1
|
Kveim VA, Salm L, Ulmer T, Lahr M, Kandler S, Imhof F, Donato F. Divergent recruitment of developmentally defined neuronal ensembles supports memory dynamics. Science 2024; 385:eadk0997. [PMID: 39146420 DOI: 10.1126/science.adk0997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/24/2024] [Indexed: 08/17/2024]
Abstract
Memories are dynamic constructs whose properties change with time and experience. The biological mechanisms underpinning these dynamics remain elusive, particularly concerning how shifts in the composition of memory-encoding neuronal ensembles influence the evolution of a memory over time. By targeting developmentally distinct subpopulations of principal neurons, we discovered that memory encoding resulted in the concurrent establishment of multiple memory traces in the mouse hippocampus. Two of these traces were instantiated in subpopulations of early- and late-born neurons and followed distinct reactivation trajectories after encoding. The divergent recruitment of these subpopulations underpinned gradual reorganization of memory ensembles and modulated memory persistence and plasticity across multiple learning episodes. Thus, our findings reveal profound and intricate relationships between ensemble dynamics and the progression of memories over time.
Collapse
Affiliation(s)
- Vilde A Kveim
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| | - Laurenz Salm
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| | - Talia Ulmer
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| | - Maria Lahr
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| | | | - Fabia Imhof
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| | - Flavio Donato
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| |
Collapse
|
2
|
Miller TD, Kennard C, Gowland PA, Antoniades CA, Rosenthal CR. Differential effects of bilateral hippocampal CA3 damage on the implicit learning and recognition of complex event sequences. Cogn Neurosci 2024; 15:27-55. [PMID: 38384107 PMCID: PMC11147457 DOI: 10.1080/17588928.2024.2315818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
Learning regularities in the environment is a fundament of human cognition, which is supported by a network of brain regions that include the hippocampus. In two experiments, we assessed the effects of selective bilateral damage to human hippocampal subregion CA3, which was associated with autobiographical episodic amnesia extending ~50 years prior to the damage, on the ability to recognize complex, deterministic event sequences presented either in a spatial or a non-spatial configuration. In contrast to findings from related paradigms, modalities, and homologue species, hippocampal damage did not preclude recognition memory for an event sequence studied and tested at four spatial locations, whereas recognition memory for an event sequence presented at a single location was at chance. In two additional experiments, recognition memory for novel single-items was intact, whereas the ability to recognize novel single-items in a different location from that presented at study was at chance. The results are at variance with a general role of the hippocampus in the learning and recognition of complex event sequences based on non-adjacent spatial and temporal dependencies. We discuss the impact of the results on established theoretical accounts of the hippocampal contributions to implicit sequence learning and episodic memory.
Collapse
Affiliation(s)
- Thomas D. Miller
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Christopher Kennard
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Penny A. Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | | | - Clive R. Rosenthal
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Nachtigall EG, de Freitas JDR, Marcondes LA, Furini CRG. Memory persistence induced by environmental enrichment is dependent on different brain structures. Physiol Behav 2023; 272:114375. [PMID: 37806510 DOI: 10.1016/j.physbeh.2023.114375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/24/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Environmental enrichment (EE) has been demonstrated to have a beneficial effect on different functions of the central nervous system in several mammal species, being used to improve behavior and cell damage in various neurological and psychiatric diseases. However, little has been investigated on the effect of EE in healthy animals, particularly regarding its impact on memory persistence and the brain structures involved. Therefore, here we verified in male Wistar rats that contextual fear conditioning (CFC) memory persistence, tested 28 days after the CFC training session, was facilitated by 5 weeks of exposure to EE, with no effect in groups tested 7 or 14 days after CFC training. However, a two-week exposure to EE did not affect memory persistence. Moreover, we investigated the role of specific brain regions in mediating the effect of EE on memory persistence. We conducted inactivation experiments using the GABAergic agonist Muscimol to target the basolateral amygdala (BLA), medial prefrontal cortex (mPFC), and CA1 region of the hippocampus (CA1). Inactivation of the BLA immediately and 12 h after CFC training impaired the effect of EE on memory persistence. Similarly, inactivation of the CA1 region and mPFC 12 h after training, but not immediately, also impaired the effect of EE on memory persistence. These results have important scientific implications as they shed new light on the effect of an enriched environment on memory persistence and the brain structures involved, thereby helping elucidate how an environment rich in experiences can modify the persistence of learned information.
