1
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
2
|
Nussinov R, Jang H. Direct K-Ras Inhibitors to Treat Cancers: Progress, New Insights, and Approaches to Treat Resistance. Annu Rev Pharmacol Toxicol 2024; 64:231-253. [PMID: 37524384 DOI: 10.1146/annurev-pharmtox-022823-113946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Here we discuss approaches to K-Ras inhibition and drug resistance scenarios. A breakthrough offered a covalent drug against K-RasG12C. Subsequent innovations harnessed same-allele drug combinations, as well as cotargeting K-RasG12C with a companion drug to upstream regulators or downstream kinases. However, primary, adaptive, and acquired resistance inevitably emerge. The preexisting mutation load can explain how even exceedingly rare mutations with unobservable effects can promote drug resistance, seeding growth of insensitive cell clones, and proliferation. Statistics confirm the expectation that most resistance-related mutations are in cis, pointing to the high probability of cooperative, same-allele effects. In addition to targeted Ras inhibitors and drug combinations, bifunctional molecules and innovative tri-complex inhibitors to target Ras mutants are also under development. Since the identities and potential contributions of preexisting and evolving mutations are unknown, selecting a pharmacologic combination is taxing. Collectively, our broad review outlines considerations and provides new insights into pharmacology and resistance.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland, USA;
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland, USA;
| |
Collapse
|
3
|
Jurado M, Zorzano A, Castaño O. Cooperativity and oscillations: Regulatory mechanisms of K-Ras nanoclusters. Comput Biol Med 2023; 166:107455. [PMID: 37742420 DOI: 10.1016/j.compbiomed.2023.107455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 08/07/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
K-Ras nanoclusters (NCs) concentrate all required molecules belonging to the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway in a small area where signaling events take place, increasing efficiency and specificity of signaling. Such nanostructures are characterized by controlled sizes and lifetimes distributions, but there is a poor understanding of the mechanisms involved in their dynamics of growth/decay. Here, a minimum computational model is presented to analyze the behavior of K-Ras NCs as cooperative dynamic structures that self-regulate their growth and decay according to their size. Indeed, the proposed model reveals that the growth and the local production of a K-Ras nanocluster depend positively on its actual size, whilst its lifetime is inversely proportional to the root of its size. The cooperative binding between the structural constituents of the NC (K-Ras proteins) induces oscillations in the size distributions of K-Ras NCs allowing them to range within controlled values, regulating the growth/decay dynamics of these NCs. Thereby, the size of a K-Ras NC is proposed as a key factor to regulate cell signaling, opening a range of possibilities to develop strategies for use in chronic diseases and cancer.
Collapse
Affiliation(s)
- Manuel Jurado
- Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; CIBER of Diabetes and Associated Metabolic Diseases, Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| | - Oscar Castaño
- Electronics and Biomedical Engineering, Universitat de Barcelona (UB), Barcelona, Spain; Nanobioengineering and Biomaterials, Institute of Nanoscience and Nanotechnology of the University of Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Babu Manoharan G, Guzmán C, Najumudeen AK, Abankwa D. Detection of Ras nanoclustering-dependent homo-FRET using fluorescence anisotropy measurements. Eur J Cell Biol 2023; 102:151314. [PMID: 37058825 DOI: 10.1016/j.ejcb.2023.151314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/10/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023] Open
Abstract
The small GTPase Ras is frequently mutated in cancer and a driver of tumorigenesis. The recent years have shown great progress in drug-targeting Ras and understanding how it operates on the plasma membrane. We now know that Ras is non-randomly organized into proteo-lipid complexes on the membrane, called nanoclusters. Nanoclusters contain only a few Ras proteins and are necessary for the recruitment of downstream effectors, such as Raf. If tagged with fluorescent proteins, the dense packing of Ras in nanoclusters can be analyzed by Förster/ fluorescence resonance energy transfer (FRET). Loss of FRET can therefore report on decreased nanoclustering and any process upstream of it, such as Ras lipid modifications and correct trafficking. Thus, cellular FRET screens employing Ras-derived fluorescence biosensors are potentially powerful tools to discover chemical or genetic modulators of functional Ras membrane organization. Here we implement fluorescence anisotropy-based homo-FRET measurements of Ras-derived constructs labelled with only one fluorescent protein on a confocal microscope and a fluorescence plate reader. We show that homo-FRET of both H-Ras- and K-Ras-derived constructs can sensitively report on Ras-lipidation and -trafficking inhibitors, as well as on genetic perturbations of proteins regulating membrane anchorage. By exploiting the switch I/II-binding Ras-dimerizing compound BI-2852, this assay is also suitable to report on the engagement of the K-Ras switch II pocket by small molecules such as AMG 510. Given that homo-FRET only requires one fluorescent protein tagged Ras construct, this approach has significant advantages to create Ras-nanoclustering FRET-biosensor reporter cell lines, as compared to the more common hetero-FRET approaches.
Collapse
Affiliation(s)
- Ganesh Babu Manoharan
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Camilo Guzmán
- Euro-BioImaging ERIC, Statutory Seat, Turku, Finland
| | - Arafath Kaja Najumudeen
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Daniel Abankwa
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
5
|
Eliminating oncogenic RAS: back to the future at the drawing board. Biochem Soc Trans 2023; 51:447-456. [PMID: 36688434 PMCID: PMC9987992 DOI: 10.1042/bst20221343] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/24/2023]
Abstract
RAS drug development has made enormous strides in the past ten years, with the first direct KRAS inhibitor being approved in 2021. However, despite the clinical success of covalent KRAS-G12C inhibitors, we are immediately confronted with resistances as commonly found with targeted drugs. Previously believed to be undruggable due to its lack of obvious druggable pockets, a couple of new approaches to hit this much feared oncogene have now been carved out. We here concisely review these approaches to directly target four druggable sites of RAS from various angles. Our analysis focuses on the lessons learnt during the development of allele-specific covalent and non-covalent RAS inhibitors, the potential of macromolecular binders to facilitate the discovery and validation of targetable sites on RAS and finally an outlook on a future that may engage more small molecule binders to become drugs. We foresee that the latter could happen mainly in two ways: First, non-covalent small molecule inhibitors may be derived from the development of covalent binders. Second, reversible small molecule binders could be utilized for novel targeting modalities, such as degraders of RAS. Provided that degraders eliminate RAS by recruiting differentially expressed E3-ligases, this approach could enable unprecedented tissue- or developmental stage-specific destruction of RAS with potential advantages for on-target toxicity. We conclude that novel creative ideas continue to be important to exterminate RAS in cancer and other RAS pathway-driven diseases, such as RASopathies.
Collapse
|
6
|
Nussinov R, Zhang M, Maloney R, Liu Y, Tsai CJ, Jang H. Allostery: Allosteric Cancer Drivers and Innovative Allosteric Drugs. J Mol Biol 2022; 434:167569. [PMID: 35378118 PMCID: PMC9398924 DOI: 10.1016/j.jmb.2022.167569] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 01/12/2023]
Abstract
Here, we discuss the principles of allosteric activating mutations, propagation downstream of the signals that they prompt, and allosteric drugs, with examples from the Ras signaling network. We focus on Abl kinase where mutations shift the landscape toward the active, imatinib binding-incompetent conformation, likely resulting in the high affinity ATP outcompeting drug binding. Recent pharmacological innovation extends to allosteric inhibitor (GNF-5)-linked PROTAC, targeting Bcr-Abl1 myristoylation site, and broadly, allosteric heterobifunctional degraders that destroy targets, rather than inhibiting them. Designed chemical linkers in bifunctional degraders can connect the allosteric ligand that binds the target protein and the E3 ubiquitin ligase warhead anchor. The physical properties and favored conformational state of the engineered linker can precisely coordinate the distance and orientation between the target and the recruited E3. Allosteric PROTACs, noncompetitive molecular glues, and bitopic ligands, with covalent links of allosteric ligands and orthosteric warheads, increase the effective local concentration of productively oriented and placed ligands. Through covalent chemical or peptide linkers, allosteric drugs can collaborate with competitive drugs, degrader anchors, or other molecules of choice, driving innovative drug discovery.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Ryan Maloney
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Yonglan Liu
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
7
|
Abstract
Both the mTORC2 and Ras-ERK pathways respond to growth factor stimulation and play critical roles in cell growth and proliferation, disarray of these pathways leads to many diseases, especially cancer. These two signaling pathways crosstalk at many levels; recently it's become clear that the SIN1 component of mTORC2 could interact with Ras family small GTPases, but how these two proteins interact at the molecular level and the functional outcomes of this interaction remain to be addressed. In this work we determined the high-resolution structure of Ras-SIN1 complexes and revealed the detailed interaction mechanism. We also showed that Ras-SIN1 association inhibits insulin-induced ERK activation. Insights from this work could improve our understanding of the disease-causing mechanism of errant mTORC2 or Ras proteins. Over the years it has been established that SIN1, a key component of mTORC2, could interact with Ras family small GTPases through its Ras-binding domain (RBD). The physical association of Ras and SIN1/mTORC2 could potentially affect both mTORC2 and Ras-ERK pathways. To decipher the precise molecular mechanism of this interaction, we determined the high-resolution structures of HRas/KRas-SIN1 RBD complexes, showing the detailed interaction interface. Mutation of critical interface residues abolished Ras-SIN1 interaction and in SIN1 knockout cells we demonstrated that Ras-SIN1 association promotes SGK1 activity but inhibits insulin-induced ERK activation. With structural comparison and competition fluorescence resonance energy transfer (FRET) assays we showed that HRas-SIN1 RBD association is much weaker than HRas-Raf1 RBD but is slightly stronger than HRas-PI3K RBD interaction, providing a possible explanation for the different outcome of insulin or EGF stimulation. We also found that SIN1 isoform lacking the PH domain binds stronger to Ras than other longer isoforms and the PH domain appears to have an inhibitory effect on Ras-SIN1 binding. In addition, we uncovered a Ras dimerization interface that could be critical for Ras oligomerization. Our results advance our understanding of Ras-SIN1 association and crosstalk between growth factor-stimulated pathways.
