1
|
Walton J, Ng ASN, Arevalo K, Apostoli A, Meens J, Karamboulas C, St-Germain J, Prinos P, Dmytryshyn J, Chen E, Arrowsmith CH, Raught B, Ailles L. PRMT1 inhibition perturbs RNA metabolism and induces DNA damage in clear cell renal cell carcinoma. Nat Commun 2024; 15:8232. [PMID: 39300069 PMCID: PMC11413393 DOI: 10.1038/s41467-024-52507-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
In addition to the ubiquitous loss of the VHL gene in clear cell renal cell carcinoma (ccRCC), co-deletions of chromatin-regulating genes are common drivers of tumorigenesis, suggesting potential vulnerability to epigenetic manipulation. A library of chemical probes targeting a spectrum of epigenetic regulators is screened using a panel of ccRCC models. MS023, a type I protein arginine methyltransferase (PRMT) inhibitor, is identified as an antitumorigenic agent. Individual knockdowns indicate PRMT1 as the specific critical dependency for cancer growth. Further analyses demonstrate impairments to cell cycle and DNA damage repair pathways upon MS023 treatment or PRMT1 knockdown. PRMT1-specific proteomics reveals an interactome rich in RNA binding proteins and further investigation indicates significant widespread disruptions in mRNA metabolism with both MS023 treatment and PRMT1 knockdown, resulting in R-loop accumulation and DNA damage over time. Our data supports PRMT1 as a target in ccRCC and informs a mechanism-based strategy for translational development.
Collapse
Affiliation(s)
- Joseph Walton
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Angel S N Ng
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Karen Arevalo
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Anthony Apostoli
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jalna Meens
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Julia Dmytryshyn
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Eric Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Cheryl H Arrowsmith
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Brian Raught
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Laurie Ailles
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
2
|
Majumdar S, Liu ST. Spatiotemporal regulation of MELK during mitosis. Front Cell Dev Biol 2024; 12:1406940. [PMID: 39355119 PMCID: PMC11443572 DOI: 10.3389/fcell.2024.1406940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/30/2024] [Indexed: 10/03/2024] Open
Abstract
Maternal Embryonic Leucine Zipper Kinase (MELK) has been studied intensively in recent years due to its overexpression in multiple cancers. However, the cell biology of MELK remains less characterized despite its well-documented association with mitosis. Here we report a distinctive pattern of human MELK that translocates from the cytoplasm to cell cortex within 3 min of anaphase onset. The cortex association lasts about 30 min till telophase. The spatiotemporal specific localization of MELK depends on the interaction between its Threonine-Proline (TP) rich domain and kinase associated 1 (KA1) domain, which is regulated by CDK1 kinase and PP4 protein phosphatase. KA1 domains are known to regulate kinase activities through various intramolecular interactions. Our results revealed a new role for KA1 domain to control subcellular localization of a protein kinase.
Collapse
Affiliation(s)
- Sreemita Majumdar
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Song-Tao Liu
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| |
Collapse
|
3
|
Su P, Lu Q, Wang Y, Mou Y, Jin W. Targeting MELK in tumor cells and tumor microenvironment: from function and mechanism to therapeutic application. Clin Transl Oncol 2024:10.1007/s12094-024-03664-5. [PMID: 39187643 DOI: 10.1007/s12094-024-03664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Maternal embryonic leucine zipper kinase (MELK), a member of the adenosine monophosphate-activated protein kinase (AMPK) protein family, has been reported to be involved in the regulation of many cellular events. The aberrant expression of MELK is associated with tumorigenesis and malignant progression of various tumors. Moreover, MELK plays an essential role in the regulation of tumor microenvironment (TME), which affects the function of immune cells and the responsiveness to immunotherapy. Currently, small molecule inhibitors targeting MELK have been developed and evaluated in clinical trials. A comprehensive understanding of MELK may provide clues and confidence for subsequent basic research and scientific transformation. In this review, we provide a comprehensive overview of the structural features, molecular biological functions, and critical roles of MELK in tumors and TME, as well as the targeted agents under development for the treatment of tumors and discuss the perspective for MELK-targeted therapies for tumors.
Collapse
Affiliation(s)
- Pengfei Su
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Qiliang Lu
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Yuanyu Wang
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Yiping Mou
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Weiwei Jin
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China.
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China.
| |
Collapse
|
4
|
Lazar NH, Celik S, Chen L, Fay MM, Irish JC, Jensen J, Tillinghast CA, Urbanik J, Bone WP, Gibson CC, Haque IS. High-resolution genome-wide mapping of chromosome-arm-scale truncations induced by CRISPR-Cas9 editing. Nat Genet 2024; 56:1482-1493. [PMID: 38811841 PMCID: PMC11250378 DOI: 10.1038/s41588-024-01758-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 04/18/2024] [Indexed: 05/31/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) is a powerful tool for introducing targeted mutations in DNA, but recent studies have shown that it can have unintended effects such as structural changes. However, these studies have not yet looked genome wide or across data types. Here we performed a phenotypic CRISPR-Cas9 scan targeting 17,065 genes in primary human cells, revealing a 'proximity bias' in which CRISPR knockouts show unexpected similarities to unrelated genes on the same chromosome arm. This bias was found to be consistent across cell types, laboratories, Cas9 delivery methods and assay modalities, and the data suggest that it is caused by telomeric truncations of chromosome arms, with cell cycle and apoptotic pathways playing a mediating role. Additionally, a simple correction is demonstrated to mitigate this pervasive bias while preserving biological relationships. This previously uncharacterized effect has implications for functional genomic studies using CRISPR-Cas9, with applications in discovery biology, drug-target identification, cell therapies and genetic therapeutics.
