1
|
Petchiappan A, Majdalani N, Wall E, Gottesman S. RcsF-independent mechanisms of signaling within the Rcs phosphorelay. PLoS Genet 2024; 20:e1011408. [PMID: 39724052 DOI: 10.1371/journal.pgen.1011408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
The Rcs (regulator of capsule synthesis) phosphorelay is a conserved cell envelope stress response mechanism in enterobacteria. It responds to perturbations at the cell surface and the peptidoglycan layer from a variety of sources, including antimicrobial peptides, beta-lactams, and changes in osmolarity. RcsF, an outer membrane lipoprotein, is the sensor for this pathway and activates the phosphorelay by interacting with an inner membrane protein IgaA. IgaA is essential; it negatively regulates the signaling by interacting with the phosphotransferase RcsD. We previously showed that RcsF-dependent signaling does not require the periplasmic domain of the histidine kinase RcsC and identified a dominant negative mutant of RcsD that can block signaling via increased interactions with IgaA. However, how the inducing signals are sensed and how signal is transduced to activate the transcription of the Rcs regulon remains unclear. In this study, we investigated how the Rcs cascade functions without its only known sensor, RcsF, and characterized the underlying mechanisms for three distinct RcsF-independent inducers. Previous reports showed that Rcs activity can be induced in the absence of RcsF by a loss of function mutation in the periplasmic oxidoreductase DsbA or by overexpression of the DnaK cochaperone DjlA. We identified an inner membrane protein, DrpB, as a multicopy RcsF-independent Rcs activator in E. coli. The loss of the periplasmic oxidoreductase DsbA and the overexpression of the DnaK cochaperone DjlA each trigger the Rcs cascade in the absence of RcsF by weakening IgaA-RcsD interactions in different ways. In contrast, the cell-division associated protein DrpB uniquely requires the RcsC periplasmic domain for activation; this domain is not needed for RcsF-dependent signaling. This suggests the possibility that the RcsC periplasmic domain acts as a sensor for some Rcs signals. Overall, the results add new understanding to how this complex phosphorelay can be activated by diverse mechanisms.
Collapse
Affiliation(s)
- Anushya Petchiappan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Nadim Majdalani
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Erin Wall
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
2
|
May KL, Grabowicz M. Outer membrane lipoproteins: late to the party, but the center of attention. J Bacteriol 2024:e0044224. [PMID: 39670753 DOI: 10.1128/jb.00442-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
An outer membrane (OM) is the hallmark feature that is often used to distinguish "Gram-negative" bacteria. Our understanding of how the OM is built rests largely on studies of Escherichia coli. In that organism-and seemingly in all species of the Proteobacterial phyla-the essential pathways that assemble the OM each rely on one or more lipoproteins that have been trafficked to the OM. Hence, the lipoprotein trafficking pathway appeared to be foundational for the ability of these bacteria to build their OM. However, such a notion now appears to be misguided. New phylogenetic analyses now show us that lipoprotein trafficking was likely the very last of the essential OM assembly systems to have evolved. The emergence of lipoprotein trafficking must have been a powerful innovation for the ancestors of Proteobacteria, given how it assumed such a central place in OM biogenesis. In this minireview, we broadly discuss the biosynthesis and trafficking of lipoproteins and ponder why the newest OM assembly system (lipoprotein trafficking) has become so key to building the Proteobacterial OM. We examine the diversity among lipoprotein trafficking systems, noting uniting commonalities and highlighting key differences. Current novel antibiotic development is targeted against a small subset of Proteobacterial species that cause severe human diseases; several inhibitors of lipoprotein biosynthesis and OM trafficking have been recently reported that may become new antibiotics. Understanding the diversity in lipoprotein trafficking may yield selective new antibiotics that preferentially kill important human pathogens while sparing species of normal healthy flora.
Collapse
Affiliation(s)
- Kerrie L May
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Antibiotic Resistance Center, Emory University, Atlanta, Georgia, USA
| | - Marcin Grabowicz
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Antibiotic Resistance Center, Emory University, Atlanta, Georgia, USA
- Division of Infectious Disease, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Bisht R, Charlesworth PD, Sperandeo P, Polissi A. Breaking Barriers: Exploiting Envelope Biogenesis and Stress Responses to Develop Novel Antimicrobial Strategies in Gram-Negative Bacteria. Pathogens 2024; 13:889. [PMID: 39452760 PMCID: PMC11510100 DOI: 10.3390/pathogens13100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Antimicrobial resistance (AMR) has emerged as a global health threat, necessitating immediate actions to develop novel antimicrobial strategies and enforce strong stewardship of existing antibiotics to manage the emergence of drug-resistant strains. This issue is particularly concerning when it comes to Gram-negative bacteria, which possess an almost impenetrable outer membrane (OM) that acts as a formidable barrier to existing antimicrobial compounds. This OM is an asymmetric structure, composed of various components that confer stability, fluidity, and integrity to the bacterial cell. The maintenance and restoration of membrane integrity are regulated by envelope stress response systems (ESRs), which monitor its assembly and detect damages caused by external insults. Bacterial communities encounter a wide range of environmental niches to which they must respond and adapt for survival, sustenance, and virulence. ESRs play crucial roles in coordinating the expression of virulence factors, adaptive physiological behaviors, and antibiotic resistance determinants. Given their role in regulating bacterial cell physiology and maintaining membrane homeostasis, ESRs present promising targets for drug development. Considering numerous studies highlighting the involvement of ESRs in virulence, antibiotic resistance, and alternative resistance mechanisms in pathogens, this review aims to present these systems as potential drug targets, thereby encouraging further research in this direction.
Collapse
Affiliation(s)
| | | | - Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (R.B.); (P.D.C.); (A.P.)
| | | |
Collapse
|
4
|
Chen X, Yi LK, Bai YB, Cao MZ, Wang WW, Shang ZX, Li JJ, Xu ML, Wu LF, Zhu Z, Zhang JY. Antibacterial activity and mechanism of Stevia extract against antibiotic-resistant Escherichia coli by interfering with the permeability of the cell wall and the membrane. Front Microbiol 2024; 15:1397906. [PMID: 39360325 PMCID: PMC11445074 DOI: 10.3389/fmicb.2024.1397906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/12/2024] [Indexed: 10/04/2024] Open
Abstract
Natural plant-derived compounds with broad-spectrum antimicrobial activity have become an effective strategy against multidrug-resistant bacteria. The present study was designed to compare the antibacterial activity of six chlorogenic acid (CA) isomers extracted from stevia and investigated the underlying antibacterial mechanisms involved. The results indicated that isochlorogenic acid C (ICAC) exhibited the strongest antibacterial activity against the tested bacteria, especially E. coli, at a 2 mg/mL minimum inhibitory concentration (MIC) and 8 mg/mL minimum bactericidal concentration (MBC). At the MBC, ICAC inhibited 72.66% of the clinical multidrug-resistant strains. Scanning electron microscopy (SEM) revealed that ICAC induced considerable morphological alterations in E. coli ATCC25922 and C4E2. The significant increase in the activity of extracellular alkaline phosphatase (AKP) indicated that ICAC damages the permeability of the bacterial cell wall. Additionally, the intracellular membrane (IM) permeability and the content of lipopolysaccharide (LPS), a main component of the outer membrane (OM), were determined. The significant decrease in LPS content and increased leakage of intracellular proteins and K+ from E. coli indicated that ICAC could induce the exfoliation of OM and disrupt IM permeability, resulting in the loss of barrier function. The uptake of propidium iodide (PI), a compromised cell membrane nucleic acid stain, and confocal laser scanning microscopy (CLSM) further demonstrated that ICAC disrupted IM integrity. Moreover, the bactericidal effect and damage to bacterial microstructural function occurred in a dose-dependent manner. These data demonstrate that ICAC has excellent antibacterial activity and is a promising approach for overcoming the antibiotic resistance of pathogenic bacteria.
Collapse
Affiliation(s)
- Xu Chen
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Lan-Kun Yi
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Yu-Bin Bai
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Ming-Ze Cao
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Wei-Wei Wang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zi-Xuan Shang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Jia-Jing Li
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Mei-Li Xu
- Chenguang Biological Technology Group Co, Ltd., Handan, China
| | - Li-Fei Wu
- Chenguang Biological Technology Group Co, Ltd., Handan, China
| | - Zhen Zhu
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ji-Yu Zhang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| |
Collapse
|
5
|
Watanabe N, Savchenko A. Molecular insights into the initiation step of the Rcs signaling pathway. Structure 2024; 32:1381-1393.e4. [PMID: 38964336 DOI: 10.1016/j.str.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/05/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
The Rcs pathway is repressed by the inner membrane protein IgaA under non-stressed conditions. This repression is hypothesized to be relieved by the binding of the outer membrane-anchored RcsF to IgaA. However, the precise mechanism by which RcsF binding triggers the signaling remains unclear. Here, we present the 1.8 Å resolution crystal structure capturing the interaction between IgaA and RcsF. Our comparative structural analysis, examining both the bound and unbound states of the periplasmic domain of IgaA (IgaAp), highlights rotational flexibility within IgaAp. Conversely, the conformation of RcsF remains unchanged upon binding. Our in vivo and in vitro studies do not support the model of a stable complex involving RcsF, IgaAp, and RcsDp. Instead, we demonstrate that the elements beyond IgaAp play a role in the interaction between IgaA and RcsD. These findings collectively allow us to propose a potential mechanism for the signaling across the inner membrane through IgaA.
Collapse
Affiliation(s)
- Nobuhiko Watanabe
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada; Center for Structural Biology for Infectious Diseases (CSBID) Chicago, IL, USA
| | - Alexei Savchenko
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada; Center for Structural Biology for Infectious Diseases (CSBID) Chicago, IL, USA.
| |
Collapse
|
6
|
Petchiappan A, Majdalani N, Wall E, Gottesman S. RcsF-independent mechanisms of signaling within the Rcs Phosphorelay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610257. [PMID: 39372736 PMCID: PMC11451591 DOI: 10.1101/2024.08.29.610257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The Rcs (regulator of capsule synthesis) phosphorelay is a conserved cell envelope stress response mechanism in enterobacteria. It responds to perturbations at the cell surface and the peptidoglycan layer from a variety of sources, including antimicrobial peptides, beta-lactams, and changes in osmolarity. RcsF, an outer membrane lipoprotein, is the sensor for this pathway and activates the phosphorelay by interacting with an inner membrane protein IgaA. IgaA is essential; it negatively regulates the signaling by interacting with the phosphotransferase RcsD. We previously showed that RcsF-dependent signaling does not require the periplasmic domain of the histidine kinase RcsC and identified a dominant negative mutant of RcsD that can block signaling via increased interactions with IgaA. However, how the inducting signals are sensed and how signal is transduced to activate the transcription of the Rcs regulon remains unclear. In this study, we investigated how the Rcs cascade functions without its only known sensor, RcsF and characterized the underlying regulatory mechanisms for three distinct RcsF-independent inducers. Previous reports showed that Rcs signaling can be induced in the absence of RcsF by a loss of function mutation in the periplasmic oxidoreductase DsbA or by overexpression of the DnaK cochaperone DjlA. We identified an inner membrane protein, DrpB, as a multicopy RcsF-independent Rcs activator in E. coli. The loss of the periplasmic oxidoreductase DsbA and the overexpression of the DnaK cochaperone DjlA each trigger the Rcs cascade in the absence of RcsF by weakening IgaA-RcsD interactions in different ways. In contrast, the cell-division associated protein DrpB uniquely requires the RcsC periplasmic domain for signaling; this domain is not needed for RcsF-dependent signaling. This suggests the possibility that RcsC acts as a sensor for some Rcs signals. Overall, the results add new understanding to how this complex phosphorelay can be activated by diverse mechanisms.
