1
|
Su Z, Tian M, Shibata E, Shibata Y, Yang T, Wang Z, Jin F, Zang C, Dutta A. Regulation of epigenetics and chromosome structure by human ORC2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.18.629220. [PMID: 39829907 PMCID: PMC11741241 DOI: 10.1101/2024.12.18.629220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The six subunit Origin Recognition Complex (ORC) is a DNA replication initiator that also promotes heterochromatinization in some species. A multi-omics study in a human cell line with mutations in three subunits of ORC, reveals that the subunits bind to DNA independent of each other rather than as part of a common six-subunit ORC. While DNA-bound ORC2 was seen to compact chromatin and attract repressive histone marks, the activation of chromatin and protection from repressive marks was seen at a large number of sites. The epigenetic changes regulate hundreds of genes, including some epigenetic regulators, adding an indirect mechanism by which ORC2 regulates epigenetics without local binding. DNA-bound ORC2 also prevents the acquisition of CTCF at focal sites in the genome to regulate chromatin loops. Thus, individual ORC subunits are major regulators, in both directions, of epigenetics, gene expression and chromosome structure, independent of the role of ORC in replication.
Collapse
|
2
|
Przanowska RK, Chen Y, Uchida TO, Shibata E, Hao X, Rueda IS, Jensen K, Przanowski P, Trimboli A, Shibata Y, Leone G, Dutta A. DNA replication in primary hepatocytes without the six-subunit ORC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.04.588006. [PMID: 38617300 PMCID: PMC11014565 DOI: 10.1101/2024.04.04.588006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The six subunit ORC is essential for initiation of DNA replication in eukaryotes. Cancer cell-lines in culture can survive and replicate DNA replication after genetic inactivation of individual ORC subunits, ORC1, ORC2 or ORC5. In primary cells, ORC1 was dispensable in the mouse liver for endo-reduplication, but this could be explained by the ORC1 homolog, CDC6, substituting for ORC1 to restore functional ORC. Here, we have created mice with a conditional deletion of ORC2, which does not have a homolog. Although mouse embryo fibroblasts require ORC2 for proliferation, mouse hepatocytes synthesize DNA in cell culture and endo-reduplicate in vivo without ORC2. Mouse livers endo-reduplicate after simultaneous deletion of ORC1 and ORC2 both during normal development and after partial hepatectomy. Since endo-reduplication initiates DNA synthesis like normal S phase replication these results unequivocally indicate that primary cells, like cancer cell lines, can load MCM2-7 and initiate replication without ORC.
Collapse
|
3
|
Weissmann F, Greiwe JF, Pühringer T, Eastwood EL, Couves EC, Miller TCR, Diffley JFX, Costa A. MCM double hexamer loading visualized with human proteins. Nature 2024; 636:499-508. [PMID: 39604733 PMCID: PMC11634765 DOI: 10.1038/s41586-024-08263-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Eukaryotic DNA replication begins with the loading of the MCM replicative DNA helicase as a head-to-head double hexamer at origins of DNA replication1-3. Our current understanding of how the double hexamer is assembled by the origin recognition complex (ORC), CDC6 and CDT1 comes mostly from budding yeast. Here we characterize human double hexamer (hDH) loading using biochemical reconstitution and cryo-electron microscopy with purified proteins. We show that the human double hexamer engages DNA differently from the yeast double hexamer (yDH), and generates approximately five base pairs of underwound DNA at the interface between hexamers, as seen in hDH isolated from cells4. We identify several differences from the yeast double hexamer in the order of factor recruitment and dependencies during hDH assembly. Unlike in yeast5-8, the ORC6 subunit of the ORC is not essential for initial MCM recruitment or hDH loading, but contributes to an alternative hDH assembly pathway that requires an intrinsically disordered region in ORC1, which may work through a MCM-ORC intermediate. Our work presents a detailed view of how double hexamers are assembled in an organism that uses sequence-independent replication origins, provides further evidence for diversity in eukaryotic double hexamer assembly mechanisms9, and represents a first step towards reconstitution of DNA replication initiation with purified human proteins.
Collapse
Affiliation(s)
- Florian Weissmann
- Chromosome Replication Laboratory, The Francis Crick Institute, London, UK
| | - Julia F Greiwe
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK
| | - Thomas Pühringer
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK
| | - Evelyn L Eastwood
- Chromosome Replication Laboratory, The Francis Crick Institute, London, UK
| | - Emma C Couves
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK
| | - Thomas C R Miller
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, London, UK.
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
4
|
Yang R, Hunker O, Wise M, Bleichert F. Multiple mechanisms for licensing human replication origins. Nature 2024; 636:488-498. [PMID: 39604729 DOI: 10.1038/s41586-024-08237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
Loading of replicative helicases is obligatory for the assembly of DNA replication machineries. The eukaryotic MCM2-7 replicative helicase motor is deposited onto DNA by the origin recognition complex (ORC) and co-loader proteins as a head-to-head double hexamer to license replication origins. Although extensively studied in budding yeast1-4, the mechanisms of origin licensing in multicellular eukaryotes remain poorly defined. Here we use biochemical reconstitution and electron microscopy to reconstruct the human MCM loading pathway. We find that unlike in yeast, the ORC6 subunit of the ORC is not essential for-but enhances-human MCM loading. Electron microscopy analyses identify several intermediates en route to MCM double hexamer formation in the presence and absence of ORC6, including a DNA-loaded, closed-ring MCM single hexamer intermediate that can mature into a head-to-head double hexamer through multiple mechanisms. ORC6 and ORC3 facilitate the recruitment of the ORC to the dimerization interface of the first hexamer into MCM-ORC (MO) complexes that are distinct from the yeast MO complex5,6 and may orient the ORC for second MCM hexamer loading. Additionally, MCM double hexamer formation can proceed through dimerization of independently loaded MCM single hexamers, promoted by a propensity of human MCM2-7 hexamers to self-dimerize. This flexibility in human MCM loading may provide resilience against cellular replication stress, and the reconstitution system will enable studies addressing outstanding questions regarding DNA replication initiation and replication-coupled events in the future.
Collapse
Affiliation(s)
- Ran Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Olivia Hunker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Marleigh Wise
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Franziska Bleichert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
5
|
Shibata Y, Peycheva M, Shibata E, Malzl D, Pavri R, Dutta A. Specific origin selection and excess functional MCM2-7 loading in ORC-deficient cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621095. [PMID: 39554186 PMCID: PMC11565923 DOI: 10.1101/2024.10.30.621095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The six subunit Origin Recognition Complex (ORC) loads excess MCM2-7 on chromosomes to promote initiation of DNA replication and is believed to be important for origin specification. Mapping of origins in cancer cell lines engineered to delete three of the subunits, ORC1 , ORC2 or ORC5 shows that specific origins are still used and are mostly at the same sites in the genome as in wild type cells. The few hundred origins that were up-regulated in the absence of ORC suggest that GC/TA skewness and simple repeat sequences facilitate, but are not essential for, origin selection in the absence of the six-subunit ORC. Despite the lack of ORC, excess MCM2-7 is still loaded at comparable rates in G1 phase to license reserve origins and is also repeatedly loaded in the same S phase to permit re-replication. Thus, origin specification and excess MCM2-7 loading on origins do not require the six-subunit ORC in human cancer cell lines.
Collapse
|
6
|
Hatoyama Y, Islam M, Bond AG, Hayashi KI, Ciulli A, Kanemaki MT. Combination of AID2 and BromoTag expands the utility of degron-based protein knockdowns. EMBO Rep 2024; 25:4062-4077. [PMID: 39179892 PMCID: PMC11387839 DOI: 10.1038/s44319-024-00224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/26/2024] Open
Abstract
Acute protein knockdown is a powerful approach to dissecting protein function in dynamic cellular processes. We previously reported an improved auxin-inducible degron system, AID2, but recently noted that its ability to induce degradation of some essential replication factors, such as ORC1 and CDC6, was not enough to induce lethality. Here, we present combinational degron technologies to control two proteins or enhance target depletion. For this purpose, we initially compare PROTAC-based degrons, dTAG and BromoTag, with AID2 to reveal their key features and then demonstrate control of cohesin and condensin with AID2 and BromoTag, respectively. We develop a double-degron system with AID2 and BromoTag to enhance target depletion and accelerate depletion kinetics and demonstrate that both ORC1 and CDC6 are pivotal for MCM loading. Finally, we show that co-depletion of ORC1 and CDC6 by the double-degron system completely suppresses DNA replication, and the cells enter mitosis with single-chromatid chromosomes, indicating that DNA replication is uncoupled from cell cycle control. Our combinational degron technologies will expand the application scope for functional analyses.
