1
|
Warrell DL, Zarrella TM, Machalek C, Khare A. Interspecies surfactants serve as public goods enabling surface motility in Pseudomonas aeruginosa. J Bacteriol 2024; 206:e0028124. [PMID: 39235232 PMCID: PMC11500613 DOI: 10.1128/jb.00281-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/02/2024] [Indexed: 09/06/2024] Open
Abstract
In most natural environments, bacteria live in polymicrobial communities where secreted molecules from neighboring species alter bacterial behaviors, including motility, but such interactions are understudied. Pseudomonas aeruginosa is a motile opportunistic pathogen that exists in diverse multispecies environments, such as the soil, and is frequently found in human wound and respiratory tract co-infections with other bacteria, including Staphylococcus aureus. Here, we show that P. aeruginosa can co-opt secreted surfactants from other species for flagellar-based surface motility. We found that exogenous surfactants from S. aureus, other bacteria, and interkingdom species enabled P. aeruginosa to switch from swarming to an alternative surface spreading motility on semi-solid surfaces and allowed for the emergence of surface motility on hard agar where P. aeruginosa was otherwise unable to move. Although active flagellar function was required for surface spreading, known motility regulators were not essential, indicating that surface spreading may be regulated by an as yet unknown mechanism. This motility was distinct from the response of most other motile bacterial species in the presence of exogenous surfactants. Mutant analysis indicated that this P. aeruginosa motility was similar to a previously described mucin-based motility, "surfing," albeit with divergent regulation. Thus, our study demonstrates that secreted surfactants from the host as well as neighboring bacterial and interkingdom species act as public goods facilitating P. aeruginosa flagella-mediated surfing-like surface motility, thereby allowing it to access different environmental niches. IMPORTANCE Bacterial motility is an important determinant of bacterial fitness and pathogenesis, allowing expansion and invasion to access nutrients and adapt to new environments. Here, we demonstrate that secreted surfactants from a variety of foreign species, including other bacterial species, infection hosts, fungi, and plants, facilitate surface spreading motility in the opportunistic pathogen Pseudomonas aeruginosa that is distinct from established motility phenotypes. This response to foreign surfactants also occurs in Pseudomonas putida, but not in more distantly related bacterial species. Our systematic characterization of surfactant-based surface spreading shows that these interspecies surfactants serve as public goods to enable P. aeruginosa to move and explore environmental conditions when it would be otherwise immotile.
Collapse
Affiliation(s)
- Delayna L. Warrell
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tiffany M. Zarrella
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, USA
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Christopher Machalek
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anupama Khare
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Zhu Y, Zeng Y, Liu M, Lu T, Pang X. Rescue of morphological defects in Streptomyces venezuelae by the alkaline volatile compound trimethylamine. Microbiol Spectr 2024; 12:e0119524. [PMID: 39166853 PMCID: PMC11448094 DOI: 10.1128/spectrum.01195-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Microorganisms can produce a vast diversity of volatile organic compounds of different chemical classes that are capable of mediating intra- and inter-kingdom interactions. In this study, we showed that the soil-dwelling bacterium Streptomyces venezuelae can produce alkaline volatiles under multiple growth conditions, which we discovered through investigation of the S. venezuelae mutant strain MU-1. Strain MU-1 has a defective morphology and exhibits a bald phenotype due to the lack of aerial mycelia and spores, as confirmed by scanning electron microscopy. Using physical barriers to separate the strains on culture plates, we determined that volatile compounds produced by wild-type S. venezuelae could rescue the phenotype of strain MU-1, and pH analysis of the growth medium indicated that these volatile compounds were alkaline. Ultra-high-performance liquid chromatography, combined with mass spectrometry analysis, showed that wild-type S. venezuelae produced abundant levels of the alkaline volatile trimethylamine (TMA) and the oxide form TMAO; however, the levels of these compounds were much lower in strain MU-1. Notably, exposure to TMA alone could rescue the phenotype of this mutant strain, restoring the production of aerial mycelia and spores. We also showed that the rescue effect by alkaline volatiles is mostly species-specific, suggesting that the volatiles may aid particular mutants or other less-fit variants of closely related species to resume normal physiological status and to compete more effectively in complex communities such as soil. Our study reveals a new and intriguing role for bacterial volatiles, including volatiles that may have toxic effects on other species. IMPORTANCE Bacterial volatiles have a wide range of biological roles at intra- or inter-kingdom levels. The impact of volatiles has mainly been observed between producing bacteria and recipient bacteria, mostly of different species. In this study, we report that the wild-type, soil-dwelling bacterium Streptomyces venezuelae, which forms aerial hypha and spores as part of its normal developmental cycle, also produces the alkaline volatile compound trimethylamine (TMA) under multiple growth conditions. We showed that the environmental dispersion of TMA produced by S. venezuelae promotes the growth and differentiation of growth-deficient mutants of the same species or other slowly growing Streptomyces bacteria, and thus aids in their survival and their ability to compete in complex environmental communities such as soil. Our novel findings suggest a potentially profound biological role for volatile compounds in the growth and survival of communities of volatile-producing Streptomyces species.
Collapse
Affiliation(s)
- Yanping Zhu
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yanhong Zeng
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Meng Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Ting Lu
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiuhua Pang
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
3
|
Sugiura R, Arazoe T, Motoyama T, Osada H, Kamakura T, Kuramochi K, Furuyama Y. Pyricularia oryzae enhances Streptomyces griseus growth via non-volatile alkaline metabolites. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70012. [PMID: 39313864 PMCID: PMC11420290 DOI: 10.1111/1758-2229.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Chemical compounds that affect microbial interactions have attracted wide interest. In this study, Streptomyces griseus showed enhanced growth when cocultured with the rice blast fungus Pyricularia oryzae on potato dextrose agar (PDA) medium. An improvement in S. griseus growth was observed before contact with P. oryzae, and no growth-promoting effect was observed when the growth medium between the two microorganisms was separated. These results suggested that the chemicals produced by P. oryzae diffused through the medium and were not volatile. A PDA plate supplemented with phenol red showed that the pH of the area surrounding P. oryzae increased. The area with increased pH promoted S. griseus growth, suggesting that the alkaline compounds produced by P. oryzae were involved in this growth stimulation. In contrast, coculture with the soilborne plant pathogen Fusarium oxysporum and entomopathogenic fungus Cordyceps tenuipes did not promote S. griseus growth. Furthermore, DL-α-Difluoromethylornithine, a polyamine biosynthesis inhibitor, prevented the increase in pH and growth promotion of S. griseus by P. oryzae. These results indicated that P. oryzae increased pH by producing a polyamine.
Collapse
Affiliation(s)
- Risa Sugiura
- Department of Applied Biological Science, Faculty of Science and TechnologyTokyo University of ScienceNoda‐shiJapan
| | - Takayuki Arazoe
- Department of Applied Biological Science, Faculty of Science and TechnologyTokyo University of ScienceNoda‐shiJapan
| | - Takayuki Motoyama
- Plant Immunity Research GroupRIKEN Center for Sustainable Resource Science (CSRS)Wako‐shiJapan
| | | | - Takashi Kamakura
- Department of Applied Biological Science, Faculty of Science and TechnologyTokyo University of ScienceNoda‐shiJapan
| | - Kouji Kuramochi
- Department of Applied Biological Science, Faculty of Science and TechnologyTokyo University of ScienceNoda‐shiJapan
| | - Yuuki Furuyama
- Department of Applied Biological Science, Faculty of Science and TechnologyTokyo University of ScienceNoda‐shiJapan
| |
Collapse
|
4
|
Resconi A, Bellezza Oddon S, Ferrocino I, Loiotine Z, Caimi C, Gasco L, Biasato I. Effects of brewery by-products on growth performance, bioconversion efficiency, nutritional profile, and microbiota and mycobiota of black soldier fly larvae. Animal 2024; 18:101288. [PMID: 39226779 DOI: 10.1016/j.animal.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Brewery by-products are recognised as suitable rearing substrates for Hermetia illucens, better known as black soldier fly (BSF) but information about the impact of different ratios of brewer's spent grains (BSG) and brewer's spent yeast (BSY) are still scarce. This study evaluated the effects of BSG-BSY-based diets on BSF larval growth, survival, bioconversion efficiency, nutritional profile, and microbiota and mycobiota. A total of 3 000 6-day-old BSF larvae were allotted to five dietary treatments (six replicate boxes/diet, 100 larvae/box): (i) BSY2.5 (25 g/kg of BSY+975 g/kg of BSG), (ii) BSY5 (50 g/kg of BSY+950 g/kg of BSG), (iii) BSY7.5 (75 g/kg of BSY+925 g/kg of BSG), (iv) BSY10 (100 g/kg of BSY+900 g/kg of BSG), and (v) control (Gainesville diet). Larval weight and substrate pH were recorded every 4 days. At the end of the trial (5% of prepupae), bioconversion efficiency corrected for residue (BER), reduction rate (RR), and waste reduction index (WRI) were calculated, and the larval proximate composition, microbiota and mycobiota characterised. At 10 and 14 days of age, BSY7.5 and BSY10 larvae displayed higher weight than BSY2.5 and BSY5 (P < 0.05), with BSY10 larvae showing the highest weight among the BSG-BSY-based diets at the end of the trial (P < 0.05). The BSY7.5 and BSY10 larvae also displayed a better BER than BSY2.5 and BSY5 (P < 0.01), whereas similar RR, WRI, survival and development time, as well as pH, were, however, observed among the BSG-BSY-based diets (P > 0.05). The BSY10 larvae displayed lower ether extract content than the other BSG-BSY-based diets (P > 0.001). The use of BSG-BSY-based diets did not influence the alpha diversity of larval microbiota and mycobiota (P > 0.05), but a specific microbial signature was identified per each dietary treatment (Porphyromonadaceae [BSY5], Sphingomonas [BSY7.5], Bacillus [BSY10] and Ruminococcus and Myroides [BSG-BSY-based diets]; P < 0.05). Co-occurrence and co-exclusion analysis also showed that Saccharomyces cerevisiae and Pichia excluded and favoured, respectively, the presence of Streptomyces and Fluviicola, while Clavispora lusitaniae was associated with Myroides (P < 0.05). In conclusion, BSG-BSY-based diets are suitable for rearing HI in terms of larval performance, nutritional profile, and microbiota and mycobiota, with 7.5 and 10% of BSY inclusion levels being able to improve larval growth and bioconversion efficiency.
Collapse
Affiliation(s)
- A Resconi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - S Bellezza Oddon
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - I Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - Z Loiotine
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - C Caimi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - L Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - I Biasato
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| |
Collapse
|
5
|
Chen Y, Zhu S, Liu F, Gao B. Flagellar evolution and flagella-independent motility in Actinobacteria. Trends Microbiol 2024:S0966-842X(24)00178-1. [PMID: 39153868 DOI: 10.1016/j.tim.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
Actinobacterial species are mostly thought to be nonmotile. Recent studies have revealed the degenerate evolution of flagella in this phylum and different flagellar rod compositions from the classical model. Moreover, flagella-independent motility by various means has been reported in Streptomyces spp. and Mycobacterium spp., but the underlying mechanisms remain elusive.
