1
|
Lem M, Rh H, Dg B, Barkhouse A, Miller DW, Raun N, Sa A. The caterpillar Manduca sexta brain shows changes in gene expression and protein abundance correlating with parasitic manipulation of behaviour. Sci Rep 2024; 14:31773. [PMID: 39738473 DOI: 10.1038/s41598-024-82506-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025] Open
Abstract
The parasitic wasp, Cotesia congregata, manipulates the behaviour of its host, the caterpillar Manduca sexta. The female wasp injects her eggs and a symbiotic virus (i.e. bracovirus, CcBV) into the body of its host. The host's behaviour remains unchanged until the wasps exit the caterpillar, and then the caterpillar becomes a non-feeding "bodyguard" for the wasp cocoons. Using proteomic, transcriptomic and qPCR studies, we discovered an increase in antimicrobial peptide gene expression and protein abundance in the host central nervous system at the time of wasp emergence, correlating with the change in host behaviour. These results support the hypothesis that the wasps hyperactivate an immune-neural connection to help create the change in behaviour. At the time of wasp emergence, there was also an increase in bracoviral gene expression and proteins in the host brain, suggesting that the bracovirus may also be involved in altering host behaviour. Other changes in gene expression and protein abundance suggest that synaptic transmission may be altered after wasp emergence, and a reduction in descending neural activity from the host's brain provides indirect support for this hypothesis.
Collapse
Affiliation(s)
- McMillan Lem
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Herbison Rh
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Biron Dg
- Lab Microorganismes: Génome et Environment, Université Clermont Auvergne, UMR CNRS, Paris, 6023, France
| | - A Barkhouse
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - D W Miller
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - N Raun
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, B3H 4R2, Canada
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, 6525 GA, the Netherlands
| | - Adamo Sa
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada.
| |
Collapse
|
2
|
Slater CR. Neuromuscular Transmission in a Biological Context. Compr Physiol 2024; 14:5641-5702. [PMID: 39382166 DOI: 10.1002/cphy.c240001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Neuromuscular transmission is the process by which motor neurons activate muscle contraction and thus plays an essential role in generating the purposeful body movements that aid survival. While many features of this process are common throughout the Animal Kingdom, such as the release of transmitter in multimolecular "quanta," and the response to it by opening ligand-gated postsynaptic ion channels, there is also much diversity between and within species. Much of this diversity is associated with specialization for either slow, sustained movements such as maintain posture or fast but brief movements used during escape or prey capture. In invertebrates, with hydrostatic and exoskeletons, most motor neurons evoke graded depolarizations of the muscle which cause graded muscle contractions. By contrast, vertebrate motor neurons trigger action potentials in the muscle fibers which give rise to all-or-none contractions. The properties of neuromuscular transmission, in particular the intensity and persistence of transmitter release, reflect these differences. Neuromuscular transmission varies both between and within individual animals, which often have distinct tonic and phasic subsystems. Adaptive plasticity of neuromuscular transmission, on a range of time scales, occurs in many species. This article describes the main steps in neuromuscular transmission and how they vary in a number of "model" species, including C. elegans , Drosophila , zebrafish, mice, and humans. © 2024 American Physiological Society. Compr Physiol 14:5641-5702, 2024.
Collapse
|
3
|
Christophers B, Leahy SN, Soffar DB, von Saucken VE, Broadie K, Baylies MK. Muscle cofilin alters neuromuscular junction postsynaptic development to strengthen functional neurotransmission. Development 2024; 151:dev202558. [PMID: 38869008 PMCID: PMC11266751 DOI: 10.1242/dev.202558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Cofilin, an actin-severing protein, plays key roles in muscle sarcomere addition and maintenance. Our previous work found that Drosophila cofilin (DmCFL) knockdown in muscle causes progressive deterioration of muscle structure and function and produces features seen in nemaline myopathy caused by cofilin mutations. We hypothesized that disruption of actin cytoskeleton dynamics by DmCFL knockdown would impact other aspects of muscle development, and, thus, conducted an RNA-sequencing analysis that unexpectedly revealed upregulated expression of numerous neuromuscular junction (NMJ) genes. We found that DmCFL is enriched in the muscle postsynaptic compartment and that DmCFL muscle knockdown causes F-actin disorganization in this subcellular domain prior to the sarcomere defects observed later in development. Despite NMJ gene expression changes, we found no significant changes in gross presynaptic Bruchpilot active zones or total postsynaptic glutamate receptor levels. However, DmCFL knockdown resulted in mislocalization of GluRIIA class glutamate receptors in more deteriorated muscles and strongly impaired NMJ transmission strength. These findings expand our understanding of the roles of cofilin in muscle to include NMJ structural development and suggest that NMJ defects may contribute to the pathophysiology of nemaline myopathy.