Collapse
Affiliation(s)
- Anushya Petchiappan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD., 20892
| | - Nadim Majdalani
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD., 20892
| | - Erin Wall
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD., 20892
- Current address: US Food and Drug Administration, Office of Pharmaceutical Quality, Silver Spring MD 20903
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD., 20892
| |
Collapse
|
7
|
Li Z, Zhu Y, Zhang W, Mu W. Rcs signal transduction system in Escherichia coli: Composition, related functions, regulatory mechanism, and applications. Microbiol Res 2024; 285:127783. [PMID: 38795407 DOI: 10.1016/j.micres.2024.127783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
The regulator of capsule synthesis (Rcs) system, an atypical two-component system prevalent in numerous gram-negative bacteria, serves as a sophisticated regulatory phosphorylation cascade mechanism. It plays a pivotal role in perceiving environmental stress and regulating the expression of downstream genes to ensure host survival. During the signaling transduction process, various proteins participate in phosphorylation to further modulate signal inputs and outputs. Although the structure of core proteins related to the Rcs system has been partially well-defined, and two models have been proposed to elucidate the intricate molecular mechanisms underlying signal sensing, a systematic characterization of the signal transduction process of the Rcs system remains challenging. Furthermore, exploring its corresponding regulator outputs is also unremitting. This review aimed to shed light on the regulation of bacterial virulence by the Rcs system. Moreover, with the assistance of the Rcs system, biosynthesis technology has developed high-value target production. Additionally, via this review, we propose designing chimeric Rcs biosensor systems to expand their application as synthesis tools. Finally, unsolved challenges are highlighted to provide the basic direction for future development of the Rcs system.
Collapse
Affiliation(s)
- Zeyu Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
8
|
Mettlach JA, Cian MB, Chakraborty M, Dalebroux ZD. Signaling through the Salmonella PbgA-LapB regulatory complex activates LpxC proteolysis and limits lipopolysaccharide biogenesis during stationary-phase growth. J Bacteriol 2024; 206:e0030823. [PMID: 38534107 PMCID: PMC11025326 DOI: 10.1128/jb.00308-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) controls lipopolysaccharide (LPS) biosynthesis by regulating proteolysis of LpxC, the rate-limiting enzyme and target of preclinical antibiotics. PbgA/YejM/LapC regulates LpxC levels and controls outer membrane (OM) LPS composition at the log-to-stationary phase transition. Suppressor substitutions in LPS assembly protein B (LapB/YciM) rescue the LPS and OM integrity defects of pbgA-mutant S. Typhimurium. We hypothesized that PbgA regulates LpxC proteolysis by controlling LapB's ability to bind LpxC as a function of the growth phase. According to existing models, when nutrients are abundant, PbgA binds and restricts LapB from interacting with LpxC and FtsH, which limits LpxC proteolysis. However, when nutrients are limited, there is debate whether LapB dissociates from PbgA to bind LpxC and FtsH to enhance degradation. We sought to examine these models and investigate how the structure of LapB enables salmonellae to control LpxC proteolysis and LPS biosynthesis. Salmonellae increase LapB levels during the stationary phase to promote LpxC degradation, which limits lipid A-core production and increases their survival. The deletion of lapB, resulting in unregulated lipid A-core production and LpxC overabundance, leads to bacterial growth retardation. Tetratricopeptide repeats near the cytosol-inner membrane interface are sufficient for LapB to bind LpxC, and remarkably, LapB and PbgA interact in both growth phases, yet LpxC only associates with LapB in the stationary phase. Our findings support that PbgA-LapB exists as a constitutive complex in S. Typhimurium, which differentially binds LpxC to control LpxC proteolysis and limit lipid A-core biosynthesis in response to changes in the environment.IMPORTANCEAntimicrobial resistance has been a costly setback for human health and agriculture. Continued pursuit of new antibiotics and targets is imperative, and an improved understanding of existing ones is necessary. LpxC is an essential target of preclinical trial antibiotics that can eliminate multidrug-resistant Gram-negative bacterial infections. LapB is a natural LpxC inhibitor that targets LpxC for degradation and limits lipopolysaccharide production in Enterobacteriaceae. Contrary to some studies, findings herein support that LapB remains in complex instead of dissociating from its presumed negative regulator, PbgA/YejM/LapC, under conditions where LpxC proteolysis is enhanced. Advanced comprehension of this critical protein-lipid signaling network will lead to future development and refinement of small molecules that can specifically interfere.
Collapse
Affiliation(s)
- Joshua A. Mettlach
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Melina B. Cian
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Medha Chakraborty
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Zachary D. Dalebroux
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
9
|
George A, Patil AG, Mahalakshmi R. ATP-independent assembly machinery of bacterial outer membranes: BAM complex structure and function set the stage for next-generation therapeutics. Protein Sci 2024; 33:e4896. [PMID: 38284489 PMCID: PMC10804688 DOI: 10.1002/pro.4896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/30/2024]
Abstract
Diderm bacteria employ β-barrel outer membrane proteins (OMPs) as their first line of communication with their environment. These OMPs are assembled efficiently in the asymmetric outer membrane by the β-Barrel Assembly Machinery (BAM). The multi-subunit BAM complex comprises the transmembrane OMP BamA as its functional subunit, with associated lipoproteins (e.g., BamB/C/D/E/F, RmpM) varying across phyla and performing different regulatory roles. The ability of BAM complex to recognize and fold OM β-barrels of diverse sizes, and reproducibly execute their membrane insertion, is independent of electrochemical energy. Recent atomic structures, which captured BAM-substrate complexes, show the assembly function of BamA can be tailored, with different substrate types exhibiting different folding mechanisms. Here, we highlight common and unique features of its interactome. We discuss how this conserved protein complex has evolved the ability to effectively achieve the directed assembly of diverse OMPs of wide-ranging sizes (8-36 β-stranded monomers). Additionally, we discuss how darobactin-the first natural membrane protein inhibitor of Gram-negative bacteria identified in over five decades-selectively targets and specifically inhibits BamA. We conclude by deliberating how a detailed deduction of BAM complex-associated regulation of OMP biogenesis and OM remodeling will open avenues for the identification and development of effective next-generation therapeutics against Gram-negative pathogens.
Collapse
Affiliation(s)
- Anjana George
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| | - Akanksha Gajanan Patil
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| |
Collapse
|
10
|
TagElDein MA, Mohamed NG, Shahein YE, Ziko L, Hussein NA. Altering Escherichia coli envelope integrity by mimicking the lipoprotein RcsF. Arch Microbiol 2023; 206:12. [PMID: 38070002 PMCID: PMC10710380 DOI: 10.1007/s00203-023-03733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/21/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023]
Abstract
Escherichia coli cell envelope is crucial for stress sensing and signal transduction, mediated by numerous protein-protein interactions to enable adaptation and survival. Interfering with these interactions might affect envelope integrity leading to bacterial death. The outer membrane lipoprotein (RcsF) is the stress sensor of the regulator of capsule synthesis (Rcs) phosphorelay that senses envelope threats. RcsF interacts with two essential proteins, IgaA (repressing the Rcs system) and BamA (inserting β-barrel proteins in the outer membrane). Disturbing RcsF interactions may alter Rcs signaling and/or membrane integrity thus affecting bacterial survival. Here, we derived the sequence of a peptide mimicking RcsF (RcsFmim), based on the in silico docking of RcsF with IgaA. Expression of rcsFmim caused 3-to-4-fold activation of the Rcs system and perturbation of the outer membrane. Both effects result in decreased E. coli growth rate. We anticipate that RcsFmim present a candidate for future antibacterial peptide development.
Collapse
Affiliation(s)
- Moustafa A TagElDein
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Noha G Mohamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sphinx University, Assiut, Egypt
| | - Yasser E Shahein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Laila Ziko
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted By the Global Academic Foundation, R5 New Garden City, New Administrative Capital, Cairo, Egypt
| | - Nahla A Hussein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt.
| |
Collapse
|
11
|
Kumar S, Konovalova A. BamE directly interacts with BamA and BamD coordinating their functions. Mol Microbiol 2023; 120:397-407. [PMID: 37455652 PMCID: PMC10528117 DOI: 10.1111/mmi.15127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The β-barrel assembly machinery (Bam) complex facilitates the assembly of outer membrane proteins (OMPs) in gram-negative bacteria. The Bam complex is conserved and essential for bacterial viability and consists of five subunits, BamA-E. BamA is the transmembrane component, and its β-barrel domain opens laterally to allow folding and insertion of incoming OMPs. The remaining components are regulatory, among which only BamD is essential. Previous studies suggested that BamB regulates BamA directly, while BamE and BamC serve as BamD regulators. However, specific molecular details of their functions remain unknown. Our previous research demonstrated that BamE plays a specialized role in assembling the complex between the lipoprotein RcsF and its OMP partners, required for the Regulator of Capsule Synthesis (Rcs) stress response. Here, we used RcsF/OmpA as a model substrate to investigate BamE function. Our results challenge the current view that BamE only serves as a BamD regulator. We show that BamE also directly interacts with BamA. BamE interaction with both BamA and BamD is important for function. Our genetic and biochemical analysis shows that BamE stabilizes the Bam complex and promotes bidirectional signaling interaction between BamA and BamD. This BamE function becomes essential when direct BamA/BamD communication is impeded.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77030, USA
| | - Anna Konovalova
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77030, USA
| |
Collapse
|
12
|
Yang S, Ma L, Xu X, Peng Q, Zhong H, Gong Y, Shi L, He M, Shi B, Qiao Y. Physiological and Transcriptomic Analyses of Escherichia coli Serotype O157:H7 in Response to Rhamnolipid Treatment. Microorganisms 2023; 11:2112. [PMID: 37630672 PMCID: PMC10459150 DOI: 10.3390/microorganisms11082112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Rhamnolipid (RL) can inhibit biofilm formation of Escherichia coli O157:H7, but the associated mechanism remains unknown. We here conducted comparative physiological and transcriptomic analyses of cultures treated with RL and untreated cultures to elucidate a potential mechanism by which RL may inhibit biofilm formation in E. coli O157:H7. Anti-biofilm assays showed that over 70% of the E. coli O157:H7 biofilm formation capacity was inhibited by treatment with 0.25-1 mg/mL of RL. Cellular-level physiological analysis revealed that a high concentration of RL significantly reduced outer membrane hydrophobicity. E. coli cell membrane integrity and permeability were also significantly affected by RL due to an increase in the release of lipopolysaccharide (LPS) from the cell membrane. Furthermore, transcriptomic profiling showed 2601 differentially expressed genes (1344 up-regulated and 1257 down-regulated) in cells treated with RL compared to untreated cells. Functional enrichment analysis indicated that RL treatment up-regulated biosynthetic genes responsible for LPS synthesis, outer membrane protein synthesis, and flagellar assembly, and down-regulated genes required for poly-N-acetyl-glucosamine biosynthesis and genes present in the locus of enterocyte effacement pathogenicity island. In summary, RL treatment inhibited E. coli O157:H7 biofilm formation by modifying key outer membrane surface properties and expression levels of adhesion genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bo Shi
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.Y.); (L.M.); (X.X.); (Q.P.); (H.Z.); (Y.G.); (L.S.); (M.H.)