Collapse
Affiliation(s)
- Yuanyuan Chen
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 511458, China; Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siqi Zhu
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 511458, China; Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Fan Liu
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 511458, China; Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Beile Gao
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 511458, China; Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
6
|
Hernandez-Leyva AJ, Berna AZ, Liu Y, Rosen AL, Lint MA, Whiteside SA, Jaeger N, McDonough RT, Joardar N, Santiago-Borges J, Tomera CP, Luo W, John ARO, Kau AL. The breath volatilome is shaped by the gut microbiota. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.02.24311413. [PMID: 39132488 PMCID: PMC11312666 DOI: 10.1101/2024.08.02.24311413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The gut microbiota is widely implicated in host health and disease, inspiring translational efforts to implement our growing body of knowledge in clinical settings. However, the need to characterize gut microbiota by its genomic content limits the feasibility of rapid, point-of-care diagnostics. The microbiota produces a diverse array of xenobiotic metabolites that disseminate into tissues, including volatile organic compounds (VOCs) that may be excreted in breath. We hypothesize that breath contains gut microbe-derived VOCs that inform the composition and metabolic state of the microbiota. To explore this idea, we compared the breath volatilome and fecal gut microbiomes of 27 healthy children and found that breath VOC composition is correlated with gut microbiomes. To experimentally interrogate this finding, we devised a method for capturing exhaled breath from gnotobiotic mice. Breath volatiles are then profiled by gas-chromatography mass-spectrometry (GC-MS). Using this novel methodology, we found that the murine breath profile is markedly shaped by the composition of the gut microbiota. We also find that VOCs produced by gut microbes in pure culture can be identified in vivo in the breath of mice monocolonized with the same bacteria. Altogether, our studies identify microbe-derived VOCs excreted in breath and support a mechanism by which gut bacterial metabolism directly contributes to the mammalian breath VOC profiles.
Collapse
Affiliation(s)
- Ariel J. Hernandez-Leyva
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Amalia Z. Berna
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yang Liu
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Anne L. Rosen
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael A. Lint
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Samantha A. Whiteside
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Natalia Jaeger
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Current address: Department of Immunology, Augusta University, Augusta, GA 30912, USA
| | - Ryan T. McDonough
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Nikhilesh Joardar
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jesús Santiago-Borges
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Christopher P. Tomera
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Wentai Luo
- Department of Chemistry, Portland State University, Portland, OR 97201, USA
| | - Audrey R. Odom John
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew L. Kau
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
7
|
Liu H, Li J, Singh BK. Harnessing co-evolutionary interactions between plants and Streptomyces to combat drought stress. NATURE PLANTS 2024; 10:1159-1171. [PMID: 39048724 DOI: 10.1038/s41477-024-01749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Streptomyces is a drought-tolerant bacterial genus in soils, which forms close associations with plants to provide host resilience to drought stress. Here we synthesize the emerging research that illuminates the multifaceted interactions of Streptomyces spp. in both plant and soil environments. It also explores the potential co-evolutionary relationship between plants and Streptomyces spp. to forge mutualistic relationships, providing drought tolerance to plants. We propose that further advancement in fundamental knowledge of eco-evolutionary interactions between plants and Streptomyces spp. is crucial and holds substantial promise for developing effective strategies to combat drought stress, ensuring sustainable agriculture and environmental sustainability in the face of climate change.
Collapse
Affiliation(s)
- Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia.
| | - Jiayu Li
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia.
| |
Collapse
|
8
|
Jaffal H, Kortebi M, Misson P, Tavares P, Ouldali M, Leh H, Lautru S, Lioy VS, Lecointe F, Bury-Moné SG. Prophage induction can facilitate the in vitro dispersal of multicellular Streptomyces structures. PLoS Biol 2024; 22:e3002725. [PMID: 39052683 DOI: 10.1371/journal.pbio.3002725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/06/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Streptomyces are renowned for their prolific production of specialized metabolites with applications in medicine and agriculture. These multicellular bacteria present a sophisticated developmental cycle and play a key role in soil ecology. Little is known about the impact of Streptomyces phage on bacterial physiology. In this study, we investigated the conditions governing the expression and production of "Samy", a prophage found in Streptomyces ambofaciens ATCC 23877. This siphoprophage is produced simultaneously with the activation of other mobile genetic elements. Remarkably, the presence and production of Samy increases bacterial dispersal under in vitro stress conditions. Altogether, this study unveiled a new property of a bacteriophage infection in the context of multicellular aggregate dynamics.
Collapse
Affiliation(s)
- Hoda Jaffal
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Mounia Kortebi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Pauline Misson
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Paulo Tavares
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Malika Ouldali
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Hervé Leh
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Sylvie Lautru
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Virginia S Lioy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - François Lecointe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Stéphanie G Bury-Moné
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
9
|
de Souza Rodrigues R, de Souza AQL, Feitoza MDO, Alves TCL, Barbosa AN, da Silva Santiago SRS, de Souza ADL. Biotechnological potential of actinomycetes in the 21st century: a brief review. Antonie Van Leeuwenhoek 2024; 117:82. [PMID: 38789815 DOI: 10.1007/s10482-024-01964-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/07/2024] [Indexed: 05/26/2024]
Abstract
This brief review aims to draw attention to the biotechnological potential of actinomycetes. Their main uses as sources of antibiotics and in agriculture would be enough not to neglect them; however, as we will see, their biotechnological application is much broader. Far from intending to exhaust this issue, we present a short survey of the research involving actinomycetes and their applications published in the last 23 years. We highlight a perspective for the discovery of new active ingredients or new applications for the known metabolites of these microorganisms that, for approximately 80 years, since the discovery of streptomycin, have been the main source of antibiotics. Based on the collected data, we organize the text to show how the cosmopolitanism of actinomycetes and the evolutionary biotic and abiotic ecological relationships of actinomycetes translate into the expression of metabolites in the environment and the richness of biosynthetic gene clusters, many of which remain silenced in traditional laboratory cultures. We also present the main strategies used in the twenty-first century to promote the expression of these silenced genes and obtain new secondary metabolites from known or new strains. Many of these metabolites have biological activities relevant to medicine, agriculture, and biotechnology industries, including candidates for new drugs or drug models against infectious and non-infectious diseases. Below, we present significant examples of the antimicrobial spectrum of actinomycetes, which is the most commonly investigated and best known, as well as their non-antimicrobial spectrum, which is becoming better known and increasingly explored.
Collapse
Affiliation(s)
- Rafael de Souza Rodrigues
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil.
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil.
| | - Antonia Queiroz Lima de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | | | | | - Anderson Nogueira Barbosa
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
| | - Sarah Raquel Silveira da Silva Santiago
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
| | - Afonso Duarte Leão de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| |
Collapse
|
10
|
Zhu Y, Lu T, Zhang H, Liu M, Pang X. SVEN_5003 is a Major Developmental Regulator in Streptomyces venezuelae. Curr Microbiol 2024; 81:166. [PMID: 38724665 DOI: 10.1007/s00284-024-03688-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/03/2024] [Indexed: 05/15/2024]
Abstract
Many regulatory genes that affect cellular development in Streptomyces, such as the canonical bld genes, have already been identified. However, in this study, we identified sven_5003 in Streptomyces venezuelae as a major new developmental regulatory gene, the deletion of which leads to a bald phenotype, typical of bld mutants, under multiple growth conditions. Our data indicated that disruption of sven_5003 also has a differential impact on the production of the two antibiotics jadomycin and chloramphenicol. Enhanced production of jadomycin but reduced production of chloramphenicol were detected in our sven_5003 mutant strain (S. venezuelae D5003). RNA-Seq analysis indicated that SVEN_5003 impacts expression of hundreds of genes, including genes involved in development, primary and secondary metabolism, and genes of unknown function, a finding confirmed by real-time PCR analysis. Transcriptional analysis indicated that sven_5003 is an auto-regulatory gene, repressing its own expression. Despite the evidence indicating that SVEN_5003 is a regulatory factor, a putative DNA-binding domain was not predicted from its primary amino acid sequence, implying an unknown regulatory mechanism by SVEN_5003. Our findings revealed that SVEN_5003 is a pleiotropic regulator with a critical role in morphological development in S. venezuelae.
Collapse
Affiliation(s)
- Yanping Zhu
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Ting Lu
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Hanlei Zhang
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Meng Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Xiuhua Pang
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
11
|
Warrell DL, Zarrella TM, Machalek C, Khare A. Interspecies surfactants serve as public goods enabling surface motility in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.573969. [PMID: 38260674 PMCID: PMC10802355 DOI: 10.1101/2024.01.03.573969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In most natural environments, bacteria live in polymicrobial communities where secreted molecules from neighboring species alter bacterial behaviors including motility, but such interactions are understudied. Pseudomonas aeruginosa is a motile opportunistic pathogen that exists in diverse multispecies environments such as the soil and is frequently found in human wound and respiratory tract co-infections with other bacteria including Staphylococcus aureus. Here we show that P. aeruginosa can co-opt secreted surfactants from other species for flagellar-based surface motility. We found that exogenous surfactants from S. aureus, other bacteria, and interkingdom species enabled P. aeruginosa to switch from swarming to an alternative surface spreading motility on semi-solid surfaces and allowed for the emergence of surface motility on hard agar where P. aeruginosa was otherwise unable to move. This motility was distinct from the response of other motile bacteria in the presence of exogenous surfactants. Mutant analysis indicated that this P. aeruginosa motility was similar to a previously described mucin-based motility, 'surfing', albeit with divergent regulation. Thus, our study demonstrates that secreted surfactants from the host as well as neighboring bacterial and interkingdom species act as public goods facilitating P. aeruginosa flagella-mediated surfing-like surface motility, thereby allowing it to access different environmental niches.
Collapse
Affiliation(s)
- Delayna L. Warrell
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tiffany M. Zarrella
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, USA
- Current address: Department of Biology, Georgetown University, Washington, DC, USA
| | - Christopher Machalek
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anupama Khare
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Shepherdson EMF, Elliot MA. Redefining development in Streptomyces venezuelae: integrating exploration into the classical sporulating life cycle. mBio 2024; 15:e0242423. [PMID: 38470267 PMCID: PMC11005364 DOI: 10.1128/mbio.02424-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Two growth modes have been described for the filamentous Streptomyces bacteria. Their classic developmental life cycle culminates in the formation of dormant spores, where movement to new environments is mediated through spore dispersal. In contrast, exploratory growth proceeds as a rapidly expanding vegetative mycelium that leads to extensive surface colonization and is associated with the release of volatile compounds that promote alkalinization (and reduced iron bioavailability) of its surrounding environment. Here, we report that exploratory growth in Streptomyces venezuelae can proceed in tandem with classic sporulating development in response to specific nutritional cues. Sporulating exploration is not accompanied by a rise in environmental pH but has the same iron acquisition requirements as conventional exploration. We found that mutants that were defective in their ability to sporulate were unaffected in exploration, but mutants undergoing precocious sporulation were compromised in their exploratory growth and this appeared to be mediated through premature activation of the developmental regulator WhiI. Cell envelope integrity was also found to be critical for exploration, as mutations in the cell envelope stress-responsive extracytoplasmic function sigma factor SigE led to a failure to explore robustly under all exploration-promoting conditions. Finally, in expanding the known exploration-promoting conditions, we discovered that the model species Streptomyces lividans exhibited exploration capabilities, supporting the proposal that exploration is conserved across diverse streptomycetes. IMPORTANCE Streptomyces bacteria have evolved diverse developmental and metabolic strategies to thrive in dynamic environmental niches. Here, we report the amalgamation of previously disparate developmental pathways, showing that colony expansion via exploration can proceed in tandem with colony sporulation. This developmental integration extends beyond phenotype to include shared genetic elements, with sporulation-specific repressors being required for successful exploration. Comparing this new exploration mode with previously identified strategies has revealed key differences (e.g., no need for environmental alkalinization), and simultaneously allowed us to define unifying requirements for Streptomyces exploration. The "reproductive exploration" phenomenon reported here represents a unique bet-hedging strategy, with the Streptomyces colony engaging in an aggressive colonization strategy while transporting a protected genetic repository.