Collapse
Affiliation(s)
- Briana Christophers
- Weill Cornell–Rockefeller–Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Shannon N. Leahy
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - David B. Soffar
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Victoria E. von Saucken
- Weill Cornell–Rockefeller–Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
- Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Mary K. Baylies
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| |
Collapse
|
4
|
Christophers B, Leahy SN, Soffar DB, von Saucken VE, Broadie K, Baylies MK. Muscle cofilin alters neuromuscular junction postsynaptic development to strengthen functional neurotransmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568166. [PMID: 38045306 PMCID: PMC10690168 DOI: 10.1101/2023.11.21.568166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Cofilin, an actin severing protein, plays critical roles in muscle sarcomere addition and maintenance. Our previous work has shown Drosophila cofilin (DmCFL) knockdown causes progressive deterioration of muscle structure and function and produces features seen in nemaline myopathy (NM) caused by cofilin mutations. We hypothesized that disruption of actin cytoskeleton dynamics by DmCFL knockdown would impact other aspects of muscle development, and, thus, conducted an RNA sequencing analysis which unexpectedly revealed upregulated expression of numerous neuromuscular junction (NMJ) genes. We found that DmCFL is enriched in the muscle postsynaptic compartment and that DmCFL deficiency causes F-actin disorganization in this subcellular domain prior to the sarcomere defects observed later in development. Despite NMJ gene expression changes, we found no significant changes in gross presynaptic Bruchpilot active zones or total postsynaptic glutamate receptor levels. However, DmCFL knockdown results in mislocalization of glutamate receptors containing the GluRIIA subunit in more deteriorated muscles and neurotransmission strength is strongly impaired. These findings expand our understanding of cofilin's roles in muscle to include NMJ structural development and suggest that NMJ defects may contribute to NM pathophysiology.
Collapse
Affiliation(s)
- Briana Christophers
- Weill Cornell–Rockefeller–Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, 10065, USA
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Shannon N. Leahy
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - David B. Soffar
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Victoria E. von Saucken
- Weill Cornell–Rockefeller–Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, 10065, USA
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
- Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Mary K. Baylies
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| |
Collapse
|
5
|
Li L, Liu H, Qian KY, Nurrish S, Zeng XT, Zeng WX, Wang J, Kaplan JM, Tong XJ, Hu Z. CASK and FARP localize two classes of post-synaptic ACh receptors thereby promoting cholinergic transmission. PLoS Genet 2022; 18:e1010211. [PMID: 36279278 PMCID: PMC9632837 DOI: 10.1371/journal.pgen.1010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 11/03/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Changes in neurotransmitter receptor abundance at post-synaptic elements play a pivotal role in regulating synaptic strength. For this reason, there is significant interest in identifying and characterizing the scaffolds required for receptor localization at different synapses. Here we analyze the role of two C. elegans post-synaptic scaffolding proteins (LIN-2/CASK and FRM-3/FARP) at cholinergic neuromuscular junctions. Constitutive knockouts or muscle specific inactivation of lin-2 and frm-3 dramatically reduced spontaneous and evoked post-synaptic currents. These synaptic defects resulted from the decreased abundance of two classes of post-synaptic ionotropic acetylcholine receptors (ACR-16/CHRNA7 and levamisole-activated AChRs). LIN-2's AChR scaffolding function is mediated by its SH3 and PDZ domains, which interact with AChRs and FRM-3/FARP, respectively. Thus, our findings show that post-synaptic LIN-2/FRM-3 complexes promote cholinergic synaptic transmission by recruiting AChRs to post-synaptic elements.