| | - Yu Qiao
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.Y.); (L.M.); (X.X.); (Q.P.); (H.Z.); (Y.G.); (L.S.); (M.H.)
| |
Collapse
|
13
|
Liu C, Angius F, Pol A, Mesman RA, Versantvoort W, Op den Camp HJM. Identification and characterization of an abundant lipoprotein from Methylacidiphilum fumariolicum SolV. Arch Microbiol 2023; 205:261. [PMID: 37306788 DOI: 10.1007/s00203-023-03603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Bacterial lipoproteins are characterized by the presence of a conserved N-terminal lipid-modified cysteine residue that allows the hydrophilic protein to anchor into bacterial cell membranes. These lipoproteins play essential roles in a wide variety of physiological processes. Based on transcriptome analysis of the verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV, we identified a highly expressed lipoprotein, WP_009060351 (139 amino acids), in its genome. The first 86 amino acids are specific for the methanotrophic genera Methylacidiphilum and Methylacidmicrobium, while the last 53 amino acids are present only in lipoproteins of members from the phylum Verrucomicrobiota (Hedlund). Heterologous expression of WP_009060351 in Escherichia coli revealed a 25-kDa dimeric protein and a 60-kDa tetrameric protein. Immunoblotting showed that WP_009060351 was present in the total membrane protein and peptidoglycan fractions of M. fumariolicum SolV. The results suggest an involvement of lipoprotein WP_009060351 in the linkage between the outer membrane and the peptidoglycan.
Collapse
Affiliation(s)
- Changqing Liu
- Faculty of Science, Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Federica Angius
- Faculty of Science, Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Arjan Pol
- Faculty of Science, Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Rob A Mesman
- Faculty of Science, Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Wouter Versantvoort
- Faculty of Science, Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Huub J M Op den Camp
- Faculty of Science, Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
14
|
Cho THS, Wang J, Raivio TL. NlpE Is an OmpA-Associated Outer Membrane Sensor of the Cpx Envelope Stress Response. J Bacteriol 2023; 205:e0040722. [PMID: 37022159 PMCID: PMC10127795 DOI: 10.1128/jb.00407-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
Gram-negative bacteria utilize several envelope stress responses (ESRs) to sense and respond to diverse signals within a multilayered cell envelope. The CpxRA ESR responds to multiple stresses that perturb envelope protein homeostasis. Signaling in the Cpx response is regulated by auxiliary factors, such as the outer membrane (OM) lipoprotein NlpE, an activator of the response. NlpE communicates surface adhesion to the Cpx response; however, the mechanism by which NlpE accomplishes this remains unknown. In this study, we report a novel interaction between NlpE and the major OM protein OmpA. Both NlpE and OmpA are required to activate the Cpx response in surface-adhered cells. Furthermore, NlpE senses OmpA overexpression and the NlpE C-terminal domain transduces this signal to the Cpx response, revealing a novel signaling function for this domain. Mutation of OmpA peptidoglycan-binding residues abrogates signaling during OmpA overexpression, suggesting that NlpE signaling from the OM through the cell wall is coordinated via OmpA. Overall, these findings reveal NlpE to be a versatile envelope sensor that takes advantage of its structure, localization, and cooperation with other envelope proteins to initiate adaptation to diverse signals. IMPORTANCE The envelope is not only a barrier that protects bacteria from the environment but also a crucial site for the transduction of signals critical for colonization and pathogenesis. The discovery of novel complexes between NlpE and OmpA contributes to an emerging understanding of the key contribution of OM β-barrel protein and lipoprotein complexes to envelope stress signaling. Overall, our findings provide mechanistic insight into how the Cpx response senses signals relevant to surface adhesion and biofilm growth to facilitate bacterial adaptation.
Collapse
Affiliation(s)
- Timothy H. S. Cho
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Junshu Wang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Tracy L. Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Cho SH, Dekoninck K, Collet JF. Envelope-Stress Sensing Mechanism of Rcs and Cpx Signaling Pathways in Gram-Negative Bacteria. J Microbiol 2023; 61:317-329. [PMID: 36892778 DOI: 10.1007/s12275-023-00030-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 03/10/2023]
Abstract
The global public health burden of bacterial antimicrobial resistance (AMR) is intensified by Gram-negative bacteria, which have an additional membrane, the outer membrane (OM), outside of the peptidoglycan (PG) cell wall. Bacterial two-component systems (TCSs) aid in maintaining envelope integrity through a phosphorylation cascade by controlling gene expression through sensor kinases and response regulators. In Escherichia coli, the major TCSs defending cells from envelope stress and adaptation are Rcs and Cpx, which are aided by OM lipoproteins RcsF and NlpE as sensors, respectively. In this review, we focus on these two OM sensors. β-Barrel assembly machinery (BAM) inserts transmembrane OM proteins (OMPs) into the OM. BAM co-assembles RcsF, the Rcs sensor, with OMPs, forming the RcsF-OMP complex. Researchers have presented two models for stress sensing in the Rcs pathway. The first model suggests that LPS perturbation stress disassembles the RcsF-OMP complex, freeing RcsF to activate Rcs. The second model proposes that BAM cannot assemble RcsF into OMPs when the OM or PG is under specific stresses, and thus, the unassembled RcsF activates Rcs. These two models may not be mutually exclusive. Here, we evaluate these two models critically in order to elucidate the stress sensing mechanism. NlpE, the Cpx sensor, has an N-terminal (NTD) and a C-terminal domain (CTD). A defect in lipoprotein trafficking results in NlpE retention in the inner membrane, provoking the Cpx response. Signaling requires the NlpE NTD, but not the NlpE CTD; however, OM-anchored NlpE senses adherence to a hydrophobic surface, with the NlpE CTD playing a key role in this function.
Collapse
Affiliation(s)
- Seung-Hyun Cho
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, 1200, Brussels, Belgium. .,de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium.
| | - Kilian Dekoninck
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, 1200, Brussels, Belgium.,de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium.,University of California, Berkeley, CA, 94720, USA
| | - Jean-Francois Collet
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, 1200, Brussels, Belgium.,de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium
| |
Collapse
|
16
|
Harshaw NS, Meyer MD, Stella NA, Lehner KM, Kowalski RP, Shanks RMQ. The Short-chain Fatty Acid Propionic Acid Activates the Rcs Stress Response System Partially through Inhibition of d-Alanine Racemase. mSphere 2023; 8:e0043922. [PMID: 36645277 PMCID: PMC9942566 DOI: 10.1128/msphere.00439-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/16/2022] [Indexed: 01/17/2023] Open
Abstract
The Enterobacterial Rcs stress response system reacts to envelope stresses through a complex two-component phosphorelay system to regulate a variety of environmental response genes, such as capsular polysaccharide and flagella biosynthesis genes. However, beyond Escherichia coli, the stresses that activate Rcs are not well-understood. In this study, we used a Rcs system-dependent luminescent transcriptional reporter to screen a library of over 240 antimicrobial compounds for those that activated the Rcs system in Serratia marcescens, a Yersiniaceae family bacterium. Using an isogenic rcsB mutant to establish specificity, both new and expected activators were identified, including the short-chain fatty acid propionic acid, which is found at millimolar levels in the human gut. Propionic acid did not reduce the bacterial intracellular pH, as was hypothesized for its antibacterial mechanism. Instead, data suggest that the Rcs-activation by propionic acid is due, in part, to an inactivation of alanine racemase. This enzyme is responsible for the biosynthesis of d-alanine, which is an amino-acid that is required for the generation of bacterial cell walls. Consistent with what was observed in S. marcescens, in E. coli, alanine racemase mutants demonstrated elevated expression of the Rcs-reporter in a d-alanine-dependent and RcsB-dependent manner. These results suggest that host gut short-chain fatty acids can influence bacterial behavior via the activation of the Rcs stress response system. IMPORTANCE The Rcs bacterial stress response system responds to envelope stresses by globally altering gene expression to profoundly impact host-pathogen interactions, virulence, and antibiotic tolerance. In this study, a luminescent Rcs-reporter plasmid was used to screen a library of compounds for activators of Rcs. Among the strongest inducers was the short-chain fatty acid propionic acid, which is found at high concentrations in the human gut. This study suggests that gut short-chain fatty acids can affect both bacterial virulence and antibiotic tolerance via the induction of the Rcs system.
Collapse
Affiliation(s)
- Nathaniel S. Harshaw
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mitchell D. Meyer
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nicholas A. Stella
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kara M. Lehner
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Regis P. Kowalski
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert M. Q. Shanks
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Lach SR, Kumar S, Kim S, Im W, Konovalova A. Conformational rearrangements in the sensory RcsF/OMP complex mediate signal transduction across the bacterial cell envelope. PLoS Genet 2023; 19:e1010601. [PMID: 36706155 PMCID: PMC9907809 DOI: 10.1371/journal.pgen.1010601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 02/08/2023] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Timely detection and repair of envelope damage are paramount for bacterial survival. The Regulator of Capsule Synthesis (Rcs) stress response can transduce the stress signals across the multilayered gram-negative cell envelope to regulate gene expression in the cytoplasm. Previous studies defined the overall pathway, which begins with the sensory lipoprotein RcsF interacting with several outer membrane proteins (OMPs). RcsF can also interact with the periplasmic domain of the negative regulator IgaA, derepressing the downstream RcsCDB phosphorelay. However, how the RcsF/IgaA interaction is regulated at the molecular level to activate the signaling in response to stress remains poorly understood. In this study, we used a site-saturated mutant library of rcsF to carry out several independent genetic screens to interrogate the mechanism of signal transduction from RcsF to IgaA. We analyzed several distinct classes of rcsF signaling mutants, and determined the region of RcsF that is critically important for signal transduction. This region is bifunctional as it is important for RcsF interaction with both IgaA and OMPs. The mutant analysis provides strong evidence for conformational changes in the RcsF/OMP complex mediating signal transduction to IgaA, and the first direct evidence that OMPs play an important regulatory role in Rcs signaling.
Collapse
Affiliation(s)
- Sarah R. Lach
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Santosh Kumar
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Seonghoon Kim
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Republic of Korea
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Anna Konovalova
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
18
|
Liao C, Santoscoy MC, Craft J, Anderson C, Soupir ML, Jarboe LR. Allelic variation of Escherichia coli outer membrane protein A: Impact on cell surface properties, stress tolerance and allele distribution. PLoS One 2022; 17:e0276046. [PMID: 36227900 PMCID: PMC9560509 DOI: 10.1371/journal.pone.0276046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Outer membrane protein A (OmpA) is one of the most abundant outer membrane proteins of Gram-negative bacteria and is known to have patterns of sequence variations at certain amino acids-allelic variation-in Escherichia coli. Here we subjected seven exemplar OmpA alleles expressed in a K-12 (MG1655) ΔompA background to further characterization. These alleles were observed to significantly impact cell surface charge (zeta potential), cell surface hydrophobicity, biofilm formation, sensitivity to killing by neutrophil elastase, and specific growth rate at 42°C and in the presence of acetate, demonstrating that OmpA is an attractive target for engineering cell surface properties and industrial phenotypes. It was also observed that cell surface charge and biofilm formation both significantly correlate with cell surface hydrophobicity, a cell property that is increasingly intriguing for bioproduction. While there was poor alignment between the observed experimental values relative to the known sequence variation, differences in hydrophobicity and biofilm formation did correspond to the identity of residue 203 (N vs T), located within the proposed dimerization domain. The relative abundance of the (I, δ) allele was increased in extraintestinal pathogenic E. coli (ExPEC) isolates relative to environmental isolates, with a corresponding decrease in (I, α) alleles in ExPEC relative to environmental isolates. The (I, α) and (I, δ) alleles differ at positions 203 and 251. Variations in distribution were also observed among ExPEC types and phylotypes. Thus, OmpA allelic variation and its influence on OmpA function warrant further investigation.