Collapse
Affiliation(s)
- Evan M. F. Shepherdson
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Marie A. Elliot
- Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Liu Y, LaBonte S, Brake C, LaFayette C, Rosebrock AP, Caudy AA, Straight PD. MOB rules: Antibiotic Exposure Reprograms Metabolism to Mobilize Bacillus subtilis in Competitive Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585991. [PMID: 38562742 PMCID: PMC10983992 DOI: 10.1101/2024.03.20.585991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Antibiotics have dose-dependent effects on exposed bacteria. The medicinal use of antibiotics relies on their growth-inhibitory activities at sufficient concentrations. At subinhibitory concentrations, exposure effects vary widely among different antibiotics and bacteria. Bacillus subtilis responds to bacteriostatic translation inhibitors by mobilizing a population of cells (MOB-Mobilized Bacillus) to spread across a surface. How B. subtilis regulates the antibiotic-induced mobilization is not known. In this study, we used chloramphenicol to identify regulatory functions that B. subtilis requires to coordinate cell mobilization following subinhibitory exposure. We measured changes in gene expression and metabolism and mapped the results to a network of regulatory proteins that direct the mobile response. Our data reveal that several transcriptional regulators coordinately control the reprogramming of metabolism to support mobilization. The network regulates changes in glycolysis, nucleotide metabolism, and amino acid metabolism that are signature features of the mobilized population. Among the hundreds of genes with changing expression, we identified two, pdhA and pucA, where the magnitudes of their changes in expression, and in the abundance of associated metabolites, reveal hallmark metabolic features of the mobilized population. Using reporters of pdhA and pucA expression, we visualized the separation of major branches of metabolism in different regions of the mobilized population. Our results reveal a regulated response to chloramphenicol exposure that enables a population of bacteria in different metabolic states to mount a coordinated mobile response.
Collapse
Affiliation(s)
- Yongjin Liu
- Biochemistry and Biophysics Department, Texas A&M University, AgriLife Research, College Station, Texas, USA
| | - Sandra LaBonte
- Biochemistry and Biophysics Department, Texas A&M University, AgriLife Research, College Station, Texas, USA
- Interdisciplinary Program in Genetics and Genomics,Texas A&M University, College Station, Texas, USA
| | - Courtney Brake
- Department of Visualization, Institute for Applied Creativity, Texas A&M University, College Station, Texas, USA
| | - Carol LaFayette
- Department of Visualization, Institute for Applied Creativity, Texas A&M University, College Station, Texas, USA
| | | | - Amy A. Caudy
- Maple Flavored Solutions, LLC, Indianapolis, Indiana, USA
| | - Paul D. Straight
- Biochemistry and Biophysics Department, Texas A&M University, AgriLife Research, College Station, Texas, USA
- Interdisciplinary Program in Genetics and Genomics,Texas A&M University, College Station, Texas, USA
| |
Collapse
|
14
|
Bury-Moné S, Thibessard A, Lioy VS, Leblond P. Dynamics of the Streptomyces chromosome: chance and necessity. Trends Genet 2023; 39:873-887. [PMID: 37679290 DOI: 10.1016/j.tig.2023.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 09/09/2023]
Abstract
Streptomyces are prolific producers of specialized metabolites with applications in medicine and agriculture. Remarkably, these bacteria possess a large linear chromosome that is genetically compartmentalized: core genes are grouped in the central part, while the ends are populated by poorly conserved genes including antibiotic biosynthetic gene clusters. The genome is highly unstable and exhibits distinct evolutionary rates along the chromosome. Recent chromosome conformation capture (3C) and comparative genomics studies have shed new light on the interplay between genome dynamics in space and time. Here, we review insights that illustrate how the balance between chance (random genome variations) and necessity (structural and functional constraints) may have led to the emergence of spatial structuring of the Streptomyces chromosome.
Collapse
Affiliation(s)
- Stéphanie Bury-Moné
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | | | - Virginia S Lioy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Pierre Leblond
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| |
Collapse
|
15
|
Oyedoh OP, Yang W, Dhanasekaran D, Santoyo G, Glick BR, Babalola OO. Rare rhizo-Actinomycetes: A new source of agroactive metabolites. Biotechnol Adv 2023; 67:108205. [PMID: 37356598 DOI: 10.1016/j.biotechadv.2023.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Numerous biotic and abiotic stress in some geographical regions predisposed their agricultural matrix to challenges threatening plant productivity, health, and quality. In curbing these threats, different customary agrarian principles have been created through research and development, ranging from chemical inputs and genetic modification of crops to the recently trending smart agricultural technology. But the peculiarities associated with these methods have made agriculturists rely on plant rhizospheric microbiome services, particularly bacteria. Several bacterial resources like Proteobacteria, Firmicutes, Acidobacteria, and Actinomycetes (Streptomycetes) are prominent as bioinoculants or the application of their by-products in alleviating biotic/abiotic stress have been extensively studied, with a dearth in the application of rare Actinomycetes metabolites. Rare Actinomycetes are known for their colossal genome, containing well-preserved genes coding for prolific secondary metabolites with many agroactive functionalities that can revolutionize the agricultural industry. Therefore, the imperativeness of this review to express the occurrence and distributions of rare Actinomycetes diversity, plant and soil-associated habitats, successional track in the rhizosphere under diverse stress, and their agroactive metabolite characteristics and functionalities that can remediate the challenges associated with agricultural productivity.
Collapse
Affiliation(s)
- Oghoye Priscilla Oyedoh
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Wei Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dharumadurai Dhanasekaran
- Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biolόgicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
| |
Collapse
|
16
|
Dao J, Xing Y, Chen C, Chen M, Wang Z. Adaptation of rhizosphere bacterial communities of drought-resistant sugarcane varieties under different degrees of drought stress. Microbiol Spectr 2023; 11:e0118423. [PMID: 37698408 PMCID: PMC10580969 DOI: 10.1128/spectrum.01184-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/12/2023] [Indexed: 09/13/2023] Open
Abstract
Sugarcane is highly sensitive to changes in moisture, and increased drought severely restricts its growth and productivity. Recent studies have shown that plant growth-promoting microorganisms are essential to reduce the adverse effects of environmental stresses, especially drought. However, our knowledge about the dynamics of rhizosphere microbial community structure in sugarcane under varying degrees of drought stress is limited. We analyzed the effects of different degrees of drought stress on the rhizosphere microbial communities of Zhongzhe 1(ZZ1) and Zhongzhe 6(ZZ6) with differences in drought resistance, by combining soil enzyme activity, nutrient content, and physiological and morphological characteristics of sugarcane roots. The results showed that rhizosphere bacterial community began to change at a field capacity of 50%, enriching the sugarcane rhizosphere with drought-resistant bacteria. The core strains of ZZ1 and ZZ6 rhizosphere enrichment were mainly Streptomycetales, Sphingomonadales, and Rhizobiales. However, compared to ZZ1, the changes in rhizosphere bacterial abundance in ZZ6 were primarily associated with the abundance of Streptomycetales as drought levels increased. Rhizobiales and Streptomycetales, enriched in the rhizosphere of ZZ6 under drought, were positively correlated with root tip number and total root length (TRL), increasing the distribution area of roots and, thus, improving water and nutrient uptake by the roots thereby enhancing the resistance of sugarcane to drought stress. This research enhances our understanding of the composition of the rhizosphere microbial community in sugarcane under different levels of drought stress and its interaction with the roots, thereby providing valuable insights for enhancing drought resistance in sugarcane. IMPORTANCE Drought stress is expected to further increase in intensity, frequency, and duration, causing substantial losses in sugarcane yields. Here, we exposed sugarcane to varying degrees of drought treatment during growth and quantified the eventual composition of the resulting sugarcane rhizosphere bacterial community groups. We found that sugarcane rhizosphere under mild drought began to recruit specific bacterial communities to resist drought stress and used the interactions of root tip number, total root length, and drought-resistant strains to improve sugarcane survival under drought. This research provides a theoretical basis for the rhizosphere microbiome to help sugarcane improve its resistance under different levels of drought stress.
Collapse
Affiliation(s)
- Jicao Dao
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, Guangxi, China
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
- College of Agronomy, Guangxi University, Nanning, Guangxi, China
| | - Yuanjun Xing
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, Guangxi, China
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
- College of Agronomy, Guangxi University, Nanning, Guangxi, China
| | - Chunyi Chen
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, Guangxi, China
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
- College of Agronomy, Guangxi University, Nanning, Guangxi, China
| | - Mianhe Chen
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, Guangxi, China
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
- College of Agronomy, Guangxi University, Nanning, Guangxi, China
| | - Ziting Wang
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, Guangxi, China
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
- College of Agronomy, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
17
|
Kovács ÁT. Plant-microbe interactions: Plant-exuded myo-inositol attracts specific bacterial taxa. Curr Biol 2023; 33:R825-R827. [PMID: 37552953 DOI: 10.1016/j.cub.2023.06.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Plants exude a plethora of metabolites that transform the microbiome composition. Initiated from genome-wide association studies of either a plant or a bacterium, two new studies dissect the impact of plant-secreted myo-inositol on recruitment of certain bacterial taxa by Arabidopsis.
Collapse
Affiliation(s)
- Ákos T Kovács
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands.
| |
Collapse
|
18
|
Schlimpert S, Elliot MA. The Best of Both Worlds-Streptomyces coelicolor and Streptomyces venezuelae as Model Species for Studying Antibiotic Production and Bacterial Multicellular Development. J Bacteriol 2023; 205:e0015323. [PMID: 37347176 PMCID: PMC10367585 DOI: 10.1128/jb.00153-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Streptomyces bacteria have been studied for more than 80 years thanks to their ability to produce an incredible array of antibiotics and other specialized metabolites and their unusual fungal-like development. Their antibiotic production capabilities have ensured continual interest from both academic and industrial sectors, while their developmental life cycle has provided investigators with unique opportunities to address fundamental questions relating to bacterial multicellular growth. Much of our understanding of the biology and metabolism of these fascinating bacteria, and many of the tools we use to manipulate these organisms, have stemmed from investigations using the model species Streptomyces coelicolor and Streptomyces venezuelae. Here, we explore the pioneering work in S. coelicolor that established foundational genetic principles relating to specialized metabolism and development, alongside the genomic and cell biology developments that led to the emergence of S. venezuelae as a new model system. We highlight key discoveries that have stemmed from studies of these two systems and discuss opportunities for future investigations that leverage the power and understanding provided by S. coelicolor and S. venezuelae.
Collapse
Affiliation(s)
- Susan Schlimpert
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Marie A. Elliot
- Department of Biology and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
19
|
Jiang X, Peng Z, Zhu Q, Zheng T, Liu X, Yang J, Zhang J, Li J. Exploration of seasonal fermentation differences and the possibility of flavor substances as regulatory factors in Daqu. Food Res Int 2023; 168:112686. [PMID: 37120185 DOI: 10.1016/j.foodres.2023.112686] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
Medium-high temperature Daqu is a characteristic starter for Chinese strong-flavor Baijiu fermentation, and its final quality determines the character and type of Baijiu. Nonetheless, its formation is affected by the interaction of physical and chemical, environmental and microbial interaction, and the differences in seasonal fermentation performance emerge. Here, the differences in the two seasons' Daqu fermentation properties were revealed by the detection of the enzyme activity. The respective dominant enzyme in summer Daqu (SUD) was protease and amylase, while cellulase and glucoamylase in spring Daqu (SPD). The underlying causes of this phenomenon were then investigated through an evaluation of nonbiological variables and microbial community structure. A greater absolute number of microorganisms, particularly Thermoactinomyces, were created in the SPD as a result of the superior growth environment (higher water activity). Additionally, the correlation network and discriminant analysis hypothesized that the volatile organic compound (VOC) guaiacol, which had a different content between SUD and SPD, may be a contributing element to the microbial composition. In contrast to SUD, the enzyme system activity related to guaiacol production in SPD was significantly higher. To support this notion that the volatile flavor chemicals mediate microbial interactions in Daqu, the growth effect of guaiacol on several bacteria isolated from the Daqu was examined in both a contact and non-contact manner. This study emphasized that VOCs not only have the basic characteristics of flavor compounds but also have ecological significance. Because the strains' varied structures and enzyme activities affected how the microorganisms interacted, the VOCs produced in this way ultimately had a synergistic effect on the various effects of Daqu fermentation.
