1
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
2
|
Truong MA, Cané-Gasull P, Lens SMA. Modeling specific aneuploidies: from karyotype manipulations to biological insights. Chromosome Res 2023; 31:25. [PMID: 37640903 PMCID: PMC10462580 DOI: 10.1007/s10577-023-09735-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/11/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
An abnormal chromosome number, or aneuploidy, underlies developmental disorders and is a common feature of cancer, with different cancer types exhibiting distinct patterns of chromosomal gains and losses. To understand how specific aneuploidies emerge in certain tissues and how they contribute to disease development, various methods have been developed to alter the karyotype of mammalian cells and mice. In this review, we provide an overview of both classic and novel strategies for inducing or selecting specific chromosomal gains and losses in human and murine cell systems. We highlight how these customized aneuploidy models helped expanding our knowledge of the consequences of specific aneuploidies to (cancer) cell physiology.
Collapse
Affiliation(s)
- My Anh Truong
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584, CG, Utrecht, The Netherlands
| | - Paula Cané-Gasull
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584, CG, Utrecht, The Netherlands
| | - Susanne M A Lens
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584, CG, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Li J, Hubisz MJ, Earlie EM, Duran MA, Hong C, Varela AA, Lettera E, Deyell M, Tavora B, Havel JJ, Phyu SM, Amin AD, Budre K, Kamiya E, Cavallo JA, Garris C, Powell S, Reis-Filho JS, Wen H, Bettigole S, Khan AJ, Izar B, Parkes EE, Laughney AM, Bakhoum SF. Non-cell-autonomous cancer progression from chromosomal instability. Nature 2023; 620:1080-1088. [PMID: 37612508 PMCID: PMC10468402 DOI: 10.1038/s41586-023-06464-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/20/2023] [Indexed: 08/25/2023]
Abstract
Chromosomal instability (CIN) is a driver of cancer metastasis1-4, yet the extent to which this effect depends on the immune system remains unknown. Using ContactTracing-a newly developed, validated and benchmarked tool to infer the nature and conditional dependence of cell-cell interactions from single-cell transcriptomic data-we show that CIN-induced chronic activation of the cGAS-STING pathway promotes downstream signal re-wiring in cancer cells, leading to a pro-metastatic tumour microenvironment. This re-wiring is manifested by type I interferon tachyphylaxis selectively downstream of STING and a corresponding increase in cancer cell-derived endoplasmic reticulum (ER) stress response. Reversal of CIN, depletion of cancer cell STING or inhibition of ER stress response signalling abrogates CIN-dependent effects on the tumour microenvironment and suppresses metastasis in immune competent, but not severely immune compromised, settings. Treatment with STING inhibitors reduces CIN-driven metastasis in melanoma, breast and colorectal cancers in a manner dependent on tumour cell-intrinsic STING. Finally, we show that CIN and pervasive cGAS activation in micronuclei are associated with ER stress signalling, immune suppression and metastasis in human triple-negative breast cancer, highlighting a viable strategy to identify and therapeutically intervene in tumours spurred by CIN-induced inflammation.
Collapse
Affiliation(s)
- Jun Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melissa J Hubisz
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Ethan M Earlie
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Mercedes A Duran
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christy Hong
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Austin A Varela
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Emanuele Lettera
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew Deyell
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Su M Phyu
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Amit Dipak Amin
- Columbia Center for Translational Immunology, New York, NY, USA
- Division of Hematology and Oncology, Columbia University Medical Center, New York, NY, USA
| | - Karolina Budre
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Erina Kamiya
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Julie-Ann Cavallo
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher Garris
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Simon Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hannah Wen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Atif J Khan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin Izar
- Columbia Center for Translational Immunology, New York, NY, USA
- Division of Hematology and Oncology, Columbia University Medical Center, New York, NY, USA
| | - Eileen E Parkes
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Ashley M Laughney
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
| | - Samuel F Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
4
|
Zhu X, Zhao W, Zhou Z, Gu X. Unraveling the Drivers of Tumorigenesis in the Context of Evolution: Theoretical Models and Bioinformatics Tools. J Mol Evol 2023:10.1007/s00239-023-10117-0. [PMID: 37246992 DOI: 10.1007/s00239-023-10117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/09/2023] [Indexed: 05/30/2023]
Abstract
Cancer originates from somatic cells that have accumulated mutations. These mutations alter the phenotype of the cells, allowing them to escape homeostatic regulation that maintains normal cell numbers. The emergence of malignancies is an evolutionary process in which the random accumulation of somatic mutations and sequential selection of dominant clones cause cancer cells to proliferate. The development of technologies such as high-throughput sequencing has provided a powerful means to measure subclonal evolutionary dynamics across space and time. Here, we review the patterns that may be observed in cancer evolution and the methods available for quantifying the evolutionary dynamics of cancer. An improved understanding of the evolutionary trajectories of cancer will enable us to explore the molecular mechanism of tumorigenesis and to design tailored treatment strategies.
Collapse
Affiliation(s)
- Xunuo Zhu
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenyi Zhao
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhan Zhou
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China.
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 310058, China.
| | - Xun Gu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
5
|
Lin J, Lin Z, Hua Y, Chen Y. Circ_0031242 regulates the functional properties of hepatocellular carcinoma cells through the miR-944/MAD2L1 axis. Histol Histopathol 2023; 38:303-316. [PMID: 36125054 DOI: 10.14670/hh-18-519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) possess key functions in the pathogenesis of hepatocellular carcinoma (HCC). Nonetheless, the actions of individual circRNAs in HCC remain undefined. METHODS circ_0031242, miR-944, and MAD2L1 expression were quantified by qRT-PCR. Transwell assay was utilized to examine cell invasion and migration. Glucose consumption and lactate production were measured to assess the impact on glycolysis. The relationships among circ_0031242, MAD2L1, and miR-944 were examined via luciferase reporter assay. RESULTS circ_0031242 was notably augmented in HCC. Loss of function of circ_0031242 hindered cell proliferation, invasion, migration, glycolysis, and promoted apoptosis, as well as impeding HCC tumor growth. circ_0031242 directly targeted miR-944. Inhibition of miR-944 counteracted the effects of si-circ_0031242 on HCC cells. Additionally, miR-944 was proved to directly target MAD2L1 in HCC cells. Moreover, the promotion of MAD2L1 was able to rescue the inhibition of high miR-944 expression on HCC cell progression. Meanwhile, circ_0031242 involved the post-transcriptional modulation of MAD2L1 through miR-944. CONCLUSION This study suggested that circ_0031242 regulated tumor cell progression and tumor growth through the miR-944/MAD2L1 axis in HCC.
Collapse
Affiliation(s)
- Jianwei Lin
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zenghai Lin
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| | - Yaqiong Hua
- Department of Medicine, Shenzhen Letu Biotechnology Co., Ltd., Guangdong, China
| | - Yan Chen
- Department of Medicine, Shenzhen Letu Biotechnology Co., Ltd., Guangdong, China
| |
Collapse
|
6
|
Park I, Kim N, Lee S, Park K, Son MY, Cho HS, Kim DS. Characterization of signature trends across the spectrum of non-alcoholic fatty liver disease using deep learning method. Life Sci 2023; 314:121195. [PMID: 36436619 DOI: 10.1016/j.lfs.2022.121195] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2022]
Abstract
AIMS The timely diagnosis of different stages in NAFLD is crucial for disease treatment and reversal. We used hepatocellular ballooning to determine different NAFLD stages. MAIN METHODS We analyzed differentially expressed genes (DEGs) in 78 patients with NAFLD and in healthy controls from previously published RNA-seq data. We identified two expression types in NAFLD progression, calculated the predictive power of candidate genes, and validated them in an independent cohort. We also performed cancer studies with these candidates retrieved from the Cancer Genome Atlas. KEY FINDINGS We identified 103 DEGs in NAFLD patients compared to healthy controls: 75 genes gradually increased or decreased in the NAFLD stage, whereas 28 genes showed differences only in NASH. The former were enriched in negative regulation and binding-related genes; the latter were involved in positive regulation and cell proliferation. Feature selection showed the gradual up- or down-regulation of 21 genes in NASH compared to controls; 18 were highly expressed only in NASH. Using deep-learning method with subset of features from lasso regression, we obtained reliable determination performance in NAFL and NASH (accuracy: 0.857) and validated these genes using an independent cohort (accuracy: 0.805). From cancer studies, we identified significant differential expression of several candidate genes in LIHC; 5 genes were gradually up-regulated and 6 showing high expression only in NASH were influential to patient survival. SIGNIFICANCE The identified biomolecular signatures may determine the spectrum of NAFLD and its relationship with HCC, improving clinical diagnosis and prognosis and enabling a therapeutic intervention for NAFLD.
Collapse
Affiliation(s)
- Ilkyu Park
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, 34113 Daejeon, Republic of Korea; Department of Environmental Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, 34141 Daejeon, Republic of Korea
| | - Nakyoung Kim
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, 34113 Daejeon, Republic of Korea; Department of Environmental Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, 34141 Daejeon, Republic of Korea
| | - Sugi Lee
- Department of Environmental Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, 34141 Daejeon, Republic of Korea
| | - Kunhyang Park
- Department of Core Facility Management Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141,Republic of Korea
| | - Mi-Young Son
- Department of Stem Cell Convergence Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, 34141 Daejeon, Republic of Korea.
| | - Hyun-Soo Cho
- Department of Stem Cell Convergence Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, 34141 Daejeon, Republic of Korea.
| | - Dae-Soo Kim
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, 34113 Daejeon, Republic of Korea; Department of Environmental Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, 34141 Daejeon, Republic of Korea.
| |
Collapse
|
7
|
Liu S, Miao M, Kang L. Upregulation of MAD2L1 mediated by ncRNA axis is associated with poor prognosis and tumor immune infiltration in hepatocellular carcinoma: A review. Medicine (Baltimore) 2023; 102:e32625. [PMID: 36637946 PMCID: PMC9839239 DOI: 10.1097/md.0000000000032625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The mortality rate and prognosis of patients with hepatocellular carcinoma (HCC) are well known. A variety of highly malignant human cancers express mitotic arrest deficient 2 like 1 (MAD2L1), a transcription factor that plays a critical role in their development and progression. However, MAD2L1's particular mechanisms and effects on HCC remain uncertain. METHODS We performed a pan-cancer analysis for MAD2L1 prognosis and expression using The Cancer Genome Atlas and Genotype-Tissue Expression data in the present study. MAD2L1 may act as an oncogene in HCC, and a combination of in silico analyses, including expression, survival, and correlation analyses, were performed to identify non-coding ribonucleic acids (ncRNAs) that contribute to MAD2L1 overexpression. RESULTS In conclusion, MAD2L1 is most likely regulated by HCP5/miRNA-139-5p/MAD2L1 in HCC based on its upstream ncRNA-related pathway. A significant positive association was also found between MAD2L1 levels and tumor immune cell infiltration, immune cell biomarkers, and immune checkpoint expression. CONCLUSION Our findings demonstrate that ncRNA-mediated upregulation of MAD2L1 in HCC is closely related to poor prognosis and tumor infiltration.
