 1936 834Xgrid.1013.3School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales Australia
| | - Xing Liu
- 0000 0004 1760 2876grid.256111.0Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Aixia Song
- 0000 0004 1760 2876grid.256111.0Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junhao Chen
- 0000 0000 9152 7385grid.443483.cState Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Wenlei Guo
- 0000 0000 9152 7385grid.443483.cState Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Zhengjia Wang
- 0000 0000 9152 7385grid.443483.cState Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Yingyu Zhuang
- 0000 0004 1760 2876grid.256111.0Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haifeng Wang
- 0000 0004 1760 2876grid.256111.0Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuequn Chen
- 0000 0004 1760 2876grid.256111.0Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Juan Hu
- 0000 0004 1760 2876grid.256111.0Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanhui Liu
- 0000 0004 1760 2876grid.256111.0Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Qin
- 0000 0004 1760 2876grid.256111.0Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Wang
- 0000 0004 1760 2876grid.256111.0Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shanshan Dong
- Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen, China
| | - Yang Liu
- Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen, China ,0000 0001 2034 1839grid.21155.32BGI-Shenzhen, Shenzhen, China
| | - Shouzhou Zhang
- Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen, China
| | - Xianxian Yu
- 0000 0000 8989 0732grid.412992.5School of Urban-Rural Planning and Landscape Architecture, Xuchang University, Xuchang, China
| | - Qian Wu
- 0000000119573309grid.9227.eKey Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China ,0000 0004 1797 8419grid.410726.6University of the Chinese Academy of Sciences, Beijing, China
| | - Liangsheng Wang
- 0000000119573309grid.9227.eKey Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China ,0000 0004 1797 8419grid.410726.6University of the Chinese Academy of Sciences, Beijing, China
| | - Xueqing Yan
- 0000 0004 1797 8419grid.410726.6University of the Chinese Academy of Sciences, Beijing, China ,0000000119573309grid.9227.eState Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yuannian Jiao
- 0000 0004 1797 8419grid.410726.6University of the Chinese Academy of Sciences, Beijing, China ,0000000119573309grid.9227.eState Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hongzhi Kong
- 0000 0004 1797 8419grid.410726.6University of the Chinese Academy of Sciences, Beijing, China ,0000000119573309grid.9227.eState Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiaofan Zhou
- 0000 0000 9546 5767grid.20561.30Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Cuiwei Yu
- Hangzhou Tianjing Aquatic Botanical Garden, Zhejiang Humanities Landscape Co. Ltd., Hangzhou, China
| | - Yuchu Chen
- Hangzhou Tianjing Aquatic Botanical Garden, Zhejiang Humanities Landscape Co. Ltd., Hangzhou, China
| | - Fan Li
- 0000 0004 1799 1111grid.410732.3National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jihua Wang
- 0000 0004 1799 1111grid.410732.3National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Wei Chen
- 0000 0001 0376 205Xgrid.411304.3Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinlu Chen
- 0000 0001 2315 1184grid.411461.7Department of Plant Sciences, University of Tennessee, Knoxville, TN USA
| | - Qidong Jia
- 0000 0001 2315 1184grid.411461.7Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN USA
| | - Chi Zhang
- 0000 0001 2315 1184grid.411461.7Department of Plant Sciences, University of Tennessee, Knoxville, TN USA
| | - Yifan Jiang
- 0000 0000 9750 7019grid.27871.3bCollege of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Wanbo Zhang
- 0000 0000 9750 7019grid.27871.3bCollege of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Guanhua Liu
- 0000 0001 0526 1937grid.410727.7Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jianyu Fu
- 0000 0001 0526 1937grid.410727.7Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Feng Chen
- 0000 0000 9750 7019grid.27871.3bCollege of Horticulture, Nanjing Agricultural University, Nanjing, China ,0000 0001 2315 1184grid.411461.7Department of Plant Sciences, University of Tennessee, Knoxville, TN USA ,0000 0001 2315 1184grid.411461.7Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN USA
| | - Hong Ma
- 0000 0001 2097 4281grid.29857.31Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA USA
| | - Yves Van de Peer
- 0000 0001 2069 7798grid.5342.0Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium ,0000000104788040grid.11486.3aVIB Center for Plant Systems Biology, Ghent, Belgium ,0000 0001 2107 2298grid.49697.35Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Haibao Tang
- 0000 0004 1760 2876grid.256111.0Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
26
|
Boachon B, Burdloff Y, Ruan JX, Rojo R, Junker RR, Vincent B, Nicolè F, Bringel F, Lesot A, Henry L, Bassard JE, Mathieu S, Allouche L, Kaplan I, Dudareva N, Vuilleumier S, Miesch L, André F, Navrot N, Chen XY, Werck-Reichhart D. A Promiscuous CYP706A3 Reduces Terpene Volatile Emission from Arabidopsis Flowers, Affecting Florivores and the Floral Microbiome. THE PLANT CELL 2019; 31:2947-2972. [PMID: 31628167 PMCID: PMC6925022 DOI: 10.1105/tpc.19.00320] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/06/2019] [Accepted: 10/16/2019] [Indexed: 05/15/2023]
Abstract
Flowers are essential but vulnerable plant organs, exposed to pollinators and florivores; however, flower chemical defenses are rarely investigated. We show here that two clustered terpene synthase and cytochrome P450 encoding genes (TPS11 and CYP706A3) on chromosome 5 of Arabidopsis (Arabidopsis thaliana) are tightly coexpressed in floral tissues, upon anthesis and during floral bud development. TPS11 was previously reported to generate a blend of sesquiterpenes. By heterologous coexpression of TPS11 and CYP706A3 in yeast (Saccharomyces cerevisiae) and Nicotiana benthamiana, we demonstrate that CYP706A3 is active on TPS11 products and also further oxidizes its own primary oxidation products. Analysis of headspace and soluble metabolites in cyp706a3 and 35S:CYP706A3 mutants indicate that CYP706A3-mediated metabolism largely suppresses sesquiterpene and most monoterpene emissions from opening flowers, and generates terpene oxides that are retained in floral tissues. In flower buds, the combined expression of TPS11 and CYP706A3 also suppresses volatile emissions and generates soluble sesquiterpene oxides. Florivory assays with the Brassicaceae specialist Plutella xylostella demonstrate that insect larvae avoid feeding on buds expressing CYP706A3 and accumulating terpene oxides. Composition of the floral microbiome appears also to be modulated by CYP706A3 expression. TPS11 and CYP706A3 simultaneously evolved within Brassicaceae and form the most versatile functional gene cluster described in higher plants so far.plantcell;31/12/2947/FX1F1fx1.