Collapse
|
20
|
Shepherdson EM, Baglio CR, Elliot MA. Streptomyces behavior and competition in the natural environment. Curr Opin Microbiol 2023; 71:102257. [PMID: 36565538 DOI: 10.1016/j.mib.2022.102257] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Streptomyces are ubiquitous terrestrial bacteria that are renowned for their robust metabolic capabilities and their behavioral flexibility. In competing for environmental niches, these bacteria can employ novel growth and dispersal behaviors. They also wield their diverse metabolic repertoire for everything from maximizing nutrient uptake, to preventing phage replication or inhibiting bacterial and fungal growth. Increasingly, they are found to live in association with plants and insects, often conferring protective benefits to their host courtesy of their ability to produce pathogen-inhibitory antimicrobial compounds. Here, we highlight recent advances in understanding the competitive and cooperative interactions between Streptomyces and phage, microbes, and higher organisms in their environment.
Collapse
Affiliation(s)
- Evan Mf Shepherdson
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada; M.G. DeGroote Institute for Infectious Disease Research, Canada
| | - Christine R Baglio
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada; M.G. DeGroote Institute for Infectious Disease Research, Canada
| | - Marie A Elliot
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada; M.G. DeGroote Institute for Infectious Disease Research, Canada.
| |
Collapse
|
21
|
Cuervo L, Méndez C, Salas JA, Olano C, Malmierca MG. Volatile Compounds in Actinomycete Communities: A New Tool for Biosynthetic Gene Cluster Activation, Cooperative Growth Promotion, and Drug Discovery. Cells 2022; 11:3510. [PMID: 36359906 PMCID: PMC9655753 DOI: 10.3390/cells11213510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 07/30/2023] Open
Abstract
The increasing appearance of multiresistant pathogens, as well as emerging diseases, has highlighted the need for new strategies to discover natural compounds that can be used as therapeutic alternatives, especially in the genus Streptomyces, which is one of the largest producers of bioactive metabolites. In recent years, the study of volatile compounds (VOCs) has raised interest because of the variety of their biological properties in addition to their involvement in cell communication. In this work, we analyze the implications of VOCs as mediating molecules capable of inducing the activation of biosynthetic pathways of bioactive compounds in surrounding Actinomycetes. For this purpose, several strains of Streptomyces were co-cultured in chamber devices that allowed VOC exchange while avoiding physical contact. In several of those strains, secondary metabolism was activated by VOCs emitted by companion strains, resulting in increased antibiotic production and synthesis of new VOCs. This study shows a novel strategy to exploit the metabolic potential of Actinomycetes as well as emphasizes the importance of studying the interactions between different microorganisms sharing the same ecological niche.
Collapse
Affiliation(s)
- Lorena Cuervo
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Carmen Méndez
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - José A. Salas
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Carlos Olano
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Mónica G. Malmierca
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
22
|
Roik A, Reverter M, Pogoreutz C. A roadmap to understanding diversity and function of coral reef-associated fungi. FEMS Microbiol Rev 2022; 46:fuac028. [PMID: 35746877 PMCID: PMC9629503 DOI: 10.1093/femsre/fuac028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 01/09/2023] Open
Abstract
Tropical coral reefs are hotspots of marine productivity, owing to the association of reef-building corals with endosymbiotic algae and metabolically diverse bacterial communities. However, the functional importance of fungi, well-known for their contribution to shaping terrestrial ecosystems and global nutrient cycles, remains underexplored on coral reefs. We here conceptualize how fungal functional traits may have facilitated the spread, diversification, and ecological adaptation of marine fungi on coral reefs. We propose that functions of reef-associated fungi may be diverse and go beyond their hitherto described roles of pathogens and bioeroders, including but not limited to reef-scale biogeochemical cycles and the structuring of coral-associated and environmental microbiomes via chemical mediation. Recent technological and conceptual advances will allow the elucidation of the physiological, ecological, and chemical contributions of understudied marine fungi to coral holobiont and reef ecosystem functioning and health and may help provide an outlook for reef management actions.
Collapse
Affiliation(s)
- Anna Roik
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Miriam Reverter
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Claudia Pogoreutz
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
23
|
Francisco AJ. Helicobacter Pylori Infection Induces Intestinal Dysbiosis That Could Be Related to the Onset of Atherosclerosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9943158. [PMID: 36317116 PMCID: PMC9617700 DOI: 10.1155/2022/9943158] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022]
Abstract
Cardiovascular diseases represent one of the first causes of death around the world, and atherosclerosis is one of the first steps in the development of them. Although these problems occur mainly in elderly, the incidence in younger people is being reported, and an undetermined portion of patients without the classic risk factors develop subclinical atherosclerosis at earlier stages of life. Recently, both the H. pylori infection and the intestinal microbiota have been linked to atherosclerosis. The mechanisms behind those associations are poorly understood, but some of the proposed explanations are (a) the effect of the chronic systemic inflammation induced by H. pylori, (b) a direct action over the endothelial cells by the cytotoxin associated gene A protein, and (c) alterations of the lipid metabolism and endothelial dysfunction induced by H. pylori infection. Regarding the microbiota, several studies show that induction of atherosclerosis is related to high levels of Trimethylamine N-oxide. In this review, we present the information published about the effects of H. pylori over the intestinal microbiota and their relationship with atherosclerosis and propose a hypothesis to explain the nature of these associations. If H. pylori contributes to atherosclerosis, then interventions for eradication and restoration of the gut microbiota at early stages could represent a way to prevent disease progression.
Collapse
Affiliation(s)
- Avilés-Jiménez Francisco
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría. Centro Médico Nacional Siglo XXI. IMSS, Ciudad de México, Mexico
| |
Collapse
|
24
|
Cryptic specialized metabolites drive Streptomyces exploration and provide a competitive advantage during growth with other microbes. Proc Natl Acad Sci U S A 2022; 119:e2211052119. [PMID: 36161918 DOI: 10.1073/pnas.2211052119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptomyces bacteria have a complex life cycle that is intricately linked with their remarkable metabolic capabilities. Exploration is a recently discovered developmental innovation of these bacteria, that involves the rapid expansion of a structured colony on solid surfaces. Nutrient availability impacts exploration dynamics, and we have found that glycerol can dramatically increase exploration rates and alter the metabolic output of exploring colonies. We show here that glycerol-mediated growth acceleration is accompanied by distinct transcriptional signatures and by the activation of otherwise cryptic metabolites including the orange-pigmented coproporphyrin, the antibiotic chloramphenicol, and the uncommon, alternative siderophore foroxymithine. Exploring cultures are also known to produce the well-characterized desferrioxamine siderophore. Mutational studies of single and double siderophore mutants revealed functional redundancy when strains were cultured on their own; however, loss of the alternative foroxymithine siderophore imposed a more profound fitness penalty than loss of desferrioxamine during coculture with the yeast Saccharomyces cerevisiae. Notably, the two siderophores displayed distinct localization patterns, with desferrioxamine being confined within the colony area, and foroxymithine diffusing well beyond the colony boundary. The relative fitness advantage conferred by the alternative foroxymithine siderophore was abolished when the siderophore piracy capabilities of S. cerevisiae were eliminated (S. cerevisiae encodes a ferrioxamine-specific transporter). Our work suggests that exploring Streptomyces colonies can engage in nutrient-targeted metabolic arms races, deploying alternative siderophores that allow them to successfully outcompete other microbes for the limited bioavailable iron during coculture.
Collapse
|
25
|
Response of Carbon Emissions and the Bacterial Community to Freeze-Thaw Cycles in a Permafrost-Affected Forest-Wetland Ecotone in Northeast China. Microorganisms 2022; 10:microorganisms10101950. [PMID: 36296226 PMCID: PMC9609725 DOI: 10.3390/microorganisms10101950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Climate warming can affect freeze–thaw cycle (FTCs) patterns in northern high-latitude regions and may affect permafrost carbon emissions. The response of carbon release and microbial communities to FTCs has not been well characterized. Here, we conducted laboratory incubation experiments to investigate the relationships among carbon emissions, bacterial community, and soil variables in a permafrost-affected forest–wetland ecotone in Northeast China. The emission rates of CO2 and CH4 increased during the FTCs. FTC amplitude, FTC frequency, and patch type had significant effects on carbon emissions. FTCs increased the contents of soil DOC, NH4+-N, and NO3−-N but reduced bacterial alpha diversity. CO2 emissions were mainly affected by bacterial alpha diversity and composition, and the inorganic nitrogen content was the important factor affecting CH4 emissions. Our findings indicated that FTCs could significantly regulate CO2 and CH4 emissions by reducing bacterial community diversity and increasing the concentration of available soil substrates. Our findings shed new light on the microorganism-substrate mechanisms regulating the response patterns of the soil carbon cycle to FTCs in permafrost regions.
Collapse
|
26
|
Nonthakaew N, Panbangred W, Songnuan W, Intra B. Plant growth-promoting properties of Streptomyces spp. isolates and their impact on mung bean plantlets’ rhizosphere microbiome. Front Microbiol 2022; 13:967415. [PMID: 36090067 PMCID: PMC9453592 DOI: 10.3389/fmicb.2022.967415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
Phytophthora is an important, highly destructive pathogen of many plants, which causes considerable crop loss, especially durians in Thailand. In this study, we selectively isolated Streptomyces from the rhizosphere soil with a potent anti-oomycete activity against Phytophthora palmivora CbP03. Two strains (SNN087 and SNN289) demonstrated exceptional plant growth-promoting properties in pot experiment. Both strains promoted mung bean (Vigna radiate) growth effectively in both sterile and non-sterile soils. Metagenomic analysis revealed that Streptomyces sp. SNN289 may modify the rhizosphere microbial communities, especially promoting microbes beneficial for plant growth. The relative abundance of bacterial genera Bacillus, Sphingomonas, Arthrobacter, and Pseudarthrobacter, and fungal genera Coprinellus and Chaetomium were noticeably increased, whereas a genus Fusarium was slightly reduced. Interestingly, Streptomyces sp. SNN289 exhibited an exploratory growth, which allows it to survive in a highly competitive environment. Based on whole genome sequence analysis combined with an ANI and dDDH values, this strain should be classifiable as a new species. Functional annotation was also used to characterize plant-beneficial genes in SNN087 and SNN289 genomes for production of siderophores, 3-indole acetic acid (IAA), ammonia, and solubilized phosphate. AntiSMASH genome analysis and preliminary annotation revealed biosynthetic gene clusters with possible secondary metabolites. These findings emphasize the potential for application of strain SNN289 as a bioinoculant for sustainable agricultural practice.