Collapse
Affiliation(s)
- Sizhe Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingsan Miao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- * Correspondence: Mingsan Miao, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, No. 156, Jinshuidong Road, Zhengzhou, Henan 450046, China (e-mail: )
| | - Le Kang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
8
|
Huang X, Wang X, Huang G, Li R, Liu X, Cao L, Ye J, Zhang P. Bioinformatic identification of differentially expressed genes associated with hepatocellular carcinoma prognosis. Medicine (Baltimore) 2022; 101:e30678. [PMID: 36197270 PMCID: PMC9509045 DOI: 10.1097/md.0000000000030678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is still a significant global health problem. The development of bioinformatics may provide the opportunities to identify novel therapeutic targets. This study bioinformatically identified the differentially expressed genes (DEGs) in HCC and associated them with HCC prognosis using data from published databases. The DEGs downloaded from the Gene Expression Omnibus (GEO) website were visualized using the Venn diagram software, and then subjected to the GO and KEGG analyses, while the protein-protein interaction network was analyzed using Cytoscape software with the Search Tool for the search tool for the retrieval of interacting genes and the molecular complex detection plug-in. Kaplan-Meier curves and the log rank test were used to associate the core PPI network genes with the prognosis. There were 57 upregulated and 143 downregulated genes in HCC samples. The GO and pathway analyses revealed that these DEGs are involved in the biological processes (BPs), molecular functions (MFs), and cell components (CCs). The PPI network covered 50 upregulated and 108 downregulated genes, and the core modules of this PPI network contained 34 upregulated genes. A total of 28 of these upregulated genes were associated with a poor HCC prognosis, 27 of which were highly expressed in HCC tissues. This study identified 28 DEGs to be associated with a poor HCC prognosis. Future studies will investigate their possible applications as prognostic biomarkers and potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Xu Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Neurology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Ge Huang
- Department of Radiology, The Second Bethune Hospital of Jilin University, Changchun, China
| | - Ruotao Li
- Department of Hand and Foot Surgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Xingkai Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Lidong Cao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Bethune Hospital of Jilin University, Changchun, China
| | - Junfeng Ye
- Department of Hepatobiliary and Pancreatic Surgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Ping Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Bethune Hospital of Jilin University, Changchun, China
- *Correspondence: Ping Zhang, Department of Hepatobiliary and Pancreatic Surgery, The First Bethune Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China (e-mail: )
| |
Collapse
|
9
|
Bočkaj I, Martini TEI, Smit MJ, Armandari I, Bakker B, Wardenaar R, Meeuwsen-de Boer TGJ, Bakker PL, Spierings DCJ, Hoving EW, Guryev V, Foijer F, Bruggeman SWM. Chromosomal Instability Characterizes Pediatric Medulloblastoma but Is Not Tolerated in the Developing Cerebellum. Int J Mol Sci 2022; 23:ijms23179852. [PMID: 36077248 PMCID: PMC9456393 DOI: 10.3390/ijms23179852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Medulloblastoma is a pediatric brain malignancy that consists of four transcriptional subgroups. Structural and numerical aneuploidy are common in all subgroups, although they are particularly profound in Group 3 and Group 4 medulloblastoma and in a subtype of SHH medulloblastoma termed SHHα. This suggests that chromosomal instability (CIN), the process leading to aneuploidy, is an important player in medulloblastoma pathophysiology. However, it is not known if there is ongoing CIN in medulloblastoma or if CIN affects the developing cerebellum and promotes tumor formation. To investigate this, we performed karyotyping of single medulloblastoma cells and demonstrated the presence of distinct tumor cell clones harboring unique copy number alterations, which is suggestive of ongoing CIN. We also found enrichment for processes related to DNA replication, repair, and mitosis in both SHH medulloblastoma and in the highly proliferative compartment of the presumed tumor cell lineage-of-origin, the latter also being sensitive to genotoxic stress. However, when challenging these tumor cells-of-origin with genetic lesions inducing CIN using transgenic mouse modeling, we found no evidence for large chromosomal aberrations in the cerebellum or for medulloblastoma formation. We therefore conclude that without a background of specific genetic mutations, CIN is not tolerated in the developing cerebellum in vivo and, thus, by itself is not sufficient to initiate medulloblastoma.
Collapse
Affiliation(s)
- Irena Bočkaj
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Tosca E. I. Martini
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Marlinde J. Smit
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Inna Armandari
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Bjorn Bakker
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - René Wardenaar
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Tiny G. J. Meeuwsen-de Boer
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Petra L. Bakker
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Diana C. J. Spierings
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Eelco W. Hoving
- Princess Máxima Center for Pediatric Oncology, 3584 EA Utrecht, The Netherlands
| | - Victor Guryev
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
- Correspondence: (F.F.); (S.W.M.B.)
| | - Sophia W. M. Bruggeman
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
- Correspondence: (F.F.); (S.W.M.B.)
| |
Collapse
|
10
|
cGAS-STING drives the IL-6-dependent survival of chromosomally instable cancers. Nature 2022; 607:366-373. [PMID: 35705809 DOI: 10.1038/s41586-022-04847-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/10/2022] [Indexed: 12/14/2022]
Abstract
Chromosomal instability (CIN) drives cancer cell evolution, metastasis and therapy resistance, and is associated with poor prognosis1. CIN leads to micronuclei that release DNA into the cytoplasm after rupture, which triggers activation of inflammatory signalling mediated by cGAS and STING2,3. These two proteins are considered to be tumour suppressors as they promote apoptosis and immunosurveillance. However, cGAS and STING are rarely inactivated in cancer4, and, although they have been implicated in metastasis5, it is not known why loss-of-function mutations do not arise in primary tumours4. Here we show that inactivation of cGAS-STING signalling selectively impairs the survival of triple-negative breast cancer cells that display CIN. CIN triggers IL-6-STAT3-mediated signalling, which depends on the cGAS-STING pathway and the non-canonical NF-κB pathway. Blockade of IL-6 signalling by tocilizumab, a clinically used drug that targets the IL-6 receptor (IL-6R), selectively impairs the growth of cultured triple-negative breast cancer cells that exhibit CIN. Moreover, outgrowth of chromosomally instable tumours is significantly delayed compared with tumours that do not display CIN. Notably, this targetable vulnerability is conserved across cancer types that express high levels of IL-6 and/or IL-6R in vitro and in vivo. Together, our work demonstrates pro-tumorigenic traits of cGAS-STING signalling and explains why the cGAS-STING pathway is rarely inactivated in primary tumours. Repurposing tocilizumab could be a strategy to treat cancers with CIN that overexpress IL-6R.
Collapse
|
11
|
Lockwood N, Martini S, Lopez-Pardo A, Deiss K, Segeren HA, Semple RK, Collins I, Repana D, Cobbaut M, Soliman T, Ciccarelli F, Parker PJ. Genome-Protective Topoisomerase 2a-Dependent G2 Arrest Requires p53 in hTERT-Positive Cancer Cells. Cancer Res 2022; 82:1762-1773. [PMID: 35247890 PMCID: PMC7612711 DOI: 10.1158/0008-5472.can-21-1785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 02/01/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
Topoisomerase 2a (Topo2a)-dependent G2 arrest engenders faithful segregation of sister chromatids, yet in certain tumor cell lines where this arrest is dysfunctional, a PKCε-dependent failsafe pathway can be triggered. Here we elaborate on recent advances in understanding the underlying mechanisms associated with this G2 arrest by determining that p53-p21 signaling is essential for efficient arrest in cell lines, in patient-derived cells, and in colorectal cancer organoids. Regulation of this p53 axis required the SMC5/6 complex, which is distinct from the p53 pathways observed in the DNA damage response. Topo2a inhibition specifically during S phase did not trigger G2 arrest despite affecting completion of DNA replication. Moreover, in cancer cells reliant upon the alternative lengthening of telomeres (ALT) mechanism, a distinct form of Topo2a-dependent, p53-independent G2 arrest was found to be mediated by BLM and Chk1. Importantly, the previously described PKCε-dependent mitotic failsafe was engaged in hTERT-positive cells when Topo2a-dependent G2 arrest was dysfunctional and where p53 was absent, but not in cells dependent on the ALT mechanism. In PKCε knockout mice, p53 deletion elicited tumors were less aggressive than in PKCε-replete animals and exhibited a distinct pattern of chromosomal rearrangements. This evidence suggests the potential of exploiting synthetic lethality in arrest-defective hTERT-positive tumors through PKCε-directed therapeutic intervention. SIGNIFICANCE The identification of a requirement for p53 in stringent Topo2a-dependent G2 arrest and engagement of PKCε failsafe pathways in arrest-defective hTERT-positive cells provides a therapeutic opportunity to induce selective synthetic lethality.