Collapse
Affiliation(s)
- Eduarda G Nachtigall
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000, Porto Alegre, RS, Brazil
| | - Júlia D R de Freitas
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000, Porto Alegre, RS, Brazil
| | - Lucas Aschidamini Marcondes
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000, Porto Alegre, RS, Brazil
| | - Cristiane R G Furini
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Atucha E, Ku SP, Lippert MT, Sauvage MM. Recalling gist memory depends on CA1 hippocampal neurons for lifetime retention and CA3 neurons for memory precision. Cell Rep 2023; 42:113317. [PMID: 37897725 DOI: 10.1016/j.celrep.2023.113317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/05/2023] [Accepted: 10/05/2023] [Indexed: 10/30/2023] Open
Abstract
Why some of us remember events more clearly than others and why memory loses precision over time is a major focus in memory research. Here, we show that the recruitment of specific neuroanatomical pathways within the medial temporal lobe (MTL) of the brain defines the precision of the memory recalled over the lifespan. Using optogenetics, neuronal activity mapping, and studying recent to very remote memories, we report that the hippocampal subfield CA1 is necessary for retrieving the gist of events and receives maximal support from MTL cortical areas (MEC, LEC, PER, and POR) for recalling the most remote memories. In contrast, reduction of CA3's activity alone coincides with the loss of memory precision over time. We propose that a shift between specific MTL subnetworks over time might be a fundamental mechanism of memory consolidation.
Collapse
Affiliation(s)
- Erika Atucha
- Functional Architecture of Memory Department, Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | - Shih-Pi Ku
- Functional Architecture of Memory Department, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael T Lippert
- Systems Physiology of Learning Department, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Magdalena M Sauvage
- Functional Architecture of Memory Department, Leibniz Institute for Neurobiology, Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Functional Neuroplasticity Department, Magdeburg, Germany; Otto von Guericke University, Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
5
|
Moscovitch M, Gilboa A. Has the concept of systems consolidation outlived its usefulness? Identification and evaluation of premises underlying systems consolidation. Fac Rev 2022; 11:33. [PMID: 36532709 PMCID: PMC9720899 DOI: 10.12703/r/11-33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Abstract
Systems consolidation has mostly been treated as a neural construct defined by the time-dependent change in memory representation from the hippocampus (HPC) to other structures, primarily the neocortex. Here, we identify and evaluate the explicit and implicit premises that underlie traditional or standard models and theories of systems consolidation based on evidence from research on humans and other animals. We use the principle that changes in neural representation over time and experience are accompanied by corresponding changes in psychological representations, and vice versa, to argue that each of the premises underlying traditional or standard models and theories of systems consolidation is found wanting. One solution is to modify or abandon the premises or theories and models. This is reflected in moderated models of systems consolidation that emphasize the early role of the HPC in training neocortical memories until they stabilize. The fault, however, may lie in the very concept of systems consolidation and its defining feature. We propose that the concept be replaced by one of memory systems reorganization, which does not carry the theoretical baggage of systems consolidation and is flexible enough to capture the dynamic nature of memory from inception to very long-term retention and retrieval at a psychological and neural level. The term "memory system reorganization" implies that memory traces are not fixed, even after they are presumably consolidated. Memories can continue to change as a result of experience and interactions among memory systems across the lifetime. As will become clear, hippocampal training of neocortical memories is only one type of such interaction, and not always the most important one, even at inception. We end by suggesting some principles of memory reorganization that can help guide research on dynamic memory processes that capture corresponding changes in memory at the psychological and neural levels.
Collapse
Affiliation(s)
- Morris Moscovitch
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
| | - Asaf Gilboa
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
6
|
Functional ultrasound imaging of recent and remote memory recall in the associative fear neural network in mice. Behav Brain Res 2022; 428:113862. [DOI: 10.1016/j.bbr.2022.113862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 11/21/2022]
|
7
|
Remme MWH, Bergmann U, Alevi D, Schreiber S, Sprekeler H, Kempter R. Hebbian plasticity in parallel synaptic pathways: A circuit mechanism for systems memory consolidation. PLoS Comput Biol 2021; 17:e1009681. [PMID: 34874938 PMCID: PMC8683039 DOI: 10.1371/journal.pcbi.1009681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 12/17/2021] [Accepted: 11/24/2021] [Indexed: 12/03/2022] Open
Abstract
Systems memory consolidation involves the transfer of memories across brain regions and the transformation of memory content. For example, declarative memories that transiently depend on the hippocampal formation are transformed into long-term memory traces in neocortical networks, and procedural memories are transformed within cortico-striatal networks. These consolidation processes are thought to rely on replay and repetition of recently acquired memories, but the cellular and network mechanisms that mediate the changes of memories are poorly understood. Here, we suggest that systems memory consolidation could arise from Hebbian plasticity in networks with parallel synaptic pathways-two ubiquitous features of neural circuits in the brain. We explore this hypothesis in the context of hippocampus-dependent memories. Using computational models and mathematical analyses, we illustrate how memories are transferred across circuits and discuss why their representations could change. The analyses suggest that Hebbian plasticity mediates consolidation by transferring a linear approximation of a previously acquired memory into a parallel pathway. Our modelling results are further in quantitative agreement with lesion studies in rodents. Moreover, a hierarchical iteration of the mechanism yields power-law forgetting-as observed in psychophysical studies in humans. The predicted circuit mechanism thus bridges spatial scales from single cells to cortical areas and time scales from milliseconds to years.