Collapse
Affiliation(s)
- Napawit Nonthakaew
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Osaka Collaborative Research Center for Bioscience and Biotechnology, Mahidol University-Osaka, Bangkok, Thailand
| | - Watanalai Panbangred
- Research, Innovation, and Partnerships Office (Office of the President), King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Wisuwat Songnuan
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Bungonsiri Intra
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Osaka Collaborative Research Center for Bioscience and Biotechnology, Mahidol University-Osaka, Bangkok, Thailand
- *Correspondence: Bungonsiri Intra,
| |
Collapse
|
27
|
Abdul Hamid NW, Nadarajah K. Microbe Related Chemical Signalling and Its Application in Agriculture. Int J Mol Sci 2022; 23:ijms23168998. [PMID: 36012261 PMCID: PMC9409198 DOI: 10.3390/ijms23168998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
The agriculture sector has been put under tremendous strain by the world’s growing population. The use of fertilizers and pesticides in conventional farming has had a negative impact on the environment and human health. Sustainable agriculture attempts to maintain productivity, while protecting the environment and feeding the global population. The importance of soil-dwelling microbial populations in overcoming these issues cannot be overstated. Various processes such as rhizospheric competence, antibiosis, release of enzymes, and induction of systemic resistance in host plants are all used by microbes to influence plant-microbe interactions. These processes are largely founded on chemical signalling. Producing, releasing, detecting, and responding to chemicals are all part of chemical signalling. Different microbes released distinct sorts of chemical signal molecules which interacts with the environment and hosts. Microbial chemicals affect symbiosis, virulence, competence, conjugation, antibiotic production, motility, sporulation, and biofilm growth, to name a few. We present an in-depth overview of chemical signalling between bacteria-bacteria, bacteria-fungi, and plant-microbe and the diverse roles played by these compounds in plant microbe interactions. These compounds’ current and potential uses and significance in agriculture have been highlighted.
Collapse
|
28
|
Single cell mutant selection for metabolic engineering of actinomycetes. Metab Eng 2022; 73:124-133. [PMID: 35809806 DOI: 10.1016/j.ymben.2022.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/31/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022]
Abstract
Actinomycetes are important producers of pharmaceuticals and industrial enzymes. However, wild type strains require laborious development prior to industrial usage. Here we present a generally applicable reporter-guided metabolic engineering tool based on random mutagenesis, selective pressure, and single-cell sorting. We developed fluorescence-activated cell sorting (FACS) methodology capable of reproducibly identifying high-performing individual cells from a mutant population directly from liquid cultures. Actinomycetes are an important source of catabolic enzymes, where product yields determine industrial viability. We demonstrate 5-fold yield improvement with an industrial cholesterol oxidase ChoD producer Streptomyces lavendulae to 20.4 U g-1 in three rounds. Strain development is traditionally followed by production medium optimization, which is a time-consuming multi-parameter problem that may require hard to source ingredients. Ultra-high throughput screening allowed us to circumvent medium optimization and we identified high ChoD yield production strains directly from mutant libraries grown under preset culture conditions. Genome-mining based drug discovery is a promising source of bioactive compounds, which is complicated by the observation that target metabolic pathways may be silent under laboratory conditions. We demonstrate our technology for drug discovery by activating a silent mutaxanthene metabolic pathway in Amycolatopsis. We apply the method for industrial strain development and increase mutaxanthene yields 9-fold to 99 mg l-1 in a second round of mutant selection. In summary, the ability to screen tens of millions of mutants in a single cell format offers broad applicability for metabolic engineering of actinomycetes for activation of silent metabolic pathways and to increase yields of proteins and natural products.
Collapse
|
29
|
El-Sharkawy HHA, Rashad YM, Elazab NT. Synergism between Streptomyces viridosporus HH1 and Rhizophagus irregularis Effectively Induces Defense Responses to Fusarium Wilt of Pea and Improves Plant Growth and Yield. J Fungi (Basel) 2022; 8:683. [PMID: 35887440 PMCID: PMC9318455 DOI: 10.3390/jof8070683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Fusarium wilt is a detrimental disease of pea crop, resulting in severe damage and a reduction in its yield. Developing synergistically enhanced bioagents for disease management and growth promotion is pivotal for food safety, security, and sustainability. In this study, biocontrol potential of treating pea plants with Streptomycesviridosporus HH1 and/or their colonization with Rhizophagusirregularis against infection with Fusarium wilt was investigated. Impacts on the expression profiles of defense-related genes, biochemical, and ultrastructural levels, as well as the growth and yield of pea plants in response to these treatments, were also investigated. Data obtained indicated the antifungal activity of S. viridosporus HH1 against F. oxysporum f.sp. pisi in vitro. Furthermore, the GC-MS analysis revealed production of different bioactive compounds by S. viridosporus HH1, including 2,3-butanediol, thioglycolic acid, and phthalic acid. The results from the greenhouse experiment exhibited a synergistic biocontrol activity, resulting in a 77% reduction in disease severity in pea plants treated with S. viridosporus HH1 and colonized with R. irregularis. In this regard, this dual treatment overexpressed the responsive factor JERF3 (5.6-fold) and the defense-related genes β-1,3-glucanase (8.2-fold) and the pathogenesis-related protein 1 (14.5-fold), enhanced the total phenolic content (99.5%), induced the antioxidant activity of peroxidase (64.3%) and polyphenol oxidase (31.6%) enzymes in pea plants, reduced the antioxidant stress, and improved their hypersensitivity at the ultrastructural level in response to the Fusarium wilt pathogen. Moreover, a synergistic growth-promoting effect was also recorded in pea plants in response to this dual treatment. In this regard, due to this dual treatment, elevated levels of photosynthetic pigments and improved growth parameters were observed in pea leaves, leading to an increment in the yield (113%). In addition, application of S. viridosporus enhanced the colonization levels with R. irregularis in pea roots. Based on the obtained data, we can conclude that treating pea plants with S. viridosporus HH1 and colonization with R. irregularis have synergistic biocontrol activity and growth-promoting effects on pea plants against Fusarium wilt. Despite its eco-safety and effectiveness, a field evaluation of this treatment before a use recommendation is quite necessary.
Collapse
Affiliation(s)
- Hany H. A. El-Sharkawy
- Mycology Research and Plant Disease Survey Department, Agricultural Research Center, Plant Pathology Research Institute, Giza 12211, Egypt;
| | - Younes M. Rashad
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Egypt
| | - Nahla T. Elazab
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
30
|
Ecological drivers of division of labour in Streptomyces. Curr Opin Microbiol 2022; 67:102148. [DOI: 10.1016/j.mib.2022.102148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022]
|
31
|
Zambri MP, Williams MA, Elliot MA. How Streptomyces thrive: Advancing our understanding of classical development and uncovering new behaviors. Adv Microb Physiol 2022; 80:203-236. [PMID: 35489792 DOI: 10.1016/bs.ampbs.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Streptomyces are soil- and marine-dwelling microbes that need to survive dramatic fluctuations in nutrient levels and environmental conditions. Here, we explore the advances made in understanding how Streptomyces bacteria can thrive in their natural environments. We examine their classical developmental cycle, and the intricate regulatory cascades that govern it. We discuss alternative growth strategies and behaviors, like the rapid expansion and colonization properties associated with exploratory growth, the release of membrane vesicles and S-cells from hyphal tips, and the acquisition of exogenous DNA along the lateral walls. We further investigate Streptomyces interactions with other organisms through the release of volatile compounds that impact nutrient levels, microbial growth, and insect behavior. Finally, we explore the increasingly diverse strategies employed by Streptomyces species in escaping and thwarting phage infections.
Collapse
Affiliation(s)
- Matthew P Zambri
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Michelle A Williams
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Marie A Elliot
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
32
|
Exploratory Growth in Streptomyces venezuelae Involves a Unique Transcriptional Program, Enhanced Oxidative Stress Response, and Profound Acceleration in Response to Glycerol. J Bacteriol 2022; 204:e0062321. [PMID: 35254103 DOI: 10.1128/jb.00623-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exploration is a recently discovered mode of growth and behavior exhibited by some Streptomyces species that is distinct from their classical sporulating life cycle. While much has been uncovered regarding initiating environmental conditions and phenotypic outcomes of exploratory growth, how this process is coordinated at a genetic level remains unclear. We used RNA sequencing to survey global changes in the transcriptional profile of exploring cultures over time in the model organism Streptomyces venezuelae. Transcriptomic analyses revealed widespread changes in gene expression impacting diverse cellular functions. Investigations into differentially expressed regulatory elements revealed specific groups of regulatory factors to be impacted, including the expression of several extracytoplasmic function (ECF) sigma factors, second messenger signaling pathways, and members of the whiB-like (wbl) family of transcription factors. Dramatic changes were observed among primary metabolic pathways, especially among respiration-associated genes and the oxidative stress response; enzyme assays confirmed that exploring cultures exhibit an enhanced oxidative stress response compared with classically growing cultures. Changes in the expression of the glycerol catabolic genes in S. venezuelae led to the discovery that glycerol supplementation of the growth medium promotes a dramatic acceleration of exploration. This effect appears to be unique to glycerol as an alternative carbon source, and this response is broadly conserved across other exploration-competent species. IMPORTANCE Exploration represents an alternative growth strategy for Streptomyces bacteria and is initiated in response to other microbes or specific environmental conditions. Here, we show that entry into exploration involves comprehensive transcriptional reprogramming, with an emphasis on changes in primary metabolism and regulatory/signaling functions. Intriguingly, a number of transcription factor classes were downregulated upon entry into exploration. In contrast, respiration-associated genes were strongly induced, and this was accompanied by an enhanced oxidative stress response. Notably, our transcriptional analyses suggested that glycerol may play a role in exploration, and we found that glycerol supplementation dramatically enhanced the exploration response in many streptomycetes. This work sheds new light on the regulatory and metabolic cues that influence a fascinating new microbial behavior.
Collapse
|
33
|
Choudoir MJ, DeAngelis KM. A framework for integrating microbial dispersal modes into soil ecosystem ecology. iScience 2022; 25:103887. [PMID: 35243247 PMCID: PMC8866892 DOI: 10.1016/j.isci.2022.103887] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Dispersal is a fundamental community assembly process that maintains soil microbial biodiversity across spatial and temporal scales, yet the impact of dispersal on ecosystem function is largely unpredictable. Dispersal is unique in that it contributes to both ecological and evolutionary processes and is shaped by both deterministic and stochastic forces. The ecosystem-level ramifications of dispersal outcomes are further compounded by microbial dormancy dynamics and environmental selection. Here we review the knowledge gaps and challenges that remain in defining how dispersal, environmental filtering, and microbial dormancy interact to influence the relationship between microbial community structure and function in soils. We propose the classification of microbial dispersal into three categories, through vegetative or active cells, through dormant cells, and through acellular dispersal, each with unique spatiotemporal dynamics and microbial trait associations. This conceptual framework should improve the integration of dispersal in defining soil microbial community structure-function relationships.
Collapse
|
34
|
Shi X, Li X, Li X, He Z, Chen X, Song J, Zeng L, Liang Q, Li J, Xu G, Zheng J. Antibacterial Properties of TMA against Escherichia coli and Effect of Temperature and Storage Duration on TMA Content, Lysozyme Activity and Content in Eggs. Foods 2022; 11:foods11040527. [PMID: 35206004 PMCID: PMC8870930 DOI: 10.3390/foods11040527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Studies on trimethylamine (TMA) in egg yolk have focused on how it impacts the flavor of eggs, but there has been little focus on its other functions. We designed an in vitro antibacterial test of TMA according to TMA concentrations that covered the TMA contents typically found in egg yolk. The change in TMA content in yolk was analyzed at different storage temperatures and for different storage durations. The known antibacterial components of eggs, including the cuticle quality of the eggshell and the lysozyme activity and content in egg white, were also assessed. The total bacterial count (TBC) of different parts of eggs were detected. The results showed that the inhibitory effect of TMA on Escherichia coli (E. coli) growth increased with increasing TMA concentration, and the yolk TMA content significantly increased with storage duration (p < 0.05). The cuticle quality and lysozyme content and activity significantly decreased with storage time and increasing temperature, accompanied by a significant increase in the TBC on the eggshell surface and in the egg white (p < 0.05). This work reveals a new role for trace TMA in yolks because it reduces the risk of bacterial colonization, especially when the antibacterial function of eggs is gradually weakened during storage.