Collapse
|
8
|
Horak P, Griffith M, Danos AM, Pitel BA, Madhavan S, Liu X, Chow C, Williams H, Carmody L, Barrow-Laing L, Rieke D, Kreutzfeldt S, Stenzinger A, Tamborero D, Benary M, Rajagopal PS, Ida CM, Lesmana H, Satgunaseelan L, Merker JD, Tolstorukov MY, Campregher PV, Warner JL, Rao S, Natesan M, Shen H, Venstrom J, Roy S, Tao K, Kanagal-Shamanna R, Xu X, Ritter DI, Pagel K, Krysiak K, Dubuc A, Akkari YM, Li XS, Lee J, King I, Raca G, Wagner AH, Li MM, Plon SE, Kulkarni S, Griffith OL, Chakravarty D, Sonkin D. Standards for the classification of pathogenicity of somatic variants in cancer (oncogenicity): Joint recommendations of Clinical Genome Resource (ClinGen), Cancer Genomics Consortium (CGC), and Variant Interpretation for Cancer Consortium (VICC). Genet Med 2022; 24:986-998. [PMID: 35101336 PMCID: PMC9081216 DOI: 10.1016/j.gim.2022.01.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Several professional societies have published guidelines for the clinical interpretation of somatic variants, which specifically address diagnostic, prognostic, and therapeutic implications. Although these guidelines for the clinical interpretation of variants include data types that may be used to determine the oncogenicity of a variant (eg, population frequency, functional, and in silico data or somatic frequency), they do not provide a direct, systematic, and comprehensive set of standards and rules to classify the oncogenicity of a somatic variant. This insufficient guidance leads to inconsistent classification of rare somatic variants in cancer, generates variability in their clinical interpretation, and, importantly, affects patient care. Therefore, it is essential to address this unmet need. METHODS Clinical Genome Resource (ClinGen) Somatic Cancer Clinical Domain Working Group and ClinGen Germline/Somatic Variant Subcommittee, the Cancer Genomics Consortium, and the Variant Interpretation for Cancer Consortium used a consensus approach to develop a standard operating procedure (SOP) for the classification of oncogenicity of somatic variants. RESULTS This comprehensive SOP has been developed to improve consistency in somatic variant classification and has been validated on 94 somatic variants in 10 common cancer-related genes. CONCLUSION The comprehensive SOP is now available for classification of oncogenicity of somatic variants.
Collapse
Affiliation(s)
- Peter Horak
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Malachi Griffith
- Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Arpad M Danos
- Washington University School of Medicine in St. Louis, St. Louis, MO
| | | | | | - Xuelu Liu
- Dana-Farber Cancer Institute, Boston, MA
| | - Cynthia Chow
- BC Cancer Agency, Vancouver, British Columbia, Canada
| | | | - Leigh Carmody
- The Jackson Laboratory for Genomic Medicine, Farmington, CT
| | | | - Damian Rieke
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Simon Kreutzfeldt
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | - Padma Sheila Rajagopal
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | | | - Harry Lesmana
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | | | - Jason D Merker
- UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | | | | | - Shruti Rao
- Georgetown University Medical Center, Washington, DC
| | - Maya Natesan
- Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Haolin Shen
- Washington University School of Medicine in St. Louis, St. Louis, MO
| | | | - Somak Roy
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kayoko Tao
- National Cancer Center Hospital, Tokyo, Japan
| | | | | | | | - Kym Pagel
- Johns Hopkins University, Baltimore, MD
| | - Kilannin Krysiak
- Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Adrian Dubuc
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | | | - Jennifer Lee
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Rockville, MD
| | - Ian King
- University Health Network, Toronto, Ontario, Canada
| | - Gordana Raca
- University of Southern California, Los Angeles, CA
| | - Alex H Wagner
- Nationwide Children's Hospital, Columbus, OH; The Ohio State University College of Medicine, Columbus, OH
| | - Marylin M Li
- Children's Hospital of Philadelphia, Philadelphia, PA
| | | | | | - Obi L Griffith
- Washington University School of Medicine in St. Louis, St. Louis, MO
| | | | | |
Collapse
|
9
|
Ozdemir ES, Koester AM, Nan X. Ras Multimers on the Membrane: Many Ways for a Heart-to-Heart Conversation. Genes (Basel) 2022; 13:219. [PMID: 35205266 PMCID: PMC8872464 DOI: 10.3390/genes13020219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/31/2022] Open
Abstract
Formation of Ras multimers, including dimers and nanoclusters, has emerged as an exciting, new front of research in the 'old' field of Ras biomedicine. With significant advances made in the past few years, we are beginning to understand the structure of Ras multimers and, albeit preliminary, mechanisms that regulate their formation in vitro and in cells. Here we aim to synthesize the knowledge accrued thus far on Ras multimers, particularly the presence of multiple globular (G-) domain interfaces, and discuss how membrane nanodomain composition and structure would influence Ras multimer formation. We end with some general thoughts on the potential implications of Ras multimers in basic and translational biology.
Collapse
Affiliation(s)
- E. Sila Ozdemir
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Ave., Portland, OR 97201, USA;
| | - Anna M. Koester
- Program in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health & Science University, 2730 S Moody Ave., Portland, OR 97201, USA;
| | - Xiaolin Nan
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Ave., Portland, OR 97201, USA;
- Program in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health & Science University, 2730 S Moody Ave., Portland, OR 97201, USA;
| |
Collapse
|
10
|
Tripathi S, Dsouza NR, Mathison AJ, Leverence E, Urrutia R, Zimmermann MT. Enhanced interpretation of 935 hotspot and non-hotspot RAS variants using evidence-based structural bioinformatics. Comput Struct Biotechnol J 2022; 20:117-127. [PMID: 34976316 PMCID: PMC8688876 DOI: 10.1016/j.csbj.2021.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/05/2021] [Accepted: 12/05/2021] [Indexed: 12/30/2022] Open
Abstract
In the current study, we report computational scores for advancing genomic interpretation of disease-associated genomic variation in members of the RAS family of genes. For this purpose, we applied 31 sequence- and 3D structure-based computational scores, chosen by their breadth of biophysical properties. We parametrized our data by assembling a numerically homogenized experimentally-derived dataset, which when use in our calculations reveal that computational scores using 3D structure highly correlate with experimental measures (e.g., GAP-mediated hydrolysis RSpearman = 0.80 and RAF affinity Rspearman = 0.82), while sequence-based scores are discordant with this data. Performing all-against-all comparisons, we applied this parametrized modeling approach to the study of 935 RAS variants from 7 RAS genes, which led us to identify 4 groups of mutations according to distinct biochemical scores within each group. Each group was comprised of hotspot and non-hotspot KRAS variants, indicating that poorly characterized variants could functionally behave like pathogenic mutations. Combining computational scores using dimensionality reduction indicated that changes to local unfolding propensity associate with changes in enzyme activity by genomic variants. Hence, our systematic approach, combining methodologies from both clinical genomics and 3D structural bioinformatics, represents an expansion for interpreting genomic data, provides information of mechanistic value, and that is transferable to other proteins.
Collapse
Affiliation(s)
- Swarnendu Tripathi
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nikita R Dsouza
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Angela J Mathison
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elise Leverence
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Raul Urrutia
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
11
|
RAS Dimers: The Novice Couple at the RAS-ERK Pathway Ball. Genes (Basel) 2021; 12:genes12101556. [PMID: 34680951 PMCID: PMC8535645 DOI: 10.3390/genes12101556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023] Open
Abstract
Signals conveyed through the RAS-ERK pathway constitute a pivotal regulatory element in cancer-related cellular processes. Recently, RAS dimerization has been proposed as a key step in the relay of RAS signals, critically contributing to RAF activation. RAS clustering at plasma membrane microdomains and endomembranes facilitates RAS dimerization in response to stimulation, promoting RAF dimerization and subsequent activation. Remarkably, inhibiting RAS dimerization forestalls tumorigenesis in cellular and animal models. Thus, the pharmacological disruption of RAS dimers has emerged as an additional target for cancer researchers in the quest for a means to curtail aberrant RAS activity.