Collapse
Affiliation(s)
- Michiel W. H. Remme
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Urs Bergmann
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Denis Alevi
- Department for Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Susanne Schreiber
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Henning Sprekeler
- Department for Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- Excellence Cluster Science of Intelligence, Berlin, Germany
| | - Richard Kempter
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| |
Collapse
|
8
|
Vetere G, Xia F, Ramsaran AI, Tran LM, Josselyn SA, Frankland PW. An inhibitory hippocampal-thalamic pathway modulates remote memory retrieval. Nat Neurosci 2021; 24:685-693. [PMID: 33782621 PMCID: PMC8715645 DOI: 10.1038/s41593-021-00819-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/18/2021] [Indexed: 01/30/2023]
Abstract
Memories are supported by distributed hippocampal-thalamic-cortical networks, but the brain regions that contribute to network activity may vary with memory age. This process of reorganization is referred to as systems consolidation, and previous studies have examined the relationship between the activation of different hippocampal, thalamic, and cortical brain regions and memory age at the time of recall. While the activation of some brain regions increases with memory age, other regions become less active. In mice, here we show that the active disengagement of one such brain region, the anterodorsal thalamic nucleus, is necessary for recall at remote time-points and, in addition, which projection(s) mediate such inhibition. Specifically, we identified a sparse inhibitory projection from CA3 to the anterodorsal thalamic nucleus that becomes more active during systems consolidation, such that it is necessary for contextual fear memory retrieval at remote, but not recent, time-points post-learning.
Collapse
Affiliation(s)
- Gisella Vetere
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada,Team Cerebral Codes and Circuits Connectivity (C4), Plasticité du Cerveau, ESPCI Paris, CNRS, PSL University, Paris, France,These authors contributed equally: Gisella Vetere, Frances Xia
| | - Frances Xia
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Physiology, University of Toronto, Toronto, Ontario, Canada,These authors contributed equally: Gisella Vetere, Frances Xia
| | - Adam I. Ramsaran
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Lina M. Tran
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Sheena A. Josselyn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Physiology, University of Toronto, Toronto, Ontario, Canada,Department of Psychology, University of Toronto, Toronto, Ontario, Canada,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada,Brain, Mind & Consciousness Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Paul W. Frankland
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Physiology, University of Toronto, Toronto, Ontario, Canada,Department of Psychology, University of Toronto, Toronto, Ontario, Canada,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada,Child & Brain Development Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada,Correspondence and requests for materials should be addressed to P.W.F.
| |
Collapse
|
9
|
Ohara S, Blankvoort S, Nair RR, Nigro MJ, Nilssen ES, Kentros C, Witter MP. Local projections of layer Vb-to-Va are more prominent in lateral than in medial entorhinal cortex. eLife 2021; 10:e67262. [PMID: 33769282 PMCID: PMC8051944 DOI: 10.7554/elife.67262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
The entorhinal cortex, in particular neurons in layer V, allegedly mediate transfer of information from the hippocampus to the neocortex, underlying long-term memory. Recently, this circuit has been shown to comprise a hippocampal output recipient layer Vb and a cortical projecting layer Va. With the use of in vitro electrophysiology in transgenic mice specific for layer Vb, we assessed the presence of the thus necessary connection from layer Vb-to-Va in the functionally distinct medial (MEC) and lateral (LEC) subdivisions; MEC, particularly its dorsal part, processes allocentric spatial information, whereas the corresponding part of LEC processes information representing elements of episodes. Using identical experimental approaches, we show that connections from layer Vb-to-Va neurons are stronger in dorsal LEC compared with dorsal MEC, suggesting different operating principles in these two regions. Although further in vivo experiments are needed, our findings imply a potential difference in how LEC and MEC mediate episodic systems consolidation.