Collapse
Affiliation(s)
- Xuefeng Shi
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.S.); (X.L.); (Z.H.); (J.S.); (L.Z.); (Q.L.); (J.L.); (G.X.)
| | - Xingzheng Li
- Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agriculture Sciences, Shenzhen 440307, China;
| | - Xianyu Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.S.); (X.L.); (Z.H.); (J.S.); (L.Z.); (Q.L.); (J.L.); (G.X.)
| | - Zhaoxiang He
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.S.); (X.L.); (Z.H.); (J.S.); (L.Z.); (Q.L.); (J.L.); (G.X.)
| | - Xia Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100094, China;
| | - Jianlou Song
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.S.); (X.L.); (Z.H.); (J.S.); (L.Z.); (Q.L.); (J.L.); (G.X.)
| | - Lingsen Zeng
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.S.); (X.L.); (Z.H.); (J.S.); (L.Z.); (Q.L.); (J.L.); (G.X.)
| | - Qianni Liang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.S.); (X.L.); (Z.H.); (J.S.); (L.Z.); (Q.L.); (J.L.); (G.X.)
| | - Junying Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.S.); (X.L.); (Z.H.); (J.S.); (L.Z.); (Q.L.); (J.L.); (G.X.)
| | - Guiyun Xu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.S.); (X.L.); (Z.H.); (J.S.); (L.Z.); (Q.L.); (J.L.); (G.X.)
| | - Jiangxia Zheng
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.S.); (X.L.); (Z.H.); (J.S.); (L.Z.); (Q.L.); (J.L.); (G.X.)
- Correspondence: ; Tel.: +86-10-6273-2741; Fax: +86-10-6273-1080
| |
Collapse
|
35
|
Wang F, Wei Y, Yan T, Wang C, Chao Y, Jia M, An L, Sheng H. Sphingomonas sp. Hbc-6 alters physiological metabolism and recruits beneficial rhizosphere bacteria to improve plant growth and drought tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1002772. [PMID: 36388485 PMCID: PMC9650444 DOI: 10.3389/fpls.2022.1002772] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/12/2022] [Indexed: 05/13/2023]
Abstract
Drought poses a serious threat to plant growth. Plant growth-promoting bacteria (PGPB) have great potential to improve plant nutrition, yield, and drought tolerance. Sphingomonas is an important microbiota genus that is extensively distributed in the plant or rhizosphere. However, the knowledge of its plant growth-promoting function in dry regions is extremely limited. In this study, we investigated the effects of PGPB Sphingomonas sp. Hbc-6 on maize under normal conditions and drought stress. We found that Hbc-6 increased the biomass of maize under normal conditions and drought stress. For instance, the root fresh weight and shoot dry weight of inoculated maize increased by 39.1% and 34.8% respectively compared with non-inoculated plant, while they increased by 61.3% and 96.3% respectively under drought conditions. Hbc-6 also promoted seed germination, maintained stomatal morphology and increased chlorophyll content so as to enhance photosynthesis of plants. Hbc-6 increased antioxidant enzyme (catalase, superoxide, peroxidase) activities and osmoregulation substances (proline, soluble sugar) and up-regulated the level of beneficial metabolites (resveratrol, etc.). Moreover, Hbc-6 reshaped the maize rhizosphere bacterial community, increased its richness and diversity, and made the rhizosphere bacterial community more complex to resist stress; Hbc-6 could also recruit more potentially rhizosphere beneficial bacteria which might promote plant growth together with Hbc-6 both under normal and drought stress. In short, Hbc-6 increased maize biomass and drought tolerance through the above ways. Our findings lay a foundation for exploring the complex mechanisms of interactions between Sphingomonas and plants, and it is important that Sphingomonas sp. Hbc-6 can be used as a potential biofertilizer in agricultural production, which will assist finding new solutions for improving the growth and yield of crops in arid areas.
Collapse
Affiliation(s)
- Fang Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yali Wei
- Center for Terrestrial Biodiversity of the South China Sea, Hainan University, Haikou, China
| | - Taozhe Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Cuicui Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yinghui Chao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mingyue Jia
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- The College of Forestry, Beijing Forestry University, Beijing, China
- *Correspondence: Lizhe An, ; Hongmei Sheng,
| | - Hongmei Sheng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- *Correspondence: Lizhe An, ; Hongmei Sheng,
| |
Collapse
|
36
|
Karasz DC, Weaver AI, Buckley DH, Wilhelm RC. Conditional filamentation as an adaptive trait of bacteria and its ecological significance in soils. Environ Microbiol 2021; 24:1-17. [PMID: 34929753 DOI: 10.1111/1462-2920.15871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022]
Abstract
Bacteria can regulate cell morphology in response to environmental conditions, altering their physiological and metabolic characteristics to improve survival. Conditional filamentation, in which cells suspend division while continuing lateral growth, is a strategy with a range of adaptive benefits. Here, we review the causes and consequences of conditional filamentation with respect to bacterial physiology, ecology and evolution. We describe four major benefits from conditional filamentation: stress tolerance, surface colonization, gradient spanning and the facilitation of biotic interactions. Adopting a filamentous growth habit involves fitness trade-offs which are also examined. We focus on the role of conditional filamentation in soil habitats, where filamentous morphotypes are highly prevalent and where environmental heterogeneity can benefit a conditional response. To illustrate the use of information presented in our review, we tested the conditions regulating filamentation by the forest soil isolate Paraburkholderia elongata 5NT . Filamentation by P. elongata was induced at elevated phosphate concentrations, and was associated with the accumulation of intracellular polyphosphate, highlighting the role of filamentation in a phosphate-solubilizing bacterium. Conditional filamentation enables bacteria to optimize their growth and metabolism in environments that are highly variable, a trait that can impact succession, symbioses, and biogeochemistry in soil environments.
Collapse
Affiliation(s)
- David C Karasz
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, New York, 14853, USA
| | - Anna I Weaver
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, New York, 14853, USA.,Weill Institute for Cell and Molecular Biology, Weill Hall, Cornell University, Ithaca, New York, 14853, USA
| | - Daniel H Buckley
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, New York, 14853, USA
| | - Roland C Wilhelm
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
37
|
Global Chromosome Topology and the Two-Component Systems in Concerted Manner Regulate Transcription in Streptomyces. mSystems 2021; 6:e0114221. [PMID: 34783581 PMCID: PMC8594442 DOI: 10.1128/msystems.01142-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Bacterial gene expression is controlled at multiple levels, with chromosome supercoiling being one of the most global regulators. Global DNA supercoiling is maintained by the orchestrated action of topoisomerases. In Streptomyces, mycelial soil bacteria with a complex life cycle, topoisomerase I depletion led to elevated chromosome supercoiling, changed expression of a significant fraction of genes, delayed growth, and blocked sporulation. To identify supercoiling-induced sporulation regulators, we searched for Streptomyces coelicolor transposon mutants that were able to restore sporulation despite high chromosome supercoiling. We established that transposon insertion in genes encoding a novel two-component system named SatKR reversed the sporulation blockage resulting from topoisomerase I depletion. Transposition in satKR abolished the transcriptional induction of the genes within the so-called supercoiling-hypersensitive cluster (SHC). Moreover, we found that activated SatR also induced the same set of SHC genes under normal supercoiling conditions. We determined that the expression of genes in this region impacted S. coelicolor growth and sporulation. Interestingly, among the associated products is another two-component system (SitKR), indicating the potential for cascading regulatory effects driven by the SatKR and SitKR two-component systems. Thus, we demonstrated the concerted activity of chromosome supercoiling and a hierarchical two-component signaling system that impacts gene activity governing Streptomyces growth and sporulation. IMPORTANCEStreptomyces microbes, soil bacteria with complex life cycle, are the producers of a broad range of biologically active compounds (e.g., antibiotics). Streptomyces bacteria respond to various environmental signals using a complex transcriptional regulation mechanism. Understanding regulation of their gene expression is crucial for Streptomyces application as industrial organisms. Here, on the basis of the results of extensive transcriptomics analyses, we describe the concerted gene regulation by global DNA supercoiling and novel two-component system. Our data indicate that regulated genes encode growth and sporulation regulators. Thus, we demonstrate that Streptomyces bacteria link the global regulatory strategies to adjust life cycle to unfavorable conditions.
Collapse
|
38
|
The cvn8 Conservon System Is a Global Regulator of Specialized Metabolism in Streptomyces coelicolor during Interspecies Interactions. mSystems 2021; 6:e0028121. [PMID: 34636667 PMCID: PMC8510531 DOI: 10.1128/msystems.00281-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Interspecies interactions are known to activate specialized metabolism in diverse actinomycetes. However, how interspecies cues are sensed and ultimately lead to induction of specialized metabolite biosynthetic gene clusters remains largely unexplored. Using transcriptome sequencing (RNA-seq), we analyzed genes that were transcriptionally induced in the model actinomycete Streptomyces coelicolor during interactions with four different actinomycetes, including genes that encode unusual regulatory systems known as conservons. Deletions in one such system, encoded by the cvn8 genes, led to altered patterns of pigmented antibiotic production by S. coelicolor during interactions. Further transcriptomic analysis of mutants lacking each of the five genes in the cvn8 locus demonstrated that this system is a global regulator of at least four different specialized metabolite biosynthetic pathways. How conservon systems work at the mechanistic level to regulate gene expression is not well understood, although it has been hypothesized that they may function in a way similar to eukaryotic G-protein-coupled receptors. The data presented here indicate that the gene products of the cvnA8 and cvnF8 (SCO6939) genes likely function together in one part of the Cvn8 signaling cascade, while the cvnC8 and cvnD8 gene products likely function together in another part. Importantly, because cvnD8 likely encodes a Ras-like GTPase, these results connect G-protein-mediated signaling to gene regulation in a bacterium. Additionally, deletion of any of the cvn8 genes led to abnormally high expression of an adjacent cryptic lanthipeptide biosynthetic gene cluster, indicating that conservon systems may be fruitful targets for manipulation to activate silent specialized metabolite biosynthetic pathways. IMPORTANCE Interactions between different species of actinomycete bacteria often trigger one of the strains to produce specialized metabolites, such as antibiotics. However, how this induction occurs at the genetic level is poorly understood. Using transcriptomic methods, we show that an unusual regulatory system, known as a conservon system, is responsible for regulating expression of multiple specialized metabolite biosynthetic gene clusters in the organism Streptomyces coelicolor during interactions. Conservon systems are unusual because they appear to employ small GTPases as an important component of their signaling cascades. Small GTPases are common in eukaryotic signaling pathways, but the results presented here are notable since they implicate a system that includes a small GTPase in global gene regulation in a bacterium. Mutants lacking this conservon system also showed abnormally high expression of a gene cluster involved in making an unknown specialized metabolite, suggesting that conservon mutants might be useful for driving natural product discovery.