Collapse
Affiliation(s)
- Nicola Lockwood
- Protein Phosphorylation Laboratory, The Francis Crick Institute, 1 Midland Road, London, UK
| | - Silvia Martini
- Protein Phosphorylation Laboratory, The Francis Crick Institute, 1 Midland Road, London, UK
| | - Ainara Lopez-Pardo
- Protein Phosphorylation Laboratory, The Francis Crick Institute, 1 Midland Road, London, UK
| | - Katharina Deiss
- Protein Phosphorylation Laboratory, The Francis Crick Institute, 1 Midland Road, London, UK
| | - Hendrika A Segeren
- Protein Phosphorylation Laboratory, The Francis Crick Institute, 1 Midland Road, London, UK
| | - Robert K Semple
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Ian Collins
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Dimitra Repana
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London, UK.,School of Cancer and Pharmaceutical Sciences King's College London, New Hunt's House, Guy's Campus, London, UK
| | - Mathias Cobbaut
- Protein Phosphorylation Laboratory, The Francis Crick Institute, 1 Midland Road, London, UK
| | - Tanya Soliman
- Barts Cancer Institute, Queen Mary University London, Charterhouse Square, London, UK
| | - Francesca Ciccarelli
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London, UK.,School of Cancer and Pharmaceutical Sciences King's College London, New Hunt's House, Guy's Campus, London, UK
| | - Peter J Parker
- Protein Phosphorylation Laboratory, The Francis Crick Institute, 1 Midland Road, London, UK.,School of Cancer and Pharmaceutical Sciences King's College London, New Hunt's House, Guy's Campus, London, UK
| |
Collapse
|
12
|
Dietlein F, Wang AB, Fagre C, Tang A, Besselink NJM, Cuppen E, Li C, Sunyaev SR, Neal JT, Van Allen EM. Genome-wide analysis of somatic noncoding mutation patterns in cancer. Science 2022; 376:eabg5601. [PMID: 35389777 PMCID: PMC9092060 DOI: 10.1126/science.abg5601] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We established a genome-wide compendium of somatic mutation events in 3949 whole cancer genomes representing 19 tumor types. Protein-coding events captured well-established drivers. Noncoding events near tissue-specific genes, such as ALB in the liver or KLK3 in the prostate, characterized localized passenger mutation patterns and may reflect tumor-cell-of-origin imprinting. Noncoding events in regulatory promoter and enhancer regions frequently involved cancer-relevant genes such as BCL6, FGFR2, RAD51B, SMC6, TERT, and XBP1 and represent possible drivers. Unlike most noncoding regulatory events, XBP1 mutations primarily accumulated outside the gene's promoter, and we validated their effect on gene expression using CRISPR-interference screening and luciferase reporter assays. Broadly, our study provides a blueprint for capturing mutation events across the entire genome to guide advances in biological discovery, therapies, and diagnostics.
Collapse
Affiliation(s)
- Felix Dietlein
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.,Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.,Corresponding author. (E.M.V.A.); (F.D.)
| | - Alex B. Wang
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Christian Fagre
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Anran Tang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.,Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Nicolle J. M. Besselink
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands.,Hartwig Medical Foundation, 1098 XH Amsterdam, Netherlands
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Shamil R. Sunyaev
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - James T. Neal
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Eliezer M. Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.,Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.,Corresponding author. (E.M.V.A.); (F.D.)
| |
Collapse
|
13
|
Lynch AR, Arp NL, Zhou AS, Weaver BA, Burkard ME. Quantifying chromosomal instability from intratumoral karyotype diversity using agent-based modeling and Bayesian inference. eLife 2022; 11:e69799. [PMID: 35380536 PMCID: PMC9054132 DOI: 10.7554/elife.69799] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 04/01/2022] [Indexed: 12/03/2022] Open
Abstract
Chromosomal instability (CIN)-persistent chromosome gain or loss through abnormal mitotic segregation-is a hallmark of cancer that drives aneuploidy. Intrinsic chromosome mis-segregation rate, a measure of CIN, can inform prognosis and is a promising biomarker for response to anti-microtubule agents. However, existing methodologies to measure this rate are labor intensive, indirect, and confounded by selection against aneuploid cells, which reduces observable diversity. We developed a framework to measure CIN, accounting for karyotype selection, using simulations with various levels of CIN and models of selection. To identify the model parameters that best fit karyotype data from single-cell sequencing, we used approximate Bayesian computation to infer mis-segregation rates and karyotype selection. Experimental validation confirmed the extensive chromosome mis-segregation rates caused by the chemotherapy paclitaxel (18.5 ± 0.5/division). Extending this approach to clinical samples revealed that inferred rates fell within direct observations of cancer cell lines. This work provides the necessary framework to quantify CIN in human tumors and develop it as a predictive biomarker.
Collapse
Affiliation(s)
- Andrew R Lynch
- Carbone Cancer Center, University of Wisconsin-MadisonMadisonUnited States
- McArdle Laboratory for Cancer Research, University of Wisconsin-MadisonMadisonUnited States
| | - Nicholas L Arp
- Carbone Cancer Center, University of Wisconsin-MadisonMadisonUnited States
| | - Amber S Zhou
- Carbone Cancer Center, University of Wisconsin-MadisonMadisonUnited States
- McArdle Laboratory for Cancer Research, University of Wisconsin-MadisonMadisonUnited States
| | - Beth A Weaver
- Carbone Cancer Center, University of Wisconsin-MadisonMadisonUnited States
- McArdle Laboratory for Cancer Research, University of Wisconsin-MadisonMadisonUnited States
- Department of Cell and Regenerative Biology, University of WisconsinMadisonUnited States
| | - Mark E Burkard
- Carbone Cancer Center, University of Wisconsin-MadisonMadisonUnited States
- McArdle Laboratory for Cancer Research, University of Wisconsin-MadisonMadisonUnited States
- Division of Hematology Medical Oncology and Palliative Care, Department of Medicine University of WisconsinMadisonUnited States
| |
Collapse
|
14
|
Identification of MAD2L1 as a Potential Biomarker in Hepatocellular Carcinoma via Comprehensive Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9868022. [PMID: 35132379 PMCID: PMC8817109 DOI: 10.1155/2022/9868022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/19/2021] [Accepted: 01/15/2022] [Indexed: 11/17/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is widely acknowledged as a malignant tumor with rapid progression, high recurrence rate, and poor prognosis. At present, there is a paucity of reliable biomarkers at the clinical level to guide the management of HCC and improve patient outcomes. Our research is aimed at assessing the prognostic value of MAD2L1 in HCC. Methods Four datasets, GSE121248, GSE101685, GSE85598, and GSE62232, were selected from the GEO database to analyze differentially expressed genes (DEGs) between HCC and normal liver tissues. After functional analysis, we constructed a protein-protein interaction network (PPI) for DEGs and identified core genes in this network with high connectivity with other genes. We assessed the relationship between core genes and the pathogenesis and prognosis of HCC. Finally, we explored the gene regulatory signaling mechanisms involved in HCC pathogenesis. Results 145 DEGs were screened from the intersection of the four GEO datasets. MAD2L1 was associated with most genes according to the PPI network and was selected as a candidate gene for further study. Survival analysis suggested that high MAD2L1 expression in HCC correlated with a worse prognosis. In addition, real-time quantitative PCR (RT-qPCR), western blot (WB), and immunohistochemistry (IHC) findings suggested that the expression of MAD2L1 was abnormally increased in HCC tissues and cells compared to paraneoplastic tissues and normal hepatocytes. Conclusion We found that high MAD2L1 expression in HCC was significantly associated with overall patient survival and clinical features. We also explored the potential biological properties of this gene.
Collapse
|
15
|
Cosper PF, Copeland SE, Tucker JB, Weaver BA. Chromosome Missegregation as a Modulator of Radiation Sensitivity. Semin Radiat Oncol 2022; 32:54-63. [PMID: 34861996 PMCID: PMC8883596 DOI: 10.1016/j.semradonc.2021.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chromosome missegregation over the course of multiple cell divisions, termed chromosomal instability (CIN), is a hallmark of cancer. Multiple causes of CIN have been identified, including defects in the mitotic checkpoint, altered kinetochore-microtubule dynamics, centrosome amplification, and ionizing radiation. Here we review the types, mechanisms, and cellular implications of CIN. We discuss the evidence that CIN can promote tumors, suppress them, or do neither, depending on the rates of chromosome missegregration and the cellular context. Very high rates of chromosome missegregation lead to cell death due to loss of essential chromosomes; thus elevating CIN above a tolerable threshold provides a mechanistic opportunity to promote cancer cell death. Lethal rates of CIN can be achieved by a single insult or through a combination of insults. Because ionizing radiation induces CIN, additional therapies that increase CIN may serve as useful modulators of radiation sensitivity. Ultimately, quantifying the intrinsic CIN in a tumor and modulating this level pharmacologically as well as with radiation may allow for a more rational, personalized radiation therapy prescription, thereby decreasing side effects and increasing local control.