Collapse
Affiliation(s)
- Yuki Hatoyama
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka, 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Moutushi Islam
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka, 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Adam G Bond
- Centre for Targeted Protein Degradation, School of Life Science, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, Scotland, UK
| | - Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Ridai-cho 1-1, Okayama, 700-0005, Japan
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Science, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, Scotland, UK
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka, 411-8540, Japan.
- Graduate Institute for Advanced Studies, SOKENDAI, Yata 1111, Mishima, Shizuoka, 411-8540, Japan.
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
7
|
Benamar M, Eki R, Du KP, Abbas T. Break-induced replication drives large-scale genomic amplifications in cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609980. [PMID: 39253455 PMCID: PMC11383296 DOI: 10.1101/2024.08.27.609980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
DNA double-strand breaks (DSBs) are highly toxic lesions that underly the efficacy of ionizing radiation (IR) and a large number of cytotoxic chemotherapies 1-3 . Yet, abnormal repair of DSBs is associated with genomic instability and may contribute to cancer heterogeneity and tumour evolution. Here, we show that DSBs induced by IR, by DSB-inducing chemotherapeutics, or by the expression of a rare-cutting restriction endonuclease induce large-scale genomic amplification in human cancer cells. Importantly, the extent of DSB-induced genomic amplification (DIGA) in a panel of melanoma cell lines correlated with the degree of cytotoxicity elicited by IR, suggesting that DIGA contributes significantly to DSB-induced cancer cell lethality. DIGA, which is mediated through conservative DNA synthesis, does not require origin re-licensing, and is enhanced by the depletion or deletion of the methyltransferases SET8 and SUV4-20H1, which function sequentially to mono- and di-methylate histone H4 lysine 20 (H4K20) at DSBs to facilitate the recruitment of 53BP1-RIF1 and its downstream effector shieldin complex to DSBs to prevent hyper-resection 4-11 . Consistently, DIGA was enhanced in cells lacking 53BP1 or RIF1, or in cells that lacked components of the shieldin complex or of other factors that help recruit 53BP1 to DSBs. Mechanistically, DIGA requires MRE11/CtIP and EXO1, factors that promote resection and hyper-resection at DSBs, and is dependent on the catalytic activity of the RAD51 recombinase. Furthermore, deletion or depletion of POLD3, POLD4, or RAD52, proteins involved in break-induced replication (BIR), significantly inhibited DIGA, suggesting that DIGA is mediated through a RAD51-dependent BIR-like process. DIGA induction was maximal if the cells encountered DSBs in early and mid S-phase, whereas cells competent for homologous recombination (in late S and G2) exhibited less DIGA induction. We propose that unshielded, hyper-resected ends of DSBs may nucleate a replication-like intermediate that enables cytotoxic long-range genomic DNA amplification mediated through BIR.
Collapse
|
8
|
Yang R, Hunker O, Wise M, Bleichert F. Multiple pathways for licensing human replication origins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588796. [PMID: 38645015 PMCID: PMC11030351 DOI: 10.1101/2024.04.10.588796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The loading of replicative helicases constitutes an obligatory step in the assembly of DNA replication machineries. In eukaryotes, the MCM2-7 replicative helicase motor is deposited onto DNA by the origin recognition complex (ORC) and co-loader proteins as a head-to-head MCM double hexamer to license replication origins. Although extensively studied in the budding yeast model system, the mechanisms of origin licensing in higher eukaryotes remain poorly defined. Here, we use biochemical reconstitution and electron microscopy (EM) to reconstruct the human MCM loading pathway. Unexpectedly, we find that, unlike in yeast, ORC's Orc6 subunit is not essential for human MCM loading but can enhance loading efficiency. EM analyses identify several intermediates en route to MCM double hexamer formation in the presence and absence of Orc6, including an abundant DNA-loaded, closed-ring single MCM hexamer intermediate that can mature into a head-to-head double hexamer through different pathways. In an Orc6-facilitated pathway, ORC and a second MCM2-7 hexamer are recruited to the dimerization interface of the first hexamer through an MCM-ORC intermediate that is architecturally distinct from an analogous intermediate in yeast. In an alternative, Orc6-independent pathway, MCM double hexamer formation proceeds through dimerization of two independently loaded single MCM2-7 hexamers, promoted by a propensity of human MCM2-7 hexamers to dimerize without the help of other loading factors. This redundancy in human MCM loading pathways likely provides resilience against replication stress under cellular conditions by ensuring that enough origins are licensed for efficient DNA replication. Additionally, the biochemical reconstitution of human origin licensing paves the way to address many outstanding questions regarding DNA replication initiation and replication-coupled events in higher eukaryotes in the future.
Collapse
Affiliation(s)
| | | | - Marleigh Wise
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Franziska Bleichert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
9
|
Tian M, Wang Z, Su Z, Shibata E, Shibata Y, Dutta A, Zang C. Integrative analysis of DNA replication origins and ORC-/MCM-binding sites in human cells reveals a lack of overlap. eLife 2024; 12:RP89548. [PMID: 38567819 PMCID: PMC10990492 DOI: 10.7554/elife.89548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Based on experimentally determined average inter-origin distances of ~100 kb, DNA replication initiates from ~50,000 origins on human chromosomes in each cell cycle. The origins are believed to be specified by binding of factors like the origin recognition complex (ORC) or CTCF or other features like G-quadruplexes. We have performed an integrative analysis of 113 genome-wide human origin profiles (from five different techniques) and five ORC-binding profiles to critically evaluate whether the most reproducible origins are specified by these features. Out of ~7.5 million union origins identified by all datasets, only 0.27% (20,250 shared origins) were reproducibly obtained in at least 20 independent SNS-seq datasets and contained in initiation zones identified by each of three other techniques, suggesting extensive variability in origin usage and identification. Also, 21% of the shared origins overlap with transcriptional promoters, posing a conundrum. Although the shared origins overlap more than union origins with constitutive CTCF-binding sites, G-quadruplex sites, and activating histone marks, these overlaps are comparable or less than that of known transcription start sites, so that these features could be enriched in origins because of the overlap of origins with epigenetically open, promoter-like sequences. Only 6.4% of the 20,250 shared origins were within 1 kb from any of the ~13,000 reproducible ORC-binding sites in human cancer cells, and only 4.5% were within 1 kb of the ~11,000 union MCM2-7-binding sites in contrast to the nearly 100% overlap in the two comparisons in the yeast, Saccharomyces cerevisiae. Thus, in human cancer cell lines, replication origins appear to be specified by highly variable stochastic events dependent on the high epigenetic accessibility around promoters, without extensive overlap between the most reproducible origins and currently known ORC- or MCM-binding sites.