Collapse
|
39
|
Nagakubo T, Yamamoto T, Asamizu S, Toyofuku M, Nomura N, Onaka H. Phage tail-like nanostructures affect microbial interactions between Streptomyces and fungi. Sci Rep 2021; 11:20116. [PMID: 34635733 PMCID: PMC8505568 DOI: 10.1038/s41598-021-99490-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular contractile injection systems (eCISs) are structurally similar to headless phages and are versatile nanomachines conserved among diverse classes of bacteria. Herein, Streptomyces species, which comprise filamentous Gram-positive bacteria and are ubiquitous in soil, were shown to produce Streptomyces phage tail-like particles (SLPs) from eCIS-related genes that are widely conserved among Streptomyces species. In some Streptomyces species, these eCIS-related genes are regulated by a key regulatory gene, which is essential for Streptomyces life cycle and is involved in morphological differentiation and antibiotic production. Deletion mutants of S. lividans of the eCIS-related genes appeared phenotypically normal in terms of morphological differentiation and antibiotic production, suggesting that SLPs are involved in other aspects of Streptomyces life cycle. Using co-culture method, we found that colonies of SLP-deficient mutants of S. lividans were more severely invaded by fungi, including Saccharomyces cerevisiae and Schizosaccharomyces pombe. In addition, microscopic and transcriptional analyses demonstrated that SLP expression was elevated upon co-culture with the fungi. In contrast, co-culture with Bacillus subtilis markedly decreased SLP expression and increased antibiotic production. Our findings demonstrate that in Streptomyces, eCIS-related genes affect microbial competition, and the patterns of SLP expression can differ depending on the competitor species.
Collapse
Affiliation(s)
- Toshiki Nagakubo
- Graduate School of Agricultural and Life Sciences, Department of Biotechnology, The University of Tokyo, Tokyo, Japan.
| | - Tatsuya Yamamoto
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shumpei Asamizu
- Graduate School of Agricultural and Life Sciences, Department of Biotechnology, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Masanori Toyofuku
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Japan
| | - Nobuhiko Nomura
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Japan
| | - Hiroyasu Onaka
- Graduate School of Agricultural and Life Sciences, Department of Biotechnology, The University of Tokyo, Tokyo, Japan. .,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
40
|
Belt K, Foley RC, O'Sullivan CA, Roper MM, Singh KB, Thatcher LF. A Plant Stress-Responsive Bioreporter Coupled With Transcriptomic Analysis Allows Rapid Screening for Biocontrols of Necrotrophic Fungal Pathogens. Front Mol Biosci 2021; 8:708530. [PMID: 34540894 PMCID: PMC8446517 DOI: 10.3389/fmolb.2021.708530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Streptomyces are soil-borne Actinobacteria known to produce a wide range of enzymes, phytohormones, and metabolites including antifungal compounds, making these microbes fitting for use as biocontrol agents in agriculture. In this study, a plant reporter gene construct comprising the biotic stress-responsive glutathione S-transferase promoter GSTF7 linked to a luciferase output (GSTF7:luc) was used to screen a collection of Actinobacteria candidates for manipulation of plant biotic stress responses and their potential as biocontrol agents. We identified a Streptomyces isolate (KB001) as a strong candidate and demonstrated successful protection against two necrotrophic fungal pathogens, Sclerotinia sclerotiorum and Rhizoctonia solani, but not against a bacterial pathogen (Pseudomonas syringe). Treatment of Arabidopsis plants with either KB001 microbial culture or its secreted compounds induced a range of stress and defense response-related genes like pathogenesis-related (PR) and hormone signaling pathways. Global transcriptomic analysis showed that both treatments shared highly induced expression of reactive oxygen species and auxin signaling pathways at 6 and 24 h posttreatment, while some other responses were treatment specific. This study demonstrates that GSTF7 is a suitable marker for the rapid and preliminary screening of beneficial bacteria and selection of candidates with potential for application as biocontrols in agriculture, including the Streptomyces KB001 that was characterized here, and could provide protection against necrotrophic fungal pathogens.
Collapse
Affiliation(s)
- Katharina Belt
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Floreat, WA, Australia
| | - Rhonda C Foley
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Floreat, WA, Australia
| | - Cathryn A O'Sullivan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, St Lucia, QLD, Australia
| | - Margaret M Roper
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Floreat, WA, Australia
| | - Karam B Singh
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Floreat, WA, Australia
| | - Louise F Thatcher
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Acton, ACT, Australia
| |
Collapse
|
41
|
Influence of Consistency and Composition of Growth Medium on Surface Physicochemical Properties of Streptomyces. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Streptomyces are known for their ability to produce various secondary metabolites used in biotechnology, human medicine and agriculture. Understanding of surface properties is very interesting in the control of interfacial phenomena. The objective of this study was to investigate the effect of consistency and composition of growth medium on the physicochemical properties of the surface of Streptomyces strains. To achieve this objective, Six Streptomyces strains belonging to bioprocess and bio-interfaces laboratory are cultivated in two media Bennett (rich) and GBA (minimum). Both media are tested in solid (agar) and liquid (broth) mode. The wettability θw, electron donor character ˠ (-), electron acceptor character ˠ (+) and Surface free energy ΔGiwi are determined using contact angle measurements. On the two solid media Bennett and GBA, Streptomyces strains develop a hydrophobic surface (96.9° <θw<167.9°) with a weak electron donor character (0.3 mJm-2 < (ˠ (-)) <12.14 mJm-2) and a strong electron acceptor character (0.26 mJm-2 < ˠ (+) < 17.8 mJm-2) and a negative surface free energy ((- 11.8 mJm-2) < ΔGiwi < (-110 mJm-2)). Whereas on both Bennett and GBA liquid media, the surfaces of Streptomyces strains are generally hydrophilic (1.3° < θw < 9.33°) with a strong electron donor character (13.76 mJm-2 < ( ˠ (-)) < 70.06 mJm-2) and a positive surface free energy. By changing the composition of the culture medium, only a slight change in the degree of hydrophobicity and surface free energy of Streptomyces is observed. Regarding the effect of medium composition on the surface properties of Streptomyces, the degree of wettability and the values of surface free energy are no longer the same when the composition of the medium changes. These results could be applied in further studies interested in interfacial phenomena and microbial adhesion in biotechnological fields.
Collapse
|
42
|
Bacterial Long-Range Warfare: Aerial Killing of Legionella pneumophila by Pseudomonas fluorescens. Microbiol Spectr 2021; 9:e0040421. [PMID: 34378969 PMCID: PMC8552673 DOI: 10.1128/spectrum.00404-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires’ disease, is mostly found in man-made water systems and is one of the most closely monitored waterborne pathogens. With the aim of finding natural ways to control waterborne pathogens and thus further reduce the impact of disinfection by-products on human health, some studies have demonstrated the ability of bacteria to kill Legionella through the production of secondary metabolites or antimicrobial compounds. Here, we describe an unexpected growth inhibition of L. pneumophila when exposed to a physically separated strain of Pseudomonas fluorescens, designated as MFE01. Most of the members of the Legionellaceae family are sensitive to the volatile substances emitted by MFE01, unlike other bacteria tested. Using headspace solid-phase microextraction GC-MS strategy, a volatilome comparison revealed that emission of 1-undecene, 2-undecanone, and 2-tridecanone were mainly reduced in a Tn5-transposon mutant unable to inhibit at distance the growth of L. pneumophila strain Lens. We showed that 1-undecene was mainly responsible for the inhibition at distance in vitro, and led to cell lysis in small amounts, as determined by gas chromatography-mass spectrometry (GC-MS). Collectively, our results provide new insights into the mode of action of bacterial volatiles and highlight them as potent anti-Legionella agents to focus research on novel strategies to fight legionellosis. IMPORTANCE Microbial volatile compounds are molecules whose activities are increasingly attracting the attention of researchers. Indeed, they can act as key compounds in long-distance intrakingdom and interkingdom communication, but also as antimicrobials in competition and predation. In fact, most studies to date have focused on their antifungal activities and only a few have reported on their antibacterial properties. Here, we describe that 1-undecene, naturally produced by P. fluorescens, is a volatile with potent activity against bacteria of the genus Legionella. In small amounts, it is capable of inducing cell lysis even when the producing strain is physically separated from the target. This is the first time that such activity is described. This molecule could therefore constitute an efficient compound to counter bacterial pathogens whose treatment may fail, particularly in pulmonary diseases. Indeed, inhalation of these volatiles should be considered as a possible route of therapy in addition to antibiotic treatment.
Collapse
|
43
|
Ammonia Production by Streptomyces Symbionts of Acromyrmex Leaf-Cutting Ants Strongly Inhibits the Fungal Pathogen Escovopsis. Microorganisms 2021; 9:microorganisms9081622. [PMID: 34442700 PMCID: PMC8400888 DOI: 10.3390/microorganisms9081622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Leaf-cutting ants live in mutualistic symbiosis with their garden fungus Leucoagaricus gongylophorus that can be attacked by the specialized pathogenic fungus Escovopsis. Actinomyces symbionts from Acromyrmex leaf-cutting ants contribute to protect L. gongylophorus against pathogens. The symbiont Streptomyces sp. Av25_4 exhibited strong activity against Escovopsis weberi in co-cultivation assays. Experiments physically separating E. weberi and Streptomyces sp. Av25_4 allowing only exchange of volatiles revealed that Streptomyces sp. Av25_4 produces a volatile antifungal. Volatile compounds from Streptomyces sp. Av25_4 were collected by closed loop stripping. Analysis by NMR revealed that Streptomyces sp. Av25_4 overproduces ammonia (up to 8 mM) which completely inhibited the growth of E. weberi due to its strong basic pH. Additionally, other symbionts from different Acromyrmex ants inhibited E. weberi by production of ammonia. The waste of ca. one third of Acomyrmex and Atta leaf-cutting ant colonies was strongly basic due to ammonia (up to ca. 8 mM) suggesting its role in nest hygiene. Not only complex and metabolically costly secondary metabolites, such as polyketides, but simple ammonia released by symbionts of leaf-cutting ants can contribute to control the growth of Escovopsis that is sensitive to ammonia in contrast to the garden fungus L. gongylophorus.
Collapse
|
44
|
Exploration of social spreading reveals behavior is prevalent among Pedobacter and P. fluorescens isolates, and shows variations in induction of phenotype. Appl Environ Microbiol 2021; 87:e0134421. [PMID: 34288708 DOI: 10.1128/aem.01344-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Within soil, bacteria are found in multi-species communities, where interactions can lead to emergent community properties. Studying bacteria in a social context is critical for investigation of community-level functions. We previously showed that co-cultured Pseudomonas fluorescens Pf0-1 and Pedobacter sp. V48 engage in interspecies social spreading (ISS) on a hard agar surface, a behavior which required close contact and depended on the nutritional environment. Here, we investigate whether social spreading is widespread among P. fluorescens and Pedobacter isolates, and whether the requirements for interaction vary. We find that this phenotype is not restricted to the interaction between P. fluorescens Pf0-1 and Pedobacter sp. V48, but is a prevalent behavior found in one clade in the P. fluorescens group and two clades in the Pedobacter genus. We show that the interaction with certain Pedobacter isolates occurred without close contact, indicating induction of spreading by a putative diffusible signal. As with ISS by Pf0-1+V48, motility of interacting pairs is influenced by the environment, with no spreading behaviors (or induction of motility) observed under high nutrient conditions. While Pf0-1+V48 require low nutrient but high NaCl conditions, in the broader range of interacting pairs the high salt influence was variable. The prevalence of motility phenotypes observed here and found within the literature indicates that community-induced locomotion in general, and social spreading in particular, is likely important within the environment. It is crucial that we continue to study microbial interactions and their emergent properties to gain a fuller understanding of the functions of microbial communities. Importance Interspecies social spreading (ISS) is an emergent behavior observed when P. fluorescens Pf0-1 and Pedobacter sp. V48 interact, during which both species move together across a surface. Importantly, this environment does not permit movement of either individual species. This group behavior suggests that communities of microbes can function in ways not predictable by knowledge of the individual members. Here we have asked whether ISS is widespread and thus potentially of importance in soil microbial communities. The significance of this research is the demonstration that surface spreading behaviors are not unique to the Pf0-1-V48 interaction, but rather is a more widespread phenomenon observed among members of distinct clades of both P. fluorescens and Pedobacter isolates. Further, we identify differences in mechanism of signaling and nutritional requirements for ISS. Emergent traits resulting from bacterial interactions are widespread and their characterization is necessary for a complete understanding of microbial community function.