Collapse
|
12
|
Intrinsically disordered proteins and membranes: a marriage of convenience for cell signalling? Biochem Soc Trans 2021; 48:2669-2689. [PMID: 33155649 PMCID: PMC7752083 DOI: 10.1042/bst20200467] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
The structure-function paradigm has guided investigations into the molecules involved in cellular signalling for decades. The peripheries of this paradigm, however, start to unravel when considering the co-operation between proteins and the membrane in signalling processes. Intrinsically disordered regions hold distinct advantages over folded domains in terms of their binding promiscuity, sensitivity to their particular environment and their ease of modulation through post-translational modifications. Low sequence complexity and bias towards charged residues are also favourable for the multivalent electrostatic interactions that occur at the surfaces of lipid bilayers. This review looks at the principles behind the successful marriage between protein disorder and membranes in addition to the role of this partnership in modifying and regulating signalling in cellular processes. The HVR (hypervariable region) of small GTPases is highlighted as a well-studied example of the nuanced role a short intrinsically disordered region can play in the fine-tuning of signalling pathways.
Collapse
|
13
|
Molecular subversion of Cdc42 signalling in cancer. Biochem Soc Trans 2021; 49:1425-1442. [PMID: 34196668 PMCID: PMC8412110 DOI: 10.1042/bst20200557] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022]
Abstract
Cdc42 is a member of the Rho family of small GTPases and a master regulator of the actin cytoskeleton, controlling cell motility, polarity and cell cycle progression. This small G protein and its regulators have been the subject of many years of fruitful investigation and the advent of functional genomics and proteomics has opened up new avenues of exploration including how it functions at specific locations in the cell. This has coincided with the introduction of new structural techniques with the ability to study small GTPases in the context of the membrane. The role of Cdc42 in cancer is well established but the molecular details of its action are still being uncovered. Here we review alterations found to Cdc42 itself and to key components of the signal transduction pathways it controls in cancer. Given the challenges encountered with targeting small G proteins directly therapeutically, it is arguably the regulators of Cdc42 and the effector signalling pathways downstream of the small G protein which will be the most tractable targets for therapeutic intervention. These will require interrogation in order to fully understand the global signalling contribution of Cdc42, unlock the potential for mapping new signalling axes and ultimately produce inhibitors of Cdc42 driven signalling.
Collapse
|
14
|
Parkkola H, Siddiqui FA, Oetken-Lindholm C, Abankwa D. FLIM-FRET Analysis of Ras Nanoclustering and Membrane-Anchorage. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2262:233-250. [PMID: 33977480 DOI: 10.1007/978-1-0716-1190-6_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
On the plasma membrane, Ras is organized into laterally segregated proteo-lipid complexes called nanoclusters. The extent of Ras nanoclustering correlates with its signaling output, positioning nanocluster as dynamic signaling gain modulators. Recent evidence suggests that stacked dimers of Ras and Raf are elemental units at least of one type of Ras nanocluster. However, it is still incompletely understood, in which physiological contexts nanoclustering is regulated and which constituents are parts of nanocluster. Nonetheless, disruption of nanoclustering faithfully diminishes Ras activity in cells, suggesting Ras nanocluster as potential drug targets.While there are several methods available to study Ras nanocluster , fluorescence or Förster resonance energy transfer (FRET ) between fluorescently labeled, nanoclustered Ras proteins is a relatively simple readout. FRET measurements using fluorescence lifetime imaging microscopy (FLIM ) have proven to be robust and sensitive to determine Ras nanoclustering changes. Loss of FRET that emerges due to nanoclustering reports on all processes upstream of Ras nanoclustering, i.e., also on proper trafficking or lipid modification of Ras. Here we report our standard FLIM-FRET protocol to measure nanoclustering-dependent FRET of Ras in mammalian cells. Importantly, nanoclustering-dependent FRET is one of the few methods that can detect differences between the Ras isoforms.
Collapse
Affiliation(s)
- Hanna Parkkola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Farid Ahmad Siddiqui
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | | | - Daniel Abankwa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
15
|
Nussinov R, Jang H, Gursoy A, Keskin O, Gaponenko V. Inhibition of Nonfunctional Ras. Cell Chem Biol 2021; 28:121-133. [PMID: 33440168 PMCID: PMC7897307 DOI: 10.1016/j.chembiol.2020.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Intuitively, functional states should be targeted; not nonfunctional ones. So why could drugging the inactive K-Ras4BG12Cwork-but drugging the inactive kinase will likely not? The reason is the distinct oncogenic mechanisms. Kinase driver mutations work by stabilizing the active state and/or destabilizing the inactive state. Either way, oncogenic kinases are mostly in the active state. Ras driver mutations work by quelling its deactivation mechanisms, GTP hydrolysis, and nucleotide exchange. Covalent inhibitors that bind to the inactive GDP-bound K-Ras4BG12C conformation can thus work. By contrast, in kinases, allosteric inhibitors work by altering the active-site conformation to favor orthosteric drugs. From the translational standpoint this distinction is vital: it expedites effective pharmaceutical development and extends the drug classification based on the mechanism of action. Collectively, here we postulate that drug action relates to blocking the mechanism of activation, not to whether the protein is in the active or inactive state.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, Istanbul 34450, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul 34450, Turkey
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
16
|
Abankwa D, Gorfe AA. Mechanisms of Ras Membrane Organization and Signaling: Ras Rocks Again. Biomolecules 2020; 10:E1522. [PMID: 33172116 PMCID: PMC7694788 DOI: 10.3390/biom10111522] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022] Open
Abstract
Ras is the most frequently mutated oncogene and recent drug development efforts have spurred significant new research interest. Here we review progress toward understanding how Ras functions in nanoscale, proteo-lipid signaling complexes on the plasma membrane, called nanoclusters. We discuss how G-domain reorientation is plausibly linked to Ras-nanoclustering and -dimerization. We then look at how these mechanistic features could cooperate in the engagement and activation of RAF by Ras. Moreover, we show how this structural information can be integrated with microscopy data that provide nanoscale resolution in cell biological experiments. Synthesizing the available data, we propose to distinguish between two types of Ras nanoclusters, an active, immobile RAF-dependent type and an inactive/neutral membrane anchor-dependent. We conclude that it is possible that Ras reorientation enables dynamic Ras dimerization while the whole Ras/RAF complex transits into an active state. These transient di/oligomer interfaces of Ras may be amenable to pharmacological intervention. We close by highlighting a number of open questions including whether all effectors form active nanoclusters and whether there is an isoform specific composition of Ras nanocluster.
Collapse
Affiliation(s)
- Daniel Abankwa
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Alemayehu A. Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| |
Collapse
|
17
|
Dumitru AC, Mohammed D, Maja M, Yang J, Verstraeten S, del Campo A, Mingeot‐Leclercq M, Tyteca D, Alsteens D. Label-Free Imaging of Cholesterol Assemblies Reveals Hidden Nanomechanics of Breast Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002643. [PMID: 33240781 PMCID: PMC7675049 DOI: 10.1002/advs.202002643] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/24/2020] [Indexed: 05/13/2023]
Abstract
Tumor cells present profound alterations in their composition, structural organization, and functional properties. A landmark of cancer cells is an overall altered mechanical phenotype, which so far are linked to changes in their cytoskeletal regulation and organization. Evidence exists that the plasma membrane (PM) of cancer cells also shows drastic changes in its composition and organization. However, biomechanical characterization of PM remains limited mainly due to the difficulties encountered to investigate it in a quantitative and label-free manner. Here, the biomechanical properties of PM of a series of MCF10 cell lines, used as a model of breast cancer progression, are investigated. Notably, a strong correlation between the cell PM elasticity and oncogenesis is observed. The altered membrane composition under cancer progression, as emphasized by the PM-associated cholesterol levels, leads to a stiffening of the PM that is uncoupled from the elastic cytoskeletal properties. Conversely, cholesterol depletion of metastatic cells leads to a softening of their PM, restoring biomechanical properties similar to benign cells. As novel therapies based on targeting membrane lipids in cancer cells represent a promising approach in the field of anticancer drug development, this method contributes to deciphering the functional link between PM lipid content and disease.