Collapse
Affiliation(s)
- Pippa F. Cosper
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA,University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sarah E. Copeland
- Molecular & Cellular Pharmacology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - John B. Tucker
- Cancer Biology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Beth A. Weaver
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA,Department of Cellular and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA,Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA,Corresponding author: Beth A. Weaver, University of Wisconsin-Madison, 1111 Highland Ave, 6109 WIMR Tower 1, Madison, WI 53705-2275, Phone: 608-263-5309, Fax: 608-265-6905,
| |
Collapse
|
16
|
Jung Y, Kraikivski P, Shafiekhani S, Terhune SS, Dash RK. Crosstalk between Plk1, p53, cell cycle, and G2/M DNA damage checkpoint regulation in cancer: computational modeling and analysis. NPJ Syst Biol Appl 2021; 7:46. [PMID: 34887439 PMCID: PMC8660825 DOI: 10.1038/s41540-021-00203-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/03/2021] [Indexed: 12/21/2022] Open
Abstract
Different cancer cell lines can have varying responses to the same perturbations or stressful conditions. Cancer cells that have DNA damage checkpoint-related mutations are often more sensitive to gene perturbations including altered Plk1 and p53 activities than cancer cells without these mutations. The perturbations often induce a cell cycle arrest in the former cancer, whereas they only delay the cell cycle progression in the latter cancer. To study crosstalk between Plk1, p53, and G2/M DNA damage checkpoint leading to differential cell cycle regulations, we developed a computational model by extending our recently developed model of mitotic cell cycle and including these key interactions. We have used the model to analyze the cancer cell cycle progression under various gene perturbations including Plk1-depletion conditions. We also analyzed mutations and perturbations in approximately 1800 different cell lines available in the Cancer Dependency Map and grouped lines by genes that are represented in our model. Our model successfully explained phenotypes of various cancer cell lines under different gene perturbations. Several sensitivity analysis approaches were used to identify the range of key parameter values that lead to the cell cycle arrest in cancer cells. Our resulting model can be used to predict the effect of potential treatments targeting key mitotic and DNA damage checkpoint regulators on cell cycle progression of different types of cancer cells.
Collapse
Affiliation(s)
- Yongwoon Jung
- grid.30760.320000 0001 2111 8460Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Pavel Kraikivski
- Academy of Integrated Science, Division of Systems Biology, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Sajad Shafiekhani
- grid.411705.60000 0001 0166 0922Department of Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Scott S. Terhune
- grid.30760.320000 0001 2111 8460Departments of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226 USA ,grid.30760.320000 0001 2111 8460Center of Systems and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Ranjan K. Dash
- grid.30760.320000 0001 2111 8460Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226 USA ,grid.30760.320000 0001 2111 8460Center of Systems and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226 USA ,grid.30760.320000 0001 2111 8460Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| |
Collapse
|
17
|
Su L, Zhang J, Zhang X, Zheng L, Zhu Z. Identification of cell cycle as the critical pathway modulated by exosome-derived microRNAs in gallbladder carcinoma. Med Oncol 2021; 38:141. [PMID: 34655361 PMCID: PMC8520510 DOI: 10.1007/s12032-021-01594-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
Gallbladder cancer (GBC), the most common malignancy in the biliary tract, is highly lethal malignant due to seldomly specific symptoms in the early stage of GBC. This study aimed to identify exosome-derived miRNAs mediated competing endogenous RNAs (ceRNA) participant in GBC tumorigenesis. A total of 159 differentially expressed miRNAs (DEMs) was identified as exosome-derived miRNAs, contains 34 upregulated exo-DEMs and 125 downregulated exo-DEMs based on the expression profiles in GBC clinical samples downloaded from the Gene Expression Omnibus database with the R package. Among them, 2 up-regulated exo-DEMs, hsa-miR-125a-3p and hsa-miR-4647, and 5 down-regulated exo-DEMs, including hsa-miR-29c-5p, hsa-miR-145a-5p, hsa-miR-192-5p, hsa-miR-194-5p, and hsa-miR-338-3p, were associated with the survival of GBC patients. Results of the gene set enrichment analysis showed that the cell cycle-related pathways were activated in GBC tumor tissues, mainly including cell cycle, M phase, and cell cycle checkpoints. Furthermore, the dysregulated ceRNA network was constructed based on the lncRNA-miRNA-mRNA interactions using miRDB, TargetScan, miRTarBase, miRcode, and starBase v2.0., consisting of 27 lncRNAs, 6 prognostic exo-DEMs, and 176 mRNAs. Together with prognostic exo-DEMs, the STEAP3-AS1/hsa-miR-192-5p/MAD2L1 axis was identified, suggesting lncRNA STEAP3-AS1, might as a sponge of exosome-derived hsa-miR-192-5p, modulates cell cycle progression via affecting MAD2L1 expression in GBC tumorigenesis. In addition, the biological functions of genes in the ceRNA network were also annotated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Our study promotes exploration of the molecular mechanisms associated with tumorigenesis and provide potential targets for GBC diagnosis and treatment.
Collapse
Affiliation(s)
- Li Su
- Department of Integrated Traditional and Western Medicine in Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
- Center of Integrated Traditional and Western Medicine in Oncology, Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Jicheng Zhang
- Anhui University of Traditional Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Xinglong Zhang
- Anhui University of Traditional Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Lei Zheng
- Department of Integrated Traditional and Western Medicine in Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
- Center of Integrated Traditional and Western Medicine in Oncology, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Zhifa Zhu
- Department of Integrated Traditional and Western Medicine in Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
- Center of Integrated Traditional and Western Medicine in Oncology, Anhui Medical University, Hefei, 230022, People's Republic of China
| |
Collapse
|
18
|
Shoshani O, Bakker B, de Haan L, Tijhuis AE, Wang Y, Kim DH, Maldonado M, Demarest MA, Artates J, Zhengyu O, Mark A, Wardenaar R, Sasik R, Spierings DCJ, Vitre B, Fisch K, Foijer F, Cleveland DW. Transient genomic instability drives tumorigenesis through accelerated clonal evolution. Genes Dev 2021; 35:1093-1108. [PMID: 34266887 PMCID: PMC8336898 DOI: 10.1101/gad.348319.121] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022]
Abstract
In this study, Shoshani et al. tested the role of aneuploidy in tumor initiation and progression, and generated mice with random aneuploidies by transient induction of polo-like kinase 4 (Plk4), a master regulator of centrosome number. Their findings show how transient CIN generates cells with random aneuploidies from which ones that acquire a karyotype with specific chromosome gains are sufficient to drive cancer formation, and that distinct CIN mechanisms can lead to similar karyotypic cancer-causing outcomes. Abnormal numerical and structural chromosome content is frequently found in human cancer. To test the role of aneuploidy in tumor initiation and progression, we generated mice with random aneuploidies by transient induction of polo-like kinase 4 (Plk4), a master regulator of centrosome number. Short-term chromosome instability (CIN) from transient Plk4 induction resulted in formation of aggressive T-cell lymphomas in mice with heterozygous inactivation of one p53 allele and accelerated tumor development in the absence of p53. Transient CIN increased the frequency of lymphoma-initiating cells with a specific karyotype profile, including trisomy of chromosomes 4, 5, 14, and 15 occurring early in tumorigenesis. Tumor development in mice with chronic CIN induced by an independent mechanism (through inactivation of the spindle assembly checkpoint) gradually trended toward a similar karyotypic profile, as determined by single-cell whole-genome DNA sequencing. Overall, we show how transient CIN generates cells with random aneuploidies from which ones that acquire a karyotype with specific chromosome gains are sufficient to drive cancer formation, and that distinct CIN mechanisms can lead to similar karyotypic cancer-causing outcomes.
Collapse
Affiliation(s)
- Ofer Shoshani
- Ludwig Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Bjorn Bakker
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Lauren de Haan
- Ludwig Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA.,European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Andréa E Tijhuis
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Yin Wang
- Ludwig Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Dong Hyun Kim
- Ludwig Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Marcus Maldonado
- Ludwig Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Matthew A Demarest
- Ludwig Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Jon Artates
- Ludwig Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Ouyang Zhengyu
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Adam Mark
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - René Wardenaar
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Roman Sasik
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Benjamin Vitre
- Ludwig Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Kathleen Fisch
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Don W Cleveland
- Ludwig Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
19
|
Cai C, Song X, Yu C. Identification of genes in hepatocellular carcinoma induced by non-alcoholic fatty liver disease. Cancer Biomark 2021; 29:69-78. [PMID: 32623384 PMCID: PMC7685598 DOI: 10.3233/cbm-190169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND: Hepatocellular carcinoma (HCC) is the leading cause of mortality worldwide. In recent years, the incidence of HCC induced by NAFLD is growing rapidly. OBJECTIVE: To screen for new pathogenic genes and related pathways both in NAFLD and HCC, and to explore the pathogenesis of progression from NAFLD to HCC. METHODS: Gene expression microarrays (GSE74656, GSE62232) were used for identifying differentially expressed genes (DEGs). Functional enrichment and pathway enrichment analyses indicated that these DEGs were related to cell cycle and extracellular exosome, which were closely related to NAFLD and HCC development. We then used the Search Tool for the Retrieval of Interacting Genes (STRING) to establish the protein-protein interaction (PPI) network and visualized them in Cytoscape. And the overall survival (OS) analysis and gene expression validation in TCGA of hub genes was performed. RESULTS: Seven hub genes, including CDK1, HSP90AA1, MAD2L1, PRKCD, ITGB3BP, CEP192, and RHOB were identified. Finally, we verified the expression level of ITGB3BP and CEP192 by quantitative real-time PCR in vitro. CONCLUSIONS: The present study implied possible DEGs, especially the new gene CEP192, in the progression of NAFLD developing to HCC. Further rigorous experiments are required to verify the above results.
Collapse
Affiliation(s)
| | | | - Chaohui Yu
- Corresponding author: Chaohui Yu, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. E-mail:
| |
Collapse
|
20
|
Storchova Z. Consequences of mitotic failure - The penalties and the rewards. Semin Cell Dev Biol 2021; 117:149-158. [PMID: 33820699 DOI: 10.1016/j.semcdb.2021.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/14/2022]
Abstract
Eukaryotic cells are usually diploid, meaning they contain two copies of each chromosome. However, aberrant chromosome numbers due to both, chromosome gains and losses, are often observed in nature. They can occur as a planned developmental step, but are more often an uninvited result of mitotic failure. Recent discoveries have improved our understanding of the cellular effects of aneuploidy - uneven chromosome numbers, and polyploidy - multiplication of entire sets of chromosomes - in eukaryotic cells. The results show that mitotic errors lead to rapid and extensive modifications of many cellular processes and affect proliferation, proteome balance, genome stability and more. The findings picture the cellular response to aneuploidy and polyploidy as a complex, tissue and context dependent network of events. Here I review the latest discoveries, with an emphasis on pathological aspects of aneuploidy and polyploidy in human cells.