Collapse
Affiliation(s)
| | | | - Lu Chen
- Recursion, Salt Lake City, UT, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Giglio RM, Hou N, Wyatt A, Hong J, Shi L, Vaikunthan M, Fuchs H, Nima JP, Malinowski SW, Ligon KL, McFaline-Figueroa JR, Yosef N, Azizi E, McFaline-Figueroa JL. A heterogeneous pharmaco-transcriptomic landscape induced by targeting a single oncogenic kinase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.587960. [PMID: 38645018 PMCID: PMC11030430 DOI: 10.1101/2024.04.08.587960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Over-activation of the epidermal growth factor receptor (EGFR) is a hallmark of glioblastoma. However, EGFR-targeted therapies have led to minimal clinical response. While delivery of EGFR inhibitors (EGFRis) to the brain constitutes a major challenge, how additional drug-specific features alter efficacy remains poorly understood. We apply highly multiplex single-cell chemical genomics to define the molecular response of glioblastoma to EGFRis. Using a deep generative framework, we identify shared and drug-specific transcriptional programs that group EGFRis into distinct molecular classes. We identify programs that differ by the chemical properties of EGFRis, including induction of adaptive transcription and modulation of immunogenic gene expression. Finally, we demonstrate that pro-immunogenic expression changes associated with a subset of tyrphostin family EGFRis increase the ability of T-cells to target glioblastoma cells.
Collapse
Affiliation(s)
- Ross M. Giglio
- Department of Molecular Pharmacology and Therapeutics, Columbia University Medical Center, New York, NY 10032, USA
| | - Nicholas Hou
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Adeya Wyatt
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Justin Hong
- Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Lingting Shi
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
| | - Mathini Vaikunthan
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Henry Fuchs
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Jose Pomarino Nima
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Seth W. Malinowski
- Department of Oncologic Pathology, Brigham and Women’s Hospital, Boston Children’s Hospital, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Keith L. Ligon
- Department of Oncologic Pathology, Brigham and Women’s Hospital, Boston Children’s Hospital, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Nir Yosef
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Elham Azizi
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Computer Science, Columbia University, New York, NY 10027, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Data Science Institute, Columbia University, New York, NY 10027, USA
| | - José L. McFaline-Figueroa
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
6
|
Wang D, Zou F, Li Y, Hu J, Gao L. Targeting MELK improves PD-1 blockade efficiency in cervical cancer via enhancing antitumor immunity. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200759. [PMID: 38596298 PMCID: PMC10869760 DOI: 10.1016/j.omton.2024.200759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/24/2023] [Accepted: 01/05/2024] [Indexed: 04/11/2024]
Abstract
The balance between T helper 1 (Th1) and T helper 2 (Th2) has a critical function in determining intratumoral immune response and anti-PD-1 immunotherapy. The level of maternal embryonic leucine zipper kinase (MELK) is reported to correlate with infiltration of immune cells in cancers, but the underlying molecular mechanism is not clarified. In the present study, we aimed to elucidate the potential function of MELK in cervical cancer. We found that MELK was upregulated and played an oncogenic role in cervical cancer. MELK overexpression shifted Th1/Th2 balance toward Th2 predisposition in mouse cervical tumors in vivo and naive T cells from human PBMCs in vitro, whereas MELK knockdown exhibited opposite effects. MELK overexpression activated NF-κB signaling and promoted IL-6 secretion by cervical cancer cells. Depletion of IL-6 by neutralization antibodies abrogated the influence of MELK on Th1/Th2 balance. In addition, MELK modulated the antitumor activity of cytotoxic CD8+ T cells in cervical tumors, but depletion of Th2 cells by IL-4 neutralization abrogated this effect. Finally, MELK overexpression conferred tolerance to PD-1 blockade in cervical tumors, whereas targeting MELK by OTSSP167 significantly enhanced PD-1 blockade efficiency. Our data elucidated a novel role of MELK in regulating Th1/Th2 balance and anti-PD-1 immunotherapy in cervical cancer.
Collapse
Affiliation(s)
- Dongjiao Wang
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Fei Zou
- Department of Pediatrics, The First Hospital of Jilin University, Changchun 130021, China
| | - Yu Li
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Jinqiu Hu
- Pathology Teaching and Research Office, Changchun Medical College, Changchun 130021, China
| | - Ling Gao
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
7
|
Buchacher T, Shetty A, Koskela SA, Smolander J, Kaukonen R, Sousa AGG, Junttila S, Laiho A, Rundquist O, Lönnberg T, Marson A, Rasool O, Elo LL, Lahesmaa R. PIM kinases regulate early human Th17 cell differentiation. Cell Rep 2023; 42:113469. [PMID: 38039135 PMCID: PMC10765319 DOI: 10.1016/j.celrep.2023.113469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/23/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023] Open
Abstract
The serine/threonine-specific Moloney murine leukemia virus (PIM) kinase family (i.e., PIM1, PIM2, and PIM3) has been extensively studied in tumorigenesis. PIM kinases are downstream of several cytokine signaling pathways that drive immune-mediated diseases. Uncontrolled T helper 17 (Th17) cell activation has been associated with the pathogenesis of autoimmunity. However, the detailed molecular function of PIMs in human Th17 cell regulation has yet to be studied. In the present study, we comprehensively investigated how the three PIMs simultaneously alter transcriptional gene regulation during early human Th17 cell differentiation. By combining PIM triple knockdown with bulk and scRNA-seq approaches, we found that PIM deficiency promotes the early expression of key Th17-related genes while suppressing Th1-lineage genes. Further, PIMs modulate Th cell signaling, potentially via STAT1 and STAT3. Overall, our study highlights the inhibitory role of PIMs in human Th17 cell differentiation, thereby suggesting their association with autoimmune phenotypes.
Collapse
Affiliation(s)
- Tanja Buchacher
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland.
| | - Ankitha Shetty
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Saara A Koskela
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Johannes Smolander
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Riina Kaukonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - António G G Sousa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Sini Junttila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Olof Rundquist
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland.
| |
Collapse
|
8
|
Bhattacharjee D, Bakar J, Chitnis SP, Sausville EL, Ashtekar KD, Mendelson BE, Long K, Smith JC, Heppner DE, Sheltzer JM. Inhibition of a lower potency target drives the anticancer activity of a clinical p38 inhibitor. Cell Chem Biol 2023; 30:1211-1222.e5. [PMID: 37827156 PMCID: PMC10715717 DOI: 10.1016/j.chembiol.2023.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/27/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023]
Abstract
The small-molecule drug ralimetinib was developed as an inhibitor of the p38α mitogen-activated protein kinase, and it has advanced to phase 2 clinical trials in oncology. Here, we demonstrate that ralimetinib resembles EGFR-targeting drugs in pharmacogenomic profiling experiments and that ralimetinib inhibits EGFR kinase activity in vitro and in cellulo. While ralimetinib sensitivity is unaffected by deletion of the genes encoding p38α and p38β, its effects are blocked by expression of the EGFR-T790M gatekeeper mutation. Finally, we solved the cocrystal structure of ralimetinib bound to EGFR, providing further evidence that this drug functions as an ATP-competitive EGFR inhibitor. We conclude that, though ralimetinib is >30-fold less potent against EGFR compared to p38α, its ability to inhibit EGFR drives its primary anticancer effects. Our results call into question the value of p38α as an anticancer target, and we describe a multi-modal approach that can be used to uncover a drug's mechanism-of-action.