Collapse
Affiliation(s)
- Chunyu Liao
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, United States of America
| | - Miguel C. Santoscoy
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa United States of America
| | - Julia Craft
- Department of Chemical and Biological Engineering, Biological Materials and Processes (BioMAP) NSF REU Program, Iowa State University, Ames, Iowa, United States of America
| | - Chiron Anderson
- Department of Chemical and Biological Engineering, Biological Materials and Processes (BioMAP) NSF REU Program, Iowa State University, Ames, Iowa, United States of America
| | - Michelle L. Soupir
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, United States of America
| | - Laura R. Jarboe
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, United States of America
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa United States of America
- * E-mail:
| |
Collapse
|
19
|
The Roles of the Two-Component System, MtrAB, in Response to Diverse Cell Envelope Stresses in Dietzia sp. DQ12-45-1b. Appl Environ Microbiol 2022; 88:e0133722. [PMID: 36190258 PMCID: PMC9599347 DOI: 10.1128/aem.01337-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Two-component systems (TCSs) act as common regulatory systems allowing bacteria to detect and respond to multiple environmental stimuli, including cell envelope stress. The MtrAB TCS of Actinobacteria is critical for cell wall homeostasis, cell proliferation, osmoprotection, and antibiotic resistance, and thus is found to be highly conserved across this phylum. However, how precisely the MtrAB TCS regulates cellular homeostasis in response to environmental stress remains unclear. Here, we show that the MtrAB TCS plays an important role in the tolerance to different types of cell envelope stresses, including environmental stresses (i.e., oxidative stress, lysozyme, SDS, osmotic pressure, and alkaline pH stresses) and envelope-targeting antibiotics (i.e., isoniazid, ethambutol, glycopeptide, and β-lactam antibiotics) in Dietzia sp. DQ12-45-1b. An mtrAB mutant strain exhibited slower growth compared to the wild-type strain and was characterized by abnormal cell shapes when exposed to various environmental stresses. Moreover, deletion of mtrAB resulted in decreased resistance to isoniazid, ethambutol, and β-lactam antibiotics. Further, Cleavage under targets and tagmentation sequencing (CUT&Tag-seq) and electrophoretic mobility shift assays (EMSAs) revealed that MtrA binds the promoters of genes involved in peptidoglycan biosynthesis (ldtB, ldtA, murJ), hydrolysis (GJR88_03483, GJR88_4713), and cell division (ftsE). Together, our findings demonstrated that the MtrAB TCS is essential for the survival of Dietzia sp. DQ12-45-1b under various cell envelope stresses, primarily by controlling multiple downstream cellular pathways. Our work suggests that TCSs act as global sensors and regulators in maintaining cellular homeostasis, such as during episodes of various environmental stresses. The present study should shed light on the understanding of mechanisms for bacterial adaptivity to extreme environments. IMPORTANCE The multilayered cell envelope is the first line of bacterial defense against various extreme environments. Bacteria utilize a large number of sensing and regulatory systems to maintain cell envelope homeostasis under multiple stress conditions. The two-component system (TCS) is the main sensing and responding apparatus for environmental adaptation. The MtrAB TCS highly conserved in Actinobacteria is critical for cell wall homeostasis, cell proliferation, osmoprotection, and antibiotic resistance. However, how MtrAB works with regard to signals impacting changes to the cell envelope is not fully understood. Here, we found that in the Actinobacterium Dietzia sp. DQ12-45-1b, a TCS named MtrAB is pivotal for ensuring normal cell growth as well as maintaining proper cell morphology in response to various cell envelope stresses, namely, by regulating the expression of cell envelope-related genes. Our findings should greatly advance our understanding of the adaptive mechanisms responsible for maintaining cell integrity in times of sustained environmental shocks.
Collapse
|
20
|
An Unprecedented Tolerance to Deletion of the Periplasmic Chaperones SurA, Skp, and DegP in the Nosocomial Pathogen Acinetobacter baumannii. J Bacteriol 2022; 204:e0005422. [PMID: 36106853 PMCID: PMC9578438 DOI: 10.1128/jb.00054-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria efficiently protects from harmful environmental stresses such as antibiotics, disinfectants, or dryness. The main constituents of the OM are integral OM β-barrel proteins (OMPs). In Gram-negative bacteria such as Escherichia coli, Yersinia enterocolitica, and Pseudomonas aeruginosa, the insertion of OMPs depends on a sophisticated biogenesis pathway. This comprises the SecYEG translocon, which enables inner membrane (IM) passage; the chaperones SurA, Skp, and DegP, which facilitate the passage of β-barrel OMPs through the periplasm; and the β-barrel assembly machinery (BAM), which facilitates insertion into the OM. In E. coli, Y. enterocolitica, and P. aeruginosa, the deletion of SurA is particularly detrimental and leads to a loss of OM integrity, sensitization to antibiotic treatment, and reduced virulence. In search of targets that could be exploited to develop compounds that interfere with OM integrity in Acinetobacter baumannii, we employed the multidrug-resistant strain AB5075 to generate single gene knockout strains lacking individual periplasmic chaperones. In contrast to E. coli, Y. enterocolitica, and P. aeruginosa, AB5075 tolerates the lack of SurA, Skp, or DegP with only weak mutant phenotypes. While the double knockout strains ΔsurAΔskp and ΔsurAΔdegP are conditionally lethal in E. coli, all double deletions were well tolerated by AB5075. Strikingly, even a triple-knockout strain of AB5075, lacking surA, skp, and degP, was viable. IMPORTANCEAcinetobacter baumannii is a major threat to human health due to its ability to persist in the hospital environment, resistance to antibiotic treatment, and ability to deploy multiple and redundant virulence factors. In a rising number of cases, infections with multidrug-resistant A. baumannii end up fatally, because all antibiotic treatment options fail. Thus, novel targets have to be identified and alternative therapeutics have to be developed. The knockout of periplasmic chaperones has previously proven to significantly reduce virulence and even break antibiotic resistance in other Gram-negative pathogens. Our study in A. baumannii demonstrates how variable the importance of the periplasmic chaperones SurA, Skp, and DegP can be and suggests the existence of mechanisms allowing A. baumannii to cope with the lack of the three periplasmic chaperones.
Collapse
|
21
|
A New Factor LapD Is Required for the Regulation of LpxC Amounts and Lipopolysaccharide Trafficking. Int J Mol Sci 2022; 23:ijms23179706. [PMID: 36077106 PMCID: PMC9456370 DOI: 10.3390/ijms23179706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Lipopolysaccharide (LPS) constitutes the major component of the outer membrane and is essential for bacteria, such as Escherichia coli. Recent work has revealed the essential roles of LapB and LapC proteins in regulating LPS amounts; although, if any additional partners are involved is unknown. Examination of proteins co-purifying with LapB identified LapD as a new partner. The purification of LapD reveals that it forms a complex with several proteins involved in LPS and phospholipid biosynthesis, including FtsH-LapA/B and Fab enzymes. Loss of LapD causes a reduction in LpxC amounts and vancomycin sensitivity, which can be restored by mutations that stabilize LpxC (mutations in lapB, ftsH and lpxC genes), revealing that LapD acts upstream of LapB-FtsH in regulating LpxC amounts. Interestingly, LapD absence results in the substantial retention of LPS in the inner membranes and synthetic lethality when either the lauroyl or the myristoyl acyl transferase is absent, which can be overcome by single-amino acid suppressor mutations in LPS flippase MsbA, suggesting LPS translocation defects in ΔlapD bacteria. Several genes whose products are involved in cell envelope homeostasis, including clsA, waaC, tig and micA, become essential in LapD’s absence. Furthermore, the overproduction of acyl carrier protein AcpP or transcriptional factors DksA, SrrA can overcome certain defects of the LapD-lacking strain.
Collapse
|
22
|
Abstract
The outer membrane (OM) of Gram-negative bacteria is an essential organelle that acts as a formidable barrier to antibiotics. Increasingly prevalent resistance to existing drugs has exacerbated the need for antibiotic discovery efforts targeting the OM. Acylated proteins, known as lipoproteins, are essential in every pathway needed to build the OM. The central role of OM lipoproteins makes their biogenesis a uniquely attractive therapeutic target, but it also complicates in vivo identification of on-pathway inhibitors, as inhibition of OM lipoprotein biogenesis broadly disrupts OM assembly. Here, we use genetics to probe the eight essential proteins involved in OM lipoprotein maturation and trafficking. We define a biological signature consisting of three simple assays that can characteristically identify OM lipoprotein biogenesis defects in vivo. We find that several known chemical inhibitors of OM lipoprotein biogenesis conform to the biological signature. We also examine MAC13243, a proposed inhibitor of OM lipoprotein biogenesis, and find that it fails to conform to the biological signature. Indeed, we demonstrate that MAC13243 activity relies entirely on a target outside of the OM lipoprotein biogenesis pathway. Hence, our signature offers simple tools to easily assess whether antibiotic lead compounds target an essential pathway that is the hub of OM assembly.
Collapse
|
23
|
The Wsp system of Pseudomonas aeruginosa links surface sensing and cell envelope stress. Proc Natl Acad Sci U S A 2022; 119:e2117633119. [PMID: 35476526 PMCID: PMC9170161 DOI: 10.1073/pnas.2117633119] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SignificanceBacteria must respond quickly to environmental changes to survive. One way bacteria can respond to environmental stress is by undergoing a lifestyle transition from individual, free-swimming cells to a surface-associated community called a biofilm characterized by aggregative growth. The opportunistic pathogen Pseudomonas aeruginosa uses the Wsp chemosensory system to sense an unknown surface-associated cue. Here we show that the Wsp system senses cell envelope stress, specifically conditions that promote unfolded or misregulated periplasmic and inner membrane proteins. This work provides direct evidence that cell envelope stress is an important feature of surface sensing in P. aeruginosa.
Collapse
|
24
|
Sun J, Rutherford ST, Silhavy TJ, Huang KC. Physical properties of the bacterial outer membrane. Nat Rev Microbiol 2022; 20:236-248. [PMID: 34732874 PMCID: PMC8934262 DOI: 10.1038/s41579-021-00638-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 11/09/2022]
Abstract
It has long been appreciated that the Gram-negative outer membrane acts as a permeability barrier, but recent studies have uncovered a more expansive and versatile role for the outer membrane in cellular physiology and viability. Owing to recent developments in microfluidics and microscopy, the structural, rheological and mechanical properties of the outer membrane are becoming apparent across multiple scales. In this Review, we discuss experimental and computational studies that have revealed key molecular factors and interactions that give rise to the spatial organization, limited diffusivity and stress-bearing capacity of the outer membrane. These physical properties suggest broad connections between cellular structure and physiology, and we explore future prospects for further elucidation of the implications of outer membrane construction for cellular fitness and survival.