Collapse
Affiliation(s)
- Zuzana Storchova
- Department of Molecular Genetics, TU Kaiserslautern, Paul Ehrlich Str. 24, 67663 Kaiserslautern, Germany.
| |
Collapse
|
21
|
Fu J, Zhang X, Yan L, Shao Y, Liu X, Chu Y, Xu G, Xu X. Identification of the hub gene BUB1B in hepatocellular carcinoma via bioinformatic analysis and in vitro experiments. PeerJ 2021; 9:e10943. [PMID: 33665036 PMCID: PMC7908873 DOI: 10.7717/peerj.10943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/24/2021] [Indexed: 12/13/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers and the fourth leading cause of cancer-related deaths in the world. Although the treatment of HCC has made great progress in recent years, the therapeutic effects on HCC are still unsatisfactory due to difficulty in early diagnosis, chemoresistance and high recurrence rate post-surgery. Methods In this study, we identified differentially expressed genes (DEGs) based on four Gene Expression Omnibus (GEO) datasets (GSE45267, GSE98383, GSE101685 and GSE112790) between HCC and normal hepatic tissues. A protein–protein interaction (PPI) network was established to identify the central nodes associated with HCC. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the central nodes were conducted to find the hub genes. The expression levels of the hub genes were validated based on the ONCOMINE and Gene Expression Profiling Interactive Analysis (GEPIA) databases. Additionally, the genetic alterations of the hub genes were evaluated by cBioPortal. The role of the hub genes on the overall survival (OS) and relapse survival (RFS) of HCC patients was evaluated by Kaplan-Meier plotter. At last, the mechanistic role of the hub genes was illustrated by in vitro experiments. Results We found the following seven hub genes: BUB1B, CCNB1, CCNB2, CDC20, CDK1, MAD2L1 and RRM2 using integrated bioinformatics analysis. All of the hub genes were significantly upregulated in HCC tissues. And the seven hub genes were associated with the OS and RFS of HCC patients. Finally, in vitro experiments indicated that BUB1B played roles in HCC cell proliferation, migration, invasion, apoptosis and cell cycle by partially affecting mitochondrial functions. Conclusions In summary, we identified seven hub genes that were associated with the expression and prognosis of HCC. The mechanistic oncogenic role of BUB1B in HCC was first illustrated. BUB1B might play an important role in HCC and could be potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Jie Fu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao Zhang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Likun Yan
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaoli Shao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinxu Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuan Chu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ge Xu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xundi Xu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
22
|
Jilderda LJ, Zhou L, Foijer F. Understanding How Genetic Mutations Collaborate with Genomic Instability in Cancer. Cells 2021; 10:342. [PMID: 33562057 PMCID: PMC7914657 DOI: 10.3390/cells10020342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 01/23/2023] Open
Abstract
Chromosomal instability is the process of mis-segregation for ongoing chromosomes, which leads to cells with an abnormal number of chromosomes, also known as an aneuploid state. Induced aneuploidy is detrimental during development and in primary cells but aneuploidy is also a hallmark of cancer cells. It is therefore believed that premalignant cells need to overcome aneuploidy-imposed stresses to become tumorigenic. Over the past decade, some aneuploidy-tolerating pathways have been identified through small-scale screens, which suggest that aneuploidy tolerance pathways can potentially be therapeutically exploited. However, to better understand the processes that lead to aneuploidy tolerance in cancer cells, large-scale and unbiased genetic screens are needed, both in euploid and aneuploid cancer models. In this review, we describe some of the currently known aneuploidy-tolerating hits, how large-scale genome-wide screens can broaden our knowledge on aneuploidy specific cancer driver genes, and how we can exploit the outcomes of these screens to improve future cancer therapy.
Collapse
Affiliation(s)
| | | | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Centre Groningen, 9713 AV Groningen, The Netherlands; (L.J.J.); (L.Z.)
| |
Collapse
|
23
|
Vasudevan A, Schukken KM, Sausville EL, Girish V, Adebambo OA, Sheltzer JM. Aneuploidy as a promoter and suppressor of malignant growth. Nat Rev Cancer 2021; 21:89-103. [PMID: 33432169 DOI: 10.1038/s41568-020-00321-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Aneuploidy has been recognized as a hallmark of tumorigenesis for more than 100 years, but the connection between chromosomal errors and malignant growth has remained obscure. New evidence emerging from both basic and clinical research has illuminated a complicated relationship: despite its frequency in human tumours, aneuploidy is not a universal driver of cancer development and instead can exert substantial tumour-suppressive effects. The specific consequences of aneuploidy are highly context dependent and are influenced by a cell's genetic and environmental milieu. In this Review, we discuss the diverse facets of cancer biology that are shaped by aneuploidy, including metastasis, drug resistance and immune recognition, and we highlight aneuploidy's distinct roles as both a tumour promoter and an anticancer vulnerability.
Collapse
|
24
|
Cohen-Sharir Y, McFarland JM, Abdusamad M, Marquis C, Bernhard SV, Kazachkova M, Tang H, Ippolito MR, Laue K, Zerbib J, Malaby HLH, Jones A, Stautmeister LM, Bockaj I, Wardenaar R, Lyons N, Nagaraja A, Bass AJ, Spierings DCJ, Foijer F, Beroukhim R, Santaguida S, Golub TR, Stumpff J, Storchová Z, Ben-David U. Aneuploidy renders cancer cells vulnerable to mitotic checkpoint inhibition. Nature 2021; 590:486-491. [PMID: 33505028 PMCID: PMC8262644 DOI: 10.1038/s41586-020-03114-6] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 11/19/2020] [Indexed: 01/30/2023]
Abstract
Selective targeting of aneuploid cells is an attractive strategy for cancer treatment1. However, it is unclear whether aneuploidy generates any clinically relevant vulnerabilities in cancer cells. Here we mapped the aneuploidy landscapes of about 1,000 human cancer cell lines, and analysed genetic and chemical perturbation screens2-9 to identify cellular vulnerabilities associated with aneuploidy. We found that aneuploid cancer cells show increased sensitivity to genetic perturbation of core components of the spindle assembly checkpoint (SAC), which ensures the proper segregation of chromosomes during mitosis10. Unexpectedly, we also found that aneuploid cancer cells were less sensitive than diploid cells to short-term exposure to multiple SAC inhibitors. Indeed, aneuploid cancer cells became increasingly sensitive to inhibition of SAC over time. Aneuploid cells exhibited aberrant spindle geometry and dynamics, and kept dividing when the SAC was inhibited, resulting in the accumulation of mitotic defects, and in unstable and less-fit karyotypes. Therefore, although aneuploid cancer cells could overcome inhibition of SAC more readily than diploid cells, their long-term proliferation was jeopardized. We identified a specific mitotic kinesin, KIF18A, whose activity was perturbed in aneuploid cancer cells. Aneuploid cancer cells were particularly vulnerable to depletion of KIF18A, and KIF18A overexpression restored their response to SAC inhibition. Our results identify a therapeutically relevant, synthetic lethal interaction between aneuploidy and the SAC.
Collapse
Affiliation(s)
- Yael Cohen-Sharir
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - James M McFarland
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mai Abdusamad
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carolyn Marquis
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| | - Sara V Bernhard
- Department of Molecular Genetics, TU Kaiserlautern, Kaiserlautern, Germany
| | - Mariya Kazachkova
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Helen Tang
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marica R Ippolito
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Kathrin Laue
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Johanna Zerbib
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Heidi L H Malaby
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| | - Andrew Jones
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Irena Bockaj
- European Research Institute for the Biology of Aging (ERIBA), University of Groningen, Groningen, The Netherlands
| | - René Wardenaar
- European Research Institute for the Biology of Aging (ERIBA), University of Groningen, Groningen, The Netherlands
| | - Nicholas Lyons
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ankur Nagaraja
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Adam J Bass
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Diana C J Spierings
- European Research Institute for the Biology of Aging (ERIBA), University of Groningen, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Aging (ERIBA), University of Groningen, Groningen, The Netherlands
| | - Rameen Beroukhim
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Stefano Santaguida
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Todd R Golub
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| | - Zuzana Storchová
- Department of Molecular Genetics, TU Kaiserlautern, Kaiserlautern, Germany
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
25
|
Acute systemic loss of Mad2 leads to intestinal atrophy in adult mice. Sci Rep 2021; 11:68. [PMID: 33420244 PMCID: PMC7794249 DOI: 10.1038/s41598-020-80169-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/15/2020] [Indexed: 11/08/2022] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer, leading to aneuploid cells. To study the role that CIN plays in tumor evolution, several mouse models have been engineered over the last 2 decades. These models have unequivocally shown that systemic high-grade CIN is embryonic lethal. We and others have previously shown that embryonic lethality can be circumvented by provoking CIN in a tissue-specific fashion. In this study, we provoke systemic high-grade CIN in adult mice as an alternative to circumvent embryonic lethality. For this, we disrupt the spindle assembly checkpoint (SAC) by alleviating Mad2 or truncating Mps1, both essential genes for SAC functioning, with or without p53 inactivation. We find that disruption of the SAC leads to rapid villous atrophy, atypia and apoptosis of the epithelia of the jejunum and ileum, substantial weight loss, and death within 2-3 weeks after the start of the CIN insult. Despite this severe intestinal phenotype, most other tissues are unaffected, except for minor abnormalities in spleen, presumably due to the lower proliferation rate in these tissues. We conclude that high-grade CIN in vivo in adult mice is most toxic to the high cell turnover intestinal epithelia.