Collapse
Affiliation(s)
| | - Jaweria Bakar
- Yale University School of Medicine, New Haven, CT 06511, USA
| | - Surbhi P Chitnis
- Department of Chemistry, The University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | | | - Kumar Dilip Ashtekar
- Yale University School of Medicine, New Haven, CT 06511, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cancer Biology Institute, West Haven, CT 06516, USA
| | | | - Kaitlin Long
- Yale University School of Medicine, New Haven, CT 06511, USA
| | - Joan C Smith
- Yale University School of Medicine, New Haven, CT 06511, USA; Meliora Therapeutics, New Haven, CT 06511, USA
| | - David E Heppner
- Department of Chemistry, The University at Buffalo, State University of New York, Buffalo, NY 14260, USA; Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA.
| | | |
Collapse
|
9
|
Czarnek M, Kochan J, Wawro M, Myrczek R, Bereta J. Construction of a Set of Novel Transposon Vectors for Efficient Silencing of Protein and lncRNA Genes via CRISPR Interference. Mol Biotechnol 2023; 65:1598-1607. [PMID: 36707469 PMCID: PMC10471651 DOI: 10.1007/s12033-023-00675-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/16/2023] [Indexed: 01/29/2023]
Abstract
In recent years, CRISPR interference (CRISPRi) technology of gene silencing has emerged as a promising alternative to RNA interference (RNAi) surpassing the latter in terms of efficiency and accuracy. Here, we describe the construction of a set of transposon vectors suitable for constitutive or tetracycline (doxycycline)-inducible silencing of genes of interest via CRISPRi method and conferring three different antibiotic resistances, using vectors available via Addgene repository. We have analyzed the performance of the new vectors in the silencing of mouse Adam10 and human lncRNA, NORAD. The empty vector variants can be used to efficiently silence any genes of interest.
Collapse
Affiliation(s)
- Maria Czarnek
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387, Kraków, Poland
| | - Jakub Kochan
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387, Kraków, Poland
| | - Mateusz Wawro
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387, Kraków, Poland
| | - Rafał Myrczek
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387, Kraków, Poland
| | - Joanna Bereta
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
10
|
Xie X, Chauhan GB, Edupuganti R, Kogawa T, Park J, Tacam M, Tan AW, Mughees M, Vidhu F, Liu DD, Taliaferro JM, Pitner MK, Browning LS, Lee JH, Bertucci F, Shen Y, Wang J, Ueno NT, Krishnamurthy S, Hortobagyi GN, Tripathy D, Van Laere SJ, Bartholomeusz G, Dalby KN, Bartholomeusz C. Maternal Embryonic Leucine Zipper Kinase is Associated with Metastasis in Triple-negative Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:1078-1092. [PMID: 37377604 PMCID: PMC10281291 DOI: 10.1158/2767-9764.crc-22-0330] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/21/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
Triple-negative breast cancer (TNBC) has high relapse and metastasis rates and a high proportion of cancer stem-like cells (CSC), which possess self-renewal and tumor initiation capacity. MELK (maternal embryonic leucine zipper kinase), a protein kinase of the Snf1/AMPK kinase family, is known to promote CSC maintenance and malignant transformation. However, the role of MELK in TNBC metastasis is unknown; we sought to address this in the current study. We found that MELK mRNA levels were higher in TNBC tumors [8.11 (3.79-10.95)] than in HR+HER2- tumors [6.54 (2.90-9.26)]; P < 0.001]. In univariate analysis, patients with breast cancer with high-MELK-expressing tumors had worse overall survival (P < 0.001) and distant metastasis-free survival (P < 0.01) than patients with low-MELK-expressing tumors. In a multicovariate Cox regression model, high MELK expression was associated with shorter overall survival after adjusting for other baseline risk factors. MELK knockdown using siRNA or MELK inhibition using the MELK inhibitor MELK-In-17 significantly reduced invasiveness, reversed epithelial-to-mesenchymal transition, and reduced CSC self-renewal and maintenance in TNBC cells. Nude mice injected with CRISPR MELK-knockout MDA-MB-231 cells exhibited suppression of lung metastasis and improved overall survival compared with mice injected with control cells (P < 0.05). Furthermore, MELK-In-17 suppressed 4T1 tumor growth in syngeneic BALB/c mice (P < 0.001). Our findings indicate that MELK supports metastasis by promoting epithelial-to-mesenchymal transition and the CSC phenotype in TNBC. Significance These findings indicate that MELK is a driver of aggressiveness and metastasis in TNBC.