Collapse
Affiliation(s)
- Mengxue Tian
- Center for Public Health Genomics, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Zhenjia Wang
- Center for Public Health Genomics, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Zhangli Su
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Etsuko Shibata
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Yoshiyuki Shibata
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Chongzhi Zang
- Center for Public Health Genomics, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Public Health Sciences, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
10
|
White-Gilbertson S, Lu P, Saatci O, Sahin O, Delaney JR, Ogretmen B, Voelkel-Johnson C. Transcriptome analysis of polyploid giant cancer cells and their progeny reveals a functional role for p21 in polyploidization and depolyploidization. J Biol Chem 2024; 300:107136. [PMID: 38447798 PMCID: PMC10979113 DOI: 10.1016/j.jbc.2024.107136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/03/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
Polyploid giant cancer cells (PGCC) are frequently detected in tumors and are increasingly recognized for their roles in chromosomal instability and associated genome evolution that leads to cancer recurrence. We previously reported that therapy stress promotes polyploidy, and that acid ceramidase plays a role in depolyploidization. In this study, we used an RNA-seq approach to gain a better understanding of the underlying transcriptomic changes that occur as cancer cells progress through polyploidization and depolyploidization. Our results revealed gene signatures that are associated with disease-free and/or overall survival in several cancers and identified the cell cycle inhibitor CDKN1A/p21 as the major hub in PGCC and early progeny. Increased expression of p21 in PGCC was limited to the cytoplasm. We previously demonstrated that the sphingolipid enzyme acid ceramidase is dispensable for polyploidization upon therapy stress but plays a crucial role in depolyploidization. The current study demonstrates that treatment of cells with ceramide is not sufficient for p53-independent induction of p21 and that knockdown of acid ceramidase, which hydrolyzes ceramide, does not interfere with upregulation of p21. In contrast, blocking the expression of p21 with UC2288 prevented the induction of acid ceramidase and inhibited both the formation of PGCC from parental cells as well as the generation of progeny from PGCC. Taken together, our data suggest that p21 functions upstream of acid ceramidase and plays an important role in polyploidization and depolyploidization.
Collapse
Affiliation(s)
- Shai White-Gilbertson
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ping Lu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ozge Saatci
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Joe R Delaney
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Christina Voelkel-Johnson
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
11
|
Chen L, Zhang D, Chen Y, Zhu H, Liu Z, Yu Z, Xie J. ORC6 acts as an effective prognostic predictor for non‑small cell lung cancer and is closely associated with tumor progression. Oncol Lett 2024; 27:96. [PMID: 38288041 PMCID: PMC10823314 DOI: 10.3892/ol.2024.14229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/07/2023] [Indexed: 01/31/2024] Open
Abstract
Origin recognition complexes (ORCs) are vital in the control of DNA replication and the progression of the cell cycle, however the precise function and mechanism of ORC6 in non-small cell lung cancer (NSCLC) is still not well understood. The present study used bioinformatics methods to assess the predictive significance of ORC6 expression in NSCLC. Moreover, the expression of ORC6 was further evaluated using reverse transcription-quantitative PCR and western blotting, and its functional significance in lung cancer was assessed via knockdown experiments using small interfering RNA. A significant association was demonstrated between the expression of ORC6 and the clinical features of NSCLC. In particular, elevated levels of ORC6 were significantly strongly correlated with an unfavorable prognosis. Multivariate analysis demonstrated that increased ORC6 expression independently contributed to the risk of overall survival (HR 1.304; P=0.015) in individuals diagnosed with NSCLC. Analysis of Kaplan-Meier plots demonstrated that ORC6 expression served as a valuable indicator for diagnosing and predicting the prognosis of NSCLC. Moreover, in vitro studies demonstrated that modified ORC6 expression had a significant impact on the proliferation, migration and metastasis of NSCLC cells. NSCLC cell lines (H1299 and mH1650) exhibited markedly higher ORC6 expression than normal lung cell lines. The results of the present study indicated a strong association between the expression of ORC6 and the clinicopathological characteristics of NSCLC, which suggested its potential as a reliable biomarker for predicting NSCLC. Furthermore, ORC6 may have important therapeutic implications in the management of NSCLC.
Collapse
Affiliation(s)
- Letian Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Dongdong Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Yujuan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Huilan Zhu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Zhipeng Liu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Zhiping Yu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Junping Xie
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| |
Collapse
|
12
|
Lebdy R, Canut M, Patouillard J, Cadoret JC, Letessier A, Ammar J, Basbous J, Urbach S, Miotto B, Constantinou A, Abou Merhi R, Ribeyre C. The nucleolar protein GNL3 prevents resection of stalled replication forks. EMBO Rep 2023; 24:e57585. [PMID: 37965896 DOI: 10.15252/embr.202357585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
Faithful DNA replication requires specific proteins that protect replication forks and so prevent the formation of DNA lesions that may damage the genome. Identification of new proteins involved in this process is essential to understand how DNA lesions accumulate in cancer cells and how they tolerate them. Here, we show that human GNL3/nucleostemin, a GTP-binding protein localized mostly in the nucleolus and highly expressed in cancer cells, prevents nuclease-dependent resection of nascent DNA in response to replication stress. We demonstrate that inhibiting origin firing reduces resection. This suggests that the heightened replication origin activation observed upon GNL3 depletion largely drives the observed DNA resection probably due to the exhaustion of the available RPA pool. We show that GNL3 and DNA replication initiation factor ORC2 interact in the nucleolus and that the concentration of GNL3 in the nucleolus is required to limit DNA resection. We propose that the control of origin firing by GNL3 through the sequestration of ORC2 in the nucleolus is critical to prevent nascent DNA resection in response to replication stress.
Collapse
Affiliation(s)
- Rana Lebdy
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
- Faculty of Sciences, Genomics and Surveillance Biotherapy (GSBT) Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Marine Canut
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Julie Patouillard
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | | | - Anne Letessier
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Josiane Ammar
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Jihane Basbous
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Serge Urbach
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Inserm U1191, Université de Montpellier, Montpellier Cedex 5, France
| | - Benoit Miotto
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Angelos Constantinou
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Raghida Abou Merhi
- Faculty of Sciences, Genomics and Surveillance Biotherapy (GSBT) Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Cyril Ribeyre
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| |
Collapse
|
13
|
Tian M, Wang Z, Su Z, Shibata E, Shibata Y, Dutta A, Zang C. Integrative analysis of DNA replication origins and ORC/MCM binding sites in human cells reveals a lack of overlap. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550556. [PMID: 37546918 PMCID: PMC10402023 DOI: 10.1101/2023.07.25.550556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Based on experimentally determined average inter-origin distances of ∼100 kb, DNA replication initiates from ∼50,000 origins on human chromosomes in each cell cycle. The origins are believed to be specified by binding of factors like the Origin Recognition Complex (ORC) or CTCF or other features like G-quadruplexes. We have performed an integrative analysis of 113 genome-wide human origin profiles (from five different techniques) and 5 ORC-binding profiles to critically evaluate whether the most reproducible origins are specified by these features. Out of ∼7.5 million union origins identified by all datasets, only 0.27% were reproducibly obtained in at least 20 independent SNS-seq datasets and contained in initiation zones identified by each of three other techniques (20,250 shared origins), suggesting extensive variability in origin usage and identification. 21% of the shared origins overlap with transcriptional promoters, posing a conundrum. Although the shared origins overlap more than union origins with constitutive CTCF binding sites, G-quadruplex sites and activating histone marks, these overlaps are comparable or less than that of known Transcription Start Sites, so that these features could be enriched in origins because of the overlap of origins with epigenetically open, promoter-like sequences. Only 6.4% of the 20,250 shared origins were within 1 kb from any of the ∼13,000 reproducible ORC binding sites in human cancer cells, and only 4.5% were within 1 kb of the ∼11,000 union MCM2-7 binding sites in contrast to the nearly 100% overlap in the two comparisons in the yeast, S. cerevisiae . Thus, in human cancer cell lines, replication origins appear to be specified by highly variable stochastic events dependent on the high epigenetic accessibility around promoters, without extensive overlap between the most reproducible origins and currently known ORC- or MCM-binding sites.
Collapse
|
14
|
Phanindhar K, Mishra RK. Auxin-inducible degron system: an efficient protein degradation tool to study protein function. Biotechniques 2023; 74:186-198. [PMID: 37191015 DOI: 10.2144/btn-2022-0108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Targeted protein degradation, with its rapid protein depletion kinetics, allows the measurement of acute changes in the cell. The auxin-inducible degron (AID) system, rapidly degrades AID-tagged proteins only in the presence of auxin. The AID system being inducible makes the study of essential genes and dynamic processes like cell differentiation, cell cycle and genome organization feasible. The AID degradation system has been adapted to yeast, protozoans, C. elegans, Drosophila, zebrafish, mouse and mammalian cell lines. Using the AID system, researchers have unveiled novel functions for essential proteins at developmental stages that were previously difficult to investigate due to early lethality. This comprehensive review discusses the development, advancements, applications and drawbacks of the AID system and compares it with other available protein degradation systems.