Collapse
Grants
- endowment Kavli Foundation
- infrastructure grant NORBRAIN,#197467 Norwegian Research Council
- the Centre of Excellence scheme - Centre for Neural Computation,#223262 Norwegian Research Council
- research grant,# 227769 Norwegian Research Council
- KAKENHI,#19K06917 Ministry of Education, Culture, Sports, Science and Technology
- KAKENHI (#19K06917) Ministry of Education, Culture, Sports, Science and Technology
- #197467 Norwegian Research Council
- #223262 Norwegian Research Council
- #227769 Norwegian Research Council
Collapse
Affiliation(s)
- Shinya Ohara
- Kavli institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheimNorway
- Laboratory of Systems Neuroscience, Tohoku University Graduate School of Life SciencesTohokuJapan
| | - Stefan Blankvoort
- Kavli institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Rajeevkumar Raveendran Nair
- Kavli institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Maximiliano J Nigro
- Kavli institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Eirik S Nilssen
- Kavli institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Clifford Kentros
- Kavli institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Menno P Witter
- Kavli institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
10
|
Machts J, Keute M, Kaufmann J, Schreiber S, Kasper E, Petri S, Prudlo J, Vielhaber S, Schoenfeld MA. Longitudinal clinical and neuroanatomical correlates of memory impairment in motor neuron disease. Neuroimage Clin 2020; 29:102545. [PMID: 33387861 PMCID: PMC7786131 DOI: 10.1016/j.nicl.2020.102545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/21/2020] [Accepted: 12/20/2020] [Indexed: 12/31/2022]
Abstract
Memory impairment in motor neuron disease (MND) is still an underrecognized feature and has traditionally been attributed to executive dysfunction. Here, we investigate the rate of memory impairment in a longitudinal cohort of MND patients, its relationship to other cognitive functions and the underlying neuroanatomical correlates. 142 patients with MND and 99 healthy controls (HC) underwent comprehensive neuropsychological testing and structural MRI at 3T up to four times over a period of 18 months. Linear-mixed effects models were fitted to identify changes at baseline and over time in episodic memory function (learning, immediate and delayed recall, recognition), composed cognitive scores (memory, verbal fluency, executive function), and memory-related structural brain regions (hippocampus, entorhinal cortex, parahippocampal gyrus). Associations between episodic memory performance and volumetric or cortical thickness changes of these regions were computed using Pearson's r. Learning, immediate and delayed recall, as well as recognition performance were significantly reduced in MND when compared to controls at baseline. Performances in these subtests improved over time although MND showed less improvement than controls. This relationship did not change when only "classical" ALS patients were considered. Patients with MND showed thinning of the right parahippocampal gyrus (PhG) in comparison to controls that was progressing over time. Bilateral hippocampal atrophy was observed in MND patients with memory impairment after splitting the group according to their overall episodic memory performance, with the right hippocampus shrinking over time. In MND patients, the bilateral hippocampal atrophy was associated with impairment in learning, recall, and recognition at baseline. In contrast, left PhG thinning was associated with a poorer learning performance. These results show that episodic memory impairment in MND is a frequent cognitive dysfunction. Since deficits are not clearly declining with disease course, an early involvement of this cognitive domain in the disease seems probable. The memory performance-dependent atrophy of the hippocampus and PhG provide evidence for a widespread involvement of these non-motor cortical areas in disease pathology.
Collapse
Affiliation(s)
- Judith Machts
- Department of Neurology, Otto-von-Guericke University Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), site Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke University Magdeburg, Germany.
| | - Marius Keute
- Department of Neurology, Otto-von-Guericke University Magdeburg, Germany
| | - Joern Kaufmann
- Department of Neurology, Otto-von-Guericke University Magdeburg, Germany
| | - Stefanie Schreiber
- Department of Neurology, Otto-von-Guericke University Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), site Magdeburg, Germany
| | - Elisabeth Kasper
- German Center for Neurodegenerative Diseases (DZNE), site Rostock, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Germany
| | - Johannes Prudlo
- German Center for Neurodegenerative Diseases (DZNE), site Rostock, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke University Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), site Magdeburg, Germany
| | - Mircea Ariel Schoenfeld
- Department of Neurology, Otto-von-Guericke University Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany; Kliniken Schmieder, Heidelberg, Germany
| |
Collapse
|
11
|
Kol A, Adamsky A, Groysman M, Kreisel T, London M, Goshen I. Astrocytes contribute to remote memory formation by modulating hippocampal-cortical communication during learning. Nat Neurosci 2020; 23:1229-1239. [PMID: 32747787 PMCID: PMC7611962 DOI: 10.1038/s41593-020-0679-6] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 06/26/2020] [Indexed: 12/15/2022]
Abstract
Remote memories depend on coordinated activity in the hippocampus and frontal cortices, but the timeline of these interactions is debated. Astrocytes sense and modify neuronal activity, but their role in remote memory was scarcely explored. We expressed the Gi-coupled receptor hM4Di in CA1 astrocytes, and discovered that astrocytic manipulation during learning specifically impaired remote, but not recent, memory recall, and decreased activity in the anterior cingulate cortex (ACC) during retrieval. We revealed massive recruitment of ACC-projecting CA1 neurons during memory acquisition, accompanied by activation of ACC neurons. Astrocytic Gi activation disrupted CA3 to CA1 communication in-vivo, and reduced the downstream response in ACC. In behaving mice, it induced a projection-specific inhibition of CA1-to-ACC neurons during learning, consequently preventing ACC recruitment. Finally, direct inhibition of CA1-to-ACC projecting neurons spared recent and impaired remote memory. Our findings suggest that remote memory acquisition involves projection-specific functions of astrocytes in regulating CA1-to-ACC neuronal communication.