Collapse
Affiliation(s)
- Xuemei Xie
- Section of Translational Breast Cancer Research, Houston, Texas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Current Institution: Cancer Biology Program, University of Hawai'i Cancer Center, Honolulu, Hawaii, USA
| | - Gaurav B. Chauhan
- Section of Translational Breast Cancer Research, Houston, Texas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ramakrishna Edupuganti
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Takahiro Kogawa
- Section of Translational Breast Cancer Research, Houston, Texas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jihyun Park
- Section of Translational Breast Cancer Research, Houston, Texas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Moises Tacam
- Section of Translational Breast Cancer Research, Houston, Texas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alex W. Tan
- Section of Translational Breast Cancer Research, Houston, Texas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mohd Mughees
- Section of Translational Breast Cancer Research, Houston, Texas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fnu Vidhu
- Section of Translational Breast Cancer Research, Houston, Texas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Diane D. Liu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Juliana M. Taliaferro
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Mary Kathryn Pitner
- Section of Translational Breast Cancer Research, Houston, Texas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luke S. Browning
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Ju-Hyeon Lee
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - François Bertucci
- Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
| | - Yu Shen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jian Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naoto T. Ueno
- Section of Translational Breast Cancer Research, Houston, Texas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Current Institution: Cancer Biology Program, University of Hawai'i Cancer Center, Honolulu, Hawaii, USA
| | - Savitri Krishnamurthy
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriel N. Hortobagyi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven J. Van Laere
- Center for Oncological Research, Integrated Personalized and Precision Oncology Network, University of Antwerp, Antwerp, Wilrijk
- Department Oncology, KU Leuven, Leuven, Belgium
| | - Geoffrey Bartholomeusz
- Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kevin N. Dalby
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Chandra Bartholomeusz
- Section of Translational Breast Cancer Research, Houston, Texas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
11
|
Szymański Ł, Lieto K, Zdanowski R, Lewicki S, Tassan JP, Kubiak JZ. Differential Effects of Overexpression of Wild Type and Kinase-Dead MELK in Fibroblasts and Keratinocytes, Potential Implications for Skin Wound Healing and Cancer. Int J Mol Sci 2023; 24:ijms24098089. [PMID: 37175795 PMCID: PMC10179274 DOI: 10.3390/ijms24098089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Maternal embryonic leucine-zipper kinase (MELK) plays a significant role in cell cycle progression, mitosis, cell migration, cell renewal, gene expression, embryogenesis, proliferation, apoptosis, and spliceosome assembly. In addition, MELK is known to be overexpressed in multiple types of cancer and is associated with cancer proliferation. Tumorigenesis shares many similarities with wound healing, in which the rate of cell proliferation is a critical factor. Therefore, this study aimed to determine the involvement of MELK in the regulation of cell division in two cell types involved in this process, namely fibroblasts and keratinocytes. We examined how temporal overexpression of wild-type and kinase-dead MELK kinase variants affect the rate of proliferation, viability, cell cycle, and phosphorylation state of other kinases involved in these processes, such as ERK1/2, AKT1, MAPK9, p38, and p53. We explored if MELK could be used as a therapeutic stimulator of accelerated wound healing via increased proliferation. We observed that aberrant expression of MELK results in abnormal proliferation, altered cell cycle distribution, and decreased viability of the cells, which challenge the utility of MELK in accelerated wound healing. Our results indicate that, at least in healthy cells, any deviation from precisely controlled MELK expression is harmful to fibroblasts and keratinocytes.
Collapse
Affiliation(s)
- Łukasz Szymański
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Krystyna Lieto
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Department of Oncology, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland
| | - Sławomir Lewicki
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, 03-411 Warsaw, Poland
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Technology and Humanities in Radom, 26-600 Radom, Poland
| | - Jean-Pierre Tassan
- Dynamics and Mechanics of Epithelia Group, Institute of Genetics and Development of Rennes (IGDR), CNRS, University Rennes, UMR 6290, 35043 Rennes, France
| | - Jacek Z Kubiak
- Laboratory of Molecular Oncology and Innovative Therapies, Department of Oncology, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland
- Dynamics and Mechanics of Epithelia Group, Institute of Genetics and Development of Rennes (IGDR), CNRS, University Rennes, UMR 6290, 35043 Rennes, France
| |
Collapse
|
12
|
Hartman ML, Czyz M. BCL-G: 20 years of research on a non-typical protein from the BCL-2 family. Cell Death Differ 2023:10.1038/s41418-023-01158-5. [PMID: 37031274 DOI: 10.1038/s41418-023-01158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Proteins from the BCL-2 family control cell survival and apoptosis in health and disease, and regulate apoptosis-unrelated cellular processes. BCL-Gonad (BCL-G, also known as BCL2-like 14) is a non-typical protein of the family as its long isoform (BCL-GL) consists of BH2 and BH3 domains without the BH1 motif. BCL-G is predominantly expressed in normal testes and different organs of the gastrointestinal tract. The complexity of regulatory mechanisms of BCL-G expression and post-translational modifications suggests that BCL-G may play distinct roles in different types of cells and disorders. While several genetic alterations of BCL2L14 have been reported, gene deletions and amplifications prevail, which is also confirmed by the analysis of sequencing data for different types of cancer. Although the studies validating the phenotypic consequences of genetic manipulations of BCL-G are limited, the role of BCL-G in apoptosis has been undermined. Recent studies using gene-perturbation approaches have revealed apoptosis-unrelated functions of BCL-G in intracellular trafficking, immunomodulation, and regulation of the mucin scaffolding network. These studies were, however, limited mainly to the role of BCL-G in the gastrointestinal tract. Therefore, further efforts using state-of-the-art methods and various types of cells are required to find out more about BCL-G activities. Deciphering the isoform-specific functions of BCL-G and the BCL-G interactome may result in the designing of novel therapeutic approaches, in which BCL-G activity will be either imitated using small-molecule BH3 mimetics or inhibited to counteract BCL-G upregulation. This review summarizes two decades of research on BCL-G.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| |
Collapse
|
13
|
Tang BF, Yan RC, Wang SW, Zeng ZC, Du SS. Maternal embryonic leucine zipper kinase in tumor cell and tumor microenvironment: Emerging player and promising therapeutic opportunities. Cancer Lett 2023; 560:216126. [PMID: 36933780 DOI: 10.1016/j.canlet.2023.216126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Maternal embryonic leucine zipper kinase (MELK) is a member of the AMPK (AMP-activated protein kinase) protein family, which is widely and highly expressed in multiple cancer types. Through direct and indirect interactions with other proteins, it mediates various cascades of signal transduction processes and plays an important role in regulating tumor cell survival, growth, invasion and migration and other biological functions. Interestingly, MELK also plays an important role in the regulation of the tumor microenvironment, which can not only predict the responsiveness of immunotherapy, but also affect the function of immune cells to regulate tumor progression. In addition, more and more small molecule inhibitors have been developed for the target of MELK, which exert important anti-tumor effects and have achieved excellent results in a number of clinical trials. In this review, we outline the structural features, molecular biological functions, potential regulatory mechanisms and important roles of MELK in tumors and tumor microenvironment, as well as substances targeting MELK. Although many molecular mechanisms of MELK in the process of tumor regulation are still unknown, it is worth affirming that MELK is a potential tumor molecular therapeutic target, and its unique superiority and important role provide clues and confidence for subsequent basic research and scientific transformation.