Collapse
Affiliation(s)
- Kundurthi Phanindhar
- CSIR-Centre for Cellular & Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Rakesh K Mishra
- CSIR-Centre for Cellular & Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- Tata Institute for Genetics & Society (TIGS), Bangalore, 560065, India
| |
Collapse
|
15
|
Distinct roles of Arabidopsis ORC1 proteins in DNA replication and heterochromatic H3K27me1 deposition. Nat Commun 2023; 14:1270. [PMID: 36882445 PMCID: PMC9992703 DOI: 10.1038/s41467-023-37024-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Most cellular proteins involved in genome replication are conserved in all eukaryotic lineages including yeast, plants and animals. However, the mechanisms controlling their availability during the cell cycle are less well defined. Here we show that the Arabidopsis genome encodes for two ORC1 proteins highly similar in amino acid sequence and that have partially overlapping expression domains but with distinct functions. The ancestral ORC1b gene, present before the partial duplication of the Arabidopsis genome, has retained the canonical function in DNA replication. ORC1b is expressed in both proliferating and endoreplicating cells, accumulates during G1 and is rapidly degraded upon S-phase entry through the ubiquitin-proteasome pathway. In contrast, the duplicated ORC1a gene has acquired a specialized function in heterochromatin biology. ORC1a is required for efficient deposition of the heterochromatic H3K27me1 mark by the ATXR5/6 histone methyltransferases. The distinct roles of the two ORC1 proteins may be a feature common to other organisms with duplicated ORC1 genes and a major difference with animal cells.
Collapse
|
16
|
Meng X, Dang HQ, Kapler GM. Developmentally Programmed Switches in DNA Replication: Gene Amplification and Genome-Wide Endoreplication in Tetrahymena. Microorganisms 2023; 11:microorganisms11020491. [PMID: 36838456 PMCID: PMC9967165 DOI: 10.3390/microorganisms11020491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/29/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Locus-specific gene amplification and genome-wide endoreplication generate the elevated copy number of ribosomal DNA (rDNA, 9000 C) and non-rDNA (90 C) chromosomes in the developing macronucleus of Tetrahymena thermophila. Subsequently, all macronuclear chromosomes replicate once per cell cycle during vegetative growth. Here, we describe an unanticipated, programmed switch in the regulation of replication initiation in the rDNA minichromosome. Early in development, the 21 kb rDNA minichromosome is preferentially amplified from 2 C to ~800 C from well-defined origins, concurrent with genome-wide endoreplication (2 C to 8-16 C) in starved mating Tetrahymena (endoreplication (ER) Phase 1). Upon refeeding, rDNA and non-rDNA chromosomes achieve their final copy number through resumption of just the endoreplication program (ER Phase 2). Unconventional rDNA replication intermediates are generated primarily during ER phase 2, consistent with delocalized replication initiation and possible formation of persistent RNA-DNA hybrids. Origin usage and replication fork elongation are affected in non-rDNA chromosomes as well. Despite the developmentally programmed 10-fold reduction in the ubiquitous eukaryotic initiator, the Origin Recognition Complex (ORC), active initiation sites are more closely spaced in ER phases 1 and 2 compared to vegetative growing cells. We propose that initiation site selection is relaxed in endoreplicating macronuclear chromosomes and may be less dependent on ORC.
Collapse
Affiliation(s)
- Xiangzhou Meng
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hung Quang Dang
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Alstem Bioscience, Richmond, CA 94806, USA
| | - Geoffrey M. Kapler
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Correspondence: ; Tel.: +1-979-574-3901
| |
Collapse
|
17
|
Orc6 is a component of the replication fork and enables efficient mismatch repair. Proc Natl Acad Sci U S A 2022; 119:e2121406119. [PMID: 35622890 DOI: 10.1073/pnas.2121406119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Significance Origin recognition complex (ORC) is required for the initiation of DNA replication. Unlike other ORC components, the role of human Orc6 in replication remains to be resolved. We identified an unexpected role for hOrc6, which is to promote S-phase progression after prereplication complex assembly and DNA damage response. Orc6 localizes at the replication fork, is an accessory factor of the mismatch repair complex, and plays a fundamental role in genome surveillance during S phase.
Collapse
|
18
|
Nguyen H, Wu H, Ung A, Yamazaki Y, Fogelgren B, Ward WS. Deletion of Orc4 during oogenesis severely reduces polar body extrusion and blocks zygotic DNA replication†. Biol Reprod 2022; 106:730-740. [PMID: 34977916 PMCID: PMC9040667 DOI: 10.1093/biolre/ioab237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/21/2021] [Accepted: 12/15/2021] [Indexed: 11/14/2022] Open
Abstract
Origin recognition complex subunit 4 (ORC4) is a DNA-binding protein required for DNA replication. During oocyte maturation, after the last oocyte DNA replication step and before zygotic DNA replication, the oocyte undergoes two meiotic cell divisions in which half the DNA is ejected in much smaller polar bodies. We previously demonstrated that ORC4 forms a cytoplasmic cage around the DNA that is ejected in both polar body extrusion (PBE) events. Here, we used ZP3 activated Cre to delete exon 7 of Orc4 during oogenesis to test how it affected both predicted functions of ORC4: its recently discovered role in PBE and its well-known role in DNA synthesis. Orc4 deletion severely reduced PBE. Almost half of Orc4-depleted germinal vesicle (GV) oocytes cultured in vitro were arrested before anaphase I (48%), and only 25% produced normal first polar bodies. This supports the role of ORC4 in PBE and suggests that transcription of the full-length Orc4 during oogenesis is required for efficient PBE. Orc4 deletion also abolished zygotic DNA synthesis. Fewer Orc4-depleted oocytes developed to the metaphase II (MII) stage, and after activation these oocytes were arrested at the two-cell stage without undergoing DNA synthesis. This confirms that transcription of full-length Orc4 after the primary follicle stage is required for zygotic DNA replication. The data also suggest that MII oocytes do not have a replication licensing checkpoint as cytokinesis progressed without DNA synthesis. Together, the data confirm that oocyte ORC4 is important for both PBE and zygotic DNA synthesis.
Collapse
Affiliation(s)
- Hieu Nguyen
- Department of Anatomy, Biochemistry & Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Hongwen Wu
- Department of Anatomy, Biochemistry & Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Anna Ung
- Department of Anatomy, Biochemistry & Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Yukiko Yamazaki
- Department of Anatomy, Biochemistry & Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Ben Fogelgren
- Department of Anatomy, Biochemistry & Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - W Steven Ward
- Department of Anatomy, Biochemistry & Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
- Department of Obstetrics, Gynecology & Women’s Health, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
19
|
Kang TZE, Wan YCE, Zhang Z, Chan KM. Lrwd1 impacts cell proliferation and the silencing of repetitive DNA elements. Genesis 2022; 60:e23475. [PMID: 35451548 PMCID: PMC9233303 DOI: 10.1002/dvg.23475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 11/08/2022]
Abstract
LRWD1, also known as ORCA, is a nuclear protein functioning in multiple biological processes. Using its WD40 domain LRWD1 interacts with repressive histone marks and maintains the silencing of heterochromatin regions in mammalian cells. ORCA also associates with the origin recognition complex (ORC) and facilitates prereplication complex formation at late‐replicating origins. However, whether LRWD1 plays a role during development and the functional significance of LRWD1 in vivo remains largely unknown. Using gene‐trap approach we generated Lrwd1 knockout mice and examined the expression of Lrwd1 during embryonic development. We found that Lrwd1 is ubiquitously expressed in the majority of the developing mouse embryo. Depletion of LRWD1 did not affect embryonic development but the postnatal growth of the homozygous mutants is retarded. In vitro cultured mouse embryonic fibroblasts (MEFs) depleted of LRWD1 displayed a reduced proliferation compared to wild type cells. We also showed that the knockout of Lrwd1 in MEFs increased the expression of the epigenetically silenced repetitive elements but with minimal effect on the expression of protein coding genes. Together, these results suggest that LRWD1 plays an important, but not essential, role in postnatal development by regulating cell proliferation likely through modulating DNA replication.