Collapse
Affiliation(s)
- Andra C. Dumitru
- Louvain Institute of Biomolecular Science and Technology (LIBST)Université catholique de LouvainLouvain‐la‐Neuve1348Belgium
| | - Danahe Mohammed
- Louvain Institute of Biomolecular Science and Technology (LIBST)Université catholique de LouvainLouvain‐la‐Neuve1348Belgium
| | - Mauriane Maja
- Cell Biology (CELL) Unit de Duve InstituteUniversité catholique de LouvainBrussels1200Belgium
| | - Jinsung Yang
- Louvain Institute of Biomolecular Science and Technology (LIBST)Université catholique de LouvainLouvain‐la‐Neuve1348Belgium
| | - Sandrine Verstraeten
- Cellular and Molecular Pharmacology Unit (FACM)Louvain Drug Research InstituteUniversité catholique de LouvainBrussels1200Belgium
| | - Aranzazu del Campo
- INM – Leibniz‐Institut für Neue Materialien gGmbHCampus D2 2Saarbrücken66123Germany
| | - Marie‐Paule Mingeot‐Leclercq
- Cellular and Molecular Pharmacology Unit (FACM)Louvain Drug Research InstituteUniversité catholique de LouvainBrussels1200Belgium
| | - Donatienne Tyteca
- Cell Biology (CELL) Unit de Duve InstituteUniversité catholique de LouvainBrussels1200Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology (LIBST)Université catholique de LouvainLouvain‐la‐Neuve1348Belgium
| |
Collapse
|
18
|
KRAS(G12C)-AMG 510 interaction dynamics revealed by all-atom molecular dynamics simulations. Sci Rep 2020; 10:11992. [PMID: 32686745 PMCID: PMC7371895 DOI: 10.1038/s41598-020-68950-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/03/2020] [Indexed: 01/02/2023] Open
Abstract
The first KRAS(G12C) targeting inhibitor in clinical development, AMG 510, has shown promising antitumor activity in clinical trials. On the molecular level, however, the interaction dynamics of this covalently bound drug–protein complex has been undetermined. Here, we disclose the interaction dynamics of the KRAS(G12C)–AMG 510 complex by long timescale all-atom molecular dynamics (MD) simulations (total of 75 μs). Moreover, we investigated the influence of the recently reported post-translational modification (PTM) of KRAS’ N-terminus, removal of initiator methionine (iMet1) with acetylation of Thr2, to this complex. Our results demonstrate that AMG 510 does not entrap KRAS into a single conformation, as one would expect based on the crystal structure, but rather into an ensemble of conformations. AMG 510 binding is extremely stable regardless of highly dynamic interface of KRAS’ switches. Overall, KRAS(G12C)–AMG 510 complex partially mimic the native dynamics of GDP bound KRAS; however, AMG 510 stabilizes the α3-helix region. N-terminally modified KRAS displays similar interaction dynamics with AMG 510 as when Met1 is present, but this PTM appears to stabilize β2–β3-loop. These results provide novel conformational insights on the molecular level to KRAS(G12C)–AMG 510 interactions and dynamics, providing new perspectives to RAS related drug discovery.
Collapse
|
19
|
Lee KY, Fang Z, Enomoto M, Gasmi-Seabrook G, Zheng L, Koide S, Ikura M, Marshall CB. Two Distinct Structures of Membrane-Associated Homodimers of GTP- and GDP-Bound KRAS4B Revealed by Paramagnetic Relaxation Enhancement. Angew Chem Int Ed Engl 2020; 59:11037-11045. [PMID: 32227412 PMCID: PMC7395670 DOI: 10.1002/anie.202001758] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Indexed: 11/07/2022]
Abstract
KRAS homo-dimerization has been implicated in the activation of RAF kinases, however, the mechanism and structural basis remain elusive. We developed a system to study KRAS dimerization on nanodiscs using paramagnetic relaxation enhancement (PRE) NMR spectroscopy, and determined distinct structures of membrane-anchored KRAS dimers in the active GTP- and inactive GDP-loaded states. Both dimerize through an α4-α5 interface, but the relative orientation of the protomers and their contacts differ substantially. Dimerization of KRAS-GTP, stabilized by electrostatic interactions between R135 and E168, favors an orientation on the membrane that promotes accessibility of the effector-binding site. Remarkably, "cross"-dimerization between GTP- and GDP-bound KRAS molecules is unfavorable. These models provide a platform to elucidate the structural basis of RAF activation by RAS and to develop inhibitors that can disrupt the KRAS dimerization. The methodology is applicable to many other farnesylated small GTPases.
Collapse
Affiliation(s)
- Ki-Young Lee
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Zhenhao Fang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Masahiro Enomoto
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | | | - Le Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Shohei Koide
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, and Perlmutter Cancer Center, New York University Langone Health, New York, NY, 10016, USA
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| |
Collapse
|
20
|
Lee K, Fang Z, Enomoto M, Gasmi‐Seabrook G, Zheng L, Koide S, Ikura M, Marshall CB. Two Distinct Structures of Membrane‐Associated Homodimers of GTP‐ and GDP‐Bound KRAS4B Revealed by Paramagnetic Relaxation Enhancement. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ki‐Young Lee
- Princess Margaret Cancer CentreUniversity Health Network Toronto Ontario M5G 1L7 Canada
| | - Zhenhao Fang
- Princess Margaret Cancer CentreUniversity Health Network Toronto Ontario M5G 1L7 Canada
| | - Masahiro Enomoto
- Princess Margaret Cancer CentreUniversity Health Network Toronto Ontario M5G 1L7 Canada
| | | | - Le Zheng
- Princess Margaret Cancer CentreUniversity Health Network Toronto Ontario M5G 1L7 Canada
| | - Shohei Koide
- Department of Biochemistry and Molecular PharmacologyNew York University School of Medicine, and Perlmutter Cancer CenterNew York University Langone Health New York NY 10016 USA
| | - Mitsuhiko Ikura
- Princess Margaret Cancer CentreUniversity Health Network Toronto Ontario M5G 1L7 Canada
| | | |
Collapse
|
21
|
Yurugi H, Zhuang Y, Siddiqui FA, Liang H, Rosigkeit S, Zeng Y, Abou-Hamdan H, Bockamp E, Zhou Y, Abankwa D, Zhao W, Désaubry L, Rajalingam K. A subset of flavaglines inhibits KRAS nanoclustering and activation. J Cell Sci 2020; 133:jcs244111. [PMID: 32501281 DOI: 10.1242/jcs.244111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/30/2020] [Indexed: 08/31/2023] Open
Abstract
The RAS oncogenes are frequently mutated in human cancers and among the three isoforms (KRAS, HRAS and NRAS), KRAS is the most frequently mutated oncogene. Here, we demonstrate that a subset of flavaglines, a class of natural anti-tumour drugs and chemical ligands of prohibitins, inhibit RAS GTP loading and oncogene activation in cells at nanomolar concentrations. Treatment with rocaglamide, the first discovered flavagline, inhibited the nanoclustering of KRAS, but not HRAS and NRAS, at specific phospholipid-enriched plasma membrane domains. We further demonstrate that plasma membrane-associated prohibitins directly interact with KRAS, phosphatidylserine and phosphatidic acid, and these interactions are disrupted by rocaglamide but not by the structurally related flavagline FL1. Depletion of prohibitin-1 phenocopied the rocaglamide-mediated effects on KRAS activation and stability. We also demonstrate that flavaglines inhibit the oncogenic growth of KRAS-mutated cells and that treatment with rocaglamide reduces non-small-cell lung carcinoma (NSCLC) tumour nodules in autochthonous KRAS-driven mouse models without severe side effects. Our data suggest that it will be promising to further develop flavagline derivatives as specific KRAS inhibitors for clinical applications.
Collapse
Affiliation(s)
- Hajime Yurugi
- Cell Biology Unit, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany
| | - Yinyin Zhuang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457 Singapore
| | - Farid A Siddiqui
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520 Turku, Finland
| | - Hong Liang
- Department of Integrative Biology and Pharmacology, Mcgovern Medical School, UT Health, 6431 Fannin St. MSE R382, Houston, TX 77030, USA
| | - Sebastian Rosigkeit
- Cell Biology Unit, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany
| | - Yongpeng Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457 Singapore
| | - Hussein Abou-Hamdan
- Therapeutic Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, University of Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Ernesto Bockamp
- Institute for Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, D 55131 Mainz, Germany
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, Mcgovern Medical School, UT Health, 6431 Fannin St. MSE R382, Houston, TX 77030, USA
| | - Daniel Abankwa
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520 Turku, Finland
- Cancer Cell Biology and Drug Discovery Group, Life Sciences Research Unit University of Luxembourg, L 4362 Esch-sur-Alzette, Luxembourg
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457 Singapore
| | - Laurent Désaubry
- Therapeutic Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, University of Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany
- University Cancer Center Mainz, University Medical Center Mainz, D 55131 Mainz, Germany
| |
Collapse
|
22
|
Chuang LY, Yang CS, Yang HS, Yang CH. Identification of High-Order Single-Nucleotide Polymorphism Barcodes in Breast Cancer Using a Hybrid Taguchi-Genetic Algorithm: Case-Control Study. JMIR Med Inform 2020; 8:e16886. [PMID: 32554381 PMCID: PMC7351259 DOI: 10.2196/16886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/09/2020] [Accepted: 04/08/2020] [Indexed: 12/24/2022] Open
Abstract
Background Breast cancer has a major disease burden in the female population, and it is a highly genome-associated human disease. However, in genetic studies of complex diseases, modern geneticists face challenges in detecting interactions among loci. Objective This study aimed to investigate whether variations of single-nucleotide polymorphisms (SNPs) are associated with histopathological tumor characteristics in breast cancer patients. Methods A hybrid Taguchi-genetic algorithm (HTGA) was proposed to identify the high-order SNP barcodes in a breast cancer case-control study. A Taguchi method was used to enhance a genetic algorithm (GA) for identifying high-order SNP barcodes. The Taguchi method was integrated into the GA after the crossover operations in order to optimize the generated offspring systematically for enhancing the GA search ability. Results The proposed HTGA effectively converged to a promising region within the problem space and provided excellent SNP barcode identification. Regression analysis was used to validate the association between breast cancer and the identified high-order SNP barcodes. The maximum OR was less than 1 (range 0.870-0.755) for two- to seven-order SNP barcodes. Conclusions We systematically evaluated the interaction effects of 26 SNPs within growth factor–related genes for breast carcinogenesis pathways. The HTGA could successfully identify relevant high-order SNP barcodes by evaluating the differences between cases and controls. The validation results showed that the HTGA can provide better fitness values as compared with other methods for the identification of high-order SNP barcodes using breast cancer case-control data sets.