Collapse
Affiliation(s)
- Bu-Fu Tang
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, 200030, Shanghai, China
| | - Ruo-Chen Yan
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Si-Wei Wang
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, 200030, Shanghai, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, 200030, Shanghai, China
| | - Shi-Suo Du
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, 200030, Shanghai, China.
| |
Collapse
|
14
|
siRNA-Mediated MELK Knockdown Induces Accelerated Wound Healing with Increased Collagen Deposition. Int J Mol Sci 2023; 24:ijms24021326. [PMID: 36674843 PMCID: PMC9861445 DOI: 10.3390/ijms24021326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Skin wounds remain a significant problem for the healthcare system, affecting the clinical outcome, patients' quality of life, and financial costs. Reduced wound healing times would improve clinical, economic, and social aspects for both patients and the healthcare system. Skin wound healing has been studied for years, but effective therapy that leads to accelerated wound healing remains to be discovered. This study aimed to evaluate the potential of MELK silencing to accelerate wound healing. A vectorless, transient knockdown of the MELK gene using siRNA was performed in a murine skin wound model. The wound size, total collagen, type 3 collagen, vessel size, vessel number, cell proliferation, cell apoptosis, number of mast cells, and immune infiltration by CD45, CD11b, CD45, and CD8a cells were evaluated. We observed that treatment with MELK siRNA leads to significantly faster wound closing associated with increased collagen deposition.
Collapse
|
15
|
Liu H, Lv Z, Zhang G, Wang X, Wang Y, Wang K. Knowledge mapping and current trends of global research on CRISPR in the field of cancer. Front Cell Dev Biol 2023; 11:1178221. [PMID: 37200626 PMCID: PMC10185797 DOI: 10.3389/fcell.2023.1178221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/21/2023] [Indexed: 05/20/2023] Open
Abstract
Background: Gene editing tools using clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-related systems have revolutionized our understanding of cancer. The purpose of this study was to determine the distribution, collaboration, and direction of cancer research using CRISPR. Methods: Data from the Web of Science (WoS) Core Collection database were collected from 4,408 cancer publications related to CRISPR from 1 January 2013to 31 December 2022. The obtained data were analyzed using VOSviewer software for citation, co-citation, co-authorship, and co-occurrence analysis. Results: The number of annual publications has grown steadily over the past decade worldwide. The United States was shown, by far, to be the leading source of cancer publications, citations, and collaborations involving CRISPR than any other country, followed by China. Li Wei (Jilin University, China), and Harvard Medical School (Boston, MA, United States) were the author and institution with the most publications and active collaborations, respectively. The journal with the most contributions was Nature Communications (n = 147) and the journal with the most citations was Nature (n = 12,111). The research direction of oncogenic molecules, mechanisms, and cancer-related gene editing was indicated based on keyword analysis. Conclusion: The current study has provided a comprehensive overview of cancer research highlights and future trends of CRISPR, combined with a review of CRISPR applications in cancer to summarize and predict research directions and provide guidance to researchers.
Collapse
Affiliation(s)
- Han Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zongwei Lv
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gong Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuan Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Kefeng Wang, ; Yuan Wang,
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Kefeng Wang, ; Yuan Wang,
| |
Collapse
|
16
|
Ren L, Guo JS, Li YH, Dong G, Li XY. Structural classification of MELK inhibitors and prospects for the treatment of tumor resistance: A review. Biomed Pharmacother 2022; 156:113965. [DOI: 10.1016/j.biopha.2022.113965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
|
17
|
Nucleolus localization of SpyCas9 affects its stability and interferes with host protein translation in mammalian cells. Genes Dis 2022; 9:731-740. [PMID: 35782966 PMCID: PMC9243344 DOI: 10.1016/j.gendis.2020.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/28/2022] Open
Abstract
The CRISPR/Cas9 system, originally derived from the prokaryotic adaptive immune system, has been developed as efficient genome editing tools. It enables precise gene manipulation on chromosomal DNA through the specific binding of programmable sgRNA to target DNA, and the Cas9 protein, which has endonuclease activity, will cut a double strand break at specific locus. However, Cas9 is a foreign protein in mammalian cells, and the potential risks associated with its introduction into mammalian cells are not fully understood. In this study, we performed pull-down and mass spectrometry (MS) analysis of Streptococcus pyogenes Cas9 (SpyCas9) interacting proteins in HEK293T cells and showed that the majority of Cas9-associated proteins identified by MS were localized in the nucleolus. Interestingly, we further discovered that the Cas9 protein contains a sequence encoding a nucleolus detention signal (NoDS). Compared with wild-type (WT) Cas9, NoDS-mutated variants of Cas9 (mCas9) are less stable, although their gene editing activity is minimally affected. Overexpression of WT Cas9, but not mCas9, causes general effects on transcription and protein translation in the host cell. Overall, identification of NoDS in Cas9 will improve the understanding of Cas9's biological function in vivo, and the removal of NoDS in Cas9 may enhance its safety for future clinical use.
Collapse
|
18
|
Abstract
Over the past decade, CRISPR has become as much a verb as it is an acronym, transforming biomedical research and providing entirely new approaches for dissecting all facets of cell biology. In cancer research, CRISPR and related tools have offered a window into previously intractable problems in our understanding of cancer genetics, the noncoding genome and tumour heterogeneity, and provided new insights into therapeutic vulnerabilities. Here, we review the progress made in the development of CRISPR systems as a tool to study cancer, and the emerging adaptation of these technologies to improve diagnosis and treatment.
Collapse
Affiliation(s)
- Alyna Katti
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, New York, NY, USA
| | - Bianca J Diaz
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, New York, NY, USA
| | - Christina M Caragine
- Department of Biology, New York University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Neville E Sanjana
- Department of Biology, New York University, New York, NY, USA.