Collapse
Affiliation(s)
- Tze Zhen Evangeline Kang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Yi Ching Esther Wan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Department of Pediatrics and Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, USA
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| |
Collapse
|
20
|
Abstract
DNA replication in eukaryotic cells initiates from large numbers of sites called replication origins. Initiation of replication from these origins must be tightly controlled to ensure the entire genome is precisely duplicated in each cell cycle. This is accomplished through the regulation of the first two steps in replication: loading and activation of the replicative DNA helicase. Here we describe what is known about the mechanism and regulation of these two reactions from a genetic, biochemical, and structural perspective, focusing on recent progress using proteins from budding yeast. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK;
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, London, UK;
| |
Collapse
|
21
|
Salas-Leiva DE, Tromer EC, Curtis BA, Jerlström-Hultqvist J, Kolisko M, Yi Z, Salas-Leiva JS, Gallot-Lavallée L, Williams SK, Kops GJPL, Archibald JM, Simpson AGB, Roger AJ. Genomic analysis finds no evidence of canonical eukaryotic DNA processing complexes in a free-living protist. Nat Commun 2021; 12:6003. [PMID: 34650064 PMCID: PMC8516963 DOI: 10.1038/s41467-021-26077-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Cells replicate and segregate their DNA with precision. Previous studies showed that these regulated cell-cycle processes were present in the last eukaryotic common ancestor and that their core molecular parts are conserved across eukaryotes. However, some metamonad parasites have secondarily lost components of the DNA processing and segregation apparatuses. To clarify the evolutionary history of these systems in these unusual eukaryotes, we generated a genome assembly for the free-living metamonad Carpediemonas membranifera and carried out a comparative genomics analysis. Here, we show that parasitic and free-living metamonads harbor an incomplete set of proteins for processing and segregating DNA. Unexpectedly, Carpediemonas species are further streamlined, lacking the origin recognition complex, Cdc6 and most structural kinetochore subunits. Carpediemonas species are thus the first known eukaryotes that appear to lack this suite of conserved complexes, suggesting that they likely rely on yet-to-be-discovered or alternative mechanisms to carry out these fundamental processes.
Collapse
Affiliation(s)
- Dayana E. Salas-Leiva
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada ,grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Eelco C. Tromer
- grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom ,grid.4830.f0000 0004 0407 1981Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Bruce A. Curtis
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| | - Jon Jerlström-Hultqvist
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| | - Martin Kolisko
- grid.418095.10000 0001 1015 3316Institute of Parasitology, Biology Centre, Czech Acad. Sci, České Budějovice, Czech Republic
| | - Zhenzhen Yi
- grid.263785.d0000 0004 0368 7397Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | - Joan S. Salas-Leiva
- grid.466575.30000 0001 1835 194XCONACyT-Centro de Investigación en Materiales Avanzados, Departamento de medio ambiente y energía, Miguel de Cervantes 120, Complejo Industrial Chihuahua, 31136 Chihuahua, Chih. México
| | - Lucie Gallot-Lavallée
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| | - Shelby K. Williams
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| | - Geert J. P. L. Kops
- grid.7692.a0000000090126352Oncode Institute, Hubrecht Institute – KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - John M. Archibald
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| | - Alastair G. B. Simpson
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| | - Andrew J. Roger
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| |
Collapse
|
22
|
Luo H, Tao C, Long X, Zhu X, Huang K. Early 2 factor (E2F) transcription factors contribute to malignant progression and have clinical prognostic value in lower-grade glioma. Bioengineered 2021; 12:7765-7779. [PMID: 34617871 PMCID: PMC8806968 DOI: 10.1080/21655979.2021.1985340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Early 2 factor (E2F) genes encoding a family of transcription factors are significantly associated with apoptosis, metabolism, and angiogenesis in several tumor types. However, the biological functions of E2F transcription factors (E2Fs) and their potential involvement in the malignancy of lower-grade glioma (LGG) remain unclear. We explored the effects of the expression of eight E2F family members on the clinical characteristics of LGG based on the Chinese Glioma Genome Atlas (CGGA), The Cancer Genome Atlas (TCGA), and GSE16011 datasets. Two LGG subgroups were identified according to the consensus clustering of the eight E2Fs. We employed the least absolute shrinkage and selection operator (LASSO) Cox regression algorithm for further functional experiments and the development of a potential risk score. Two categories of patients with LGG were identified based on the median risk scores. We then developed a nomogram based on the results of the multivariate analysis. Real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry were performed to validate the bioinformatics results. Our results indicated that E2F family members were significantly involved in the malignancy of LGG and might serve as effective prognostic biomarkers of the disease.
Collapse
Affiliation(s)
- Haitao Luo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Chuming Tao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.,Scientific Research Center, East China Institute of Digital Medical Engineering, Shangrao, Jiangxi Province, China
| | - Xiaoyan Long
- Scientific Research Center, East China Institute of Digital Medical Engineering, Shangrao, Jiangxi Province, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.,Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi Province, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.,Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
23
|
Zhang H. Regulation of DNA Replication Licensing and Re-Replication by Cdt1. Int J Mol Sci 2021; 22:ijms22105195. [PMID: 34068957 PMCID: PMC8155957 DOI: 10.3390/ijms22105195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022] Open
Abstract
In eukaryotic cells, DNA replication licensing is precisely regulated to ensure that the initiation of genomic DNA replication in S phase occurs once and only once for each mitotic cell division. A key regulatory mechanism by which DNA re-replication is suppressed is the S phase-dependent proteolysis of Cdt1, an essential replication protein for licensing DNA replication origins by loading the Mcm2-7 replication helicase for DNA duplication in S phase. Cdt1 degradation is mediated by CRL4Cdt2 ubiquitin E3 ligase, which further requires Cdt1 binding to proliferating cell nuclear antigen (PCNA) through a PIP box domain in Cdt1 during DNA synthesis. Recent studies found that Cdt2, the specific subunit of CRL4Cdt2 ubiquitin E3 ligase that targets Cdt1 for degradation, also contains an evolutionarily conserved PIP box-like domain that mediates the interaction with PCNA. These findings suggest that the initiation and elongation of DNA replication or DNA damage-induced repair synthesis provide a novel mechanism by which Cdt1 and CRL4Cdt2 are both recruited onto the trimeric PCNA clamp encircling the replicating DNA strands to promote the interaction between Cdt1 and CRL4Cdt2. The proximity of PCNA-bound Cdt1 to CRL4Cdt2 facilitates the destruction of Cdt1 in response to DNA damage or after DNA replication initiation to prevent DNA re-replication in the cell cycle. CRL4Cdt2 ubiquitin E3 ligase may also regulate the degradation of other PIP box-containing proteins, such as CDK inhibitor p21 and histone methylase Set8, to regulate DNA replication licensing, cell cycle progression, DNA repair, and genome stability by directly interacting with PCNA during DNA replication and repair synthesis.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Chemistry and Biochemistry, Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Box 454003, Las Vegas, NV 89154, USA
| |
Collapse
|
24
|
Replication initiation: Implications in genome integrity. DNA Repair (Amst) 2021; 103:103131. [PMID: 33992866 DOI: 10.1016/j.dnarep.2021.103131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 02/01/2023]
Abstract
In every cell cycle, billions of nucleotides need to be duplicated within hours, with extraordinary precision and accuracy. The molecular mechanism by which cells regulate the replication event is very complicated, and the entire process begins way before the onset of S phase. During the G1 phase of the cell cycle, cells prepare by assembling essential replication factors to establish the pre-replicative complex at origins, sites that dictate where replication would initiate during S phase. During S phase, the replication process is tightly coupled with the DNA repair system to ensure the fidelity of replication. Defects in replication and any error must be recognized by DNA damage response and checkpoint signaling pathways in order to halt the cell cycle before cells are allowed to divide. The coordination of these processes throughout the cell cycle is therefore critical to achieve genomic integrity and prevent diseases. In this review, we focus on the current understanding of how the replication initiation events are regulated to achieve genome stability.