Collapse
Affiliation(s)
- Adi Kol
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adar Adamsky
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maya Groysman
- ELSC Vector Core Facility, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tirzah Kreisel
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael London
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel.,Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Inbal Goshen
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
12
|
Mizuno K, Jeffries AR, Abel T, Giese KP. Long-lasting transcription in hippocampal area CA1 after contextual fear conditioning. Neurobiol Learn Mem 2020; 172:107250. [PMID: 32422278 DOI: 10.1016/j.nlm.2020.107250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 01/25/2023]
Abstract
A fundamental question is how memory is stored for several weeks and even longer. A long-lasting increase in gene transcription has been suggested to mediate such long-term memory storage. Here, we used contextual fear conditioning in mice to search for lasting transcription that may contribute to long-term memory storage. Our study focussed on hippocampal area CA1, which has been suggested to have a role for at least one week in contextual fear memory. Using an unbiased microarray analysis followed by confirmatory quantitative real-time PCR, we identified an upregulation of two transcription factors, Fosl2 and Nfil3, which lasted for seven days after conditioning. To our knowledge these are the longest transcriptional changes ever detected in the hippocampus after contextual fear conditioning. Thus, our findings suggest novel transcriptional candidates for long-term memory storage.
Collapse
Affiliation(s)
- Keiko Mizuno
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King's College London, UK.
| | - Aaron R Jeffries
- Biosciences, College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Ted Abel
- Department of Molecular Physiology and Biophysics, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - K Peter Giese
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King's College London, UK.
| |
Collapse
|
13
|
Grella SL, Fortin AH, McKissick O, Leblanc H, Ramirez S. Odor modulates the temporal dynamics of fear memory consolidation. ACTA ACUST UNITED AC 2020; 27:150-163. [PMID: 32179657 PMCID: PMC7079569 DOI: 10.1101/lm.050690.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/31/2019] [Indexed: 01/14/2023]
Abstract
Systems consolidation (SC) theory proposes that recent, contextually rich memories are stored in the hippocampus (HPC). As these memories become remote, they are believed to rely more heavily on cortical structures within the prefrontal cortex (PFC), where they lose much of their contextual detail and become schematized. Odor is a particularly evocative cue for intense remote memory recall and despite these memories being remote, they are highly contextual. In instances such as posttraumatic stress disorder (PTSD), intense remote memory recall can occur years after trauma, which seemingly contradicts SC. We hypothesized that odor may shift the organization of salient or fearful memories such that when paired with an odor at the time of encoding, they are delayed in the de-contextualization process that occurs across time, and retrieval may still rely on the HPC, where memories are imbued with contextually rich information, even at remote time points. We investigated this by tagging odor- and non-odor-associated fear memories in male c57BL/6 mice and assessed recall and c-Fos expression in the dorsal CA1 (dCA1) and prelimbic cortex (PL) 1 or 21 d later. In support of SC, our data showed that recent memories were more dCA1-dependent whereas remote memories were more PL-dependent. However, we also found that odor influenced this temporal dynamic, biasing the memory system from the PL to the dCA1 when odor cues were present. Behaviorally, inhibiting the dCA1 with activity-dependent DREADDs had no effect on recall at 1 d and unexpectedly caused an increase in freezing at 21 d. Together, these findings demonstrate that odor can shift the organization of fear memories at the systems level.
Collapse
Affiliation(s)
- Stephanie L Grella
- Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, USA
| | - Amanda H Fortin
- Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, USA
| | - Olivia McKissick
- Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, USA
| | - Heloise Leblanc
- Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, USA
| | - Steve Ramirez
- Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
14
|
Miller TD, Chong TTJ, Aimola Davies AM, Johnson MR, Irani SR, Husain M, Ng TWC, Jacob S, Maddison P, Kennard C, Gowland PA, Rosenthal CR. Human hippocampal CA3 damage disrupts both recent and remote episodic memories. eLife 2020; 9:e41836. [PMID: 31976861 PMCID: PMC6980860 DOI: 10.7554/elife.41836] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/05/2019] [Indexed: 12/31/2022] Open
Abstract
Neocortical-hippocampal interactions support new episodic (event) memories, but there is conflicting evidence about the dependence of remote episodic memories on the hippocampus. In line with systems consolidation and computational theories of episodic memory, evidence from model organisms suggests that the cornu ammonis 3 (CA3) hippocampal subfield supports recent, but not remote, episodic retrieval. In this study, we demonstrated that recent and remote memories were susceptible to a loss of episodic detail in human participants with focal bilateral damage to CA3. Graph theoretic analyses of 7.0-Tesla resting-state fMRI data revealed that CA3 damage disrupted functional integration across the medial temporal lobe (MTL) subsystem of the default network. The loss of functional integration in MTL subsystem regions was predictive of autobiographical episodic retrieval performance. We conclude that human CA3 is necessary for the retrieval of episodic memories long after their initial acquisition and functional integration of the default network is important for autobiographical episodic memory performance.