Collapse
Affiliation(s)
- Lei Li
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, Australia
| | - Haowen Liu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, Australia
| | - Kang-Ying Qian
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Stephen Nurrish
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xian-Ting Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wan-Xin Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiafan Wang
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, Australia
| | - Joshua M. Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xia-Jing Tong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhitao Hu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, Australia
| |
Collapse
|
6
|
Külshammer E, Kilinc M, Csordás G, Bresser T, Nolte H, Uhlirova M. The mechanosensor Filamin A/Cheerio promotes tumourigenesis via specific interactions with components of the cell cortex. FEBS J 2022; 289:4497-4517. [DOI: 10.1111/febs.16408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/05/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Eva Külshammer
- Institute for Genetics Faculty of Mathematics and Natural Sciences Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Merve Kilinc
- Institute for Genetics Faculty of Mathematics and Natural Sciences Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Gábor Csordás
- Institute for Genetics Faculty of Mathematics and Natural Sciences Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Tina Bresser
- Institute for Genetics Faculty of Mathematics and Natural Sciences Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Hendrik Nolte
- Institute for Genetics Faculty of Mathematics and Natural Sciences Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Mirka Uhlirova
- Institute for Genetics Faculty of Mathematics and Natural Sciences Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| |
Collapse
|
7
|
Vicidomini R, Serpe M. Local BMP signaling: A sensor for synaptic activity that balances synapse growth and function. Curr Top Dev Biol 2022; 150:211-254. [PMID: 35817503 PMCID: PMC11102767 DOI: 10.1016/bs.ctdb.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Synapse development is coordinated by intercellular communication between the pre- and postsynaptic compartments, and by neuronal activity itself. In flies as in vertebrates, neuronal activity induces input-specific changes in the synaptic strength so that the entire circuit maintains stable function in the face of many challenges, including changes in synapse number and strength. But how do neurons sense synapse activity? In several studies carried out using the Drosophila neuromuscular junction (NMJ), we demonstrated that local BMP signaling provides an exquisite sensor for synapse activity. Here we review the main features of this exquisite sensor and discuss its functioning beyond monitoring the synapse activity but rather as a key controller that operates in coordination with other BMP signaling pathways to balance synapse growth, maturation and function.
Collapse
Affiliation(s)
- Rosario Vicidomini
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Mihaela Serpe
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
8
|
Chung S, Le TP, Vishwakarma V, Cheng YL, Andrew DJ. Isoform-specific roles of the Drosophila filamin-type protein Jitterbug (Jbug) during development. Genetics 2021; 219:iyab100. [PMID: 34173831 PMCID: PMC8860385 DOI: 10.1093/genetics/iyab100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/20/2021] [Indexed: 11/14/2022] Open
Abstract
Filamins are highly conserved actin-crosslinking proteins that regulate organization of the actin cytoskeleton. As key components of versatile signaling scaffolds, filamins are implicated in developmental anomalies and cancer. Multiple isoforms of filamins exist, raising the possibility of distinct functions for each isoform during development and in disease. Here, we provide an initial characterization of jitterbug (jbug), which encodes one of the two filamin-type proteins in Drosophila. We generate Jbug antiserum that recognizes all of the spliced forms and reveals differential expression of different Jbug isoforms during development, and a significant maternal contribution of Jbug protein. To reveal the function of Jbug isoforms, we create new genetic tools, including a null allele that deletes all isoforms, hypomorphic alleles that affect only a subset, and UAS lines for Gal4-driven expression of the major isoforms. Using these tools, we demonstrate that Jbug is required for viability and that specific isoforms are required in the formation of actin-rich protrusions including thoracic bristles in adults and ventral denticles in the embryo. We also show that specific isoforms of Jbug show differential localization within epithelia and that maternal and zygotic loss of jbug disrupts Crumbs (Crb) localization in several epithelial cell types.