- New York Genome Center, New York, NY, USA.
| | - Lukas E Dow
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
19
|
Palacios D, Momayyezi P, Huhn O, Ask EH, Dunst J, Malmberg KJ, Hammer Q. An optimized platform for efficient siRNA delivery into human NK cells. Eur J Immunol 2022; 52:1190-1193. [PMID: 35416292 PMCID: PMC9541389 DOI: 10.1002/eji.202149710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel Palacios
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pouria Momayyezi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Oisín Huhn
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Eivind Heggernes Ask
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Josefine Dunst
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Karl-Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
20
|
Cheng A, Harikrishna JA, Redwood CS, Lit LC, Nath SK, Chua KH. Genetics Matters: Voyaging from the Past into the Future of Humanity and Sustainability. Int J Mol Sci 2022; 23:ijms23073976. [PMID: 35409335 PMCID: PMC8999725 DOI: 10.3390/ijms23073976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
The understanding of how genetic information may be inherited through generations was established by Gregor Mendel in the 1860s when he developed the fundamental principles of inheritance. The science of genetics, however, began to flourish only during the mid-1940s when DNA was identified as the carrier of genetic information. The world has since then witnessed rapid development of genetic technologies, with the latest being genome-editing tools, which have revolutionized fields from medicine to agriculture. This review walks through the historical timeline of genetics research and deliberates how this discipline might furnish a sustainable future for humanity.
Collapse
Affiliation(s)
- Acga Cheng
- Institute of Biological Science, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.C.); (J.A.H.)
| | - Jennifer Ann Harikrishna
- Institute of Biological Science, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.C.); (J.A.H.)
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Charles S. Redwood
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK;
| | - Lei Cheng Lit
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Swapan K. Nath
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Correspondence: (S.K.N.); (K.H.C.)
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (S.K.N.); (K.H.C.)
| |
Collapse
|
21
|
xCT contributes to colorectal cancer tumorigenesis through upregulation of the MELK oncogene and activation of the AKT/mTOR cascade. Cell Death Dis 2022; 13:373. [PMID: 35440604 PMCID: PMC9019093 DOI: 10.1038/s41419-022-04827-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/29/2022]
Abstract
AbstractColorectal cancer (CRC) is one of the most commonly diagnosed and deadly malignant tumors globally, and its occurrence and progression are closely related to the poor histological features and complex molecular characteristics among patients. It is urgent to identify specific biomarkers for effective treatment of CRC. In this study, we performed comprehensive experiments to validate the role of xCT expression in CRC tumorigenesis and stemness and confirmed xCT knockdown significantly suppressed the proliferation, migration, and stemness of CRC cells in vitro and effectively inhibited CRC tumorigenesis and metastasis in vivo. In addition, bioinformatic analysis and luciferase assays were used to identify E2F1 as a critical upstream transcription factor of SLC7A11 (the gene encoding for xCT) that facilitated CRC progression and cell stemness. Subsequent RNA sequencing, western blotting, rescue assay, and immunofluorescence assays revealed MELK directly co-expressed with xCT in CRC cells, and its upregulation significantly attenuated E2F1/xCT-mediated tumorigenesis and stemness in CRC. Further molecular mechanism exploration confirmed that xCT knockdown may exert an antitumor effect by controlling the activation of MELK-mediated Akt/mTOR signaling. Erastin, a specific inhibitor of xCT, was also proven to effectively inhibit CRC tumorigenesis and cell stemness. Altogether, our study showed that E2F1/xCT is a promising therapeutic target of CRC that promotes tumorigenesis and cell stemness. Erastin is also an effective antitumoral agent for CRC.
Collapse
|
22
|
Barazandeh M, Kriti D, Nislow C, Giaever G. The cellular response to drug perturbation is limited: comparison of large-scale chemogenomic fitness signatures. BMC Genomics 2022; 23:197. [PMID: 35277135 PMCID: PMC8915488 DOI: 10.1186/s12864-022-08395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/17/2022] [Indexed: 11/25/2022] Open
Abstract
Background Chemogenomic profiling is a powerful approach for understanding the genome-wide cellular response to small molecules. First developed in Saccharomyces cerevisiae, chemogenomic screens provide direct, unbiased identification of drug target candidates as well as genes required for drug resistance. While many laboratories have performed chemogenomic fitness assays, few have been assessed for reproducibility and accuracy. Here we analyze the two largest independent yeast chemogenomic datasets comprising over 35 million gene-drug interactions and more than 6000 unique chemogenomic profiles; the first from our own academic laboratory (HIPLAB) and the second from the Novartis Institute of Biomedical Research (NIBR). Results Despite substantial differences in experimental and analytical pipelines, the combined datasets revealed robust chemogenomic response signatures, characterized by gene signatures, enrichment for biological processes and mechanisms of drug action. We previously reported that the cellular response to small molecules is limited and can be described by a network of 45 chemogenomic signatures. In the present study, we show that the majority of these signatures (66%) are also found in the companion dataset, providing further support for their biological relevance as conserved systems-level, small molecule response systems. Conclusions Our results demonstrate the robustness of chemogenomic fitness profiling in yeast, while offering guidelines for performing other high-dimensional comparisons including parallel CRISPR screens in mammalian cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08395-x.
Collapse
|
23
|
Krishnan M, Senagolage MD, Baeten JT, Wolfgeher DJ, Khan S, Kron SJ, McNerney ME. Genomic studies controvert the existence of the CUX1 p75 isoform. Sci Rep 2022; 12:151. [PMID: 34997000 PMCID: PMC8741762 DOI: 10.1038/s41598-021-03930-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/13/2021] [Indexed: 01/19/2023] Open
Abstract
CUX1, encoding a homeodomain-containing transcription factor, is recurrently deleted or mutated in multiple tumor types. In myeloid neoplasms, CUX1 deletion or mutation carries a poor prognosis. We have previously established that CUX1 functions as a tumor suppressor in hematopoietic cells across multiple organisms. Others, however, have described oncogenic functions of CUX1 in solid tumors, often attributed to truncated CUX1 isoforms, p75 and p110, generated by an alternative transcriptional start site or post-translational cleavage, respectively. Given the clinical relevance, it is imperative to clarify these discrepant activities. Herein, we sought to determine the CUX1 isoforms expressed in hematopoietic cells and find that they express the full-length p200 isoform. Through the course of this analysis, we found no evidence of the p75 alternative transcript in any cell type examined. Using an array of orthogonal approaches, including biochemistry, proteomics, CRISPR/Cas9 genomic editing, and analysis of functional genomics datasets across a spectrum of normal and malignant tissue types, we found no data to support the existence of the CUX1 p75 isoform as previously described. Based on these results, prior studies of p75 require reevaluation, including the interpretation of oncogenic roles attributed to CUX1.