Collapse
Affiliation(s)
- Jiawei Sun
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Steven T. Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA 94080, USA,To whom correspondence should be addressed: , ,
| | - Thomas J. Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,To whom correspondence should be addressed: , ,
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, USA. .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
25
|
Abstract
Ceragenins are a family of synthetic amphipathic molecules designed to mimic the properties of naturally occurring cationic antimicrobial peptides (CAMPs). Although ceragenins have potent antimicrobial activity, whether their mode of action is similar to that of CAMPs has remained elusive. Here, we reported the results of a comparative study of the bacterial responses to two well-studied CAMPs, LL37 and colistin, and two ceragenins with related structures, CSA13 and CSA131. Using transcriptomic and proteomic analyses, we found that Escherichia coli responded similarly to both CAMPs and ceragenins by inducing a Cpx envelope stress response. However, whereas E. coli exposed to CAMPs increased expression of genes involved in colanic acid biosynthesis, bacteria exposed to ceragenins specifically modulated functions related to phosphate transport, indicating distinct mechanisms of action between these two classes of molecules. Although traditional genetic approaches failed to identify genes that confer high-level resistance to ceragenins, using a Clustered Regularly Interspaced Short Palindromic Repeats interference (CRISPRi) approach we identified E. coli essential genes that when knocked down modify sensitivity to these molecules. Comparison of the essential gene-antibiotic interactions for each of the CAMPs and ceragenins identified both overlapping and distinct dependencies for their antimicrobial activities. Overall, this study indicated that, while some bacterial responses to ceragenins overlap those induced by naturally occurring CAMPs, these synthetic molecules target the bacterial envelope using a distinctive mode of action. IMPORTANCE The development of novel antibiotics is essential because the current arsenal of antimicrobials will soon be ineffective due to the widespread occurrence of antibiotic resistance. The development of naturally occurring cationic antimicrobial peptides (CAMPs) for therapeutics to combat antibiotic resistance has been hampered by high production costs and protease sensitivity, among other factors. The ceragenins are a family of synthetic CAMP mimics that kill a broad spectrum of bacterial species but are less expensive to produce, resistant to proteolytic degradation, and seemingly resistant to the development of high-level resistance. Determining how ceragenins function may identify new essential biological pathways of bacteria that are less prone to the development of resistance and will further our understanding of the design principles for maximizing the effects of synthetic CAMPs.
Collapse
|
26
|
Matera G, Altuvia Y, Gerovac M, El Mouali Y, Margalit H, Vogel J. Global RNA interactome of Salmonella discovers a 5' UTR sponge for the MicF small RNA that connects membrane permeability to transport capacity. Mol Cell 2022; 82:629-644.e4. [PMID: 35063132 DOI: 10.1016/j.molcel.2021.12.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 10/04/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
The envelope of Gram-negative bacteria is a vital barrier that must balance protection and nutrient uptake. Small RNAs are crucial regulators of the envelope composition and function. Here, using RIL-seq to capture the Hfq-mediated RNA-RNA interactome in Salmonella enterica, we discover envelope-related riboregulators, including OppX. We show that OppX acts as an RNA sponge of MicF sRNA, a prototypical porin repressor. OppX originates from the 5' UTR of oppABCDF, encoding the major inner-membrane oligopeptide transporter, and sequesters MicF's seed region to derepress the synthesis of the porin OmpF. Intriguingly, OppX operates as a true sponge, storing MicF in an inactive complex without affecting its levels or stability. Conservation of the opp-OppX-MicF-ompF axis in related bacteria suggests that it serves an important mechanism, adjusting envelope porosity to specific transport capacity. These data also highlight the resource value of this Salmonella RNA interactome, which will aid in unraveling RNA-centric regulation in enteric pathogens.
Collapse
Affiliation(s)
- Gianluca Matera
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Yael Altuvia
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Milan Gerovac
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Youssef El Mouali
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), D-97080 Würzburg, Germany
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), D-97080 Würzburg, Germany.
| |
Collapse
|
27
|
Wang J, Ma W, Fang Y, Liang H, Yang H, Wang Y, Dong X, Zhan Y, Wang X. Core Oligosaccharide Portion of Lipopolysaccharide Plays Important Roles in Multiple Antibiotic Resistance in Escherichia coli. Antimicrob Agents Chemother 2021; 65:e0034121. [PMID: 34310209 PMCID: PMC8448134 DOI: 10.1128/aac.00341-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022] Open
Abstract
Gram-negative bacteria are intrinsically resistant to antibiotics due to the presence of the cell envelope, but the mechanisms of this resistance are still not fully understood. In this study, a series of mutants that lack one or more major components associated with the cell envelope were constructed from Escherichia coli K-12 W3110. WJW02 can only synthesize Kdo2-lipid A, which lacks the core oligosaccharide portion of lipopolysaccharide (LPS). WJW04, WJW07, and WJW08 were constructed from WJW02 by deleting the gene clusters relevant to the biosynthesis of exopolysaccharide, flagella, and fimbriae, respectively. WJW09, WJW010, and WJW011 cells cannot synthesize exopolysaccharide (EPS), flagella, and fimbria, respectively. Compared to the wild type (W3110), mutants WJW02, WJW04, WJW07, and WJW08 cells showed decreased resistance to more than 10 different antibacterial drugs, but the mutants WJW09, WJW010, and WJW011 did not. This indicates that the core oligosaccharide portion of lipopolysaccharide plays an important role in multiple antibiotic resistance in E. coli and that the first heptose in the core oligosaccharide portion is critical. Furthermore, the removal of the core oligosaccharide of LPS leads to influences on cell wall morphology, cell phenotypes, porins, efflux systems, and response behaviors to antibiotic stimulation. The results demonstrate the important role of lipopolysaccharide in the antibiotic resistance of Gram-negative bacteria.
Collapse
Affiliation(s)
- Jianli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Wenjian Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Yu Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Hao Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Huiting Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yiwen Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaofei Dong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yi Zhan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
28
|
Harshaw NS, Stella NA, Lehner KM, Romanowski EG, Kowalski RP, Shanks RMQ. Antibiotics Used in Empiric Treatment of Ocular Infections Trigger the Bacterial Rcs Stress Response System Independent of Antibiotic Susceptibility. Antibiotics (Basel) 2021; 10:antibiotics10091033. [PMID: 34572615 PMCID: PMC8470065 DOI: 10.3390/antibiotics10091033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 12/02/2022] Open
Abstract
The Rcs phosphorelay is a bacterial stress response system that responds to envelope stresses and in turn controls several virulence-associated pathways, including capsule, flagella, and toxin biosynthesis, of numerous bacterial species. The Rcs system also affects antibiotic tolerance, biofilm formation, and horizontal gene transfer. The Rcs system of the ocular bacterial pathogen Serratia marcescens was recently demonstrated to influence ocular pathogenesis in a rabbit model of keratitis, with Rcs-defective mutants causing greater pathology and Rcs-activated strains demonstrating reduced inflammation. The Rcs system is activated by a variety of insults, including β-lactam antibiotics and polymyxin B. In this study, we developed three luminescence-based transcriptional reporters for Rcs system activity and used them to test whether antibiotics used for empiric treatment of ocular infections influence Rcs system activity in a keratitis isolate of S. marcescens. These included antibiotics to which the bacteria were susceptible and resistant. Results indicate that cefazolin, ceftazidime, polymyxin B, and vancomycin activate the Rcs system to varying degrees in an RcsB-dependent manner, whereas ciprofloxacin and tobramycin activated the promoter fusions, but in an Rcs-independent manner. Although minimum inhibitory concentration (MIC) analysis demonstrated resistance of the test bacteria to polymyxin B and vancomycin, the Rcs system was activated by sub-inhibitory concentrations of these antibiotics. Together, these data indicate that a bacterial stress system that influences numerous pathogenic phenotypes and drug-tolerance is influenced by different classes of antibiotics despite the susceptibility status of the bacterium.
Collapse
|
29
|
Steenhuis M, Corona F, ten Hagen-Jongman CM, Vollmer W, Lambin D, Selhorst P, Klaassen H, Versele M, Chaltin P, Luirink J. Combining Cell Envelope Stress Reporter Assays in a Screening Approach to Identify BAM Complex Inhibitors. ACS Infect Dis 2021; 7:2250-2263. [PMID: 34125508 PMCID: PMC8369490 DOI: 10.1021/acsinfecdis.0c00728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Indexed: 12/11/2022]
Abstract
The development of new antibiotics is particularly problematic in Gram-negative bacteria due to the presence of the outer membrane (OM), which serves as a permeability barrier. Recently, the β-barrel assembly machine (BAM), located in the OM and responsible for β-barrel type OM protein (OMP) assembly, has been validated as a novel target for antibiotics. Here, we identified potential BAM complex inhibitors using a screening approach that reports on cell envelope σE and Rcs stress in Escherichia coli. Screening a library consisting of 316 953 compounds yielded five compounds that induced σE and Rcs stress responses, while not inducing the intracellular heat-shock response. Two of the five compounds (compounds 2 and 14) showed the characteristics of known BAM complex inhibitors: synergy with OMP biogenesis mutants, decrease in the abundance of various OMPs, and loss of OM integrity. Importantly, compound 2 also inhibited BAM-dependent OMP folding in an in vitro refolding assay using purified BAM complex reconstituted in proteoliposomes.
Collapse
Affiliation(s)
- Maurice Steenhuis
- Department
of Molecular Microbiology, Amsterdam Institute
of Molecular and Life Sciences (AIMMS), Vrije Universiteit, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Federico Corona
- Centre
for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle
upon Tyne NE2 4HH, United
Kingdom
| | - Corinne M. ten Hagen-Jongman
- Department
of Molecular Microbiology, Amsterdam Institute
of Molecular and Life Sciences (AIMMS), Vrije Universiteit, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Waldemar Vollmer
- Centre
for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle
upon Tyne NE2 4HH, United
Kingdom
| | - Dominique Lambin
- Centre
for Innovation and Stimulation of Drug Discovery (CISTIM), Gaston Geenslaan 2, B-3001 Leuven, Belgium
| | - Philippe Selhorst
- Centre
for Innovation and Stimulation of Drug Discovery (CISTIM), Gaston Geenslaan 2, B-3001 Leuven, Belgium
| | - Hugo Klaassen
- Centre
for Innovation and Stimulation of Drug Discovery (CISTIM), Gaston Geenslaan 2, B-3001 Leuven, Belgium
| | - Matthias Versele
- Centre
for Innovation and Stimulation of Drug Discovery (CISTIM), Gaston Geenslaan 2, B-3001 Leuven, Belgium
| | - Patrick Chaltin
- Center
for Drug Design and Development (CD3), KU
Leuven R&D, Waaistraat 6, B-3000 Leuven, Belgium
| | - Joen Luirink
- Department
of Molecular Microbiology, Amsterdam Institute
of Molecular and Life Sciences (AIMMS), Vrije Universiteit, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
30
|
High-throughput suppressor screen demonstrates that RcsF monitors outer membrane integrity and not Bam complex function. Proc Natl Acad Sci U S A 2021; 118:2100369118. [PMID: 34349021 DOI: 10.1073/pnas.2100369118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The regulator of capsule synthesis (Rcs) is a complex signaling cascade that monitors gram-negative cell envelope integrity. The outer membrane (OM) lipoprotein RcsF is the sensory component, but how RcsF functions remains elusive. RcsF interacts with the β-barrel assembly machinery (Bam) complex, which assembles RcsF in complex with OM proteins (OMPs), resulting in RcsF's partial cell surface exposure. Elucidating whether RcsF/Bam or RcsF/OMP interactions are important for its sensing function is challenging because the Bam complex is essential, and partial loss-of-function mutations broadly compromise the OM biogenesis. Our recent discovery that, in the absence of nonessential component BamE, RcsF inhibits function of the central component BamA provided a genetic tool to select mutations that specifically prevent RcsF/BamA interactions. We employed a high-throughput suppressor screen to isolate a collection of such rcsF and bamA mutants and characterized their impact on RcsF/OMP assembly and Rcs signaling. Using these mutants and BamA inhibitors MRL-494L and darobactin, we provide multiple lines of evidence against the model in which RcsF senses Bam complex function. We show that Rcs activation in bam mutants results from secondary OM and lipopolysaccharide defects and that RcsF/OMP assembly is required for this activation, supporting an active role of RcsF/OMP complexes in sensing OM stress.