Collapse
Affiliation(s)
- SeYeon Chung
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Thao Phuong Le
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Vishakha Vishwakarma
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yim Ling Cheng
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Yatsenko AS, Kucherenko MM, Xie Y, Urlaub H, Shcherbata HR. Exocyst-mediated membrane trafficking of the lissencephaly-associated ECM receptor dystroglycan is required for proper brain compartmentalization. eLife 2021; 10:63868. [PMID: 33620318 PMCID: PMC7929561 DOI: 10.7554/elife.63868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
To assemble a brain, differentiating neurons must make proper connections and establish specialized brain compartments. Abnormal levels of cell adhesion molecules disrupt these processes. Dystroglycan (Dg) is a major non-integrin cell adhesion receptor, deregulation of which is associated with dramatic neuroanatomical defects such as lissencephaly type II or cobblestone brain. The previously established Drosophila model for cobblestone lissencephaly was used to understand how Dg is regulated in the brain. During development, Dg has a spatiotemporally dynamic expression pattern, fine-tuning of which is crucial for accurate brain assembly. In addition, mass spectrometry analyses identified numerous components associated with Dg in neurons, including several proteins of the exocyst complex. Data show that exocyst-based membrane trafficking of Dg allows its distinct expression pattern, essential for proper brain morphogenesis. Further studies of the Dg neuronal interactome will allow identification of new factors involved in the development of dystroglycanopathies and advance disease diagnostics in humans.
Collapse
Affiliation(s)
- Andriy S Yatsenko
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Mariya M Kucherenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Yuanbin Xie
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Research Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,University Medical Center Göttingen, Bioanalytics, Institute for Clinical Chemistry, Göttingen, Germany
| | - Halyna R Shcherbata
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany.,Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
10
|
Lin SS, Hsieh TL, Liou GG, Li TN, Lin HC, Chang CW, Wu HY, Yao CK, Liu YW. Dynamin-2 Regulates Postsynaptic Cytoskeleton Organization and Neuromuscular Junction Development. Cell Rep 2020; 33:108310. [DOI: 10.1016/j.celrep.2020.108310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 11/30/2022] Open
|
11
|
Ho CH, Treisman JE. Specific Isoforms of the Guanine-Nucleotide Exchange Factor dPix Couple Neuromuscular Synapse Growth to Muscle Growth. Dev Cell 2020; 54:117-131.e5. [PMID: 32516570 DOI: 10.1016/j.devcel.2020.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/09/2020] [Accepted: 05/13/2020] [Indexed: 12/28/2022]
Abstract
Developmental growth requires coordination between the growth rates of individual tissues and organs. Here, we examine how Drosophila neuromuscular synapses grow to match the size of their target muscles. We show that changes in muscle growth driven by autonomous modulation of insulin receptor signaling produce corresponding changes in synapse size, with each muscle affecting only its presynaptic motor neuron branches. This scaling growth is mechanistically distinct from synaptic plasticity driven by neuronal activity and requires increased postsynaptic differentiation induced by insulin receptor signaling in muscle. We identify the guanine-nucleotide exchange factor dPix as an effector of insulin receptor signaling. Alternatively spliced dPix isoforms that contain a specific exon are necessary and sufficient for postsynaptic differentiation and scaling growth, and their mRNA levels are regulated by insulin receptor signaling. These findings define a mechanism by which the same signaling pathway promotes both autonomous muscle growth and non-autonomous synapse growth.
Collapse
Affiliation(s)
- Cheuk Hei Ho
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Jessica E Treisman
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
12
|
Novel genetic link between the ATP-binding cassette subfamily A gene and hippo gene in Drosophila. Exp Cell Res 2020; 386:111733. [DOI: 10.1016/j.yexcr.2019.111733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/16/2019] [Accepted: 11/16/2019] [Indexed: 11/21/2022]
|
13
|
Patrício-Rodrigues C, Teodoro R. Postsynaptic Rab GTPases and Exocyst: a screen at the Drosophila neuromuscular junction. ACTA ACUST UNITED AC 2018. [DOI: 10.19185/matters.201807000005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Potikanond S, Nimlamool W, Noordermeer J, Fradkin LG. Muscular Dystrophy Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:147-172. [PMID: 29951819 DOI: 10.1007/978-981-13-0529-0_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Muscular dystrophy (MD) is a group of muscle weakness disease involving in inherited genetic conditions. MD is caused by mutations or alteration in the genes responsible for the structure and functioning of muscles. There are many different types of MD which have a wide range from mild symptoms to severe disability. Some types involve the muscles used for breathing which eventually affect life expectancy. This chapter provides an overview of the MD types, its gene mutations, and the Drosophila MD models. Specifically, the Duchenne muscular dystrophy (DMD), the most common form of MD, will be thoroughly discussed including Dystrophin genes, their isoforms, possible mechanisms, and signaling pathways of pathogenesis.