Collapse
Affiliation(s)
- Benoît Boachon
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique (CNRS), Unité Propre de Recherche 2357, Université de Strasbourg, 67084 Strasbourg, France
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
- University of Lyon, UJM-Saint-Etienne, CNRS, BVpam Formation de Recherche en Evolution 3727, 42000 Saint-Etienne, France
| | - Yannick Burdloff
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique (CNRS), Unité Propre de Recherche 2357, Université de Strasbourg, 67084 Strasbourg, France
| | - Ju-Xin Ruan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
- Plant Science Research Center, Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Rakotoharisoa Rojo
- Institute for Integrative Biology of the Cell (I2BC), iBiTec-S/SBSM, Commissariat à l'Energie Atomique, CNRS, Université Paris Sud, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Robert R Junker
- Evolutionary Ecology of Plants, Department Biodiversity of Plants, Faculty of Biology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Bruno Vincent
- Plateforme d'Analyses pour la Chimie, GDS 3648, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Florence Nicolè
- University of Lyon, UJM-Saint-Etienne, CNRS, BVpam Formation de Recherche en Evolution 3727, 42000 Saint-Etienne, France
| | - Françoise Bringel
- Génétique Moléculaire, Génomique, Microbiologie, Université de Strasbourg, UMR 7156 CNRS, 67000 Strasbourg, France
| | - Agnès Lesot
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique (CNRS), Unité Propre de Recherche 2357, Université de Strasbourg, 67084 Strasbourg, France
| | - Laura Henry
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Jean-Etienne Bassard
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique (CNRS), Unité Propre de Recherche 2357, Université de Strasbourg, 67084 Strasbourg, France
| | - Sandrine Mathieu
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique (CNRS), Unité Propre de Recherche 2357, Université de Strasbourg, 67084 Strasbourg, France
| | - Lionel Allouche
- Evolutionary Ecology of Plants, Department Biodiversity of Plants, Faculty of Biology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Ian Kaplan
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Stéphane Vuilleumier
- Plateforme d'Analyses pour la Chimie, GDS 3648, CNRS, Université de Strasbourg, 67000 Strasbourg, France
- Génétique Moléculaire, Génomique, Microbiologie, Université de Strasbourg, UMR 7156 CNRS, 67000 Strasbourg, France
| | - Laurence Miesch
- Equipe de Synthèse Organique et Phytochimie, Institut de Chimie, Unité Mixte de Recherche 7177, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - François André
- Institute for Integrative Biology of the Cell (I2BC), iBiTec-S/SBSM, Commissariat à l'Energie Atomique, CNRS, Université Paris Sud, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Nicolas Navrot
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique (CNRS), Unité Propre de Recherche 2357, Université de Strasbourg, 67084 Strasbourg, France
| | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
- Plant Science Research Center, Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Danièle Werck-Reichhart
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique (CNRS), Unité Propre de Recherche 2357, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
27
|
He J, Fandino RA, Halitschke R, Luck K, Köllner TG, Murdock MH, Ray R, Gase K, Knaden M, Baldwin IT, Schuman MC. An unbiased approach elucidates variation in ( S)-(+)-linalool, a context-specific mediator of a tri-trophic interaction in wild tobacco. Proc Natl Acad Sci U S A 2019; 116:14651-14660. [PMID: 31262827 PMCID: PMC6642400 DOI: 10.1073/pnas.1818585116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Plant volatile organic compounds (VOCs) mediate many interactions, and the function of common VOCs is especially likely to depend on ecological context. We used a genetic mapping population of wild tobacco, Nicotiana attenuata, originating from a cross of 2 natural accessions from Arizona and Utah, separated by the Grand Canyon, to dissect genetic variation controlling VOCs. Herbivory-induced leaf terpenoid emissions varied substantially, while green leaf volatile emissions were similar. In a field experiment, only emissions of linalool, a common VOC, correlated significantly with predation of the herbivore Manduca sexta by native predators. Using quantitative trait locus mapping and genome mining, we identified an (S)-(+)-linalool synthase (NaLIS). Genome resequencing, gene cloning, and activity assays revealed that the presence/absence of a 766-bp sequence in NaLIS underlies the variation of linalool emissions in 26 natural accessions. We manipulated linalool emissions and composition by ectopically expressing linalool synthases for both enantiomers, (S)-(+)- and (R)-(-)-linalool, reported to oppositely affect M. sexta oviposition, in the Arizona and Utah accessions. We used these lines to test ovipositing moths in increasingly complex environments. The enantiomers had opposite effects on oviposition preference, but the magnitude of the effect depended strongly both on plant genetic background, and complexity of the bioassay environment. Our study reveals that the emission of linalool, a common VOC, differs by orders-of-magnitude among geographically interspersed conspecific plants due to allelic variation in a linalool synthase, and that the response of a specialist herbivore to linalool depends on enantiomer, plant genotype, and environmental complexity.