Collapse
|
25
|
Chou HC, Bhalla K, Demerdesh OE, Klingbeil O, Hanington K, Aganezov S, Andrews P, Alsudani H, Chang K, Vakoc CR, Schatz MC, McCombie WR, Stillman B. The human origin recognition complex is essential for pre-RC assembly, mitosis, and maintenance of nuclear structure. eLife 2021; 10:61797. [PMID: 33522487 PMCID: PMC7877914 DOI: 10.7554/elife.61797] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/30/2021] [Indexed: 12/23/2022] Open
Abstract
The origin recognition complex (ORC) cooperates with CDC6, MCM2-7, and CDT1 to form pre-RC complexes at origins of DNA replication. Here, using tiling-sgRNA CRISPR screens, we report that each subunit of ORC and CDC6 is essential in human cells. Using an auxin-inducible degradation system, we created stable cell lines capable of ablating ORC2 rapidly, revealing multiple cell division cycle phenotypes. The primary defects in the absence of ORC2 were cells encountering difficulty in initiating DNA replication or progressing through the cell division cycle due to reduced MCM2-7 loading onto chromatin in G1 phase. The nuclei of ORC2-deficient cells were also large, with decompacted heterochromatin. Some ORC2-deficient cells that completed DNA replication entered into, but never exited mitosis. ORC1 knockout cells also demonstrated extremely slow cell proliferation and abnormal cell and nuclear morphology. Thus, ORC proteins and CDC6 are indispensable for normal cellular proliferation and contribute to nuclear organization.
Collapse
Affiliation(s)
- Hsiang-Chen Chou
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States.,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, United States
| | - Kuhulika Bhalla
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | | | - Olaf Klingbeil
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | | | - Sergey Aganezov
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, United States
| | - Peter Andrews
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Habeeb Alsudani
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Kenneth Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | | | - Michael C Schatz
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, United States
| | | | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| |
Collapse
|
26
|
Ocaña-Pallarès E, Vergara Z, Desvoyes B, Tejada-Jimenez M, Romero-Jurado A, Galván A, Fernández E, Ruiz-Trillo I, Gutierrez C. Origin Recognition Complex (ORC) Evolution Is Influenced by Global Gene Duplication/Loss Patterns in Eukaryotic Genomes. Genome Biol Evol 2020; 12:3878-3889. [PMID: 31990293 PMCID: PMC7058166 DOI: 10.1093/gbe/evaa011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2020] [Indexed: 12/29/2022] Open
Abstract
The conservation of orthologs of most subunits of the origin recognition complex (ORC) has served to propose that the whole complex is common to all eukaryotes. However, various uncertainties have arisen concerning ORC subunit composition in a variety of lineages. Also, it is unclear whether the ancestral diversification of ORC in eukaryotes was accompanied by the neofunctionalization of some subunits, for example, role of ORC1 in centriole homeostasis. We have addressed these questions by reconstructing the distribution and evolutionary history of ORC1-5/CDC6 in a taxon-rich eukaryotic data set. First, we identified ORC subunits previously undetected in divergent lineages, which allowed us to propose a series of parsimonious scenarios for the origin of this multiprotein complex. Contrary to previous expectations, we found a global tendency in eukaryotes to increase or decrease the number of subunits as a consequence of genome duplications or streamlining, respectively. Interestingly, parasites show significantly lower number of subunits than free-living eukaryotes, especially those with the lowest genome size and gene content metrics. We also investigated the evolutionary origin of the ORC1 role in centriole homeostasis mediated by the PACT region in human cells. In particular, we tested the consequences of reducing ORC1 levels in the centriole-containing green alga Chlamydomonas reinhardtii. We found that the proportion of centrioles to flagella and nuclei was not dramatically affected. This, together with the PACT region not being significantly more conserved in centriole-bearing eukaryotes, supports the notion that this neofunctionalization of ORC1 would be a recent acquisition rather than an ancestral eukaryotic feature.
Collapse
Affiliation(s)
| | - Zaida Vergara
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Bénédicte Desvoyes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Manuel Tejada-Jimenez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Córdoba, Spain
| | - Ainoa Romero-Jurado
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Córdoba, Spain
| | - Aurora Galván
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Córdoba, Spain
| | - Emilio Fernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Córdoba, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.,Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| |
Collapse
|
27
|
Shibata E, Dutta A. A human cancer cell line initiates DNA replication normally in the absence of ORC5 and ORC2 proteins. J Biol Chem 2020; 295:16949-16959. [PMID: 32989049 PMCID: PMC7863895 DOI: 10.1074/jbc.ra120.015450] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/23/2020] [Indexed: 01/03/2023] Open
Abstract
The origin recognition complex (ORC), composed of six subunits, ORC1-6, binds to origins of replication as a ring-shaped heterohexameric ATPase that is believed to be essential to recruit and load MCM2-7, the minichromosome maintenance protein complex, around DNA and initiate DNA replication. We previously reported the creation of viable cancer cell lines that lacked detectable ORC1 or ORC2 protein without a reduction in the number of origins firing. Here, using CRISPR-Cas9-mediated mutations, we report that human HCT116 colon cancer cells also survive when ORC5 protein expression is abolished via a mutation in the initiator ATG of the ORC5 gene. Even if an internal methionine is used to produce an undetectable, N terminally deleted ORC5, the protein would lack 80% of the AAA+ ATPase domain, including the Walker A motif. The ORC5-depleted cells show normal chromatin binding of MCM2-7 and initiate replication from a similar number of origins as WT cells. In addition, we introduced a second mutation in ORC2 in the ORC5 mutant cells, rendering both ORC5 and ORC2 proteins undetectable in the same cells and destabilizing the ORC1, ORC3, and ORC4 proteins. Yet the double mutant cells grow, recruit MCM2-7 normally to chromatin, and initiate DNA replication with normal number of origins. Thus, in these selected cancer cells, either a crippled ORC lacking ORC2 and ORC5 and present at minimal levels on the chromatin can recruit and load enough MCM2-7 to initiate DNA replication, or human cell lines can sometimes recruit MCM2-7 to origins independent of ORC.
Collapse
Affiliation(s)
- Etsuko Shibata
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
| |
Collapse
|
28
|
Abstract
The cyclin-dependent kinase (CDK)-RB-E2F axis forms the core transcriptional machinery driving cell cycle progression, dictating the timing and fidelity of genome replication and ensuring genetic material is accurately passed through each cell division cycle. The ultimate effectors of this axis are members of a family of eight distinct E2F genes encoding transcriptional activators and repressors. E2F transcriptional activity is tightly regulated throughout the cell cycle via transcriptional and translational regulation, post-translational modifications, protein degradation, binding to cofactors and subcellular localization. Alterations in one or more key components of this axis (CDKs, cyclins, CDK inhibitors and the RB family of proteins) occur in virtually all cancers and result in heightened oncogenic E2F activity, leading to uncontrolled proliferation. In this Review, we discuss the activities of E2F proteins with an emphasis on the newest atypical E2F family members, the specific and redundant functions of E2F proteins, how misexpression of E2F transcriptional targets promotes cancer and both current and developing therapeutic strategies being used to target this oncogenic pathway.
Collapse
Affiliation(s)
- Lindsey N Kent
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Gustavo Leone
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
29
|
Maerz LD, Casar Tena T, Gerhards J, Donow C, Jeggo PA, Philipp M. Analysis of cilia dysfunction phenotypes in zebrafish embryos depleted of Origin recognition complex factors. Eur J Hum Genet 2019; 27:772-782. [PMID: 30696958 DOI: 10.1038/s41431-019-0338-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 12/15/2022] Open
Abstract
Meier-Gorlin syndrome (MGS) is a rare, congenital primordial microcephalic dwarfism disorder. MGS is caused by genetic variants of components of the origin recognition complex (ORC) consisting of ORC1-6 and the pre-replication complex, which together enable origin firing and hence genome replication. In addition, ORC1 has previously been shown to play a role in ciliogenesis. Here, we extend this work and investigate the function of ORC1 and two other members of the complex on cilia at an organismal level. Knockdown experiments in zebrafish confirmed the impact of ORC1 on cilia. ORC1-deficiency confers defects anticipated to arise from impaired cilia function such as formation of oedema, kidney cysts, curved bodies and left-right asymmetry defects. We found ORC1 furthermore required for cilium formation in zebrafish and demonstrate that ciliopathy phenotypes in ORC1-depleted zebrafish could not be rescued by reconstitution with ORC1 bearing a genetic variant previously identified in MGS patients. Loss-of-function of Orc4 and Orc6, respectively, conferred similar ciliopathy phenotypes and cilium shortening in zebrafish, suggesting that several, if not all, components of the ORC regulate ciliogenesis downstream to or in addition to their canonical function in replication initiation. This study presents the first in vivo evidence of an influence of the MGS genes of the ORC family on cilia, and consolidates the possibility that cilia dysfunction could contribute to the clinical manifestation of ORC-deficient MGS.