Collapse
Affiliation(s)
| | - Cheng-San Yang
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Huai-Shuo Yang
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Hong Yang
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
23
|
Abstract
RAS (KRAS, NRAS and HRAS) is the most frequently mutated gene family in cancers, and, consequently, investigators have sought an effective RAS inhibitor for more than three decades. Even 10 years ago, RAS inhibitors were so elusive that RAS was termed 'undruggable'. Now, with the success of allele-specific covalent inhibitors against the most frequently mutated version of RAS in non-small-cell lung cancer, KRASG12C, we have the opportunity to evaluate the best therapeutic strategies to treat RAS-driven cancers. Mutation-specific biochemical properties, as well as the tissue of origin, are likely to affect the effectiveness of such treatments. Currently, direct inhibition of mutant RAS through allele-specific inhibitors provides the best therapeutic approach. Therapies that target RAS-activating pathways or RAS effector pathways could be combined with these direct RAS inhibitors, immune checkpoint inhibitors or T cell-targeting approaches to treat RAS-mutant tumours. Here we review recent advances in therapies that target mutant RAS proteins and discuss the future challenges of these therapies, including combination strategies.
Collapse
|
24
|
Functional link between plasma membrane spatiotemporal dynamics, cancer biology, and dietary membrane-altering agents. Cancer Metastasis Rev 2019; 37:519-544. [PMID: 29860560 DOI: 10.1007/s10555-018-9733-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cell plasma membrane serves as a nexus integrating extra- and intracellular components, which together enable many of the fundamental cellular signaling processes that sustain life. In order to perform this key function, plasma membrane components assemble into well-defined domains exhibiting distinct biochemical and biophysical properties that modulate various signaling events. Dysregulation of these highly dynamic membrane domains can promote oncogenic signaling. Recently, it has been demonstrated that select membrane-targeted dietary bioactives (MTDBs) have the ability to remodel plasma membrane domains and subsequently reduce cancer risk. In this review, we focus on the importance of plasma membrane domain structural and signaling functionalities as well as how loss of membrane homeostasis can drive aberrant signaling. Additionally, we discuss the intricacies associated with the investigation of these membrane domain features and their associations with cancer biology. Lastly, we describe the current literature focusing on MTDBs, including mechanisms of chemoprevention and therapeutics in order to establish a functional link between these membrane-altering biomolecules, tuning of plasma membrane hierarchal organization, and their implications in cancer prevention.
Collapse
|
25
|
Cao S, Chung S, Kim S, Li Z, Manor D, Buck M. K-Ras G-domain binding with signaling lipid phosphatidylinositol (4,5)-phosphate (PIP2): membrane association, protein orientation, and function. J Biol Chem 2019; 294:7068-7084. [PMID: 30792310 DOI: 10.1074/jbc.ra118.004021] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Ras genes potently drive human cancers, with mutated proto-oncogene GTPase KRAS4B (K-Ras4B) being the most abundant isoform. Targeted inhibition of oncogenic gene products is considered the "holy grail" of present-day cancer therapy, and recent discoveries of small-molecule KRas4B inhibitors were made thanks to a deeper understanding of the structure and dynamics of this GTPase. Because interactions with biological membranes are key for Ras function, Ras-lipid interactions have become a major focus, especially because such interactions evidently involve both the Ras C terminus for lipid anchoring and its G-protein domain. Here, using NMR spectroscopy and molecular dynamics simulations complemented by biophysical- and cell-biology assays, we investigated the interaction between K-Ras4B with the signaling lipid phosphatidylinositol (4,5)-phosphate (PIP2). We discovered that the β2 and β3 strands as well as helices 4 and 5 of the GTPase G-domain bind to PIP2 and identified the specific residues in these structural elements employed in these interactions, likely occurring in two K-Ras4B orientation states relative to the membrane. Importantly, we found that some of these residues known to be oncogenic when mutated (D47K, D92N, K104M, and D126N) are critical for K-Ras-mediated transformation of fibroblast cells, but do not substantially affect basal and assisted nucleotide hydrolysis and exchange. Moreover, the K104M substitution abolished localization of K-Ras to the plasma membrane. The findings suggest that specific G-domain residues can critically regulate Ras function by mediating interactions with membrane-associated PIP2 lipids; these insights that may inform the future design of therapeutic reagents targeting Ras activity.
Collapse
Affiliation(s)
- Shufen Cao
- From the Departments of Physiology and Biophysics
| | | | | | - Zhenlu Li
- From the Departments of Physiology and Biophysics
| | - Danny Manor
- Nutrition, .,Pharmacology, and.,the Case Comprehensive Cancer Center and
| | - Matthias Buck
- From the Departments of Physiology and Biophysics, .,the Case Comprehensive Cancer Center and.,Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106 and.,Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
| |
Collapse
|
26
|
Small GTPase peripheral binding to membranes: molecular determinants and supramolecular organization. Biochem Soc Trans 2018; 47:13-22. [PMID: 30559268 DOI: 10.1042/bst20170525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 01/26/2023]
Abstract
Small GTPases regulate many aspects of cell logistics by alternating between an inactive, GDP-bound form and an active, GTP-bound form. This nucleotide switch is coupled to a cytosol/membrane cycle, such that GTP-bound small GTPases carry out their functions at the periphery of endomembranes. A global understanding of the molecular determinants of the interaction of small GTPases with membranes and of the resulting supramolecular organization is beginning to emerge from studies of model systems. Recent studies highlighted that small GTPases establish multiple interactions with membranes involving their lipid anchor, their lipididated hypervariable region and elements in their GTPase domain, which combine to determine the strength, specificity and orientation of their association with lipids. Thereby, membrane association potentiates small GTPase interactions with GEFs, GAPs and effectors through colocalization and positional matching. Furthermore, it leads to small GTPase nanoclustering and to lipid demixing, which drives the assembly of molecular platforms in which proteins and lipids co-operate in producing high-fidelity signals through feedback and feedforward loops. Although still fragmentary, these observations point to an integrated model of signaling by membrane-attached small GTPases that involves a diversity of direct and indirect interactions, which can inspire new therapeutic strategies to block their activities in diseases.
Collapse
|
27
|
Abstract
How do Ras isoforms attain oncogenic specificity at the membrane? Oncogenic KRas, HRas, and NRas (K-Ras, H-Ras, and N-Ras) differentially populate distinct cancers. How they selectively activate effectors and why is KRas4B the most prevalent are highly significant questions. Here, we consider determinants that may bias isoform-specific effector activation and signaling at the membrane. We merge functional data with a conformational view to provide mechanistic insight. Cell-specific expression levels, pathway cross-talk, and distinct interactions are the key, but conformational trends can modulate selectivity. There are two major pathways in oncogenic Ras-driven proliferation: MAPK (Raf/MEK/ERK) and PI3Kα/Akt/mTOR. All membrane-anchored, proximally located, oncogenic Ras isoforms can promote Raf dimerization and fully activate MAPK signaling. So why the differential statistics of oncogenic isoforms in distinct cancers and what makes KRas so highly oncogenic? Many cell-specific factors may be at play, including higher KRAS mRNA levels. As a key factor, we suggest that because only KRas4B binds calmodulin, only KRas can fully activate PI3Kα/Akt signaling. We propose that full activation of both MAPK and PI3Kα/Akt proliferative pathways by oncogenic KRas4B-but not by HRas or NRas-may help explain why the KRas4B isoform is especially highly populated in certain cancers. We further discuss pharmacologic implications. Cancer Res; 78(3); 593-602. ©2017 AACR.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland. .,Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland
| |
Collapse
|
28
|
Nussinov R, Tsai CJ, Jang H. Oncogenic Ras Isoforms Signaling Specificity at the Membrane. Cancer Res 2018; 78:593-602. [PMID: 29273632 PMCID: PMC5811325 DOI: 10.1158/0008-5472.can-17-2727] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/13/2017] [Accepted: 11/10/2017] [Indexed: 01/21/2023]
Abstract
How do Ras isoforms attain oncogenic specificity at the membrane? Oncogenic KRas, HRas, and NRas (K-Ras, H-Ras, and N-Ras) differentially populate distinct cancers. How they selectively activate effectors and why is KRas4B the most prevalent are highly significant questions. Here, we consider determinants that may bias isoform-specific effector activation and signaling at the membrane. We merge functional data with a conformational view to provide mechanistic insight. Cell-specific expression levels, pathway cross-talk, and distinct interactions are the key, but conformational trends can modulate selectivity. There are two major pathways in oncogenic Ras-driven proliferation: MAPK (Raf/MEK/ERK) and PI3Kα/Akt/mTOR. All membrane-anchored, proximally located, oncogenic Ras isoforms can promote Raf dimerization and fully activate MAPK signaling. So why the differential statistics of oncogenic isoforms in distinct cancers and what makes KRas so highly oncogenic? Many cell-specific factors may be at play, including higher KRAS mRNA levels. As a key factor, we suggest that because only KRas4B binds calmodulin, only KRas can fully activate PI3Kα/Akt signaling. We propose that full activation of both MAPK and PI3Kα/Akt proliferative pathways by oncogenic KRas4B-but not by HRas or NRas-may help explain why the KRas4B isoform is especially highly populated in certain cancers. We further discuss pharmacologic implications. Cancer Res; 78(3); 593-602. ©2017 AACR.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland
| |
Collapse
|
29
|
Chung JK, Lee YK, Denson JP, Gillette WK, Alvarez S, Stephen AG, Groves JT. K-Ras4B Remains Monomeric on Membranes over a Wide Range of Surface Densities and Lipid Compositions. Biophys J 2018; 114:137-145. [PMID: 29320680 PMCID: PMC5984903 DOI: 10.1016/j.bpj.2017.10.042] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/22/2017] [Accepted: 10/30/2017] [Indexed: 11/23/2022] Open
Abstract
Ras is a membrane-anchored signaling protein that serves as a hub for many signaling pathways and also plays a prominent role in cancer. The intrinsic behavior of Ras on the membrane has captivated the biophysics community in recent years, especially the possibility that it may form dimers. In this article, we describe results from a comprehensive series of experiments using fluorescence correlation spectroscopy and single-molecule tracking to probe the possible dimerization of natively expressed and fully processed K-Ras4B in supported lipid bilayer membranes. Key to these studies is the fact that K-Ras4B has its native membrane anchor, including both the farnesylation and methylation of the terminal cysteine, enabling detailed exploration of possible effects of cholesterol and lipid composition on K-Ras4B membrane organization. The results from all conditions studied indicate that full-length K-Ras4B lacks intrinsic dimerization capability. This suggests that any lateral organization of Ras in living cell membranes likely stems from interactions with other factors.