Collapse
Affiliation(s)
- Jun He
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Richard A Fandino
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Katrin Luck
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Mark H Murdock
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
- College of Life Sciences, Brigham Young University, Provo, UT 84606
| | - Rishav Ray
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Klaus Gase
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
- Department of Geography, University of Zurich, 8057 Zürich, Switzerland
| |
Collapse
|
28
|
Scott-Brown AS, Arnold SEJ, Kite GC, Farrell IW, Farman DI, Collins DW, Stevenson PC. Mechanisms in mutualisms: a chemically mediated thrips pollination strategy in common elder. PLANTA 2019; 250:367-379. [PMID: 31069523 DOI: 10.1007/s00425-019-03176-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
This study provides first evidence of a thrips species pollinating Sambucus nigra and describes how interactions are driven by plant biochemical signalling and moderated by temporal changes in floral chemistry. The concept of flower-feeding thrips as pollinating insects in temperate regions is rarely considered as they are more frequently regarded to be destructive florivores feeding on pollen and surrounding plant tissue. Combining laboratory and field-based studies we examined interactions between Sambucus nigra (elderflower) and Thrips major within their native range to ascertain the role of thrips in the pollination of this species and to determine if floral chemicals mediated flower visits. If thrips provide a pollination service to S. nigra, then this will likely manifest in traits that attract the pollinating taxa at temporally critical points in floral development. T. major were highly abundant in inflorescences of S. nigra, entering flowers when stigmas were pollen-receptive and anthers were immature. When thrips were excluded from the inflorescences, fruit-set failed. Linalool was the major component of the inflorescence headspace with peak abundance coinciding with the highest number of adult thrips visiting flowers. Thrips were absent in buds and their numbers declined again in senescing flowers inversely correlating with the concentration of cyanogenic glycosides recorded in the floral tissue. Our data show that S. nigra floral chemistry mediates the behaviour of pollen-feeding thrips by attracting adults in high numbers to the flowers at pre-anthesis stage, while producing deterrent compounds prior to fruit development. Taking an integrative approach to studying thrips behaviour and floral biology we provide a new insight into the previously ambiguously defined pollination strategies of S. nigra and provide evidence suggesting that the relationship between T. major and S. nigra is mutualistic.
Collapse
Affiliation(s)
| | - Sarah E J Arnold
- Natural Resources Institute, University of Greenwich, Chatham Maritime, ME4 4TB, UK
| | | | | | - Dudley I Farman
- Natural Resources Institute, University of Greenwich, Chatham Maritime, ME4 4TB, UK
| | | | - Philip C Stevenson
- Royal Botanic Gardens Kew, Richmond, TW9 3AB, UK
- Natural Resources Institute, University of Greenwich, Chatham Maritime, ME4 4TB, UK
| |
Collapse
|
29
|
Kessler D, Bing J, Haverkamp A, Baldwin IT. The defensive function of a pollinator‐attracting floral volatile. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13332] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Danny Kessler
- Department of Molecular Ecology Max Planck Institute for Chemical Ecology Jena Germany
| | - Julia Bing
- Department of Molecular Ecology Max Planck Institute for Chemical Ecology Jena Germany
| | - Alexander Haverkamp
- Department of Neuroethology Max Planck Institute for Chemical Ecology Jena Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology Max Planck Institute for Chemical Ecology Jena Germany
| |
Collapse
|
30
|
Segar ST, Volf M, Sisol M, Pardikes NA, Souto-Vilarós D. Chemical cues and genetic divergence in insects on plants: conceptual cross pollination between mutualistic and antagonistic systems. CURRENT OPINION IN INSECT SCIENCE 2019; 32:83-90. [PMID: 31113637 DOI: 10.1016/j.cois.2018.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/20/2018] [Accepted: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Cascading or reciprocal genetic diversification of herbivores, parasitoids, and pollinators can track chemotypic variation in host resources, and can lead to non-overlapping communities. Because plants simultaneously interact with both pollinators and herbivores, models investigating the genetic divergence of antagonistic herbivores and mutualistic pollinators should be merged in order to study how both processes interact using a common conceptual and methodological approach. We expect insects to mediate divergence in many systems, with outcomes depending on the level of pollinator or herbivore specialisation, and the relative selective pressures they impose. Applying approaches widely used to study insect pollinators, for example genomic tools and integration of behavioural, genetic and chemical data, to both pollinators and herbivores in the same system will facilitate our understanding of patterns of genetic divergence across multiple interacting species.
Collapse
Affiliation(s)
- Simon T Segar
- Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic; Department of Crop and Environment Sciences, Harper Adams University, UK.
| | - Martin Volf
- Molecular Interaction Ecology Group, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Mentap Sisol
- New Guinea Binatang Research Centre, Madang, Papua New Guinea
| | | | - Daniel Souto-Vilarós
- Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| |
Collapse
|
31
|
Haverkamp A, Li X, Hansson BS, Baldwin IT, Knaden M, Yon F. Flower movement balances pollinator needs and pollen protection. Ecology 2019; 100:e02553. [PMID: 30411786 PMCID: PMC7378942 DOI: 10.1002/ecy.2553] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 09/29/2018] [Accepted: 10/12/2018] [Indexed: 12/03/2022]
Abstract
Flower signaling and orientation are key characteristics that determine a flower's pollinator guild. However, many flowers actively move during their daily cycle, changing both their detectability and accessibility to pollinators. The flowers of the wild tobacco Nicotiana attenuata orientate their corolla upward at sunset and downward after sunrise. Here, we investigated the effect of different flower orientations on a major pollinator of N. attenuata, the hawkmoth Manduca sexta. We found that although flower orientation influenced the flight altitude of the moth in respect to the flower, it did not alter the moth's final flower choice. These behavioral observations were consistent with the finding that orientation did not systematically change the spatial distribution of floral volatiles, which are major attractants for the moths. Moreover, hawkmoths invested the same amount of time into probing flowers at different orientations, even though they were only able to feed and gather pollen from horizontally and upward-oriented flowers, but not from downward-facing flowers. The orientation of the flower was hence crucial for a successful interaction between N. attenuata and its hawkmoth pollinator. Additionally, we also investigated potential adverse effects of exposing flowers at different orientations to natural daylight levels, finding that anther temperature of upward-oriented flowers was more than 7°C higher than for downward-oriented flowers. This increase in temperature likely caused the significantly reduced germination success that was observed for pollen grains from upward-oriented flowers in comparison to those of downward and horizontally oriented flowers. These results highlight the importance of flower reorientation to balance pollen protection and a successful interaction of the plant with its insect pollinators by maintaining the association between flower volatiles and flower accessibility to the pollinator.