Collapse
|
26
|
Funk LC, Wan J, Ryan SD, Kaur C, Sullivan R, Roopra A, Weaver BA. p53 Is Not Required for High CIN to Induce Tumor Suppression. Mol Cancer Res 2021; 19:112-123. [PMID: 32948674 PMCID: PMC7810023 DOI: 10.1158/1541-7786.mcr-20-0488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/14/2020] [Accepted: 09/13/2020] [Indexed: 11/16/2022]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer. While low levels of CIN can be tumor promoting, high levels of CIN cause cell death and tumor suppression. The widely used chemotherapeutic, paclitaxel (Taxol), exerts its anticancer effects by increasing CIN above a maximally tolerated threshold. One significant outstanding question is whether the p53 tumor suppressor is required for the cell death and tumor suppression caused by high CIN. Both p53 loss and reduction of the mitotic kinesin, centromere-associated protein-E, cause low CIN. Combining both genetic insults in the same cell leads to high CIN. Here, we test whether high CIN causes cell death and tumor suppression even in the absence p53. Despite a surprising sex-specific difference in tumor spectrum and latency in p53 heterozygous animals, these studies demonstrate that p53 is not required for high CIN to induce tumor suppression. Pharmacologic induction of high CIN results in equivalent levels of cell death due to loss of essential chromosomes in p53+/+ and p53-/- cells, further demonstrating that high CIN elicits cell death independently of p53 function. IMPLICATIONS: These results provide support for the efficacy of anticancer therapies that induce high CIN, even in tumors that lack functional p53.
Collapse
Affiliation(s)
- Laura C Funk
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jun Wan
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sean D Ryan
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Charanjeet Kaur
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ruth Sullivan
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Avtar Roopra
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin
| | - Beth A Weaver
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin.
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
27
|
Niazi Y, Thomsen H, Smolkova B, Vodickova L, Vodenkova S, Kroupa M, Vymetalkova V, Kazimirova A, Barancokova M, Volkovova K, Staruchova M, Hoffmann P, Nöthen MM, Dusinska M, Musak L, Vodicka P, Hemminki K, Försti A. Impact of genetic polymorphisms in kinetochore and spindle assembly genes on chromosomal aberration frequency in healthy humans. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 858-860:503253. [PMID: 33198934 DOI: 10.1016/j.mrgentox.2020.503253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/24/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Genomic instability is a characteristic of a majority of human malignancies. Chromosomal instability is a common form of genomic instability that can be caused by defects in mitotic checkpoint genes. Chromosomal aberrations in peripheral blood are also indicative of genotoxic exposure and potential cancer risk. We evaluated associations between inherited genetic variants in 33 mitotic checkpoint genes and the frequency of chromosomal aberrations (CAs) in the presence and absence of environmental genotoxic exposure. Associations with both chromosome and chromatid type of aberrations were evaluated in two cohorts of healthy individuals, namely an exposed and a reference group consisting of 607 and 866 individuals, respectively. Binary logistic and linear regression analyses were performed for the association studies. Bonferroni-corrected significant p-value was 5 × 10-4 for 99 tests based on the number of analyzed genes and phenotypes. In the reference group the most prominent associations were found with variants in CCNB1, a master regulator of mitosis, and in genes involved in kinetochore function, including CENPH and TEX14, whereas in the exposed group the main association was found with variants in TTK, also an important gene in kinetochore function. How the identified variants may affect the fidelity of mitotic checkpoint remains to be investigated, however, the present study suggests that genetic variation may partly explain interindividual variation in the formation of CAs.
Collapse
Affiliation(s)
- Yasmeen Niazi
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.
| | - Hauke Thomsen
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany; GeneWerk GmbH, Im Neuenheimer Feld 582, 6910, Heidelberg, Germany
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505, Bratislava, Slovakia
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605, Pilsen, Czech Republic
| | - Soňa Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605, Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Alena Kazimirova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03, Bratislava, Slovakia
| | - Magdalena Barancokova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03, Bratislava, Slovakia
| | - Katarina Volkovova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03, Bratislava, Slovakia
| | - Marta Staruchova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03, Bratislava, Slovakia
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn School of Medicine and University of Bonn, D-53127, Bonn, Germany; Division of Medical Genetics, Department of Biomedicine, University of Basel, 4003, Basel, Switzerland
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn School of Medicine and University of Bonn, D-53127, Bonn, Germany
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2007, Kjeller, Norway
| | - Ludovit Musak
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Malá Hora(4D), 03601, Martin, Slovakia
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605, Pilsen, Czech Republic
| | - Kari Hemminki
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605, Pilsen, Czech Republic; Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), 69120, Heidelberg, Germany
| | - Asta Försti
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
28
|
Linkage of genetic drivers and strain-specific germline variants confound mouse cancer genome analyses. Nat Commun 2020; 11:4474. [PMID: 32901003 PMCID: PMC7479137 DOI: 10.1038/s41467-020-18095-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/27/2020] [Indexed: 01/14/2023] Open
|
29
|
Zhou L, Jilderda LJ, Foijer F. Exploiting aneuploidy-imposed stresses and coping mechanisms to battle cancer. Open Biol 2020; 10:200148. [PMID: 32873156 PMCID: PMC7536071 DOI: 10.1098/rsob.200148] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Aneuploidy, an irregular number of chromosomes in cells, is a hallmark feature of cancer. Aneuploidy results from chromosomal instability (CIN) and occurs in almost 90% of all tumours. While many cancers display an ongoing CIN phenotype, cells can also be aneuploid without displaying CIN. CIN drives tumour evolution as ongoing chromosomal missegregation will yield a progeny of cells with variable aneuploid karyotypes. The resulting aneuploidy is initially toxic to cells because it leads to proteotoxic and metabolic stress, cell cycle arrest, cell death, immune cell activation and further genomic instability. In order to overcome these aneuploidy-imposed stresses and adopt a malignant fate, aneuploid cancer cells must develop aneuploidy-tolerating mechanisms to cope with CIN. Aneuploidy-coping mechanisms can thus be considered as promising therapeutic targets. However, before such therapies can make it into the clinic, we first need to better understand the molecular mechanisms that are activated upon aneuploidization and the coping mechanisms that are selected for in aneuploid cancer cells. In this review, we discuss the key biological responses to aneuploidization, some of the recently uncovered aneuploidy-coping mechanisms and some strategies to exploit these in cancer therapy.
Collapse
Affiliation(s)
| | | | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
30
|
Pajuelo-Lozano N, Alcalá S, Sainz B, Perona R, Sanchez-Perez I. Targeting MAD2 modulates stemness and tumorigenesis in human Gastric Cancer cell lines. Am J Cancer Res 2020; 10:9601-9618. [PMID: 32863948 PMCID: PMC7449921 DOI: 10.7150/thno.49270] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/12/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Gastric cancer (GC) is a solid tumor that contains subpopulations of cancer stem cells (CSCs), which are considered drivers of tumor initiation and metastasis; responsible for therapeutic resistance; and promoters of tumor relapse. The balance between symmetric and asymmetric division is crucial for stem cell maintenance. The objective of this study is to evaluate the role of MAD2, a key protein for proper mitotic checkpoint activity, in the tumorigenesis of GC. Methods: Gastric cancer stem cells (GCSCs) were obtained from MKN45, SNU638 and ST2957 cell lines. Pluripotency and stemness markers were evaluated by RT-qPCR and autofluorescence and membrane markers by flow cytometry. Relevant signal transduction pathways were studied by WB. We analysed cell cycle progression, migration and invasion after modulation of MAD2 activity or protein expression levels in these in vitro models. In vivo assays were performed in a nude mouse subcutaneous xenograft model. Results: We found that NANOG, CXCR4 and autofluorescence are common and consistent markers for the GCSCs analysed, with other markers showing more variability. The three main signalling pathways (Wnt/β-catenin; Hedgehog and Notch) were activated in GCSCs. Downregulation of MAD2 in MKN45CSCs decreased the expression of markers CXCR4, CD133, CD90, LGR5 and VIM, without affecting cell cycle profile or therapy resistance. Moreover, migration, invasion and tumor growth were clearly reduced, and accordingly, we found that metalloprotease expression decreased. These results were accompanied by a reduction in the levels of transcription factors related with epithelial-to-mesenchymal transition. Conclusions: We can conclude that MAD2 is important for GCSCs stemness and its downregulation in MKN45CSCs plays a central role in GC tumorigenesis, likely through CXCR4-SNAI2-MMP1. Thus, its potential use in the clinical setting should be studied as its functions appear to extend beyond mitosis.
Collapse
|
31
|
Hoevenaar WHM, Janssen A, Quirindongo AI, Ma H, Klaasen SJ, Teixeira A, van Gerwen B, Lansu N, Morsink FHM, Offerhaus GJA, Medema RH, Kops GJPL, Jelluma N. Degree and site of chromosomal instability define its oncogenic potential. Nat Commun 2020; 11:1501. [PMID: 32198375 PMCID: PMC7083897 DOI: 10.1038/s41467-020-15279-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/27/2020] [Indexed: 12/17/2022] Open
Abstract
Most human cancers are aneuploid, due to a chromosomal instability (CIN) phenotype. Despite being hallmarks of cancer, however, the roles of CIN and aneuploidy in tumor formation have not unequivocally emerged from animal studies and are thus still unclear. Using a conditional mouse model for diverse degrees of CIN, we find that a particular range is sufficient to drive very early onset spontaneous adenoma formation in the intestine. In mice predisposed to intestinal cancer (ApcMin/+), moderate CIN causes a remarkable increase in adenoma burden in the entire intestinal tract and especially in the distal colon, which resembles human disease. Strikingly, a higher level of CIN promotes adenoma formation in the distal colon even more than moderate CIN does, but has no effect in the small intestine. Our results thus show that CIN can be potently oncogenic, but that certain levels of CIN can have contrasting effects in distinct tissues.