Collapse
Affiliation(s)
- Manisha Krishnan
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA.,Department of Pathology, The University of Chicago, Chicago, IL, USA
| | | | - Jeremy T Baeten
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Donald J Wolfgeher
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Saira Khan
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Stephen J Kron
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA.,Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA.,The University of Chicago Medicine Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA
| | - Megan E McNerney
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA. .,Department of Pathology, The University of Chicago, Chicago, IL, USA. .,Department of Pediatrics, The University of Chicago, Chicago, IL, USA. .,The University of Chicago Medicine Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
24
|
Sun X, Guo C, Ali K, Zheng Q, Wei Q, Zhu Y, Wang L, Li G, Li W, Zheng B, Bai Q, Wu G. A Non-redundant Function of MNS5: A Class I α-1, 2 Mannosidase, in the Regulation of Endoplasmic Reticulum-Associated Degradation of Misfolded Glycoproteins. FRONTIERS IN PLANT SCIENCE 2022; 13:873688. [PMID: 35519817 PMCID: PMC9062699 DOI: 10.3389/fpls.2022.873688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/14/2022] [Indexed: 05/14/2023]
Abstract
Endoplasmic Reticulum-Associated Degradation (ERAD) is one of the major processes in maintaining protein homeostasis. Class I α-mannosidases MNS4 and MNS5 are involved in the degradation of misfolded variants of the heavily glycosylated proteins, playing an important role for glycan-dependent ERAD in planta. MNS4 and MNS5 reportedly have functional redundancy, meaning that only the loss of both MNS4 and MNS5 shows phenotypes. However, MNS4 is a membrane-associated protein while MNS5 is a soluble protein, and both can localize to the endoplasmic reticulum (ER). Furthermore, MNS4 and MNS5 differentially demannosylate the glycoprotein substrates. Importantly, we found that their gene expression patterns are complemented rather than overlapped. This raises the question of whether they indeed work redundantly, warranting a further investigation. Here, we conducted an exhaustive genetic screen for a suppressor of the bri1-5, a brassinosteroid (BR) receptor mutant with its receptor downregulated by ERAD, and isolated sbi3, a suppressor of bri1-5 mutant named after sbi1 (suppressor of bri1). After genetic mapping together with whole-genome re-sequencing, we identified a point mutation G343E in AT1G27520 (MNS5) in sbi3. Genetic complementation experiments confirmed that sbi3 was a loss-of-function allele of MNS5. In addition, sbi3 suppressed the dwarf phenotype of bri1-235 in the proteasome-independent ERAD pathway and bri1-9 in the proteasome-dependent ERAD pathway. Importantly, sbi3 could only affect BRI1/bri1 with kinase activities such that it restored BR-sensitivities of bri1-5, bri1-9, and bri1-235 but not null bri1. Furthermore, sbi3 was less tolerant to tunicamycin and salt than the wild-type plants. Thus, our study uncovers a non-redundant function of MNS5 in the regulation of ERAD as well as plant growth and ER stress response, highlighting a need of the traditional forward genetic approach to complement the T-DNA or CRISPR-Cas9 systems on gene functional study.
Collapse
|
25
|
Zhou L, Zheng S, Rosas Bringas FR, Bakker B, Simon JE, Bakker PL, Kazemier HG, Schubert M, Roorda M, van Vugt MATM, Chang M, Foijer F. A synthetic lethal screen identifies HDAC4 as a potential target in MELK overexpressing cancers. G3 (BETHESDA, MD.) 2021; 11:jkab335. [PMID: 34550356 PMCID: PMC8664443 DOI: 10.1093/g3journal/jkab335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022]
Abstract
Maternal embryonic leucine zipper kinase (MELK) is frequently overexpressed in cancer, but the role of MELK in cancer is still poorly understood. MELK was shown to have roles in many cancer-associated processes including tumor growth, chemotherapy resistance, and tumor recurrence. To determine whether the frequent overexpression of MELK can be exploited in therapy, we performed a high-throughput screen using a library of Saccharomyces cerevisiae mutants to identify genes whose functions become essential when MELK is overexpressed. We identified two such genes: LAG2 and HDA3. LAG2 encodes an inhibitor of the Skp, Cullin, F-box containing (SCF) ubiquitin-ligase complex, while HDA3 encodes a subunit of the HDA1 histone deacetylase complex. We find that one of these synthetic lethal interactions is conserved in mammalian cells, as inhibition of a human homolog of HDA3 (Histone Deacetylase 4, HDAC4) is synthetically toxic in MELK overexpression cells. Altogether, our work identified a novel potential drug target for tumors that overexpress MELK.
Collapse
Affiliation(s)
- Lin Zhou
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Siqi Zheng
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Fernando R Rosas Bringas
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Bjorn Bakker
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Judith E Simon
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Petra L Bakker
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Hinke G Kazemier
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Michael Schubert
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Maurits Roorda
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| |
Collapse
|
26
|
Czarnek M, Sarad K, Karaś A, Kochan J, Bereta J. Non-targeting control for MISSION shRNA library silences SNRPD3 leading to cell death or permanent growth arrest. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:711-731. [PMID: 34703654 PMCID: PMC8517100 DOI: 10.1016/j.omtn.2021.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 09/03/2021] [Indexed: 12/15/2022]
Abstract
In parallel with the expansion of RNA interference (RNAi) techniques, accumulating evidence indicates that RNAi analyses might be seriously biased due to the off-target effects of gene-specific short hairpin RNAs (shRNAs). Our findings indicated that off-target effects of non-targeting shRNA comprise another source of misinterpreted shRNA-based data. We found that SHC016, which is one of two non-targeting shRNA controls for the MISSION (commercialized TRC) library, exerts deleterious effects that lead to elimination of the shRNA-coding cassette from the genomes of cultured murine and human cells. Here, we used a lentiviral vector with inducible SHC016 expression to confirm that this shRNA induces apoptosis in murine cells and senescence or mitotic catastrophe depending on the p53 status in human tumor cells. We identified the core spliceosomal protein, small nuclear ribonucleoprotein Sm D3 (SNRPD3), as a major SHC016 target in several cell lines and confirmed that CRISPRi knockdown of SNRPD3 mimics the effects of SHC016 expression in A549 and U251 cells. The overexpression of SNRPD3 rescued U251 cells from SHC016-induced mitotic catastrophe. Our findings disqualified non-targeting SHC016 shRNA and added a new premise to the discussion about the sources of uncertainty in RNAi results.