Collapse
Affiliation(s)
- Jean K Chung
- Department of Chemistry, University of California Berkeley, Berkeley, California
| | - Young Kwang Lee
- Department of Chemistry, University of California Berkeley, Berkeley, California
| | - John-Paul Denson
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - William K Gillette
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Steven Alvarez
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, California
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Jay T Groves
- Department of Chemistry, University of California Berkeley, Berkeley, California.
| |
Collapse
|
30
|
Spencer-Smith R, Li L, Prasad S, Koide A, Koide S, O'Bryan JP. Targeting the α4-α5 interface of RAS results in multiple levels of inhibition. Small GTPases 2017; 10:378-387. [PMID: 28692342 DOI: 10.1080/21541248.2017.1333188] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Generation of RAS-targeted therapeutics has long been considered a "holy grail" in cancer research. However, a lack of binding pockets on the surface of RAS and its picomolar affinity for guanine nucleotides have made isolation of inhibitors particularly challenging. We recently described a monobody, termed NS1, that blocks RAS signaling and oncogenic transformation. NS1 binds to the α4-β6-α5 interface of H-RAS and K-RAS thus preventing RAS dimerization and nanoclustering, which in turn prevents RAS-stimulated dimerization and activation of RAF. Interestingly, NS1 reduces interaction of oncogenic K-RAS, but not H-RAS, with RAF and reduces K-RAS plasma membrane localization. Here, we show that these isoform specific effects of NS1 on RAS:RAF are due to the distinct hypervariable regions of RAS isoforms. NS1 inhibited wild type RAS function by reducing RAS GTP levels. These findings reveal that NS1 disrupts RAS signaling through a mechanism that is more complex than simply inhibiting RAS dimerization and nanoclustering.
Collapse
Affiliation(s)
- Russell Spencer-Smith
- a Department of Pharmacology, University of Illinois at Chicago , Chicago , IL , USA.,b University of Illinois Cancer Center, University of Illinois at Chicago , Chicago , IL , USA.,c Jesse Brown VA Medical Center , Chicago , IL , USA
| | - Lie Li
- a Department of Pharmacology, University of Illinois at Chicago , Chicago , IL , USA.,b University of Illinois Cancer Center, University of Illinois at Chicago , Chicago , IL , USA.,c Jesse Brown VA Medical Center , Chicago , IL , USA
| | - Sheela Prasad
- a Department of Pharmacology, University of Illinois at Chicago , Chicago , IL , USA
| | - Akiko Koide
- d Department of Biochemistry and Molecular Biology, University of Chicago , Chicago , IL , USA.,e Perlmutter Cancer Center, New York University Langone Medical Center , New York , NY , USA.,f Department of Medicine, New York University School of Medicine , New York , NY , USA
| | - Shohei Koide
- d Department of Biochemistry and Molecular Biology, University of Chicago , Chicago , IL , USA.,e Perlmutter Cancer Center, New York University Langone Medical Center , New York , NY , USA.,g Department of Biochemistry and Molecular Pharmacology, New York University School , New York , NY , USA
| | - John P O'Bryan
- a Department of Pharmacology, University of Illinois at Chicago , Chicago , IL , USA.,b University of Illinois Cancer Center, University of Illinois at Chicago , Chicago , IL , USA.,c Jesse Brown VA Medical Center , Chicago , IL , USA
| |
Collapse
|
31
|
Vetter IR. Interface analysis of small GTP binding protein complexes suggests preferred membrane orientations. Biol Chem 2017; 398:637-651. [PMID: 28002022 DOI: 10.1515/hsz-2016-0287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/12/2016] [Indexed: 11/15/2022]
Abstract
Crystal structures of small GTP binding protein complexes with their effectors and regulators reveal that one particularly flat side of the G domain that contains helix α4 and the C-terminal helix α5 is practically devoid of contacts. Although this observation seems trivial as the main binding targets are the switch I and II regions opposite of this side, the fact that all interacting proteins, even the largest ones, seem to avoid occupying this area (except for Ran, that does not localize to membranes) is very striking. An orientation with this 'flat' side parallel to the membrane was proposed before and would allow simultaneous interaction of the lipidated C-terminus and positive charges in the α4 helix with the membrane while being bound to effector or regulator molecules. Furthermore, this 'flat' side might be involved in regulatory mechanisms: a Ras dimer that is found in different crystal forms interacts exactly at this side. Additional interface analysis of GTPase complexes nicely confirms the effect of different flexibilities of the GTP and GDP forms. Besides Ran proteins, guanine nucleotide exchange factors (GEFs) bury the largest surface areas to provide the binding energy to open up the switch regions for nucleotide exchange.
Collapse
Affiliation(s)
- Ingrid R Vetter
- Max Planck Institute of Molecular Physiology, Department of Mechanistic Cell Biology, Otto-Hahn-Str. 11, D-44227 Dortmund
| |
Collapse
|
32
|
Gerwert K, Mann D, Kötting C. Common mechanisms of catalysis in small and heterotrimeric GTPases and their respective GAPs. Biol Chem 2017; 398:523-533. [PMID: 28245182 DOI: 10.1515/hsz-2016-0314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/15/2017] [Indexed: 01/15/2023]
Abstract
GTPases are central switches in cells. Their dysfunctions are involved in severe diseases. The small GTPase Ras regulates cell growth, differentiation and apoptosis by transmitting external signals to the nucleus. In one group of oncogenic mutations, the 'switch-off' reaction is inhibited, leading to persistent activation of the signaling pathway. The switch reaction is regulated by GTPase-activating proteins (GAPs), which catalyze GTP hydrolysis in Ras, and by guanine nucleotide exchange factors, which catalyze the exchange of GDP for GTP. Heterotrimeric G-proteins are activated by G-protein coupled receptors and are inactivated by GTP hydrolysis in the Gα subunit. Their GAPs are called regulators of G-protein signaling. In the same way that Ras serves as a prototype for small GTPases, Gαi1 is the most well-studied Gα subunit. By utilizing X-ray structural models, time-resolved infrared-difference spectroscopy, and biomolecular simulations, we elucidated the detailed molecular reaction mechanism of the GTP hydrolysis in Ras and Gαi1. In both proteins, the charge distribution of GTP is driven towards the transition state, and an arginine is precisely positioned to facilitate nucleophilic attack of water. In addition to these mechanistic details of GTP hydrolysis, Ras dimerization as an emerging factor in signal transduction is discussed in this review.