Collapse
Affiliation(s)
- Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jasprien Noordermeer
- Department of Molecular Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Lee G Fradkin
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
15
|
González-Morales N, Holenka TK, Schöck F. Filamin actin-binding and titin-binding fulfill distinct functions in Z-disc cohesion. PLoS Genet 2017; 13:e1006880. [PMID: 28732005 PMCID: PMC5521747 DOI: 10.1371/journal.pgen.1006880] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/21/2017] [Indexed: 01/03/2023] Open
Abstract
Many proteins contribute to the contractile properties of muscles, most notably myosin thick filaments, which are anchored at the M-line, and actin thin filaments, which are anchored at the Z-discs that border each sarcomere. In humans, mutations in the actin-binding protein Filamin-C result in myopathies, but the underlying molecular function is not well understood. Here we show using Drosophila indirect flight muscle that the filamin ortholog Cheerio in conjunction with the giant elastic protein titin plays a crucial role in keeping thin filaments stably anchored at the Z-disc. We identify the filamin domains required for interaction with the titin ortholog Sallimus, and we demonstrate a genetic interaction of filamin with titin and actin. Filamin mutants disrupting the actin- or the titin-binding domain display distinct phenotypes, with Z-discs breaking up in parallel or perpendicularly to the myofibril, respectively. Thus, Z-discs require filamin to withstand the strong contractile forces acting on them. The Z-disc is a macromolecular complex required to attach and stabilize actin thin filaments in the sarcomere, the smallest contractile unit of striated muscles. Mutations in Z-disc-associated proteins typically result in muscle disorders. Dimeric filamin organizes actin filaments, localizes at the Z-disc in vertebrates and causes muscle disorders in humans when mutated. Despite its clinical relevance, the molecular function of filamin in the sarcomere is not well understood. Here we use Drosophila muscles and an array of filamin mutations to address the molecular and cell biological function of filamin in the sarcomere. We show that filamin mainly serves as a Z-disc cohesive element, binding both thin filaments and titin. This configuration enables filamin to act as a bridge between thin filaments and the elastic scaffold protein titin from the adjacent sarcomere, maintaining sarcomere stability during muscle contraction.
Collapse
Affiliation(s)
| | | | - Frieder Schöck
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Mallik B, Dwivedi MK, Mushtaq Z, Kumari M, Verma PK, Kumar V. Regulation of neuromuscular junction organization by Rab2 and its effector ICA69 in Drosophila. Development 2017; 144:2032-2044. [PMID: 28455372 DOI: 10.1242/dev.145920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
Abstract
The mechanisms underlying synaptic differentiation, which involves neuronal membrane and cytoskeletal remodeling, are not completely understood. We performed a targeted RNAi-mediated screen of Drosophila BAR-domain proteins and identified islet cell autoantigen 69 kDa (ICA69) as one of the key regulators of morphological differentiation of the larval neuromuscular junction (NMJ). We show that Drosophila ICA69 colocalizes with α-Spectrin at the NMJ. The conserved N-BAR domain of ICA69 deforms liposomes in vitro Full-length ICA69 and the ICAC but not the N-BAR domain of ICA69 induce filopodia in cultured cells. Consistent with its cytoskeleton regulatory role, ICA69 mutants show reduced α-Spectrin immunoreactivity at the larval NMJ. Manipulating levels of ICA69 or its interactor PICK1 alters the synaptic level of ionotropic glutamate receptors (iGluRs). Moreover, reducing PICK1 or Rab2 levels phenocopies ICA69 mutation. Interestingly, Rab2 regulates not only synaptic iGluR but also ICA69 levels. Thus, our data suggest that: (1) ICA69 regulates NMJ organization through a pathway that involves PICK1 and Rab2, and (2) Rab2 functions genetically upstream of ICA69 and regulates NMJ organization and targeting/retention of iGluRs by regulating ICA69 levels.
Collapse
Affiliation(s)
- Bhagaban Mallik
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Manish Kumar Dwivedi
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Zeeshan Mushtaq
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Manisha Kumari
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Praveen Kumar Verma
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Vimlesh Kumar
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|