Collapse
Affiliation(s)
- Alexander Haverkamp
- Department of Evolutionary NeuroethologyMax Planck Institute for Chemical EcologyJenaGermany
- Present address:
Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| | - Xiang Li
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
- Present address:
Aura Optik GmbHJenaGermany
| | - Bill S. Hansson
- Department of Evolutionary NeuroethologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Ian T. Baldwin
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Markus Knaden
- Department of Evolutionary NeuroethologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Felipe Yon
- Department of Evolutionary NeuroethologyMax Planck Institute for Chemical EcologyJenaGermany
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
- Present address:
CIEUniversidad Peruana Cayetano HerediaLimaPeru
| |
Collapse
|
32
|
Rodrigues DM, Caballero-Villalobos L, Turchetto C, Assis Jacques R, Kuhlemeier C, Freitas LB. Do we truly understand pollination syndromes in Petunia as much as we suppose? AOB PLANTS 2018; 10:ply057. [PMID: 30386543 PMCID: PMC6202611 DOI: 10.1093/aobpla/ply057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/27/2018] [Indexed: 05/29/2023]
Abstract
Petunia is endemic to South America grasslands; member of this genus exhibit variation in flower colour and shape, attracting bees, hawkmoths or hummingbirds. This group of plants is thus an excellent model system for evolutionary studies of diversification associated with pollinator shifts. Our aims were to identify the legitimate pollinator of Petunia secreta, a rare and endemic species, and to assess the importance of floral traits in pollinator attraction in this Petunia species. To determine the legitimate pollinator, field observations were conducted, and all floral visitors were recorded and evaluated. We also measured the nectar volume and sugar concentration. To characterize morphological cues for pollinators, we assessed the ultraviolet (UV)-light response in detached flowers, and characterized the floral pigments and pollen volatile scents for four different Petunia species that present different pollination syndromes. Petunia secreta shares the most recent ancestor with a white hawkmoth-pollinated species, P. axillaris, but presents flavonols and anthocyanin pigments responsible for the pink corolla colour and UV-light responses that are common to bee-pollinated Petunia species. Our study showed that a solitary bee in the genus Pseudagapostemon was the most frequent pollinator of P. secreta, and these bees collect only pollen as a reward. Despite being mainly bee-pollinated, different functional groups of pollinators visit P. secreta. Nectar volume, sugar concentration per flower, morphology and components of pollen scent would appear to be attractive to several different pollinator groups. Notably, the corolla includes a narrow tube with nectar at its base that cannot be reached by Pseudagapostemon, and flowers of P. secreta appear to follow an evolutionary transition, with traits attractive to several functional groups of pollinators. Additionally, the present study shows that differences in the volatiles of pollen scent are relevant for plant mutualistic and antagonist interactions in Petunia species and that pollen scent profile plays a key role in characterizing pollination syndromes.
Collapse
Affiliation(s)
- Daniele M Rodrigues
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lina Caballero-Villalobos
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Caroline Turchetto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rosangela Assis Jacques
- Department of Inorganic Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cris Kuhlemeier
- Institute of Plant Sciences, Altenbergrain, Bern, Switzerland
| | - Loreta B Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
33
|
Li R, Schuman MC, Wang Y, Llorca LC, Bing J, Bennion A, Halitschke R, Baldwin IT. Jasmonate signaling makes flowers attractive to pollinators and repellant to florivores in nature. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:190-194. [PMID: 29058786 DOI: 10.1111/jipb.12607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
Flowers are required for the Darwinian fitness of flowering plants, but flowers' advertisements for pollination services can attract florivores. Previous glasshouse work with Nicotiana attenuata revealed the role of jasmonate (JA) signaling in flower development, advertisement and defense. However, whether JA signaling mediates flowers' filtering of floral visitors in nature remained unknown. This field study revealed that silencing JA signaling resulted in flowers that produce less nectar and benzyl acetone, two pollinator-attractive traits. Meanwhile, flowers of defenseless plants were highly attacked by a suite of native herbivores, and damage to buds in native plants correlated negatively with their JA-Ile levels.
Collapse
Affiliation(s)
- Ran Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Yang Wang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Lucas Cortés Llorca
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Julia Bing
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Anne Bennion
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
- Department of Microbiology and Molecular Biology, Brigham Young University, 4007B, LSB, Provo, UT 84602, USA
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
34
|
Haverkamp A, Hansson BS, Baldwin IT, Knaden M, Yon F. Floral Trait Variations Among Wild Tobacco Populations Influence the Foraging Behavior of Hawkmoth Pollinators. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Trans-generational inheritance of herbivory-induced phenotypic changes in Brassica rapa. Sci Rep 2018; 8:3536. [PMID: 29476119 PMCID: PMC5824794 DOI: 10.1038/s41598-018-21880-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/12/2018] [Indexed: 11/08/2022] Open
Abstract
Biotic stress can induce plastic changes in fitness-relevant plant traits. Recently, it has been shown that such changes can be transmitted to subsequent generations. However, the occurrence and extent of transmission across different types of traits is still unexplored. Here, we assessed the emergence and transmission of herbivory-induced changes in Brassica rapa and their impact on interactions with insects. We analysed changes in morphology and reproductive traits as well as in flower and leaf volatile emission during two generations with leaf herbivory by Mamestra brassicae and Pieris brassicae and two subsequent generations without herbivory. Herbivory induced changes in all trait types, increasing attractiveness of the plants to the parasitoid wasp Cotesia glomerata and decreasing visitation by the pollinator Bombus terrestris, a potential trade-off. While changes in floral and leaf volatiles disappeared in the first generation after herbivory, some changes in morphology and reproductive traits were still measurable two generations after herbivory. However, neither parasitoids nor pollinators further discriminated between groups with different past treatments. Our results suggest that transmission of herbivore-induced changes occurs preferentially in resource-limited traits connected to plant growth and reproduction. The lack of alterations in plant-insect interactions was likely due to the transient nature of volatile changes.
Collapse
|
36
|
Haverkamp A, Hansson BS, Knaden M. Combinatorial Codes and Labeled Lines: How Insects Use Olfactory Cues to Find and Judge Food, Mates, and Oviposition Sites in Complex Environments. Front Physiol 2018; 9:49. [PMID: 29449815 PMCID: PMC5799900 DOI: 10.3389/fphys.2018.00049] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/16/2018] [Indexed: 01/01/2023] Open
Abstract
Insects, including those which provide vital ecosystems services as well as those which are devastating pests or disease vectors, locate their resources mainly based on olfaction. Understanding insect olfaction not only from a neurobiological but also from an ecological perspective is therefore crucial to balance insect control and conservation. However, among all sensory stimuli olfaction is particularly hard to grasp. Our chemical environment is made up of thousands of different compounds, which might again be detected by our nose in multiple ways. Due to this complexity, researchers have only recently begun to explore the chemosensory ecology of model organisms such as Drosophila, linking the tools of chemical ecology to those of neurogenetics. This cross-disciplinary approach has enabled several studies that range from single odors and their ecological relevance, via olfactory receptor genes and neuronal processing, up to the insects' behavior. We learned that the insect olfactory system employs strategies of combinatorial coding to process general odors as well as labeled lines for specific compounds that call for an immediate response. These studies opened new doors to the olfactory world in which insects feed, oviposit, and mate.