Collapse
Affiliation(s)
- Wilma H M Hoevenaar
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aniek Janssen
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ajit I Quirindongo
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Huiying Ma
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sjoerd J Klaasen
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Antoinette Teixeira
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bastiaan van Gerwen
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nico Lansu
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Folkert H M Morsink
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - G Johan A Offerhaus
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - René H Medema
- Division of Cell Biology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Nannette Jelluma
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
32
|
Zhang BH, Yang J, Jiang L, Lyu T, Kong LX, Tan YF, Li B, Zhu YF, Xi AY, Xu X, Yan LN, Yang JY. Development and validation of a 14-gene signature for prognosis prediction in hepatocellular carcinoma. Genomics 2020; 112:2763-2771. [PMID: 32198063 DOI: 10.1016/j.ygeno.2020.03.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 02/08/2023]
Abstract
Worldwide, hepatocellular carcinoma (HCC) remains a crucial medical problem. Precise and concise prognostic models are urgently needed because of the intricate gene variations among liver cancer cells. We conducted this study to identify a prognostic gene signature with biological significance. We applied two algorithms to generate differentially expressed genes (DEGs) between HCC and normal specimens in The Cancer Genome Atlas cohort (training set included) and performed enrichment analyses to expound on their biological significance. A protein-protein interactions network was established based on the STRING online tool. We then used Cytoscape to screen hub genes in crucial modules. A multigene signature was constructed by Cox regression analysis of hub genes to stratify the prognoses of HCC patients in the training set. The prognostic value of the multigene signature was externally validated in two other sets from Gene Expression Omnibus (GSE14520 and GSE76427), and its role in recurrence prediction was also investigated. A total of 2000 DEGs were obtained, including 1542 upregulated genes and 458 downregulated genes. Subsequently, we constructed a 14-gene signature on the basis of 56 hub genes, which was a good predictor of overall survival. The prognostic signature could be replicated in GSE14520 and GSE76427. Moreover, the 14-gene signature could be applied for recurrence prediction in the training set and GSE14520. In summary, the 14-gene signature extracted from hub genes was involved in some of the HCC-related signalling pathways; it not only served as a predictive signature for HCC outcome but could also be used to predict HCC recurrence.
Collapse
Affiliation(s)
- Bo-Han Zhang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| | - Jian Yang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| | - Li Jiang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| | - Tao Lyu
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| | - Ling-Xiang Kong
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| | - Yi-Fei Tan
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| | - Bo Li
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| | - Yun-Feng Zhu
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| | - Ao-Yao Xi
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| | - Xi Xu
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| | - Lyu-Nan Yan
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| | - Jia-Yin Yang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
33
|
Schukken KM, Lin YC, Bakker PL, Schubert M, Preuss SF, Simon JE, van den Bos H, Storchova Z, Colomé-Tatché M, Bastians H, Spierings DC, Foijer F. Altering microtubule dynamics is synergistically toxic with spindle assembly checkpoint inhibition. Life Sci Alliance 2020; 3:3/2/e201900499. [PMID: 31980556 PMCID: PMC6985455 DOI: 10.26508/lsa.201900499] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Chromosomal instability (CIN) is a hallmark feature of cancer cells. In this study, Schukken and colleagues screen for compounds that selectively target CIN cells and identify an inhibitor of Src kinase to be selectively toxic for CIN cells. Chromosomal instability (CIN) and aneuploidy are hallmarks of cancer. As most cancers are aneuploid, targeting aneuploidy or CIN may be an effective way to target a broad spectrum of cancers. Here, we perform two small molecule compound screens to identify drugs that selectively target cells that are aneuploid or exhibit a CIN phenotype. We find that aneuploid cells are much more sensitive to the energy metabolism regulating drug ZLN005 than their euploid counterparts. Furthermore, cells with an ongoing CIN phenotype, induced by spindle assembly checkpoint (SAC) alleviation, are significantly more sensitive to the Src kinase inhibitor SKI606. We show that inhibiting Src kinase increases microtubule polymerization rates and, more generally, that deregulating microtubule polymerization rates is particularly toxic to cells with a defective SAC. Our findings, therefore, suggest that tumors with a dysfunctional SAC are particularly sensitive to microtubule poisons and, vice versa, that compounds alleviating the SAC provide a powerful means to treat tumors with deregulated microtubule dynamics.
Collapse
Affiliation(s)
- Klaske M Schukken
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Yu-Chih Lin
- Goettingen Center for Molecular Biosciences and University Medical Center, Goettingen, Germany
| | - Petra L Bakker
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Michael Schubert
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Stephanie F Preuss
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Judith E Simon
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Hilda van den Bos
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Zuzana Storchova
- Department of Molecular Genetics, University of Kaiserslautern, Germany
| | - Maria Colomé-Tatché
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Institute of Computational Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Technical University of Munich, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Holger Bastians
- Goettingen Center for Molecular Biosciences and University Medical Center, Goettingen, Germany
| | - Diana Cj Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
34
|
Wild T, Budzowska M, Hellmuth S, Eibes S, Karemore G, Barisic M, Stemmann O, Choudhary C. Deletion of APC7 or APC16 Allows Proliferation of Human Cells without the Spindle Assembly Checkpoint. Cell Rep 2019; 25:2317-2328.e5. [PMID: 30485802 PMCID: PMC6289045 DOI: 10.1016/j.celrep.2018.10.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 09/07/2018] [Accepted: 10/29/2018] [Indexed: 11/17/2022] Open
Abstract
The multisubunit ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) is essential for mitosis by promoting timely degradation of cyclin B1. APC/C is tightly regulated by the spindle assembly checkpoint (SAC), which involves MPS1 and MAD2-dependent temporal inhibition of APC/C. We analyzed the contribution of the APC/C subunits APC7 and APC16 to APC/C composition and function in human cells. APC16 is required for APC7 assembly into APC/C, whereas APC16 assembles independently of APC7. APC7 and APC16 knockout cells display no major defects in mitotic progression, cyclin B1 degradation, or SAC response, but APC/C lacking these two subunits shows reduced ubiquitylation activity in vitro. Strikingly, deletion of APC7 or APC16 is sufficient to provide synthetic viability to MAD2 deletion. ΔAPC7ΔMAD2 cells display accelerated mitosis and require SAC-independent MPS1 function for genome stability. These findings reveal that the composition of APC/C critically influences the importance of the SAC in humans. APC16 is required for in vivo assembly of APC7 into APC/C APC7 or APC16 deletion has no major effect on mitosis Deletion of APC7 or APC16 provides synthetic viability to MAD2 deletion
Collapse
Affiliation(s)
- Thomas Wild
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Magda Budzowska
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Center for Chromosome Stability (CCS), Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Susanne Hellmuth
- Chair of Genetics, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Susana Eibes
- Danish Cancer Society Research Center, Cell Division Laboratory, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Gopal Karemore
- Protein Imaging Platform, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Marin Barisic
- Danish Cancer Society Research Center, Cell Division Laboratory, Strandboulevarden 49, 2100 Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Olaf Stemmann
- Chair of Genetics, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Chunaram Choudhary
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
35
|
Ben-David U, Amon A. Context is everything: aneuploidy in cancer. Nat Rev Genet 2019; 21:44-62. [DOI: 10.1038/s41576-019-0171-x] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
|
36
|
Fang L, Liu S, Liu M, Kang X, Lin S, Li B, Connor EE, Baldwin RL, Tenesa A, Ma L, Liu GE, Li CJ. Functional annotation of the cattle genome through systematic discovery and characterization of chromatin states and butyrate-induced variations. BMC Biol 2019; 17:68. [PMID: 31419979 PMCID: PMC6698049 DOI: 10.1186/s12915-019-0687-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The functional annotation of genomes, including chromatin accessibility and modifications, is important for understanding and effectively utilizing the increased amount of genome sequences reported. However, while such annotation has been well explored in a diverse set of tissues and cell types in human and model organisms, relatively little data are available for livestock genomes, hindering our understanding of complex trait variation, domestication, and adaptive evolution. Here, we present the first complete global landscape of regulatory elements in cattle and explore the dynamics of chromatin states in rumen epithelial cells induced by the rumen developmental regulator-butyrate. RESULTS We established the first global map of regulatory elements (15 chromatin states) and defined their coordinated activities in cattle, through genome-wide profiling for six histone modifications, RNA polymerase II, CTCF-binding sites, DNA accessibility, DNA methylation, and transcriptome in rumen epithelial primary cells (REPC), rumen tissues, and Madin-Darby bovine kidney epithelial cells (MDBK). We demonstrated that each chromatin state exhibited specific enrichment for sequence ontology, transcription, methylation, trait-associated variants, gene expression-associated variants, selection signatures, and evolutionarily conserved elements, implying distinct biological functions. After butyrate treatments, we observed that the weak enhancers and flanking active transcriptional start sites (TSS) were the most dynamic chromatin states, occurred concomitantly with significant alterations in gene expression and DNA methylation, which was significantly associated with heifer conception rate and stature economic traits. CONCLUSION Our results demonstrate the crucial role of functional genome annotation for understanding genome regulation, complex trait variation, and adaptive evolution in livestock. Using butyrate to induce the dynamics of the epigenomic landscape, we were able to establish the correlation among nutritional elements, chromatin states, gene activities, and phenotypic outcomes.
Collapse
Affiliation(s)
- Lingzhao Fang
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA
| | - Shuli Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Mei Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- College of Animal Science and Technology, Shaanxi Key Laboratory of Agricultural Molecular Biology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xiaolong Kang
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- College of Agriculture, Ningxia University, Yinchuan, 750021 China
| | - Shudai Lin
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science of South China Agricultural University, Guangzhou, 510642 China
| | - Bingjie Li
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Erin E. Connor
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Ransom L. Baldwin
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Albert Tenesa
- The Roslin Institute, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Cong-jun Li
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| |
Collapse
|
37
|
Abstract
To a large extent, cancer conforms to evolutionary rules defined by the rates at which clones mutate, adapt and grow. Next-generation sequencing has provided a snapshot of the genetic landscape of most cancer types, and cancer genomics approaches are driving new insights into cancer evolutionary patterns in time and space. In contrast to species evolution, cancer is a particular case owing to the vast size of tumour cell populations, chromosomal instability and its potential for phenotypic plasticity. Nevertheless, an evolutionary framework is a powerful aid to understand cancer progression and therapy failure. Indeed, such a framework could be applied to predict individual tumour behaviour and support treatment strategies.