Collapse
|
31
|
Abstract
Bacteria thrive both in liquids and attached to surfaces. The concentration of bacteria on surfaces is generally much higher than in the surrounding environment, offering bacteria ample opportunity for mutualistic, symbiotic, and pathogenic interactions. To efficiently populate surfaces, they have evolved mechanisms to sense mechanical or chemical cues upon contact with solid substrata. This is of particular importance for pathogens that interact with host tissue surfaces. In this review we discuss how bacteria are able to sense surfaces and how they use this information to adapt their physiology and behavior to this new environment. We first survey mechanosensing and chemosensing mechanisms and outline how specific macromolecular structures can inform bacteria about surfaces. We then discuss how mechanical cues are converted to biochemical signals to activate specific cellular processes in a defined chronological order and describe the role of two key second messengers, c-di-GMP and cAMP, in this process.
Collapse
Affiliation(s)
| | - Urs Jenal
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland; ,
| |
Collapse
|
32
|
Saha S, Lach SR, Konovalova A. Homeostasis of the Gram-negative cell envelope. Curr Opin Microbiol 2021; 61:99-106. [PMID: 33901778 DOI: 10.1016/j.mib.2021.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 01/08/2023]
Abstract
The Gram-negative bacterial cell envelope is a complex structure and its homeostasis is essential for bacterial survival. Envelope stress responses (ESRs) are signal transduction pathways that monitor the fidelity of envelope assembly during normal growth and also detect and repair envelope damage caused by external assaults, including immune factors, protein toxins, and antibiotics. In this review, we focus on three best-studied ESRs and discuss the mechanisms by which ESRs detect various perturbations of envelope assembly and integrity and regulate envelope remodeling to promote bacterial survival. We will highlight the complex relationship of ESRs with envelope biogenesis pathways and discuss some of the challenges in this field on the road to mapping the global regulatory network of envelope homeostasis.
Collapse
Affiliation(s)
- Shreya Saha
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin Street, Houston, TX, 77030, USA
| | - Sarah R Lach
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin Street, Houston, TX, 77030, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Avenue, Houston, TX, 77030, USA
| | - Anna Konovalova
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
33
|
Cardiolipin aids in lipopolysaccharide transport to the gram-negative outer membrane. Proc Natl Acad Sci U S A 2021; 118:2018329118. [PMID: 33833055 DOI: 10.1073/pnas.2018329118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In Escherichia coli, cardiolipin (CL) is the least abundant of the three major glycerophospholipids in the gram-negative cell envelope. However, E. coli harbors three distinct enzymes that synthesize CL: ClsA, ClsB, and ClsC. This redundancy suggests that CL is essential for bacterial fitness, yet CL-deficient bacteria are viable. Although multiple CL-protein interactions have been identified, the role of CL still remains unclear. To identify genes that impact fitness in the absence of CL, we analyzed high-density transposon (Tn) mutant libraries in combinatorial CL synthase mutant backgrounds. We found LpxM, which is the last enzyme in lipid A biosynthesis, the membrane anchor of lipopolysaccharide (LPS), to be critical for viability in the absence of clsA Here, we demonstrate that CL produced by ClsA enhances LPS transport. Suppressors of clsA and lpxM essentiality were identified in msbA, a gene that encodes the indispensable LPS ABC transporter. Depletion of ClsA in ∆lpxM mutants increased accumulation of LPS in the inner membrane, demonstrating that the synthetic lethal phenotype arises from improper LPS transport. Additionally, overexpression of ClsA alleviated ΔlpxM defects associated with impaired outer membrane asymmetry. Mutations that lower LPS levels, such as a YejM truncation or alteration in the fatty acid pool, were sufficient in overcoming the synthetically lethal ΔclsA ΔlpxM phenotype. Our results support a model in which CL aids in the transportation of LPS, a unique glycolipid, and adds to the growing repertoire of CL-protein interactions important for bacterial transport systems.
Collapse
|
34
|
Mychack A, Janakiraman A. Defects in The First Step of Lipoprotein Maturation Underlie The Synthetic Lethality of Escherichia coli Lacking The Inner Membrane Proteins YciB And DcrB. J Bacteriol 2021; 203:JB.00640-20. [PMID: 33431434 PMCID: PMC8095458 DOI: 10.1128/jb.00640-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 11/20/2022] Open
Abstract
Nearly a quarter of the Escherichia coli genome encodes for inner membrane proteins of which approximately a third have unassigned or poorly understood function. We had previously demonstrated that the synergy between the functional roles of the inner membrane-spanning YciB and the inner membrane lipoprotein DcrB, is essential in maintaining cell envelope integrity. In yciB dcrB cells, the abundant outer membrane lipoprotein, Lpp, mislocalizes to the inner membrane where it forms toxic linkages to peptidoglycan. Here, we report that the aberrant localization of Lpp in this double mutant is due to inefficient lipid modification at the first step in lipoprotein maturation. Both Cpx and Rcs signaling systems are upregulated in response to the envelope stress. The phosphatidylglycerol-pre-prolipoprotein diacylglyceryl transferase, Lgt, catalyzes the initial step in lipoprotein maturation. Our results suggest that the attenuation in Lgt-mediated transacylation in the double mutant is not a consequence of lowered phosphatidylglycerol levels. Instead, we posit that altered membrane fluidity, perhaps due to changes in lipid homeostasis, may lead to the impairment in Lgt function. Consistent with this idea, a dcrB null is not viable when grown at low temperatures, conditions which impact membrane fluidity. Like the yciB dcrB double mutant, dcrB null-mediated toxicity can be overcome in distinct ways - by increased expression of Lgt, deletion of lpp, or removal of Lpp-peptidoglycan linkages. The last of these events leads to elevated membrane vesiculation and lipid loss, which may, in turn, impact membrane homeostasis in the double mutant.Importance A distinguishing feature of Gram-negative bacteria is their double-membraned cell envelope which presents a formidable barrier against environmental stress. In E. coli, more than a quarter of the cellular proteins reside at the inner membrane but about a third of these proteins are functionally unassigned or their function is incompletely understood. Here, we show that the synthetic lethality underlying the inactivation of two inner membrane proteins, a small integral membrane protein YciB, and a lipoprotein, DcrB, results from the attenuation of the first step of lipoprotein maturation at the inner membrane. We propose that these two inner membrane proteins YciB and DcrB play a role in membrane homeostasis in E. coli and related bacteria.
Collapse
Affiliation(s)
- Aaron Mychack
- Department of Biology, 160 Convent Ave. MR 526, The City College of CUNY, New York, NY, 100031, USA
- Program in Biology, The Graduate Center, CUNY, Fifth Avenue, New York, NY, 10016, USA
| | - Anuradha Janakiraman
- Department of Biology, 160 Convent Ave. MR 526, The City College of CUNY, New York, NY, 100031, USA
- Program in Biology, The Graduate Center, CUNY, Fifth Avenue, New York, NY, 10016, USA
| |
Collapse
|
35
|
Meng J, Young G, Chen J. The Rcs System in Enterobacteriaceae: Envelope Stress Responses and Virulence Regulation. Front Microbiol 2021; 12:627104. [PMID: 33658986 PMCID: PMC7917084 DOI: 10.3389/fmicb.2021.627104] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
The bacterial cell envelope is a protective barrier at the frontline of bacterial interaction with the environment, and its integrity is regulated by various stress response systems. The Rcs (regulator of capsule synthesis) system, a non-orthodox two-component regulatory system (TCS) found in many members of the Enterobacteriaceae family, is one of the envelope stress response pathways. The Rcs system can sense envelope damage or defects and regulate the transcriptome to counteract stress, which is particularly important for the survival and virulence of pathogenic bacteria. In this review, we summarize the roles of the Rcs system in envelope stress responses (ESRs) and virulence regulation. We discuss the environmental and intrinsic sources of envelope stress that cause activation of the Rcs system with an emphasis on the role of RcsF in detection of envelope stress and signal transduction. Finally, the different regulation mechanisms governing the Rcs system's control of virulence in several common pathogens are introduced. This review highlights the important role of the Rcs system in the environmental adaptation of bacteria and provides a theoretical basis for the development of new strategies for control, prevention, and treatment of bacterial infections.
Collapse
Affiliation(s)
- Jiao Meng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Glenn Young
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Jingyu Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
36
|
El Rayes J, Rodríguez-Alonso R, Collet JF. Lipoproteins in Gram-negative bacteria: new insights into their biogenesis, subcellular targeting and functional roles. Curr Opin Microbiol 2021; 61:25-34. [PMID: 33667939 DOI: 10.1016/j.mib.2021.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Bacterial lipoproteins are globular proteins anchored to a membrane by a lipid moiety. By discovering new functions carried out by lipoproteins, recent research has highlighted the crucial roles played by these proteins in the cell envelope of Gram-negative bacteria. Here, after discussing the wide range of activities carried out by lipoproteins in the model bacterium Escherichia coli, we review new insights into the essential mechanisms involved in lipoprotein maturation, sorting and targeting to their final destination. A special attention will also be given to the recent identification of lipoproteins on the surface of E. coli and of other bacteria. The renewed interest in lipoproteins is driven by the need to identify novel targets for antibiotic development.
Collapse
Affiliation(s)
- Jessica El Rayes
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Raquel Rodríguez-Alonso
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Jean-François Collet
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium.
| |
Collapse
|
37
|
Szczepaniak J, Press C, Kleanthous C. The multifarious roles of Tol-Pal in Gram-negative bacteria. FEMS Microbiol Rev 2021; 44:490-506. [PMID: 32472934 PMCID: PMC7391070 DOI: 10.1093/femsre/fuaa018] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
In the 1960s several groups reported the isolation and preliminary genetic mapping of
Escherichia coli strains tolerant towards the
action of colicins. These pioneering studies kick-started two new fields in bacteriology;
one centred on how bacteriocins like colicins exploit the Tol (or more commonly Tol-Pal)
system to kill bacteria, the other on the physiological role of this cell
envelope-spanning assembly. The following half century has seen significant advances in
the first of these fields whereas the second has remained elusive, until recently. Here,
we review work that begins to shed light on Tol-Pal function in Gram-negative bacteria.