Collapse
Affiliation(s)
- Alexander Haverkamp
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
37
|
Schuman MC, Meldau S, Gaquerel E, Diezel C, McGale E, Greenfield S, Baldwin IT. The Active Jasmonate JA-Ile Regulates a Specific Subset of Plant Jasmonate-Mediated Resistance to Herbivores in Nature. FRONTIERS IN PLANT SCIENCE 2018; 9:787. [PMID: 29963064 PMCID: PMC6010948 DOI: 10.3389/fpls.2018.00787] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/24/2018] [Indexed: 05/20/2023]
Abstract
The jasmonate hormones are essential regulators of plant defense against herbivores and include several dozen derivatives of the oxylipin jasmonic acid (JA). Among these, the conjugate jasmonoyl isoleucine (JA-Ile) has been shown to interact directly with the jasmonate co-receptor complex to regulate responses to jasmonate signaling. However, functional studies indicate that some aspects of jasmonate-mediated defense are not regulated by JA-Ile. Thus, it is not clear whether JA-Ile is best characterized as the master jasmonate regulator of defense, or if it regulates more specific aspects. We investigated possible functions of JA-Ile in anti-herbivore resistance of the wild tobacco Nicotiana attenuata, a model system for plant-herbivore interactions. We first analyzed the soluble and volatile secondary metabolomes of irJAR4xirJAR6, asLOX3, and WT plants, as well as an RNAi line targeting the jasmonate co-receptor CORONATINE INSENSITIVE 1 (irCOI1), following a standardized herbivory treatment. irJAR4xirJAR6 were the most similar to WT plants, having a ca. 60% overlap in differentially regulated metabolites with either asLOX3 or irCOI1. In contrast, while at least 25 volatiles differed between irCOI1 or asLOX3 and WT plants, there were few or no differences in herbivore-induced volatile emission between irJAR4xirJAR6 and WT plants, in glasshouse- or field-collected samples. We then measured the susceptibility of jasmonate-deficient vs. JA-Ile-deficient plants in nature, in comparison to wild-type (WT) controls, and found that JA-Ile-deficient plants (irJAR4xirJAR6) are much better defended even than a mildly jasmonate-deficient line (asLOX3). The differences among lines could be attributed to differences in damage from specific herbivores, which appeared to prefer either one or the other jasmonate-deficient phenotype. We further investigated the elicitation of one herbivore-induced volatile known to be jasmonate-regulated and to mediate resistance to herbivores: (E)-α-bergamotene. We found that JA was a more potent elicitor of (E)-α-bergamotene emission than was JA-Ile, and when treated with JA, irJAR4xirJAR6 plants emitted 20- to 40-fold as much (E)-α-bergamotene than WT. We conclude that JA-Ile regulates specific aspects of herbivore resistance in N. attenuata. This specificity may allow plants flexibility in their responses to herbivores and in managing trade-offs between resistance, vs. growth and reproduction, over the course of ontogeny.
Collapse
Affiliation(s)
- Meredith C. Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- *Correspondence: Meredith C. Schuman
| | - Stefan Meldau
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Emmanuel Gaquerel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Celia Diezel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Erica McGale
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sara Greenfield
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Plant Genetics, Brigham Young University, Provo, UT, United States
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
38
|
Lee G, Joo Y, Kim SG, Baldwin IT. What happens in the pith stays in the pith: tissue-localized defense responses facilitate chemical niche differentiation between two spatially separated herbivores. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:414-425. [PMID: 28805339 DOI: 10.1111/tpj.13663] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 05/09/2023]
Abstract
Herbivore attack is known to elicit systemic defense responses that spread throughout the host plant and influence the performance of other herbivores. While these plant-mediated indirect competitive interactions are well described, and the co-existence of herbivores from different feeding guilds is common, the mechanisms of co-existence are poorly understood. In both field and glasshouse experiments with a native tobacco, Nicotiana attenuata, we found no evidence of negative interactions when plants were simultaneously attacked by two spatially separated herbivores: a leaf chewer Manduca sexta and a stem borer Trichobaris mucorea. T. mucorea attack elicited jasmonic acid (JA) and jasmonoyl-l-isoleucine bursts in the pith of attacked stems similar to those that occur in leaves when M. sexta attacks N. attenuata leaves. Pith chlorogenic acid (CGA) levels increased 1000-fold to levels 6-fold higher than leaf levels after T. mucorea attack; these increases in pith CGA levels, which did not occur in M. sexta-attacked leaves, required JA signaling. With plants silenced in CGA biosynthesis (irHQT plants), CGA, as well as other caffeic acid conjugates, was demonstrated in both glasshouse and field experiments to function as a direct defense protecting piths against T. mucorea attack, but not against leaf chewers or sucking insects. T. mucorea attack does not systemically activate JA signaling in leaves, while M. sexta leaf-attack transiently induces detectable but minor pith JA levels that are dwarfed by local responses. We conclude that tissue-localized defense responses allow tissue-specialized herbivores to share the same host and occupy different chemical defense niches in the same hostplant.