Collapse
Affiliation(s)
- Klaus Gerwert
- Department of Biophysics, Ruhr-University Bochum, Universitätsstrasse 150, D-44801 Bochum
| | - Daniel Mann
- Department of Biophysics, Ruhr-University Bochum, Universitätsstrasse 150, D-44801 Bochum
| | - Carsten Kötting
- Department of Biophysics, Ruhr-University Bochum, Universitätsstrasse 150, D-44801 Bochum
| |
Collapse
|
33
|
Khoo TK, Yu B, Smith JA, Clarke AJ, Luk PP, Selinger CI, Mahon KL, Kraitsek S, Palme C, Boyer MJ, Dinger ME, Cowley MJ, O'Toole SA, Clark JR, Gupta R. Somatic mutations in salivary duct carcinoma and potential therapeutic targets. Oncotarget 2017; 8:75893-75903. [PMID: 29100278 PMCID: PMC5652672 DOI: 10.18632/oncotarget.18173] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/20/2017] [Indexed: 02/01/2023] Open
Abstract
Background Salivary duct carcinomas (SDCa) are rare highly aggressive malignancies. Most patients die from distant metastatic disease within three years of diagnosis. There are limited therapeutic options for disseminated disease. Results 11 cases showed androgen receptor expression and 6 cases showed HER2 amplification. 6 Somatic mutations with additional available targeted therapies were identified: EGFR (p.G721A: Gefitinib), PDGFRA (p.H845Y: Imatinib and Crenolanib), PIK3CA (p.H1047R: Everolimus), ERBB2 (p.V842I: Lapatinib), HRAS (p.Q61R: Selumetinib) and KIT (p.T670I: Sorafenib). Furthermore, alterations in PTEN, PIK3CA and HRAS that alter response to androgen deprivation therapy and HER2 inhibition were also seen. Materials and Methods Somatic mutation analysis was performed on DNA extracted from 15 archival cases of SDCa using the targeted Illumina TruSeq Amplicon Cancer Panel. Potential targetable genetic alterations were identified using extensive literature and international somatic mutation database (COSMIC, KEGG) search. Immunohistochemistry for androgen receptor and immunohistochemistry and fluorescent in situ hybridization for HER2 were also performed. Conclusions SDCa show multiple somatic mutations, some that are amenable to pharmacologic manipulation and others that confer resistance to treatments currently under investigation. These findings emphasize the need to develop testing and treatment strategies for SDCa.
Collapse
Affiliation(s)
- Timothy K Khoo
- Central Clinical School, The University of Sydney, Australia
| | - Bing Yu
- Central Clinical School, The University of Sydney, Australia.,Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, Australia
| | - Joel A Smith
- The Sydney Head and Neck Cancer Institute, Chris O'Brien Lifehouse, Sydney, Australia
| | - Angus J Clarke
- Central Clinical School, The University of Sydney, Australia
| | - Peter P Luk
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Christina I Selinger
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Kate L Mahon
- Central Clinical School, The University of Sydney, Australia.,The Department of Medical Oncology, Chris O'Brien Lifehouse, Sydney, Australia
| | - Spiridoula Kraitsek
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, Australia
| | - Carsten Palme
- Central Clinical School, The University of Sydney, Australia.,The Sydney Head and Neck Cancer Institute, Chris O'Brien Lifehouse, Sydney, Australia
| | - Michael J Boyer
- Central Clinical School, The University of Sydney, Australia.,The Department of Medical Oncology, Chris O'Brien Lifehouse, Sydney, Australia
| | - Marcel E Dinger
- Kinghorn Cancer Centre and Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia
| | - Mark J Cowley
- Kinghorn Cancer Centre and Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia
| | - Sandra A O'Toole
- Central Clinical School, The University of Sydney, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Jonathan R Clark
- Central Clinical School, The University of Sydney, Australia.,The Sydney Head and Neck Cancer Institute, Chris O'Brien Lifehouse, Sydney, Australia.,South West Clinical School, University of New South Wales, Sydney, Australia
| | - Ruta Gupta
- Central Clinical School, The University of Sydney, Australia.,The Sydney Head and Neck Cancer Institute, Chris O'Brien Lifehouse, Sydney, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
34
|
Chen M, Peters A, Huang T, Nan X. Ras Dimer Formation as a New Signaling Mechanism and Potential Cancer Therapeutic Target. Mini Rev Med Chem 2016; 16:391-403. [PMID: 26423697 PMCID: PMC5421135 DOI: 10.2174/1389557515666151001152212] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/31/2015] [Accepted: 09/18/2015] [Indexed: 12/12/2022]
Abstract
The K-, N-, and HRas small GTPases are key regulators of cell physiology and are frequently mutated in human cancers. Despite intensive research, previous efforts to target hyperactive Ras based on known mechanisms of Ras signaling have been met with little success. Several studies have provided compelling evidence for the existence and biological relevance of Ras dimers, establishing a new mechanism for regulating Ras activity in cells additionally to GTP-loading and membrane localization. Existing data also start to reveal how Ras proteins dimerize on the membrane. We propose a dimer model to describe Ras-mediated effector activation, which contrasts existing models of Ras signaling as a monomer or as a 5-8 membered multimer. We also discuss potential implications of this model in both basic and translational Ras biology.
Collapse
Affiliation(s)
| | | | | | - Xiaolin Nan
- Department of Biomedical Engineering, Knight Cancer Institute, and OHSU Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, OR.
| |
Collapse
|
35
|
Najumudeen AK, Jaiswal A, Lectez B, Oetken-Lindholm C, Guzmán C, Siljamäki E, Posada IMD, Lacey E, Aittokallio T, Abankwa D. Cancer stem cell drugs target K-ras signaling in a stemness context. Oncogene 2016; 35:5248-5262. [PMID: 26973241 PMCID: PMC5057041 DOI: 10.1038/onc.2016.59] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 01/02/2023]
Abstract
Cancer stem cells (CSCs) are considered to be responsible for treatment relapse and have therefore become a major target in cancer research. Salinomycin is the most established CSC inhibitor. However, its primary mechanistic target is still unclear, impeding the discovery of compounds with similar anti-CSC activity. Here, we show that salinomycin very specifically interferes with the activity of K-ras4B, but not H-ras, by disrupting its nanoscale membrane organization. We found that caveolae negatively regulate the sensitivity to this drug. On the basis of this novel mechanistic insight, we defined a K-ras-associated and stem cell-derived gene expression signature that predicts the drug response of cancer cells to salinomycin. Consistent with therapy resistance of CSC, 8% of tumor samples in the TCGA-database displayed our signature and were associated with a significantly higher mortality. Using our K-ras-specific screening platform, we identified several new candidate CSC drugs. Two of these, ophiobolin A and conglobatin A, possessed a similar or higher potency than salinomycin. Finally, we established that the most potent compound, ophiobolin A, exerts its K-ras4B-specific activity through inactivation of calmodulin. Our data suggest that specific interference with the K-ras4B/calmodulin interaction selectively inhibits CSC.
Collapse
Affiliation(s)
- A K Najumudeen
- Turku Centre for Biotechnology, Åbo Akademi University, Turku, Finland
| | - A Jaiswal
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - B Lectez
- Turku Centre for Biotechnology, Åbo Akademi University, Turku, Finland
| | - C Oetken-Lindholm
- Turku Centre for Biotechnology, Åbo Akademi University, Turku, Finland
| | - C Guzmán
- Turku Centre for Biotechnology, Åbo Akademi University, Turku, Finland
| | - E Siljamäki
- Turku Centre for Biotechnology, Åbo Akademi University, Turku, Finland
| | - I M D Posada
- Turku Centre for Biotechnology, Åbo Akademi University, Turku, Finland
| | - E Lacey
- Microbial Screening Technologies Pty. Ltd., Building C, Smithfield, New South Wales, Australia
| | - T Aittokallio
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - D Abankwa
- Turku Centre for Biotechnology, Åbo Akademi University, Turku, Finland
| |
Collapse
|
36
|
SPRED1 Interferes with K-ras but Not H-ras Membrane Anchorage and Signaling. Mol Cell Biol 2016; 36:2612-25. [PMID: 27503857 DOI: 10.1128/mcb.00191-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022] Open
Abstract
The Ras/mitogen-activated protein kinase (MAPK) signaling pathway is tightly controlled by negative feedback regulators, such as the tumor suppressor SPRED1. The SPRED1 gene also carries loss-of-function mutations in the RASopathy Legius syndrome. Growth factor stimulation translocates SPRED1 to the plasma membrane, triggering its inhibitory activity. However, it remains unclear whether SPRED1 there acts at the level of Ras or Raf. We show that pharmacological or galectin-1 (Gal-1)-mediated induction of B- and C-Raf-containing dimers translocates SPRED1 to the plasma membrane. This is facilitated in particular by SPRED1 interaction with B-Raf and, via its N terminus, with Gal-1. The physiological significance of these novel interactions is supported by two Legius syndrome-associated mutations that show diminished binding to both Gal-1 and B-Raf. On the plasma membrane, SPRED1 becomes enriched in acidic membrane domains to specifically perturb membrane organization and extracellular signal-regulated kinase (ERK) signaling of active K-ras4B (here, K-ras) but not H-ras. However, SPRED1 also blocks on the nanoscale the positive effects of Gal-1 on H-ras. Therefore, a combinatorial expression of SPRED1 and Gal-1 potentially regulates specific patterns of K-ras- and H-ras-dependent signaling output. More broadly, our results open up the possibility that related SPRED and Sprouty proteins act in a similar Ras and Raf isoform-specific manner.