Collapse
Affiliation(s)
- Lars D Maerz
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Teresa Casar Tena
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Julian Gerhards
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Cornelia Donow
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Penelope A Jeggo
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Melanie Philipp
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
30
|
Mughal MJ, Mahadevappa R, Kwok HF. DNA replication licensing proteins: Saints and sinners in cancer. Semin Cancer Biol 2018; 58:11-21. [PMID: 30502375 DOI: 10.1016/j.semcancer.2018.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/08/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022]
Abstract
DNA replication is all-or-none process in the cell, meaning, once the DNA replication begins it proceeds to completion. Hence, to achieve maximum control of DNA replication, eukaryotic cells employ a multi-subunit initiator protein complex known as "pre-replication complex or DNA replication licensing complex (DNA replication LC). This complex involves multiple proteins which are origin-recognition complex family proteins, cell division cycle-6, chromatin licensing and DNA replication factor 1, and minichromosome maintenance family proteins. Higher-expression of DNA replication LC proteins appears to be an early event during development of cancer since it has been a common hallmark observed in a wide variety of cancers such as oesophageal, laryngeal, pulmonary, mammary, colorectal, renal, urothelial etc. However, the exact mechanisms leading to the abnormally high expression of DNA replication LC have not been clearly deciphered. Increased expression of DNA replication LC leads to licensing and/or firing of multiple origins thereby inducing replication stress and genomic instability. Therapeutic approaches where the reduction in the activity of DNA replication LC was achieved either by siRNA or shRNA techniques, have shown increased sensitivity of cancer cell lines towards the anti-cancer drugs such as cisplatin, 5-Fluorouracil, hydroxyurea etc. Thus, the expression level of DNA replication LC within the cell determines a cell's fate thereby creating a paradox where DNA replication LC acts as both "Saint" and "Sinner". With a potential to increase sensitivity to chemotherapy drugs, DNA replication LC proteins have prospective clinical importance in fighting cancer. Hence, in this review, we will shed light on importance of DNA replication LC with an aim to use DNA replication LC in diagnosis and prognosis of cancer in patients as well as possible therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Muhammad Jameel Mughal
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Ravikiran Mahadevappa
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau.
| |
Collapse
|
31
|
Dynamic changes in ORC localization and replication fork progression during tissue differentiation. BMC Genomics 2018; 19:623. [PMID: 30134926 PMCID: PMC6103881 DOI: 10.1186/s12864-018-4992-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/02/2018] [Indexed: 12/23/2022] Open
Abstract
Background Genomic regions repressed for DNA replication, resulting in either delayed replication in S phase or underreplication in polyploid cells, are thought to be controlled by inhibition of replication origin activation. Studies in Drosophila polytene cells, however, raised the possibility that impeding replication fork progression also plays a major role. Results We exploited genomic regions underreplicated (URs) with tissue specificity in Drosophila polytene cells to analyze mechanisms of replication repression. By localizing the Origin Recognition Complex (ORC) in the genome of the larval fat body and comparing this to ORC binding in the salivary gland, we found that sites of ORC binding show extensive tissue specificity. In contrast, there are common domains nearly devoid of ORC in the salivary gland and fat body that also have reduced density of ORC binding sites in diploid cells. Strikingly, domains lacking ORC can still be replicated in some polytene tissues, showing absence of ORC and origins is insufficient to repress replication. Analysis of the width and location of the URs with respect to ORC position indicates that whether or not a genomic region lacking ORC is replicated is controlled by whether replication forks formed outside the region are inhibited. Conclusions These studies demonstrate that inhibition of replication fork progression can block replication across genomic regions that constitutively lack ORC. Replication fork progression can be inhibited in both tissue-specific and genome region-specific ways. Consequently, when evaluating sources of genome instability it is important to consider altered control of replication forks in response to differentiation. Electronic supplementary material The online version of this article (10.1186/s12864-018-4992-3) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Influence of Origin Recognition Complex Proteins on the Copy Numbers of Three Chromosomes in Haloferax volcanii. J Bacteriol 2018; 200:JB.00161-18. [PMID: 29941422 DOI: 10.1128/jb.00161-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/17/2018] [Indexed: 12/22/2022] Open
Abstract
Replication initiation in archaea involves a protein named ORC, Cdc6, or ORC1/Cdc6, which is homologous to the eukaryotic origin recognition complex (ORC) proteins and to the eukaryotic Cdc6. Archaeal replication origins are comprised of origin repeat regions and adjacent orc genes. Some archaea contain a single replication origin and a single orc gene, while others have more than one of each. Haloferax volcanii is exceptional because it contains, in total, six replication origins on three chromosomes and 16 orc genes. Phylogenetic trees were constructed that showed that orc gene duplications occurred at very different times in evolution. To unravel the influence of the ORC proteins on chromosome copy number and cellular fitness, it was attempted to generate deletion mutants of all 16 genes. A total of 12 single-gene deletion mutants could be generated, and only three orc gene turned out to be essential. For one gene, the deletion analysis failed. Growth analyses revealed that no deletion mutant had a growth defect, but some had a slight growth advantage compared to the wild type. Quantification of the chromosome copy numbers in the deletion mutants showed that all 12 ORC proteins influenced the copy numbers of one, two, or all three chromosomes. The lack of an ORC led to an increase or decrease of chromosome copy number. Therefore, chromosome copy numbers in Hfxvolcanii are regulated by an intricate network of ORC proteins. This is in contrast to other archaea, in which ORC proteins typically bind specifically to the adjacent origin.IMPORTANCE The core origins of archaea are comprised of a repeat region and an adjacent gene for an origin recognition complex (ORC) protein, which is homologous to eukaryotic ORC proteins. Haloferax volcanii is exceptional because it contains six replication origins on three chromosomes and an additional 10 orc genes that are not adjacent to an origin. This unique ORC protein repertoire was used to unravel the importance of core origin orc genes and of origin-remote orc genes. Remarkably, all ORC proteins influenced the copy number of at least one chromosome. Some of them influenced those of all three chromosomes, showing that cross-regulation in trans exists in Hfx. volcanii Furthermore, the evolution of the archaeal ORC protein family was analyzed.
Collapse
|
33
|
Okano-Uchida T, Kent LN, Ouseph MM, McCarty B, Frank JJ, Kladney R, Cuitino MC, Thompson JC, Coppola V, Asano M, Leone G. Endoreduplication of the mouse genome in the absence of ORC1. Genes Dev 2018; 32:978-990. [PMID: 29967292 PMCID: PMC6075035 DOI: 10.1101/gad.311910.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/09/2018] [Indexed: 01/24/2023]
Abstract
In this study, Okano-Uchida et al. describe the physiological role of ORC1 in mice by generating knock-in mice with LoxP sites flanking exons encoding the critical ATPase domain of ORC1. They show that ORC1 ablation in extraembryonic trophoblasts and hepatocytes failed to impede genome endoreduplication and organ development and function and conclude that ORC1 in mice is essential for mitotic cell divisions but dispensable for endoreduplication. The largest subunit of the origin recognition complex (ORC1) is essential for assembly of the prereplicative complex, firing of DNA replication origins, and faithful duplication of the genome. Here, we generated knock-in mice with LoxP sites flanking exons encoding the critical ATPase domain of ORC1. Global or tissue-specific ablation of ORC1 function in mouse embryo fibroblasts and fetal and adult diploid tissues blocked DNA replication, cell lineage expansion, and organ development. Remarkably, ORC1 ablation in extraembryonic trophoblasts and hepatocytes, two polyploid cell types in mice, failed to impede genome endoreduplication and organ development and function. Thus, ORC1 in mice is essential for mitotic cell divisions but dispensable for endoreduplication. We propose that DNA replication of mammalian polyploid genomes uses a distinct ORC1-independent mechanism.