Collapse
Affiliation(s)
- Thomas D Miller
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
- Department of NeurologyRoyal Free HospitalLondonUnited Kingdom
| | - Trevor T-J Chong
- Monash Institute of Cognitive and Clinical NeurosciencesMonash UniversityClaytonAustralia
| | - Anne M Aimola Davies
- Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
- Research School of PsychologyAustralian National UniversityCanberraAustralia
| | - Michael R Johnson
- Division of Brain SciencesImperial College LondonLondonUnited Kingdom
| | - Sarosh R Irani
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Masud Husain
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
- Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
| | - Tammy WC Ng
- Department of AnaesthesticsRoyal Free HospitalLondonUnited Kingdom
| | - Saiju Jacob
- Neurology Department, Queen Elizabeth Neuroscience CentreUniversity Hospitals of BirminghamBirminghamUnited Kingdom
| | - Paul Maddison
- Neurology DepartmentQueen’s Medical CentreNottinghamUnited Kingdom
| | - Christopher Kennard
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Penny A Gowland
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUnited Kingdom
| | - Clive R Rosenthal
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
15
|
Chauvière L. Update on temporal lobe‐dependent information processing, in health and disease. Eur J Neurosci 2019; 51:2159-2204. [DOI: 10.1111/ejn.14594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/06/2019] [Accepted: 09/27/2019] [Indexed: 01/29/2023]
Affiliation(s)
- Laëtitia Chauvière
- INSERM U1266 Institut de Psychiatrie et de Neurosciences de Paris (IPNP) Paris France
| |
Collapse
|
16
|
Yonelinas AP, Ranganath C, Ekstrom AD, Wiltgen BJ. A contextual binding theory of episodic memory: systems consolidation reconsidered. Nat Rev Neurosci 2019; 20:364-375. [PMID: 30872808 PMCID: PMC7233541 DOI: 10.1038/s41583-019-0150-4] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Episodic memory reflects the ability to recollect the temporal and spatial context of past experiences. Episodic memories depend on the hippocampus but have been proposed to undergo rapid forgetting unless consolidated during offline periods such as sleep to neocortical areas for long-term storage. Here, we propose an alternative to this standard systems consolidation theory (SSCT) - a contextual binding account - in which the hippocampus binds item-related and context-related information. We compare these accounts in light of behavioural, lesion, neuroimaging and sleep studies of episodic memory and contend that forgetting is largely due to contextual interference, episodic memory remains dependent on the hippocampus across time, contextual drift produces post-encoding activity and sleep benefits memory by reducing contextual interference.
Collapse
Affiliation(s)
| | - Charan Ranganath
- Center for Neuroscience, University of California, Davis, CA, USA
| | - Arne D Ekstrom
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Brian J Wiltgen
- Center for Neuroscience, University of California, Davis, CA, USA
| |
Collapse
|
17
|
Suter EE, Weiss C, Disterhoft JF. Differential responsivity of neurons in perirhinal cortex, lateral entorhinal cortex, and dentate gyrus during time-bridging learning. Hippocampus 2019; 29:511-526. [PMID: 30311282 PMCID: PMC6615905 DOI: 10.1002/hipo.23041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 08/29/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022]
Abstract
Many studies have focused on the function of hippocampal region CA1 as a critical site for associative memory, but much less is known about changes in the afferents to CA1. Here we report the activity of multiple single neurons from perirhinal and entorhinal cortex and from dentate gyrus during trace eyeblink conditioning as well as consolidated recall, and in pseudo-conditioned control rabbits. We also report an analysis of theta activity filtered from the local field potential (LFP). Our results show early associative changes in single-neuron firing rate as well as theta oscillations in lateral entorhinal cortex (EC) and dentate gyrus (DG), and increases in the number of responsive neurons in perirhinal cortex. In both EC and DG, a subset of neurons from conditioned animals exhibited an elevated baseline firing rate and large responses to the conditioned stimulus and trace period. A similar population of cells has been seen in DG and in medial, but not lateral, EC during spatial tasks, suggesting that lateral EC contains cells responsive to a temporal associative task. In contrast to recent studies in our laboratory that found significant CA1 contributions to long-term memory, the activity profiles of neurons within EC and DG were similar for conditioned and pseudoconditioned rabbits during post-consolidation sessions. Collectively these results demonstrate that individual subregions of medial temporal lobe differentially support new and remotely acquired memories. Neuron firing profiles were similar on training trials when conditioned responses were and were not exhibited, demonstrating that these temporal lobe regions represent the CS-US association and do not control the behavioral response. The analysis of theta activity revealed that theta power was modulated by the conditioning stimuli in both the conditioned and pseudoconditioned groups and that although both groups exhibited a resetting of phase to the corneal airpuff, only the conditioned group exhibited a resetting of phase to the whisker conditioned stimulus.