Collapse
Affiliation(s)
- Gisuk Lee
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| | - Youngsung Joo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| |
Collapse
|
39
|
Joo Y, Schuman MC, Goldberg JK, Kim S, Yon F, Brütting C, Baldwin IT. Herbivore‐induced volatile blends with both “fast” and “slow” components provide robust indirect defence in nature. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12947] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Youngsung Joo
- Department of Molecular EcologyMax Planck Institute for Chemical Ecology Jena Germany
| | - Meredith C. Schuman
- Department of Molecular EcologyMax Planck Institute for Chemical Ecology Jena Germany
- German Centre for Integrative Biodiversity Research (iDiv) Leipzig Germany
| | - Jay K. Goldberg
- Department of Molecular EcologyMax Planck Institute for Chemical Ecology Jena Germany
| | - Sang‐Gyu Kim
- Department of Molecular EcologyMax Planck Institute for Chemical Ecology Jena Germany
| | - Felipe Yon
- Department of Molecular EcologyMax Planck Institute for Chemical Ecology Jena Germany
| | - Christoph Brütting
- Department of Molecular EcologyMax Planck Institute for Chemical Ecology Jena Germany
| | - Ian T. Baldwin
- Department of Molecular EcologyMax Planck Institute for Chemical Ecology Jena Germany
| |
Collapse
|
40
|
Li R, Wang M, Wang Y, Schuman MC, Weinhold A, Schäfer M, Jiménez-Alemán GH, Barthel A, Baldwin IT. Flower-specific jasmonate signaling regulates constitutive floral defenses in wild tobacco. Proc Natl Acad Sci U S A 2017; 114:E7205-E7214. [PMID: 28784761 PMCID: PMC5576791 DOI: 10.1073/pnas.1703463114] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Optimal defense (OD) theory predicts that within a plant, tissues are defended in proportion to their fitness value and risk of predation. The fitness value of leaves varies greatly and leaves are protected by jasmonate (JA)-inducible defenses. Flowers are vehicles of Darwinian fitness in flowering plants and are attacked by herbivores and pathogens, but how they are defended is rarely investigated. We used Nicotiana attenuata, an ecological model plant with well-characterized herbivore interactions to characterize defense responses in flowers. Early floral stages constitutively accumulate greater amounts of two well-characterized defensive compounds, the volatile (E)-α-bergamotene and trypsin proteinase inhibitors (TPIs), which are also found in herbivore-induced leaves. Plants rendered deficient in JA biosynthesis or perception by RNA interference had significantly attenuated floral accumulations of defensive compounds known to be regulated by JA in leaves. By RNA-seq, we found a JAZ gene, NaJAZi, specifically expressed in early-stage floral tissues. Gene silencing revealed that NaJAZi functions as a flower-specific jasmonate repressor that regulates JAs, (E)-α-bergamotene, TPIs, and a defensin. Flowers silenced in NaJAZi are more resistant to tobacco budworm attack, a florivore. When the defensin was ectopically expressed in leaves, performance of Manduca sexta larvae, a folivore, decreased. NaJAZi physically interacts with a newly identified NINJA-like protein, but not the canonical NINJA. This NINJA-like recruits the corepressor TOPLESS that contributes to the suppressive function of NaJAZi on floral defenses. This study uncovers the defensive function of JA signaling in flowers, which includes components that tailor JA signaling to provide flower-specific defense.
Collapse
Affiliation(s)
- Ran Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Ming Wang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Yang Wang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Arne Weinhold
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Martin Schäfer
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | | | - Andrea Barthel
- Department of Entomology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany;
| |
Collapse
|
41
|
Piccini I, Arnieri F, Caprio E, Nervo B, Pelissetti S, Palestrini C, Roslin T, Rolando A. Greenhouse gas emissions from dung pats vary with dung beetle species and with assemblage composition. PLoS One 2017; 12:e0178077. [PMID: 28700590 PMCID: PMC5507485 DOI: 10.1371/journal.pone.0178077] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 05/04/2017] [Indexed: 11/29/2022] Open
Abstract
Cattle farming is a major source of greenhouse gases (GHGs). Recent research suggests that GHG fluxes from dung pats could be affected by biotic interactions involving dung beetles. Whether and how these effects vary among beetle species and with assemblage composition is yet to be established. To examine the link between GHGs and different dung beetle species assemblages, we used a closed chamber system to measure fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from cattle dung pats. Targeting a total of four dung beetle species (a pat-dwelling species, a roller of dung balls, a large and a small tunnelling species), we ran six experimental treatments (four monospecific and two mixed) and two controls (one with dung but without beetles, and one with neither dung nor beetles). In this setting, the overall presence of beetles significantly affected the gas fluxes, but different species contributed unequally to GHG emissions. When compared to the control with dung, we detected an overall reduction in the total cumulative CO2 flux from all treatments with beetles and a reduction in N2O flux from the treatments with the three most abundant dung beetle species. These reductions can be seen as beneficial ecosystem services. Nonetheless, we also observed a disservice provided by the large tunneler, Copris lunaris, which significantly increased the CH4 flux–an effect potentially traceable to the species’ nesting strategy involving the construction of large brood balls. When fluxes were summed into CO2-equivalents across individual GHG compounds, dung with beetles proved to emit less GHGs than did beetle-free dung, with the mix of the three most abundant species providing the highest reduction (-32%). As the mix of multiple species proved the most effective in reducing CO2-equivalents, the conservation of diverse assemblages of dung beetles emerges as a priority in agro-pastoral ecosystems.
Collapse
Affiliation(s)
- Irene Piccini
- Department of Life Science and Systems Biology, University of Turin, Turin, Italy
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| | - Fabrizio Arnieri
- Department of Life Science and Systems Biology, University of Turin, Turin, Italy
| | - Enrico Caprio
- Department of Life Science and Systems Biology, University of Turin, Turin, Italy
| | - Beatrice Nervo
- Department of Life Science and Systems Biology, University of Turin, Turin, Italy
| | - Simone Pelissetti
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco (TO), Italy
| | - Claudia Palestrini
- Department of Life Science and Systems Biology, University of Turin, Turin, Italy
| | - Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Antonio Rolando
- Department of Life Science and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
42
|
Kostyun JL, Moyle LC. Multiple strong postmating and intrinsic postzygotic reproductive barriers isolate florally diverse species of Jaltomata (Solanaceae). Evolution 2017; 71:1556-1571. [PMID: 28432763 PMCID: PMC5502772 DOI: 10.1111/evo.13253] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/31/2017] [Indexed: 12/22/2022]
Abstract
Divergence in phenotypic traits often contributes to premating isolation between lineages, but could also promote isolation at postmating stages. Phenotypic differences could directly result in mechanical isolation or hybrids with maladapted traits; alternatively, when alleles controlling these trait differences pleiotropically affect other components of development, differentiation could indirectly produce genetic incompatibilities in hybrids. Here, we determined the strength of nine postmating and intrinsic postzygotic reproductive barriers among 10 species of Jaltomata (Solanaceae), including species with highly divergent floral traits. To evaluate the relative importance of floral trait diversification for the strength of these postmating barriers, we assessed their relationship to floral divergence, genetic distance, geographical context, and ecological differences, using conventional tests and a new linear-mixed modeling approach. Despite close evolutionary relationships, all species pairs showed moderate to strong isolation. Nonetheless, floral trait divergence was not a consistent predictor of the strength of isolation; instead this was best explained by genetic distance, although we found evidence for mechanical isolation in one species, and a positive relationship between floral trait divergence and fruit set isolation across species pairs. Overall, our data indicate that intrinsic postzygotic isolation is more strongly associated with genome-wide genetic differentiation, rather than floral divergence.