Collapse
Affiliation(s)
- Takayuki Okano-Uchida
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Lindsey N Kent
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Madhu M Ouseph
- Solid Tumor Biology Program, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210, USA.,Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210, USA.,Department of Cancer Biology and Genetics, Ohio State University, Columbus, Ohio 43210, USA
| | - Britney McCarty
- Solid Tumor Biology Program, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210, USA.,Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210, USA.,Department of Cancer Biology and Genetics, Ohio State University, Columbus, Ohio 43210, USA
| | - Jeffrey J Frank
- Solid Tumor Biology Program, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210, USA.,Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210, USA.,Department of Cancer Biology and Genetics, Ohio State University, Columbus, Ohio 43210, USA
| | - Raleigh Kladney
- Solid Tumor Biology Program, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210, USA.,Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210, USA.,Department of Cancer Biology and Genetics, Ohio State University, Columbus, Ohio 43210, USA
| | - Maria C Cuitino
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - John C Thompson
- Solid Tumor Biology Program, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210, USA.,Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210, USA.,Department of Cancer Biology and Genetics, Ohio State University, Columbus, Ohio 43210, USA
| | - Vincenzo Coppola
- Solid Tumor Biology Program, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210, USA.,Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210, USA.,Department of Cancer Biology and Genetics, Ohio State University, Columbus, Ohio 43210, USA
| | - Maki Asano
- Solid Tumor Biology Program, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210, USA.,Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210, USA.,Department of Molecular Cellular and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| | - Gustavo Leone
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| |
Collapse
|
34
|
Kang S, Kang MS, Ryu E, Myung K. Eukaryotic DNA replication: Orchestrated action of multi-subunit protein complexes. Mutat Res 2018; 809:58-69. [PMID: 28501329 DOI: 10.1016/j.mrfmmm.2017.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/13/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
Genome duplication is an essential process to preserve genetic information between generations. The eukaryotic cell cycle is composed of functionally distinct phases: G1, S, G2, and M. One of the key replicative proteins that participate at every stage of DNA replication is the Mcm2-7 complex, a replicative helicase. In the G1 phase, inactive Mcm2-7 complexes are loaded on the replication origins by replication-initiator proteins, ORC and Cdc6. Two kinases, S-CDK and DDK, convert the inactive origin-loaded Mcm2-7 complex to an active helicase, the CMG complex in the S phase. The activated CMG complex begins DNA unwinding and recruits enzymes essential for DNA synthesis to assemble a replisome at the replication fork. After completion of DNA synthesis, the inactive CMG complex on the replicated DNA is removed from chromatin to terminate DNA replication. In this review, we will discuss the structure, function, and regulation of the molecular machines involved in each step of DNA replication.
Collapse
Affiliation(s)
- Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea.
| | - Mi-Sun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Eunjin Ryu
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea; School of Life Sciences, Ulsan National Institute for Science and Technology, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea; School of Life Sciences, Ulsan National Institute for Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
35
|
Characterization of Copy Number Control of Two Haloferax volcanii Replication Origins Using Deletion Mutants and Haloarchaeal Artificial Chromosomes. J Bacteriol 2017; 200:JB.00517-17. [PMID: 29038254 DOI: 10.1128/jb.00517-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/08/2017] [Indexed: 12/17/2022] Open
Abstract
Haloferax volcanii is polyploid and contains about 20 genome copies under optimal conditions. However, the chromosome copy number is highly regulated and ranges from two during phosphate starvation to more than 40 under conditions of phosphate surplus. The aim of this study was the characterization of the influence of two replication origins on the genome copy number. The origin repeats and the genes encoding origin recognition complex (ORC) proteins were deleted. The core origin oriC1-orc1 (ori1) deletion mutant had a lower genome copy number and a higher level of fitness than the wild type, in stark contrast to the oriC2-orc5 (ori2) deletion mutant. The genes adjacent to ori1 could not be deleted, and thus, at least two of them are probably essential, while deletion of the genes adjacent to ori2 was possible. Various fragments of and around the origins were cloned into a suicide plasmid to generate haloarchaeal artificial chromosomes (HACs). The copy number of the oriC1-orc1 HAC was much higher than that of the oriC2-orc5 HAC. The addition of adjacent genes influenced both the HAC copy number and the chromosome copy number. The results indicate that the origins of H. volcanii are not independent but that the copy number is regulated via a network of genes around the origins.IMPORTANCE Several species of archaea have more than one origin of replication on their major chromosome and are thus the only known prokaryotic species that allow the analysis of the evolution of multiorigin replication. The widely studied Haloferax volcanii H26 strain has a major chromosome with four origins of replication. Two origins, ori1 and ori2, were chosen for an in-depth analysis using deletion mutants and haloarchaeal artificial chromosomes. The analysis was not restricted to the core origin regions; origin-adjacent genes were also included. Because H. volcanii is polyploid, the effects on the chromosome copy number were of specific importance. The results revealed extreme differences between the two origins.
Collapse
|
36
|
Abstract
Human cells that lack a subunit in their origin recognition complex are viable, which suggests the existence of alternative mechanisms to initiate DNA replication.
Collapse
Affiliation(s)
- Stephen P Bell
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
37
|
Shibata E, Kiran M, Shibata Y, Singh S, Kiran S, Dutta A. Two subunits of human ORC are dispensable for DNA replication and proliferation. eLife 2016; 5. [PMID: 27906128 PMCID: PMC5245961 DOI: 10.7554/elife.19084] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 12/01/2016] [Indexed: 12/25/2022] Open
Abstract
The six-subunit Origin Recognition Complex (ORC) is believed to be an essential eukaryotic ATPase that binds to origins of replication as a ring-shaped heterohexamer to load MCM2-7 and initiate DNA replication. We have discovered that human cell lines in culture proliferate with intact chromosomal origins of replication after disruption of both alleles of ORC2 or of the ATPase subunit, ORC1. The ORC1 or ORC2-depleted cells replicate with decreased chromatin loading of MCM2-7 and become critically dependent on another ATPase, CDC6, for survival and DNA replication. Thus, either the ORC ring lacking a subunit, even its ATPase subunit, can load enough MCM2-7 in partnership with CDC6 to initiate DNA replication, or cells have an ORC-independent, CDC6-dependent mechanism to load MCM2-7 on origins of replication DOI:http://dx.doi.org/10.7554/eLife.19084.001 Most of the DNA in human cells is packaged into structures called chromosomes. Before a cell divides, the DNA in each chromosome is carefully copied. This process begins at multiple sites (known as origins) on each chromosome. A group of six proteins collectively known as the Origin Recognition Complex (or ORC for short) binds to an origin and then recruits several additional proteins. When the cell is ready, the assembled proteins are activated and DNA copying begins. It is thought that all of the ORC proteins are essential for cells to survive and copy their DNA. Here, Shibata et al. reveal that human cells can survive without ORC1 or ORC2, two of the six proteins in the ORC complex. Disrupting the genes that encode the ORC1 and ORC2 proteins in human cancer cell lines had little effect on the ability of the cells to copy their DNA and survive. Furthermore, these cells spend the same amount of time copying their DNA and use a similar set of origins as normal cells. However, the experiments also reveal that cells without ORC1 or ORC2 are more dependent on the presence of one particular protein recruited to the origin after the ORC assembles. Reducing the availability of this protein, CDC6, decreased the ability of these cells to survive and divide. Future efforts will aim to identify the mechanism by which cells bring together the proteins required to copy DNA in the absence of a complete ORC. DOI:http://dx.doi.org/10.7554/eLife.19084.002
Collapse
Affiliation(s)
- Etsuko Shibata
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
| | - Manjari Kiran
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
| | - Yoshiyuki Shibata
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
| | - Samarendra Singh
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
| | - Shashi Kiran
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
| |
Collapse
|