Collapse
Affiliation(s)
- Eugénie E Suter
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Craig Weiss
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - John F Disterhoft
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
18
|
McGregor G, Harvey J. Leptin Regulation of Synaptic Function at Hippocampal TA-CA1 and SC-CA1 Synapses: Implications for Health and Disease. Neurochem Res 2019; 44:650-660. [PMID: 28819795 PMCID: PMC6420429 DOI: 10.1007/s11064-017-2362-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/05/2017] [Accepted: 07/21/2017] [Indexed: 12/16/2022]
Abstract
Growing evidence indicates that the endocrine hormone leptin regulates hippocampal synaptic function in addition to its established role as a hypothalamic satiety signal. Indeed, numerous studies show that leptin facilitates the cellular events that underlie hippocampal learning and memory including activity-dependent synaptic plasticity and glutamate receptor trafficking, indicating that leptin may be a potential cognitive enhancer. Although there has been extensive investigation into the modulatory role of leptin at hippocampal Schaffer collateral (SC)-CA1 synapses, recent evidence indicates that leptin also potently regulates excitatory synaptic transmission at the anatomically distinct temporoammonic (TA) input to hippocampal CA1 neurons. The cellular mechanisms underlying activity-dependent synaptic plasticity at TA-CA1 synapses differ from those at SC-CA1 synapses and the TA input is implicated in spatial and episodic memory formation. Furthermore, the TA input is an early target for neurodegeneration in Alzheimer's disease (AD) and aberrant leptin function is linked to AD. Here, we review the evidence that leptin regulates hippocampal synaptic function at both SC- and TA-CA1 synapses and discuss the consequences for neurodegenerative disorders like AD.
Collapse
Affiliation(s)
- Gemma McGregor
- Division of Neuroscience, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Jenni Harvey
- Division of Neuroscience, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
19
|
PSD-95-nNOS Coupling Regulates Contextual Fear Extinction in the Dorsal CA3. Sci Rep 2018; 8:12775. [PMID: 30143658 PMCID: PMC6109109 DOI: 10.1038/s41598-018-30899-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 04/17/2018] [Indexed: 12/16/2022] Open
Abstract
Fear extinction depends on N-methyl-D-aspartate glutamate receptors (NMDARs) and brain-derived neurotrophic factor (BDNF) activation in the limbic system. However, postsynaptic density-95 (PSD-95) and neuronal nitric oxide synthase (nNOS) coupling, the downstream signaling of NMDARs activation, obstructs the BDNF signaling transduction. Thus, we wondered distinct roles of NMDAR activation and PSD-95-nNOS coupling on fear extinction. To explore the mechanisms, we detected protein-protein interaction using coimmunoprecipitation and measured protein expression by western blot. Contextual fear extinction induced a shift from PSD-95-nNOS to PSD-95-TrkB association in the dorsal hippocampus and c-Fos expression in the dorsal CA3. Disrupting PSD-95-nNOS coupling in the dorsal CA3 up-regulated phosphorylation of extracellular signal-regulates kinase (ERK) and BDNF, enhanced the association of BDNF-TrkB signaling with PSD-95, and promoted contextual fear extinction. Conversely, blocking NMDARs in the dorsal CA3 down-regulated BDNF expression and hindered contextual fear extinction. NMDARs activation and PSD-95-nNOS coupling play different roles in modulating contextual fear extinction in the hippocampus. Because inhibitors of PSD-95-nNOS interaction produce antidepressant and anxiolytic effect without NMDAR-induced side effects, PSD-95-nNOS could be a valuable target for PTSD treatment.