Collapse
Affiliation(s)
- Jamie L. Kostyun
- Department of Biology, Indiana University, Bloomington, Indiana
47405, USA
| | - Leonie C. Moyle
- Department of Biology, Indiana University, Bloomington, Indiana
47405, USA
| |
Collapse
|
43
|
Zhou W, Kügler A, McGale E, Haverkamp A, Knaden M, Guo H, Beran F, Yon F, Li R, Lackus N, Köllner TG, Bing J, Schuman MC, Hansson BS, Kessler D, Baldwin IT, Xu S. Tissue-Specific Emission of (E)-α-Bergamotene Helps Resolve the Dilemma When Pollinators Are Also Herbivores. Curr Biol 2017; 27:1336-1341. [PMID: 28434859 DOI: 10.1016/j.cub.2017.03.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/13/2017] [Accepted: 03/09/2017] [Indexed: 01/27/2023]
Abstract
More than 87% of flowering plant species are animal-pollinated [1] and produce floral scents and other signals to attract pollinators. These floral cues may however also attract antagonistic visitors, including herbivores [2]. The dilemma is exacerbated when adult insects pollinate the same plant that their larvae consume. It remains largely unclear how plants maximize their fitness under these circumstances. Here we show that in the night-flowering wild tobacco Nicotiana attenuata, the emission of a sesquiterpene, (E)-α-bergamotene, in flowers increases adult Manduca sexta moth-mediated pollination success, while the same compound in leaves is known to mediate indirect defense against M. sexta larvae [3, 4]. Forward and reverse genetic analyses demonstrated that both herbivory-induced and floral (E)-α-bergamotene are regulated by the expression of a monoterpene-synthase-derived sesquiterpene synthase (NaTPS38). The expression pattern of NaTPS38 also accounts for variation in (E)-α-bergamotene emission among natural accessions. These results highlight that differential expression of a single gene that results in tissue-specific emission of one compound contributes to resolving the dilemma for plants when their pollinators are also herbivores. Furthermore, this study provides genetic evidence that pollinators and herbivores interactively shape the evolution of floral signals and plant defense.
Collapse
Affiliation(s)
- Wenwu Zhou
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Anke Kügler
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Erica McGale
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Alexander Haverkamp
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Han Guo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Franziska Beran
- Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Felipe Yon
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Ran Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Nathalie Lackus
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Julia Bing
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Danny Kessler
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Shuqing Xu
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany.
| |
Collapse
|
44
|
Yon F, Kessler D, Joo Y, Cortés Llorca L, Kim SG, Baldwin IT. Fitness consequences of altering floral circadian oscillations for Nicotiana attenuata. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:180-189. [PMID: 27957809 DOI: 10.1111/jipb.12511] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/12/2016] [Indexed: 06/06/2023]
Abstract
Ecological interactions between flowers and pollinators are all about timing. Flower opening/closing and scent emissions are largely synchronized with pollinator activity, and a circadian clock regulates these rhythms. However, whether the circadian clock increases a plant's reproductive success by regulating these floral rhythms remains untested. Flowers of Nicotiana attenuata, a wild tobacco, diurnally and rhythmically open, emit scent and move vertically through a 140° arc to interact with nocturnal hawkmoths. We tethered flowers to evaluate the importance of flower positions for Manduca sexta-mediated pollinations; flower position dramatically influenced pollination. We examined the pollination success of phase-shifted flowers, silenced in circadian clock genes, NaZTL, NaLHY, and NaTOC1, by RNAi. Circadian rhythms in N. attenuata flowers are responsible for altered seed set from outcrossed pollen.
Collapse
Affiliation(s)
- Felipe Yon
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Danny Kessler
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Youngsung Joo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Lucas Cortés Llorca
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
- Center for Genome Engineering, Institute for Basic Science, Yuseong-gu, 34047 Daejeon, South Korea
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
45
|
Amrad A, Moser M, Mandel T, de Vries M, Schuurink RC, Freitas L, Kuhlemeier C. Gain and Loss of Floral Scent Production through Changes in Structural Genes during Pollinator-Mediated Speciation. Curr Biol 2016; 26:3303-3312. [PMID: 27916524 DOI: 10.1016/j.cub.2016.10.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
Abstract
The interactions of plants with their pollinators are thought to be a driving force in the evolution of angiosperms. Adaptation to a new pollinator involves coordinated changes in multiple floral traits controlled by multiple genes. Surprisingly, such complex genetic shifts have happened numerous times during evolution. Here we report on the genetic basis of the changes in one such trait, floral scent emission, in the genus Petunia (Solanaceae). The increase in the quantity and complexity of the volatiles during the shift from bee to hawkmoth pollination was due to de novo expression of the genes encoding benzoic acid/salicylic acid carboxyl methyltransferase (BSMT) and benzoyl-CoA:benzylalcohol/2-phenylethanol benzoyltransferase (BPBT) together with moderately increased transcript levels for most enzymes of the phenylpropanoid/benzenoid pathway. Loss of cinnamate-CoA ligase (CNL) function as well as a reduction in the expression of the MYB transcription factor ODO1 explain the loss of scent during the transition from moth to hummingbird pollination. The CNL gene in the hummingbird-adapted species is inactive due to a stop codon, but also appears to have undergone further degradation over time. Therefore, we propose that loss of scent happened relatively early in the transition toward hummingbird pollination, and probably preceded the loss of UV-absorbing flavonols. The discovery that CNL is also involved in the loss of scent during the transition from outcrossing to selfing in Capsella (Brassicaceae) (see the accompanying paper) raises interesting questions about the possible causes of deep evolutionary conservation of the targets of evolutionary change.