What emerges from these studies is that Tol-Pal is an energised system with fundamental,
interlinked roles in cell division – coordinating the re-structuring of peptidoglycan at
division sites and stabilising the connection between the outer membrane and underlying
cell wall. This latter role is achieved by Tol-Pal exploiting the proton motive force to
catalyse the accumulation of the outer membrane peptidoglycan associated lipoprotein Pal
at division sites while simultaneously mobilising Pal molecules from around the cell.
These studies begin to explain the diverse phenotypic outcomes of tol-pal
mutations, point to other cell envelope roles Tol-Pal may have and raise many new
questions.
Collapse
Affiliation(s)
- Joanna Szczepaniak
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| | - Cara Press
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| | - Colin Kleanthous
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
38
|
Consoli E, Collet JF, den Blaauwen T. The Escherichia coli Outer Membrane β-Barrel Assembly Machinery (BAM) Anchors the Peptidoglycan Layer by Spanning It with All Subunits. Int J Mol Sci 2021; 22:ijms22041853. [PMID: 33673366 PMCID: PMC7918090 DOI: 10.3390/ijms22041853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Gram-negative bacteria possess a three-layered envelope composed of an inner membrane, surrounded by a peptidoglycan (PG) layer, enclosed by an outer membrane. The envelope ensures protection against diverse hostile milieus and offers an effective barrier against antibiotics. The layers are connected to each other through many protein interactions. Bacteria evolved sophisticated machineries that maintain the integrity and the functionality of each layer. The β-barrel assembly machinery (BAM), for example, is responsible for the insertion of the outer membrane integral proteins including the lipopolysaccharide transport machinery protein LptD. Labelling bacterial cells with BAM-specific fluorescent antibodies revealed the spatial arrangement between the machinery and the PG layer. The antibody detection of each BAM subunit required the enzymatic digestion of the PG layer. Enhancing the spacing between the outer membrane and PG does not abolish this prerequisite. This suggests that BAM locally sets the distance between OM and the PG layer. Our results shed new light on the local organization of the envelope.
Collapse
Affiliation(s)
- Elisa Consoli
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Jean-François Collet
- de Duve Institute, Université Catholique de Louvain, B-1200 Brussels, Belgium;
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), B-1200 Brussels, Belgium
| | - Tanneke den Blaauwen
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
- Correspondence:
| |
Collapse
|
39
|
Tomasek D, Kahne D. The assembly of β-barrel outer membrane proteins. Curr Opin Microbiol 2021; 60:16-23. [PMID: 33561734 DOI: 10.1016/j.mib.2021.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 01/21/2023]
Abstract
The outer membranes of Gram-negative bacteria, mitochondria, and chloroplasts contain β-barrel integral membrane proteins. In bacteria, the five-protein β-barrel assembly machine (Bam) accelerates the folding and membrane integration of these proteins. The central component of the machine, BamA, contains a β-barrel domain that can adopt a lateral-open state with its N-terminal and C-terminal β-strands unpaired. Recently, strategies have been developed to capture β-barrel folding intermediates on the Bam complex. Biochemical and structural studies provide support for a model in which substrates assemble at the lateral opening of BamA. In this model, the N-terminal β-strand of BamA captures the C-terminal β-strand of substrates by hydrogen bonding to allow their directional folding and subsequent release into the membrane.
Collapse
Affiliation(s)
- David Tomasek
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Daniel Kahne
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Smith LM, Jackson SA, Malone LM, Ussher JE, Gardner PP, Fineran PC. The Rcs stress response inversely controls surface and CRISPR-Cas adaptive immunity to discriminate plasmids and phages. Nat Microbiol 2021; 6:162-172. [PMID: 33398095 DOI: 10.1038/s41564-020-00822-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
Bacteria harbour multiple innate defences and adaptive CRISPR-Cas systems that provide immunity against bacteriophages and mobile genetic elements. Although some bacteria modulate defences in response to population density, stress and metabolic state, a lack of high-throughput methods to systematically reveal regulators has hampered efforts to understand when and how immune strategies are deployed. We developed a robust approach called SorTn-seq, which combines saturation transposon mutagenesis, fluorescence-activated cell sorting and deep sequencing to characterize regulatory networks controlling CRISPR-Cas immunity in Serratia sp. ATCC 39006. We applied our technology to assess csm gene expression for ~300,000 mutants and uncovered multiple pathways regulating type III-A CRISPR-Cas expression. Mutation of igaA or mdoG activated the Rcs outer-membrane stress response, eliciting cell-surface-based innate immunity against diverse phages via the transcriptional regulators RcsB and RcsA. Activation of this Rcs phosphorelay concomitantly attenuated adaptive immunity by three distinct type I and III CRISPR-Cas systems. Rcs-mediated repression of CRISPR-Cas defence enabled increased acquisition and retention of plasmids. Dual downregulation of cell-surface receptors and adaptive immunity in response to stress by the Rcs pathway enables protection from phage infection without preventing the uptake of plasmids that may harbour beneficial traits.
Collapse
Affiliation(s)
- Leah M Smith
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Lucia M Malone
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - James E Ussher
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Paul P Gardner
- Genetics Otago, University of Otago, Dunedin, New Zealand.,Department of Biochemistry, University of Otago, Dunedin, New Zealand.,Bio-Protection Research Centre, University of Otago, Dunedin, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand. .,Genetics Otago, University of Otago, Dunedin, New Zealand. .,Bio-Protection Research Centre, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
41
|
Lundstedt EA, Simpson BW, Ruiz N. Lipopolysaccharide transport involves long-range coupling between cytoplasmic and periplasmic domains of the LptB 2FGC extractor. J Bacteriol 2020; 203:JB.00618-20. [PMID: 33361195 PMCID: PMC8095461 DOI: 10.1128/jb.00618-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/18/2020] [Indexed: 01/04/2023] Open
Abstract
The cell surface of the Gram-negative cell envelope contains lipopolysaccharide (LPS) molecules, which form a permeability barrier against hydrophobic antibiotics. The LPS transport (Lpt) machine composed of LptB2FGCADE forms a proteinaceous trans-envelope bridge that allows for the rapid and specific transport of newly synthesized LPS from the inner membrane (IM) to the outer membrane (OM). This transport is powered from the IM by the ATP-binding cassette transporter LptB2FGC. The ATP-driven cycling between closed- and open-dimer states of the ATPase LptB2 is coupled to the extraction of LPS by the transmembrane domains LptFG. However, the mechanism by which LPS moves from a substrate-binding cavity formed by LptFG at the IM to the first component of the periplasmic bridge, the periplasmic β-jellyroll domain of LptF, is poorly understood. To better understand how LptB2FGC functions in Escherichia coli, we searched for suppressors of a defective LptB variant. We found that defects in LptB2 can be suppressed by both structural modifications to the core oligosaccharide of LPS and changes in various regions of LptFG, including a periplasmic loop in LptF that connects the substrate-binding cavity in LptFG to the periplasmic β-jellyroll domain of LptF. These novel suppressors suggest that interactions between the core oligosaccharide of LPS and periplasmic regions in the transporter influence the rate of LPS extraction by LptB2FGC. Together, our genetic data reveal a path for the bi-directional coupling between LptB2 and LptFG that extends from the cytoplasm to the entrance to the periplasmic bridge of the transporter.IMPORTANCEGram-negative bacteria are intrinsically resistant to many antibiotics due to the presence of lipopolysaccharide (LPS) at their cell surface. LPS is transported from its site of synthesis at the inner membrane to the outer membrane by the Lpt machine. Lpt proteins form a transporter that spans the entire envelope and is thought to function similarly to a PEZ candy dispenser. This trans-envelope machine is powered by the cytoplasmic LptB ATPase through a poorly understood mechanism. Using genetic analyses in Escherichia coli, we found that LPS transport involves long-ranging bi-directional coupling across cellular compartments between cytoplasmic LptB and periplasmic regions of the Lpt transporter. This knowledge could be exploited in developing antimicrobials that overcome the permeability barrier imposed by LPS.
Collapse
Affiliation(s)
- Emily A Lundstedt
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Brent W Simpson
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Natividad Ruiz
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
42
|
Rcs Phosphorelay Responses to Truncated Lipopolysaccharide-Induced Cell Envelope Stress in Yersinia enterocolitica. Molecules 2020; 25:molecules25235718. [PMID: 33287412 PMCID: PMC7730088 DOI: 10.3390/molecules25235718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 01/22/2023] Open
Abstract
Lipopolysaccharide (LPS) is the major component of the outer membrane of Gram-negative bacteria, and its integrity is monitored by various stress response systems. Although the Rcs system is involved in the envelope stress response and regulates genes controlling numerous bacterial cell functions of Yersinia enterocolitica, whether it can sense the truncated LPS in Y. enterocolitica remains unclear. In this study, the deletion of the Y. enterocolitica waaF gene truncated the structure of LPS and produced a deep rough LPS. The truncated LPS increased the cell surface hydrophobicity and outer membrane permeability, generating cell envelope stress. The truncated LPS also directly exposed the smooth outer membrane to the external environment and attenuated the resistance to adverse conditions, such as impaired survival under polymyxin B and sodium dodecyl sulfate (SDS) exposure. Further phenotypic experiment and gene expression analysis indicated that the truncated LPS was correlated with the activation of the Rcs phosphorelay, thereby repressing cell motility and biofilm formation. Our findings highlight the importance of LPS integrity in maintaining membrane function and broaden the understanding of Rcs phosphorelay signaling in response to cell envelope stress, thus opening new avenues to develop effective antimicrobial agents for combating Y. enterocolitica infections.
Collapse
|
43
|
Michel LV, Gallardo L, Konovalova A, Bauer M, Jackson N, Zavorin M, McNamara C, Pierce J, Cheng S, Snyder E, Hellman J, Pichichero ME. Ampicillin triggers the release of Pal in toxic vesicles from Escherichia coli. Int J Antimicrob Agents 2020; 56:106163. [DOI: 10.1016/j.ijantimicag.2020.106163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/28/2020] [Accepted: 09/09/2020] [Indexed: 11/30/2022]
|
44
|
Steenhuis M, ten Hagen-Jongman CM, van Ulsen P, Luirink J. Stress-Based High-Throughput Screening Assays to Identify Inhibitors of Cell Envelope Biogenesis. Antibiotics (Basel) 2020; 9:antibiotics9110808. [PMID: 33202774 PMCID: PMC7698014 DOI: 10.3390/antibiotics9110808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
The structural integrity of the Gram-negative cell envelope is guarded by several stress responses, such as the σE, Cpx and Rcs systems. Here, we report on assays that monitor these responses in E. coli upon addition of antibacterial compounds. Interestingly, compromised peptidoglycan synthesis, outer membrane biogenesis and LPS integrity predominantly activated the Rcs response, which we developed into a robust HTS (high-throughput screening) assay that is suited for phenotypic compound screening. Furthermore, by interrogating all three cell envelope stress reporters, and a reporter for the cytosolic heat-shock response as control, we found that inhibitors of specific envelope targets induce stress reporter profiles that are distinct in quality, amplitude and kinetics. Finally, we show that by using a host strain with a more permeable outer membrane, large-scaffold antibiotics can also be identified by the reporter assays. Together, the data suggest that stress profiling is a useful first filter for HTS aimed at inhibitors of cell envelope processes.