Collapse
|
45
|
Gomez-Escribano JP, Holmes NA, Schlimpert S, Bibb MJ, Chandra G, Wilkinson B, Buttner MJ, Bibb MJ. Streptomyces venezuelae NRRL B-65442: genome sequence of a model strain used to study morphological differentiation in filamentous actinobacteria. J Ind Microbiol Biotechnol 2021; 48:6294913. [PMID: 34100946 PMCID: PMC8788739 DOI: 10.1093/jimb/kuab035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
For over a decade, Streptomyces venezuelae has been used to study the molecular mechanisms that control morphological development in streptomycetes and it is now a well-established model strain. Its rapid growth and ability to sporulate in a near-synchronised manner in liquid culture, unusual among streptomycetes, greatly facilitates the application of modern molecular techniques such as ChIP-seq and RNA-seq, as well as fluorescence time-lapse imaging of the complete Streptomyces life cycle. Here we describe a high-quality genome sequence of our isolate of the strain (NRRL B-65442) consisting of an 8.2 Mb chromosome and a 158 kb plasmid, pSVJI1, which had not been reported previously. Surprisingly, while NRRL B-65442 yields green spores on MYM agar, the ATCC type strain 10712 (from which NRRL B-65442 was derived) produces grey spores. While comparison of the genome sequences of the two isolates revealed almost total identity, it did reveal a single nucleotide substitution in a gene, vnz_33525, likely to be involved in spore pigment biosynthesis. Replacement of the vnz_33525 allele of ATCC 10712 with that of NRRL B-65442 resulted in green spores, explaining the discrepancy in spore pigmentation. We also applied CRISPR-Cas9 to delete the essential parB of pSVJI1 to cure the plasmid from the strain without obvious phenotypic consequences.
Collapse
Affiliation(s)
| | - Neil A Holmes
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Susan Schlimpert
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Maureen J Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Mark J Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Mervyn J Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
46
|
Prigigallo MI, De Stradis A, Anand A, Mannerucci F, L'Haridon F, Weisskopf L, Bubici G. Basidiomycetes Are Particularly Sensitive to Bacterial Volatile Compounds: Mechanistic Insight Into the Case Study of Pseudomonas protegens Volatilome Against Heterobasidion abietinum. Front Microbiol 2021; 12:684664. [PMID: 34220771 PMCID: PMC8248679 DOI: 10.3389/fmicb.2021.684664] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/06/2021] [Indexed: 11/23/2022] Open
Abstract
Volatile organic compounds (VOCs) play an important role in the communication among organisms, including plants, beneficial or pathogenic microbes, and pests. In vitro, we observed that the growth of seven out of eight Basidiomycete species tested was inhibited by the VOCs of the biocontrol agent Pseudomonas protegens strain CHA0. In the Ascomycota phylum, only some species were sensitive (e.g., Sclerotinia sclerotiorum, Botrytis cinerea, etc.) but others were resistant (e.g., Fusarium oxysporum f. sp. cubense, Verticillium dahliae, etc.). We further discovered that CHA0 as well as other ten beneficial or phytopathogenic bacterial strains were all able to inhibit Heterobasidion abietinum, which was used in this research as a model species. Moreover, such an inhibition occurred only when bacteria grew on media containing digested proteins like peptone or tryptone (e.g., Luria-Bertani agar or LBA). Also, the inhibition co-occurred with a pH increase of the agar medium where the fungus grew. Therefore, biogenic ammonia originating from protein degradation by bacteria was hypothesized to play a major role in fungus inhibition. Indeed, when tested as a synthetic compound, it was highly toxic to H. abietinum (effective concentration 50% or EC50 = 1.18 M; minimum inhibitory concentration or MIC = 2.14 M). Using gas chromatography coupled to mass spectrometry (GC/MS), eight VOCs were found specifically emitted by CHA0 grown on LBA compared to the bacterium grown on potato dextrose agar (PDA). Among them, two compounds were even more toxic than ammonia against H. abietinum: dimethyl trisulfide had EC50 = 0.02 M and MIC = 0.2 M, and 2-ethylhexanol had EC50 = 0.33 M and MIC = 0.77 M. The fungus growth inhibition was the result of severe cellular and sub-cellular alterations of hyphae occurring as early as 15 min of exposure to VOCs, as evidenced by transmission and scanning electron microscopy observations. Transcriptome reprogramming of H. abietinum induced by CHA0’s VOCs pointed out that detrimental effects occurred on ribosomes and protein synthesis while the cells tried to react by activating defense mechanisms, which required a lot of energy diverted from the growth and development (fitness cost).
Collapse
Affiliation(s)
- Maria Isabella Prigigallo
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Angelo De Stradis
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Abhishek Anand
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Francesco Mannerucci
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | | | - Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Giovanni Bubici
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| |
Collapse
|
47
|
Wu AL, Jiao XY, Wang JS, Dong EW, Guo J, Wang LG, Sun AQ, Hu HW. Sorghum rhizosphere effects reduced soil bacterial diversity by recruiting specific bacterial species under low nitrogen stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144742. [PMID: 33736399 DOI: 10.1016/j.scitotenv.2020.144742] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/25/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Rhizosphere microbiota play a pivotal role in promoting plant growth and defending against pathogens, but their responses to abiotic environmental stress remain largely elusive. Here, we investigated the influences of low-N stress on rhizosphere bacteria of six sorghum cultivars in a glasshouse experiment. The alpha diversity of bacteria (as revealed by Shannon diversity and Chao1 richness indices) was remarkably lower in rhizosphere soils than in bulk soils, and was significantly higher under low-N stress than under N addition. Principal coordinates analysis revealed that the bacterial community compositions in rhizosphere soils were clearly separated from bulk soils, and the rhizosphere soils under low-N stress or with N fertilization were clearly separated, indicating that both rhizosphere effects and N fertilization impacted the rhizosphere bacterial community. Notably, the relative abundances of beneficial bacteria such as Bacillaceae and Streptomycetaceae significantly increased in rhizosphere soils under low-N stress, which had significantly positive correlations with the sorghum N uptake. The relative abundance of Nitrosomonadaceae in rhizosphere soils was significantly lower than that in bulk soils, while the relative abundance of Rhizobiaceae showed an opposite pattern. Taken together, our results suggested that sorghum rhizosphere effects can reduce soil bacterial diversity possibly through recruiting specific bacterial species under low N stress.
Collapse
Affiliation(s)
- Ai-Lian Wu
- College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xiao-Yan Jiao
- College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China.
| | - Jin-Song Wang
- College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
| | - Er-Wei Dong
- College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
| | - Jun Guo
- College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
| | - Li-Ge Wang
- College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
| | - An-Qi Sun
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Hang-Wei Hu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
48
|
Genetic Network Architecture and Environmental Cues Drive Spatial Organization of Phenotypic Division of Labor in Streptomyces coelicolor. mBio 2021; 12:mBio.00794-21. [PMID: 34006658 PMCID: PMC8262882 DOI: 10.1128/mbio.00794-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of bacteria are known to differentiate into cells with distinct phenotypic traits during processes such as biofilm formation or the development of reproductive structures. These cell types, by virtue of their specialized functions, embody a division of labor. However, how bacteria build spatial patterns of differentiated cells is not well understood. Here, we examine the factors that drive spatial patterns in divisions of labor in colonies of Streptomyces coelicolor, a multicellular bacterium capable of synthesizing an array of antibiotics and forming complex reproductive structures (e.g., aerial hyphae and spores). Using fluorescent reporters, we demonstrate that the pathways for antibiotic biosynthesis and aerial hypha formation are activated in distinct waves of gene expression that radiate outwards in S. coelicolor colonies. We also show that the spatiotemporal separation of these cell types depends on a key activator in the developmental pathway, AdpA. Importantly, when we manipulated local gradients by growing competing microbes nearby, or through physical disruption, expression in these pathways could be decoupled and/or disordered, respectively. Finally, the normal spatial organization of these cell types was partially restored with the addition of a siderophore, a public good made by these organisms, to the growth medium. Together, these results indicate that spatial divisions of labor in S. coelicolor colonies are determined by a combination of physiological gradients and regulatory network architecture, key factors that also drive patterns of cellular differentiation in multicellular eukaryotic organisms.
Collapse
|
49
|
The Design-Build-Test-Learn cycle for metabolic engineering of Streptomycetes. Essays Biochem 2021; 65:261-275. [PMID: 33956071 DOI: 10.1042/ebc20200132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
Streptomycetes are producers of a wide range of specialized metabolites of great medicinal and industrial importance, such as antibiotics, antifungals, or pesticides. Having been the drivers of the golden age of antibiotics in the 1950s and 1960s, technological advancements over the last two decades have revealed that very little of their biosynthetic potential has been exploited so far. Given the great need for new antibiotics due to the emerging antimicrobial resistance crisis, as well as the urgent need for sustainable biobased production of complex molecules, there is a great renewed interest in exploring and engineering the biosynthetic potential of streptomycetes. Here, we describe the Design-Build-Test-Learn (DBTL) cycle for metabolic engineering experiments in streptomycetes and how it can be used for the discovery and production of novel specialized metabolites.
Collapse
|
50
|
Bikash B, Vilja S, Mitchell L, Keith Y, Mikael I, Mikko MK, Jarmo N. Differential regulation of undecylprodigiosin biosynthesis in the yeast-scavenging Streptomyces strain MBK6. FEMS Microbiol Lett 2021; 368:6244240. [PMID: 33881506 PMCID: PMC8102152 DOI: 10.1093/femsle/fnab044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Streptomyces are efficient chemists with a capacity to generate diverse and potent chemical scaffolds. The secondary metabolism of these soil-dwelling prokaryotes is stimulated upon interaction with other microbes in their complex ecosystem. We observed such an interaction when a Streptomyces isolate was cultivated in a media supplemented with dead yeast cells. Whole-genome analysis revealed that Streptomyces sp. MBK6 harbors the red cluster that is cryptic under normal environmental conditions. An interactive culture of MBK6 with dead yeast triggered the production of the red pigments metacycloprodigiosin and undecylprodigiosin. Streptomyces sp. MBK6 scavenges dead-yeast cells and preferentially grows in aggregates of sequestered yeasts within its mycelial network. We identified that the activation depends on the cluster-situated regulator, mbkZ, which may act as a cross-regulator. Cloning of this master regulator mbkZ in S. coelicolor with a constitutive promoter and promoter-deprived conditions generated different production levels of the red pigments. These surprising results were further validated by DNA–protein binding assays. The presence of the red cluster in Streptomyces sp. MBK6 provides a vivid example of horizontal gene transfer of an entire metabolic pathway followed by differential adaptation to a new environment through mutations in the receiver domain of the key regulatory protein MbkZ.
Collapse
Affiliation(s)
- Baral Bikash
- Department of Biotechnology, University of Turku, FIN-20014 Turku, Finland
| | - Siitonen Vilja
- Department of Biotechnology, University of Turku, FIN-20014 Turku, Finland
| | - Laughlin Mitchell
- Department of Biotechnology, University of Turku, FIN-20014 Turku, Finland
| | - Yamada Keith
- Department of Biotechnology, University of Turku, FIN-20014 Turku, Finland
| | - Ilomäki Mikael
- Department of Biotechnology, University of Turku, FIN-20014 Turku, Finland
| | - Metsä-Ketelä Mikko
- Department of Biotechnology, University of Turku, FIN-20014 Turku, Finland
| | - Niemi Jarmo
- Department of Biotechnology, University of Turku, FIN-20014 Turku, Finland
| |
Collapse
|