Collapse
Affiliation(s)
- Avichai Amrad
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Michel Moser
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Therese Mandel
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Michel de Vries
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Robert C Schuurink
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Loreta Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, Avenida Bento Goncalves, 9500 Porto Alegre, Brazil
| | - Cris Kuhlemeier
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland.
| |
Collapse
|
46
|
da Rosa JGS, de Abreu MS, Giacomini ACV, Koakoski G, Kalichak F, Oliveira TA, de Alcântara Barcellos HH, Barreto RE, Barcellos LJG. Fish Aversion and Attraction to Selected Agrichemicals. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 71:415-422. [PMID: 27423874 DOI: 10.1007/s00244-016-0300-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
In agriculture intensive areas, fishponds and natural water bodies located in close proximity to these fields receive water with variable amounts of agrichemicals. Consequently, toxic compounds reach nontarget organisms. For instance, aquatic organisms can be exposed to tebuconazole-based fungicides (TBF), glyphosate-based herbicides (GBH), and atrazine-based herbicides (ABH) that are potentially dangerous, which motivates the following question: Are these agrichemicals attractant or aversive to fish? To answer this question, adult zebrafish were tested in a chamber that allows fish to escape from or seek a lane of contaminated water. This attraction and aversion paradigm was evaluated with zebrafish in the presence of an acute contamination with these compounds. We showed that only GBH was aversive to fish, whereas ABH and TBF caused neither attraction nor aversion for zebrafish. Thus, these chemicals do not impose an extra toxic risk by being an attractant for fish, although TBF and ABH can be more deleterious, because they induce no aversive response. Because the uptake and bioaccumulation of chemicals in fish seems to be time- and dose-dependent, a fish that remains longer in the presence of these substances tends to absorb higher concentrations than one that escapes from contaminated sites.
Collapse
Affiliation(s)
- João Gabriel Santos da Rosa
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Murilo Sander de Abreu
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Ana Cristina Varrone Giacomini
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
- Universidade de Passo Fundo (UPF), Campus Universitário do Bairro São José, Caixa Postal 611, CEP 99001-970, Passo Fundo, RS, Brazil
| | - Gessi Koakoski
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Fabiana Kalichak
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Thiago Acosta Oliveira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Heloísa Helena de Alcântara Barcellos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
- Universidade de Passo Fundo (UPF), Campus Universitário do Bairro São José, Caixa Postal 611, CEP 99001-970, Passo Fundo, RS, Brazil
| | - Rodrigo Egydio Barreto
- Research Center on Animal Welfare (RECAW), Department of Physiology, Bioscience Institute, Caunesp, Unesp, CEP 18618-970, Botucau, SP, Brazil
| | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
- Universidade de Passo Fundo (UPF), Campus Universitário do Bairro São José, Caixa Postal 611, CEP 99001-970, Passo Fundo, RS, Brazil.
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), Campus Universitário do Bairro São José, Caixa Postal 611, CEP 99001-970, Passo Fundo, RS, Brazil.
| |
Collapse
|
47
|
Haverkamp A, Bing J, Badeke E, Hansson BS, Knaden M. Innate olfactory preferences for flowers matching proboscis length ensure optimal energy gain in a hawkmoth. Nat Commun 2016; 7:11644. [PMID: 27173441 PMCID: PMC4869250 DOI: 10.1038/ncomms11644] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/18/2016] [Indexed: 11/28/2022] Open
Abstract
Cost efficient foraging is of especial importance for animals like hawkmoths or hummingbirds that are feeding 'on the wing', making their foraging energetically demanding. The economic decisions made by these animals have a strong influence on the plants they pollinate and floral volatiles are often guiding these decisions. Here we show that the hawkmoth Manduca sexta exhibits an innate preference for volatiles of those Nicotiana flowers, which match the length of the moth's proboscis. This preference becomes apparent already at the initial inflight encounter, with the odour plume. Free-flight respiration analyses combined with nectar calorimetry revealed a significant caloric gain per invested flight energy only for preferred-matching-flowers. Our data therefore support Darwin's initial hypothesis on the coevolution of flower length and moth proboscis. We demonstrate that this interaction is mediated by an adaptive and hardwired olfactory preference of the moth for flowers offering the highest net-energy reward.
Collapse
Affiliation(s)
- Alexander Haverkamp
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, D-07745 Jena, Germany
| | - Julia Bing
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, D-07745 Jena, Germany
| | - Elisa Badeke
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, D-07745 Jena, Germany
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, D-07745 Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, D-07745 Jena, Germany
| |
Collapse
|
48
|
Haverkamp A, Yon F, Keesey IW, Mißbach C, Koenig C, Hansson BS, Baldwin IT, Knaden M, Kessler D. Hawkmoths evaluate scenting flowers with the tip of their proboscis. eLife 2016; 5:e15039. [PMID: 27146894 PMCID: PMC4884077 DOI: 10.7554/elife.15039] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/03/2016] [Indexed: 11/22/2022] Open
Abstract
Pollination by insects is essential to many ecosystems. Previously, we have shown that floral scent is important to mediate pollen transfer between plants (Kessler et al., 2015). Yet, the mechanisms by which pollinators evaluate volatiles of single flowers remained unclear. Here, Nicotiana attenuata plants, in which floral volatiles have been genetically silenced and its hawkmoth pollinator, Manduca sexta, were used in semi-natural tent and wind-tunnel assays to explore the function of floral scent. We found that floral scent functions to increase the fitness of individual flowers not only by increasing detectability but also by enhancing the pollinator's foraging efforts. Combining proboscis choice tests with neurophysiological, anatomical and molecular analyses we show that this effect is governed by newly discovered olfactory neurons on the tip of the moth's proboscis. With the tip of their tongue, pollinators assess the advertisement of individual flowers, an ability essential for maintaining this important ecosystem service.
Collapse
Affiliation(s)
- Alexander Haverkamp
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Felipe Yon
- Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Ian W Keesey
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Christine Mißbach
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Christopher Koenig
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Danny Kessler
- Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
49
|
Abstract
Floral scents and nectar attract both pollinators and other animals that may reduce the plant's fitness, and therefore put flowering plants in a challenging situation.
Collapse
Affiliation(s)
- Kelsey JRP Byers
- Institute of Systematic Botany, University of Zurich, Zurich, Switzerland
| | - Florian P Schiestl
- Institute of Systematic Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|