Collapse
Affiliation(s)
- Samra Turajlic
- Cancer Evolution and Genome Instability Laboratory, Francis Crick Institute, London, UK
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London, UK
| | - Andrea Sottoriva
- Evolutionary Genomics and Modelling Laboratory, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Trevor Graham
- Tumour Biology, Evolution and Cancer Laboratory, Barts Cancer Institute, Queen Mary University of London, London, UK.
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, Francis Crick Institute, London, UK.
- Cancer Research UK Lung Cancer Centre of Excellence London, University College London Cancer Institute, London, UK.
- Department of Medical Oncology, University College London Hospitals, London, UK.
| |
Collapse
|
38
|
Tahmasebi-Birgani M, Ansari H, Carloni V. Defective mitosis-linked DNA damage response and chromosomal instability in liver cancer. Biochim Biophys Acta Rev Cancer 2019; 1872:60-65. [PMID: 31152819 DOI: 10.1016/j.bbcan.2019.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/29/2019] [Accepted: 05/11/2019] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC), the most common form of liver cancer, represents a health problem in hepatic viruses-eradicating era because obesity, type 2 diabetes, and nonalcoholic steatohepatitis (NASH) are considered emerging pathogenic factors. Metabolic disorders underpin mitotic errors that lead to numerical and structural chromosome aberrations in a significant proportion of cell divisions. Here, we review that genomically unstable HCCs show evidence for a paradoxically DNA damage response (DDR) which leads to ongoing chromosome segregation errors. The understanding of DDR induced by defective mitoses is crucial to our ability to develop or improve liver cancer therapeutic strategies.
Collapse
Affiliation(s)
- Maryam Tahmasebi-Birgani
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Ansari
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vinicio Carloni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
39
|
BUB1 Is Essential for the Viability of Human Cells in which the Spindle Assembly Checkpoint Is Compromised. Cell Rep 2019; 22:1424-1438. [PMID: 29425499 DOI: 10.1016/j.celrep.2018.01.034] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 11/22/2022] Open
Abstract
The spindle assembly checkpoint (SAC) ensures faithful segregation of chromosomes. Although most mammalian cell types depend on the SAC for viability, we found that human HAP1 cells can grow SAC independently. We generated MAD1- and MAD2-deficient cells and mutagenized them to identify synthetic lethal interactions, revealing that chromosome congression factors become essential upon SAC deficiency. Besides expected hits, we also found that BUB1 becomes essential in SAC-deficient cells. We found that the BUB1 C terminus regulates alignment as well as recruitment of CENPF. Second, we found that BUBR1 was not essential in SAC-deficient HAP1 cells. We confirmed that BUBR1 does not regulate chromosome alignment in HAP1 cells and that BUB1 does not regulate chromosome alignment through BUBR1. Taken together, our data resolve some long-standing questions about the interplay between BUB1 and BUBR1 and their respective roles in the SAC and chromosome alignment.
Collapse
|
40
|
Ma HT, Poon RYC. TRIP13 Functions in the Establishment of the Spindle Assembly Checkpoint by Replenishing O-MAD2. Cell Rep 2019; 22:1439-1450. [PMID: 29425500 DOI: 10.1016/j.celrep.2018.01.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 12/10/2017] [Accepted: 01/10/2018] [Indexed: 12/14/2022] Open
Abstract
The spindle assembly checkpoint (SAC) prevents premature segregation of chromosomes during mitosis. This process requires structural remodeling of MAD2 from O-MAD2 to C-MAD2 conformation. After the checkpoint is satisfied, C-MAD2 is reverted to O-MAD2 to allow anaphase-promoting complex/cyclosome (APC/C) to trigger anaphase. Recently, the AAA+-ATPase TRIP13 was shown to act in concert with p31comet to catalyze C- to O-MAD2. Paradoxically, although C-MAD2 is present in TRIP13-deficient cells, the SAC cannot be activated. Using a degron-mediated system to uncouple TRIP13 from O- and C-MAD2 equilibrium, we demonstrated that the loss of TRIP13 did not immediately abolish the SAC, but the resulting C-MAD2-only environment was insufficient to enable the SAC. These results favor a model in which MAD2-CDC20 interaction is coupled directly to the conversion of O- to C-MAD2 instead of one that involves unliganded C-MAD2. TRIP13 replenishes the O-MAD2 pool for activation by unattached kinetochores.
Collapse
Affiliation(s)
- Hoi Tang Ma
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Randy Y C Poon
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| |
Collapse
|
41
|
Abstract
High-throughput next generation sequencing karyotyping has emerged as a powerful tool for the detection of genomic heterogeneity in normal tissues and cancers. Here we describe a single-cell whole genome sequencing (scWGS) platform to assess whole-chromosome aneuploidy, structural aneuploidies involving only chromosome fragments and more local small copy number alterations in individual cells. We provide a detailed protocol for the isolation, library preparation, low coverage sequencing and data analysis of single cells. Since our approach does not involve a whole-genome preamplification step, our method allows for acquisition of reliable high-resolution single-cell copy number profiles. Moreover, the protocol allows multiplexing of 384 single-cell libraries in one sequencing run, thereby significantly reducing sequencing costs and can be completed in 3-4 days starting from single cell isolation to analysis of sequencing data.
Collapse
|
42
|
Donato L, Scimone C, Nicocia G, D'Angelo R, Sidoti A. Role of oxidative stress in Retinitis pigmentosa: new involved pathways by an RNA-Seq analysis. Cell Cycle 2018; 18:84-104. [PMID: 30569795 DOI: 10.1080/15384101.2018.1558873] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Retinitis pigmentosa (RP) is a very heterogeneous inherited ocular disorder group characterized by progressive retinal disruption. Retinal pigment epithelium (RPE) degeneration, due to oxidative stress which arrests the metabolic support to photoreceptors, represents one of the principal causes of RP. Here, the role of oxidative stress in RP onset and progression was analyzed by a comparative whole transcriptome analysis of human RPE cells, treated with 100 µg/ml of oxLDL and untreated, at different time points. Experiment was thrice repeated and performed on Ion ProtonTM sequencing system. Data analysis, including low quality reads trimming and gene expression quantification, was realized by CLC Genomics Workbench software. The whole analysis highlighted 14 clustered "macro-pathways" and many sub-pathways, classified by selection of 5271 genes showing the highest alteration of expression. Among them, 23 genes were already known to be RP causative ones (15 over-expressed and 8 down-expressed), and their enrichment and intersection analyses highlighted new 77 candidate related genes (49 over-expressed and 28 down-expressed). A final filtering analysis then highlighted 29 proposed candidate genes. This data suggests that many new genes, not yet associated with RP, could influence its etiopathogenesis.
Collapse
Affiliation(s)
- Luigi Donato
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine , University of Messina , Messina , Italy.,b Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Applied Neuroscience, Molecular Genetics and Predictive Medicine , I.E.ME.S.T. ., Palermo , Italy
| | - Concetta Scimone
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine , University of Messina , Messina , Italy.,b Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Applied Neuroscience, Molecular Genetics and Predictive Medicine , I.E.ME.S.T. ., Palermo , Italy
| | - Giacomo Nicocia
- c Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Rosalia D'Angelo
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine , University of Messina , Messina , Italy.,b Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Applied Neuroscience, Molecular Genetics and Predictive Medicine , I.E.ME.S.T. ., Palermo , Italy
| | - Antonina Sidoti
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine , University of Messina , Messina , Italy.,b Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Applied Neuroscience, Molecular Genetics and Predictive Medicine , I.E.ME.S.T. ., Palermo , Italy
| |
Collapse
|
43
|
Abstract
This review by Levine and Holland reviews the sources of mitotic errors in human tumors and their effect on cell fitness and transformation. They discuss new findings that suggest that chromosome missegregation can produce a proinflammatory environment and impact tumor responsiveness to immunotherapy and survey the vulnerabilities exposed by cell division errors and how they can be exploited therapeutically. Mitosis is a delicate event that must be executed with high fidelity to ensure genomic stability. Recent work has provided insight into how mitotic errors shape cancer genomes by driving both numerical and structural alterations in chromosomes that contribute to tumor initiation and progression. Here, we review the sources of mitotic errors in human tumors and their effect on cell fitness and transformation. We discuss new findings that suggest that chromosome missegregation can produce a proinflammatory environment and impact tumor responsiveness to immunotherapy. Finally, we survey the vulnerabilities exposed by cell division errors and how they can be exploited therapeutically.
Collapse
Affiliation(s)
- Michelle S Levine
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
44
|
Single-cell sequencing to quantify genomic integrity in cancer. Int J Biochem Cell Biol 2018; 94:146-150. [DOI: 10.1016/j.biocel.2017.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/23/2017] [Indexed: 11/23/2022]
|
45
|
Schukken KM, Foijer F. CIN and Aneuploidy: Different Concepts, Different Consequences. Bioessays 2017; 40. [PMID: 29160563 DOI: 10.1002/bies.201700147] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/10/2017] [Indexed: 12/19/2022]
Abstract
Chromosomal instability (CIN) and aneuploidy are similar concepts but not synonymous. CIN is the process that leads to chromosome copy number alterations, and aneuploidy is the result. While CIN and resulting aneuploidy often cause growth defects, they are also selected for in cancer cells. Although such contradicting fates may seem paradoxical at first, they can be better understood when CIN and aneuploidy are assessed separately, taking into account the in vitro or in vivo context, the rate of CIN, and severity of the aneuploid karyotype. As CIN can only be measured in living cells, which proves to be technically challenging in vivo, aneuploidy is more frequently quantified. However, CIN rates might be more predictive for tumor outcome than assessing aneuploidy rates alone. In reviewing the literature, we therefore conclude that there is an urgent need for new models in which we can monitor chromosome mis-segregation and its consequences in vivo. Also see the video abstract here: https://youtu.be/fL3LxZduchg.
Collapse
Affiliation(s)
- Klaske M Schukken
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, The Netherlands
| |
Collapse
|