Collapse
|
20
|
Doron A, Goshen I. Investigating the transition from recent to remote memory using advanced tools. Brain Res Bull 2018; 141:35-43. [DOI: 10.1016/j.brainresbull.2017.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/27/2017] [Accepted: 09/11/2017] [Indexed: 11/30/2022]
|
21
|
Miller TD, Chong TTJ, Aimola Davies AM, Ng TWC, Johnson MR, Irani SR, Vincent A, Husain M, Jacob S, Maddison P, Kennard C, Gowland PA, Rosenthal CR. Focal CA3 hippocampal subfield atrophy following LGI1 VGKC-complex antibody limbic encephalitis. Brain 2017; 140:1212-1219. [PMID: 28369215 PMCID: PMC5405234 DOI: 10.1093/brain/awx070] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/29/2017] [Indexed: 12/16/2022] Open
Abstract
Magnetic resonance imaging has linked chronic voltage-gated potassium channel (VGKC) complex antibody-mediated limbic encephalitis with generalized hippocampal atrophy. However, autoantibodies bind to specific rodent hippocampal subfields. Here, human hippocampal subfield (subiculum, cornu ammonis 1-3, and dentate gyrus) targets of immunomodulation-treated LGI1 VGKC-complex antibody-mediated limbic encephalitis were investigated using in vivo ultra-high resolution (0.39 × 0.39 × 1.0 mm3) 7.0 T magnetic resonance imaging [n = 18 patients, 17 patients (94%) positive for LGI1 antibody and one patient negative for LGI1/CASPR2 but positive for VGKC-complex antibodies, mean age: 64.0 ± 2.55 years, median 4 years post-limbic encephalitis onset; n = 18 controls]. First, hippocampal subfield quantitative morphometry indicated significant volume loss confined to bilateral CA3 [F(1,34) = 16.87, P < 0.0001], despite hyperintense signal evident in 5 of 18 patients on presentation. Second, early and later intervention (<3 versus >3 months from symptom onset) were associated with CA3 atrophy. Third, whole-brain voxel-by-voxel morphometry revealed no significant grey matter loss. Fourth, CA3 subfield atrophy was associated with severe episodic but not semantic amnesia for postmorbid autobiographical events that was predicted by variability in CA3 volume. The results raise important questions about the links with histopathology, the impact of the observed focal atrophy on other CA3-mediated reconstructive and episodic mechanisms, and the role of potential antibody-mediated pathogenicity as part of the pathophysiology cascade in humans.
Collapse
Affiliation(s)
- Thomas D Miller
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,National Hospital for Neurology and Neurosurgery, London, London, UK
| | - Trevor T-J Chong
- Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, Victoria 3800, Australia
| | - Anne M Aimola Davies
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Australian National University, Research School of Psychology, Canberra, ACT, AUS
| | - Tammy W C Ng
- Centre for Anaesthesia, Critical Care and Pain Medicine, University College London Hospital, London UK
| | - Michael R Johnson
- Division of Brain Sciences, Charing Cross Campus, Imperial College London, London UK
| | - Sarosh R Irani
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Saiju Jacob
- Neurology Department, Queen Elizabeth Neuroscience Centre, University Hospitals of Birmingham, Birmingham, UK
| | - Paul Maddison
- Neurology Department, Queen's Medical Centre, Nottingham, UK
| | - Christopher Kennard
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Penny A Gowland
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Clive R Rosenthal
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Atucha E, Karew A, Kitsukawa T, Sauvage MM. Recognition memory: Cellular evidence of a massive contribution of the LEC to familiarity and a lack of involvement of the hippocampal subfields CA1 and CA3. Hippocampus 2017; 27:1083-1092. [PMID: 28667695 DOI: 10.1002/hipo.22754] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/17/2017] [Accepted: 06/20/2017] [Indexed: 11/08/2022]
Abstract
A highly debated issue in memory research is whether familiarity is supported by the parahippocampal region, especially the lateral (LEC) and the perirhinal (PER) cortices, or whether it is supported by the same brain structure as recollection: the hippocampus. One reason for this is that conflicting results have emerged regarding the contribution of the hippocampus to familiarity. This might stem from the lack of dissociation between hippocampal subfields CA1 and CA3 as these areas are involved to a different extent in processes which are pertinent to familiarity. Another reason is that empirical evidence for a contribution of the LEC is still missing. Furthermore, it is unclear whether the superficial and the deep layers of the LEC would equally contribute to this process as these layers are differentially recruited during memory retrieval which partly relies on familiarity. To identify the specific contribution of the LEC, CA1, and CA3, we imaged with cellular resolution activity in the brain of rats performing a version of a standard human memory task adapted to rats that yields judgments based on familiarity. Using this translational approach, we report that in striking contrast to CA1 and CA3, the LEC is recruited for familiarity-judgments and that its contribution is comparable to that of the PER. These results show for the first time that the LEC, specifically its deep layers, contributes to familiarity and constitute the first cellular evidence that the hippocampus does not, thus establishing that familiarity does not share the same neural substrate as recollection.
Collapse
Affiliation(s)
- Erika Atucha
- Mercator Research Group, Functional Architecture of Memory Unit, Ruhr-University, Bochum, 44780, Germany.,Functional Architecture of Memory Department, Leibniz-Institute for Neurobiology, Magdeburg, 39118, Germany
| | - Artem Karew
- Mercator Research Group, Functional Architecture of Memory Unit, Ruhr-University, Bochum, 44780, Germany
| | | | - Magdalena M Sauvage
- Mercator Research Group, Functional Architecture of Memory Unit, Ruhr-University, Bochum, 44780, Germany.,Functional Architecture of Memory Department, Leibniz-Institute for Neurobiology, Magdeburg, 39118, Germany.,Medical Faculty, Functional Neuroplasticity Department, Otto von Guericke University, Magdeburg, 39120, Germany.,Otto von Guericke University, Center for Behavioral Brain Sciences, Magdeburg, 39106, Germany
| |
Collapse
|