Collapse
|
45
|
Hu L, Yu F, Liu M, Chen J, Zong B, Zhang Y, Chen T, Wang C, Zhang T, Zhang J, Zhu Y, Wang X, Chen H, Tan C. RcsB-dependent regulation of type VI secretion system in porcine extra-intestinal pathogenic Escherichia coli. Gene 2020; 768:145289. [PMID: 33181257 DOI: 10.1016/j.gene.2020.145289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 02/02/2023]
Abstract
Signal transduction system and specialized secretory devices are crucial for bacteria to sense and adequately adapt in adverse environmental conditions. Therefore, it's crucial for microbes to detect and respond to lethal attacks when envelope is perturbed so as to minimize and fix the damage in milieu. We investigated the adaptive response of porcine extra-intestinal pathogenic Escherichia coli PCN033 to polymyxin B challenge. Treatment with polymyxin B led to rapid and robust activation of Rcs system via RcsF, as well as the accumulation of reactive oxygen species. ExPEC T6SS expression was strongly induced by RcsB in Rcs system, resulting in the reduction in the damage to constitute a survival strategy. Finally, we show that T6SS of ExPEC is involved in its pathogenicity in mouse model. Compared with the wild type strain, the deletion of T6SS genes led to a decrease in the organ colonization ability, and the RcsFS2DM3Q mutant that caused Rcs activation had a stronger colonization ability than the wild type strain. In conclusion, Rcs system orchestrates Rcs cascade to trigger antioxidant defense of T6SS, and presents a typical model in which a bacterium reschedule its transcription network via the Rcs phosphorelay pathway in response to membrane perturbations for survival and pathogenesis.
Collapse
Affiliation(s)
- Linlin Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Feifei Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Manli Liu
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
| | - Jing Chen
- Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Bingbing Zong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yanyan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Tumei Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Chenchen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Tongchao Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Junli Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yongwei Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, Hubei 430070, China.
| |
Collapse
|
46
|
Functions of the BamBCDE Lipoproteins Revealed by Bypass Mutations in BamA. J Bacteriol 2020; 202:JB.00401-20. [PMID: 32817097 DOI: 10.1128/jb.00401-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/13/2020] [Indexed: 12/27/2022] Open
Abstract
The heteropentomeric β-barrel assembly machine (BAM complex) is responsible for folding and inserting a diverse array of β-barrel outer membrane proteins (OMPs) into the outer membrane (OM) of Gram-negative bacteria. The BAM complex contains two essential proteins, the β-barrel OMP BamA and a lipoprotein BamD, whereas the auxiliary lipoproteins BamBCE are individually nonessential. Here, we identify and characterize three bamA mutations, the E-to-K change at position 470 (bamAE470K ), the A-to-P change at position 496 (bamAA496P ), and the A-to-S change at position 499 (bamAA499S ), that suppress the otherwise lethal ΔbamD, ΔbamB ΔbamC ΔbamE, and ΔbamC ΔbamD ΔbamE mutations. The viability of cells lacking different combinations of BAM complex lipoproteins provides the opportunity to examine the role of the individual proteins in OMP assembly. Results show that, in wild-type cells, BamBCE share a redundant function; at least one of these lipoproteins must be present to allow BamD to coordinate productively with BamA. Besides BamA regulation, BamD shares an additional essential function that is redundant with a second function of BamB. Remarkably, bamAE470K suppresses both, allowing the construction of a BAM complex composed solely of BamAE470K that is able to assemble OMPs in the absence of BamBCDE. This work demonstrates that the BAM complex lipoproteins do not participate in the catalytic folding of OMP substrates but rather function to increase the efficiency of the assembly process by coordinating and regulating the assembly of diverse OMP substrates.IMPORTANCE The folding and insertion of β-barrel outer membrane proteins (OMPs) are conserved processes in mitochondria, chloroplasts, and Gram-negative bacteria. In Gram-negative bacteria, OMPs are assembled into the outer membrane (OM) by the heteropentomeric β-barrel assembly machine (BAM complex). In this study, we probe the function of the individual BAM proteins and how they coordinate assembly of a diverse family of OMPs. Furthermore, we identify a gain-of-function bamA mutant capable of assembling OMPs independently of all four other BAM proteins. This work advances our understanding of OMP assembly and sheds light on how this process is distinct in Gram-negative bacteria.
Collapse
|
47
|
Dekoninck K, Létoquart J, Laguri C, Demange P, Bevernaegie R, Simorre JP, Dehu O, Iorga BI, Elias B, Cho SH, Collet JF. Defining the function of OmpA in the Rcs stress response. eLife 2020; 9:60861. [PMID: 32985973 PMCID: PMC7553776 DOI: 10.7554/elife.60861] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/26/2020] [Indexed: 01/18/2023] Open
Abstract
OmpA, a protein commonly found in the outer membrane of Gram-negative bacteria, has served as a paradigm for the study of β-barrel proteins for several decades. In Escherichia coli, OmpA was previously reported to form complexes with RcsF, a surface-exposed lipoprotein that triggers the Rcs stress response when damage occurs in the outer membrane and the peptidoglycan. How OmpA interacts with RcsF and whether this interaction allows RcsF to reach the surface has remained unclear. Here, we integrated in vivo and in vitro approaches to establish that RcsF interacts with the C-terminal, periplasmic domain of OmpA, not with the N-terminal β-barrel, thus implying that RcsF does not reach the bacterial surface via OmpA. Our results suggest a novel function for OmpA in the cell envelope: OmpA competes with the inner membrane protein IgaA, the downstream Rcs component, for RcsF binding across the periplasm, thereby regulating the Rcs response.
Collapse
Affiliation(s)
- Kilian Dekoninck
- WELBIO, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Juliette Létoquart
- WELBIO, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | | | - Pascal Demange
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Robin Bevernaegie
- Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | | | - Olivia Dehu
- de Duve Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Bogdan I Iorga
- de Duve Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium.,Université Paris-Saclay, CNRS UPR 2301, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Benjamin Elias
- Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Seung-Hyun Cho
- WELBIO, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Jean-Francois Collet
- WELBIO, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
48
|
Huwaitat R, Coulter SM, Porter SL, Pentlavalli S, Laverty G. Antibacterial and antibiofilm efficacy of synthetic polymyxin‐mimetic lipopeptides. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Rawan Huwaitat
- Biofunctional Nanomaterials Group School of Pharmacy, Queen's University Belfast, Medical Biology Centre Belfast N. Ireland UK
- Department of Pharmacy Al‐Zaytoonah University of Jordan Amman Jordan
| | - Sophie M. Coulter
- Biofunctional Nanomaterials Group School of Pharmacy, Queen's University Belfast, Medical Biology Centre Belfast N. Ireland UK
| | - Simon L. Porter
- Biofunctional Nanomaterials Group School of Pharmacy, Queen's University Belfast, Medical Biology Centre Belfast N. Ireland UK
| | - Sreekanth Pentlavalli
- Biofunctional Nanomaterials Group School of Pharmacy, Queen's University Belfast, Medical Biology Centre Belfast N. Ireland UK
| | - Garry Laverty
- Biofunctional Nanomaterials Group School of Pharmacy, Queen's University Belfast, Medical Biology Centre Belfast N. Ireland UK
| |
Collapse
|
49
|
Collet JF, Cho SH, Iorga BI, Goemans CV. How the assembly and protection of the bacterial cell envelope depend on cysteine residues. J Biol Chem 2020; 295:11984-11994. [PMID: 32487747 PMCID: PMC7443483 DOI: 10.1074/jbc.rev120.011201] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
The cell envelope of Gram-negative bacteria is a multilayered structure essential for bacterial viability; the peptidoglycan cell wall provides shape and osmotic protection to the cell, and the outer membrane serves as a permeability barrier against noxious compounds in the external environment. Assembling the envelope properly and maintaining its integrity are matters of life and death for bacteria. Our understanding of the mechanisms of envelope assembly and maintenance has increased tremendously over the past two decades. Here, we review the major achievements made during this time, giving central stage to the amino acid cysteine, one of the least abundant amino acid residues in proteins, whose unique chemical and physical properties often critically support biological processes. First, we review how cysteines contribute to envelope homeostasis by forming stabilizing disulfides in crucial bacterial assembly factors (LptD, BamA, and FtsN) and stress sensors (RcsF and NlpE). Second, we highlight the emerging role of enzymes that use cysteine residues to catalyze reactions that are necessary for proper envelope assembly, and we also explain how these enzymes are protected from oxidative inactivation. Finally, we suggest future areas of investigation, including a discussion of how cysteine residues could contribute to envelope homeostasis by functioning as redox switches. By highlighting the redox pathways that are active in the envelope of Escherichia coli, we provide a timely overview of the assembly of a cellular compartment that is the hallmark of Gram-negative bacteria.
Collapse
Affiliation(s)
| | - Seung-Hyun Cho
- de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium
| | - Bogdan I Iorga
- de Duve Institute, UCLouvain, Brussels, Belgium; Université Paris-Saclay, CNRS UPR 2301, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | | |
Collapse
|
50
|
Envelope Stress and Regulation of the Salmonella Pathogenicity Island 1 Type III Secretion System. J Bacteriol 2020; 202:JB.00272-20. [PMID: 32571967 DOI: 10.1128/jb.00272-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/15/2020] [Indexed: 01/19/2023] Open
Abstract
Salmonella enterica serovar Typhimurium uses a type three secretion system (T3SS) encoded on the Salmonella pathogenicity island 1 (SPI1) to invade intestinal epithelial cells and induce inflammatory diarrhea. The SPI1 T3SS is regulated by numerous environmental and physiological signals, integrated to either activate or repress invasion. Transcription of hilA, encoding the transcriptional activator of the SPI1 structural genes, is activated by three AraC-like regulators, HilD, HilC, and RtsA, that act in a complex feed-forward loop. Deletion of bamB, encoding a component of the β-barrel assembly machinery, causes a dramatic repression of SPI1, but the mechanism was unknown. Here, we show that partially defective β-barrel assembly activates the RcsCDB regulon, leading to decreased hilA transcription. This regulation is independent of RpoE activation. Though Rcs has been previously shown to repress SPI1 when disulfide bond formation is impaired, we show that activation of Rcs in a bamB background is dependent on the sensor protein RcsF, whereas disulfide bond status is sensed independently. Rcs decreases transcription of the flagellar regulon, including fliZ, the product of which indirectly activates HilD protein activity. Rcs also represses hilD, hilC, and rtsA promoters by an unknown mechanism. Both dsbA and bamB mutants have motility defects, though this is simply regulatory in a bamB background; motility is restored in the absence of Rcs. Effector secretion assays show that repression of SPI1 in a bamB background is also regulatory; if expressed, the SPI1 T3SS is functional in a bamB background. This emphasizes the sensitivity of SPI1 regulation to overall envelope homeostasis.IMPORTANCE Salmonella causes worldwide foodborne illness, leading to massive disease burden and an estimated 600,000 deaths per year. Salmonella infects orally and invades intestinal epithelial cells using a type 3 secretion system that directly injects effector proteins into host cells. This first step in invasion is tightly regulated by a variety of inputs. In this work, we demonstrate that Salmonella senses the functionality of outer membrane assembly in determining regulation of invasion machinery, and we show that Salmonella uses distinct mechanisms to detect specific perturbations in envelope assembly.
Collapse
|