Collapse
|
37
|
Tanizaki J, Banno E, Togashi Y, Hayashi H, Sakai K, Takeda M, Kaneda H, Nishio K, Nakagawa K. Case report: Durable response to afatinib in a patient with lung cancer harboring two uncommon mutations of EGFR and a KRAS mutation. Lung Cancer 2016; 101:11-15. [PMID: 27794398 DOI: 10.1016/j.lungcan.2016.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/29/2016] [Accepted: 09/03/2016] [Indexed: 11/25/2022]
Abstract
Comprehensive genomic profiling for non-small cell lung cancer (NSCLC) is likely to identify more patients with rare genetic alterations including uncommon epidermal growth factor receptor gene (EGFR) mutations. It remains unclear how such patients should be treated, however. We here report a case of NSCLC positive for two uncommon mutations of EGFR and a KRAS mutation, including its treatment with the second-generation EGFR tyrosine kinase inhibitor (TKI) afatinib. Tumor specimen obtained by a NSCLC patient with no smoking history was analyzed by next-generation sequencing. Comprehensive genomic profiling revealed that the patient harbored the EGFR mutations G719C and S768I as well as the E49K mutation of KRAS. Treatment with afatinib was clinically effective as confirmed by PET-CT scans of bone metastases and by a marked decrease in the serum concentration of carcinoembryonic antigen. Afatinib was the most effective among seven EGFR-TKIs tested in inhibiting the growth of Ba/F3 cells expressing EGFR(S768I), showing an efficacy similar to that apparent with cells expressing the common EGFR mutant L858R, whereas first- and third-generation EGFR-TKIs were markedly less effective against EGFR(S768I) than against EGFR(L858R). These data suggest that EGFR-TKIs differ in their activity toward cells expressing EGFR(S768I) in vitro. Consistently, afatinib was clinically effective for the treatment of NSCLC harboring G719C and S768I mutations of EGFR. Further studies are warranted to determine the most appropriate EGFR-TKI for treatment of NSCLC harboring uncommon EGFR mutations.
Collapse
Affiliation(s)
- Junko Tanizaki
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Eri Banno
- Department of Genome Biology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Yosuke Togashi
- Department of Genome Biology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka, 589-8511, Japan; Division of Cancer Immunology, National Cancer Center, Kashiwa, 277-8577, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka, 589-8511, Japan.
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Masayuki Takeda
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Hiroyasu Kaneda
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka, 589-8511, Japan; Department of Medical Oncology, Kishiwada City Hospital, Kishiwada, 596-8501, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| |
Collapse
|
38
|
Abstract
Lipid-modified GTPases in the Ras superfamily that mediate a variety of cell signaling processes were thought to be passively anchored to membranes. However, an increasing number of recent studies are finding that membrane binding of these proteins is hardly a passive process, and it involves the soluble catalytic domain as well as the lipid anchor. The catalytic domain adopts multiple orientations on the membrane surface due to internal fluctuations that are modulated by activation status and mutations. Distinct orientation preferences among small GTPases likely lead to differential signaling outcomes, as downstream effectors can sense different orientations. We review recent studies behind this important conclusion.
Collapse
Affiliation(s)
- Priyanka Prakash
- a Department of Integrative Biology and Pharmacology , University of Texas Health Science Center at Houston , Houston , TX , USA
| | - Alemayehu A Gorfe
- a Department of Integrative Biology and Pharmacology , University of Texas Health Science Center at Houston , Houston , TX , USA
| |
Collapse
|
39
|
Affiliation(s)
- Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, U.S.A
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chung-Jung Tsai
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, U.S.A
| | - Hyunbum Jang
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, U.S.A
| |
Collapse
|
40
|
Posada IMD, Serulla M, Zhou Y, Oetken-Lindholm C, Abankwa D, Lectez B. ASPP2 Is a Novel Pan-Ras Nanocluster Scaffold. PLoS One 2016; 11:e0159677. [PMID: 27437940 PMCID: PMC4954646 DOI: 10.1371/journal.pone.0159677] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/06/2016] [Indexed: 02/02/2023] Open
Abstract
Ras-induced senescence mediated through ASPP2 represents a barrier to tumour formation. It is initiated by ASPP2’s interaction with Ras at the plasma membrane, which stimulates the Raf/MEK/ERK signaling cascade. Ras to Raf signalling requires Ras to be organized in nanoscale signalling complexes, called nanocluster. We therefore wanted to investigate whether ASPP2 affects Ras nanoclustering. Here we show that ASPP2 increases the nanoscale clustering of all oncogenic Ras isoforms, H-ras, K-ras and N-ras. Structure-function analysis with ASPP2 truncation mutants suggests that the nanocluster scaffolding activity of ASPP2 converges on its α-helical domain. While ASPP2 increased effector recruitment and stimulated ERK and AKT phosphorylation, it did not increase colony formation of RasG12V transformed NIH/3T3 cells. By contrast, ASPP2 was able to suppress the transformation enhancing ability of the nanocluster scaffold Gal-1, by competing with the specific effect of Gal-1 on H-rasG12V- and K-rasG12V-nanoclustering, thus imposing ASPP2’s ERK and AKT signalling signature. Similarly, ASPP2 robustly induced senescence and strongly abrogated mammosphere formation irrespective of whether it was expressed alone or together with Gal-1, which by itself showed the opposite effect in Ras wt or H-ras mutant breast cancer cells. Our results suggest that Gal-1 and ASPP2 functionally compete in nanocluster for active Ras on the plasma membrane. ASPP2 dominates the biological outcome, thus switching from a Gal-1 supported growth-promoting setting to a senescence inducing and stemness suppressive program in cancer cells. Our results support Ras nanocluster as major integrators of tumour fate decision events.
Collapse
Affiliation(s)
- Itziar M. D. Posada
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520, Turku, Finland
| | - Marc Serulla
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520, Turku, Finland
| | - Yong Zhou
- University of Texas Health Science Center at Houston, Medical School, Houston, Texas, United States of America
| | | | - Daniel Abankwa
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520, Turku, Finland
- * E-mail:
| | - Benoît Lectez
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520, Turku, Finland
| |
Collapse
|
41
|
Blaževitš O, Mideksa YG, Šolman M, Ligabue A, Ariotti N, Nakhaeizadeh H, Fansa EK, Papageorgiou AC, Wittinghofer A, Ahmadian MR, Abankwa D. Galectin-1 dimers can scaffold Raf-effectors to increase H-ras nanoclustering. Sci Rep 2016; 6:24165. [PMID: 27087647 PMCID: PMC4834570 DOI: 10.1038/srep24165] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 03/22/2016] [Indexed: 12/12/2022] Open
Abstract
Galectin-1 (Gal-1) dimers crosslink carbohydrates on cell surface receptors. Carbohydrate-derived inhibitors have been developed for cancer treatment. Intracellularly, Gal-1 was suggested to interact with the farnesylated C-terminus of Ras thus specifically stabilizing GTP-H-ras nanoscale signalling hubs in the membrane, termed nanoclusters. The latter activity may present an alternative mechanism for how overexpressed Gal-1 stimulates tumourigenesis. Here we revise the current model for the interaction of Gal-1 with H-ras. We show that it indirectly forms a complex with GTP-H-ras via a high-affinity interaction with the Ras binding domain (RBD) of Ras effectors. A computationally generated model of the Gal-1/C-Raf-RBD complex is validated by mutational analysis. Both cellular FRET as well as proximity ligation assay experiments confirm interaction of Gal-1 with Raf proteins in mammalian cells. Consistently, interference with H-rasG12V-effector interactions basically abolishes H-ras nanoclustering. In addition, an intact dimer interface of Gal-1 is required for it to positively regulate H-rasG12V nanoclustering, but negatively K-rasG12V nanoclustering. Our findings suggest stacked dimers of H-ras, Raf and Gal-1 as building blocks of GTP-H-ras-nanocluster at high Gal-1 levels. Based on our results the Gal-1/effector interface represents a potential drug target site in diseases with aberrant Ras signalling.
Collapse
Affiliation(s)
- Olga Blaževitš
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520 Turku, Finland
| | - Yonatan G. Mideksa
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520 Turku, Finland
| | - Maja Šolman
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520 Turku, Finland
| | - Alessio Ligabue
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520 Turku, Finland
| | - Nicholas Ariotti
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Hossein Nakhaeizadeh
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Eyad K. Fansa
- Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | | | | | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Daniel Abankwa
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520 Turku, Finland
| |
Collapse
|
42
|
Lu S, Jang H, Muratcioglu S, Gursoy A, Keskin O, Nussinov R, Zhang J. Ras Conformational Ensembles, Allostery, and Signaling. Chem Rev 2016; 116:6607-65. [PMID: 26815308 DOI: 10.1021/acs.chemrev.5b00542] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ras proteins are classical members of small GTPases that function as molecular switches by alternating between inactive GDP-bound and active GTP-bound states. Ras activation is regulated by guanine nucleotide exchange factors that catalyze the exchange of GDP by GTP, and inactivation is terminated by GTPase-activating proteins that accelerate the intrinsic GTP hydrolysis rate by orders of magnitude. In this review, we focus on data that have accumulated over the past few years pertaining to the conformational ensembles and the allosteric regulation of Ras proteins and their interpretation from our conformational landscape standpoint. The Ras ensemble embodies all states, including the ligand-bound conformations, the activated (or inactivated) allosteric modulated states, post-translationally modified states, mutational states, transition states, and nonfunctional states serving as a reservoir for emerging functions. The ensemble is shifted by distinct mutational events, cofactors, post-translational modifications, and different membrane compositions. A better understanding of Ras biology can contribute to therapeutic strategies.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine , Shanghai, 200025, China.,Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | | | | | | | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States.,Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Jian Zhang
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine , Shanghai, 200025, China
| |
Collapse
|