Collapse
Affiliation(s)
- Maria Czarnek
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
| | - Katarzyna Sarad
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
| | - Agnieszka Karaś
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
| | - Jakub Kochan
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
| | - Joanna Bereta
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
27
|
Honkala A, Malhotra SV, Kummar S, Junttila MR. Harnessing the predictive power of preclinical models for oncology drug development. Nat Rev Drug Discov 2021; 21:99-114. [PMID: 34702990 DOI: 10.1038/s41573-021-00301-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 12/21/2022]
Abstract
Recent progress in understanding the molecular basis of cellular processes, identification of promising therapeutic targets and evolution of the regulatory landscape makes this an exciting and unprecedented time to be in the field of oncology drug development. However, high costs, long development timelines and steep rates of attrition continue to afflict the drug development process. Lack of predictive preclinical models is considered one of the key reasons for the high rate of attrition in oncology. Generating meaningful and predictive results preclinically requires a firm grasp of the relevant biological questions and alignment of the model systems that mirror the patient context. In doing so, the ability to conduct both forward translation, the process of implementing basic research discoveries into practice, as well as reverse translation, the process of elucidating the mechanistic basis of clinical observations, greatly enhances our ability to develop effective anticancer treatments. In this Review, we outline issues in preclinical-to-clinical translatability of molecularly targeted cancer therapies, present concepts and examples of successful reverse translation, and highlight the need to better align tumour biology in patients with preclinical model systems including tracking of strengths and weaknesses of preclinical models throughout programme development.
Collapse
Affiliation(s)
- Alexander Honkala
- Department of Cell Development & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Sanjay V Malhotra
- Department of Cell Development & Cancer Biology, Oregon Health & Science University, Portland, OR, USA.,Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Shivaani Kummar
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA. .,Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, OR, USA.
| | | |
Collapse
|
28
|
Hu F, Gong C, Gai Y, Jiang D, Liu Q, Wang S, Hu M, Pi R, Shu H, Hu J, Lan X. [ 18F]F-ET-OTSSP167 Targets Maternal Embryo Leucine Zipper Kinase for PET Imaging of Triple-Negative Breast Cancer. Mol Pharm 2021; 18:3544-3552. [PMID: 34482695 DOI: 10.1021/acs.molpharmaceut.1c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Maternal embryo leucine zipper kinase (MELK) is a serine/threonine kinase and is highly expressed in triple-negative breast cancer (TNBC). This study aimed to develop a 18F-radiolabeled tracer based on the structure of a small-molecule MELK inhibitor OTSSP167 and evaluate its application for PET imaging of MELK expression in TNBC. OTSSP167 was modified with ethylene glycol to adjust its pharmacokinetics and was then radiolabeled with 18F to obtain [18F]F-ET-OTSSP167 at a labeling yield of 7.14 ± 2.19% and a molar activity of 16.23 ± 1.13 MBq/nmol. In vitro binding assays showed differentiated binding affinities of [18F]F-ET-OTSSP167 in different breast cancer cell lines, with high uptake in MDA-MB-231 (mild MELK expression) and low uptake in MCF-7 (negative MELK expression). PET imaging revealed that MDA-MB-231 tumors could be clearly delineated in vivo, while low tracer uptake was observed in MCF-7 tumors. These findings were confirmed by ex vivo biodistribution studies and were consistent with the immunohistochemistry and tissue staining results. Tracer accumulation in MDA-MB-231 tumors was significantly inhibited by excess amounts of OTSSP167, indicating high specificity of the tracer. In summary, [18F]F-ET-OTSSP167, an easily-prepared probe, can be used to visualize MELK positive tumors, demonstrating its promising clinical potential in selecting patients for MELK inhibitor therapy.
Collapse
Affiliation(s)
- Fan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Chengpeng Gong
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Sheng Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mengmeng Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Rundong Pi
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Hua Shu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jia Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
29
|
Functional genomics for breast cancer drug target discovery. J Hum Genet 2021; 66:927-935. [PMID: 34285339 PMCID: PMC8384626 DOI: 10.1038/s10038-021-00962-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 01/14/2023]
Abstract
Breast cancer is a heterogeneous disease that develops through a multistep process via the accumulation of genetic/epigenetic alterations in various cancer-related genes. Current treatment options for breast cancer patients include surgery, radiotherapy, and chemotherapy including conventional cytotoxic and molecular-targeted anticancer drugs for each intrinsic subtype, such as endocrine therapy and antihuman epidermal growth factor receptor 2 (HER2) therapy. However, these therapies often fail to prevent recurrence and metastasis due to resistance. Overall, understanding the molecular mechanisms of breast carcinogenesis and progression will help to establish therapeutic modalities to improve treatment. The recent development of comprehensive omics technologies has led to the discovery of driver genes, including oncogenes and tumor-suppressor genes, contributing to the development of molecular-targeted anticancer drugs. Here, we review the development of anticancer drugs targeting cancer-specific functional therapeutic targets, namely, MELK (maternal embryonic leucine zipper kinase), TOPK (T-lymphokine-activated killer cell-originated protein kinase), and BIG3 (brefeldin A-inhibited guanine nucleotide-exchange protein 3), as identified through comprehensive breast cancer transcriptomics.
Collapse
|
30
|
Zhao Z, Li C, Tong F, Deng J, Huang G, Sang Y. Review of applications of CRISPR-Cas9 gene-editing technology in cancer research. Biol Proced Online 2021; 23:14. [PMID: 34261433 PMCID: PMC8281662 DOI: 10.1186/s12575-021-00151-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Characterized by multiple complex mutations, including activation by oncogenes and inhibition by tumor suppressors, cancer is one of the leading causes of death. Application of CRISPR-Cas9 gene-editing technology in cancer research has aroused great interest, promoting the exploration of the molecular mechanism of cancer progression and development of precise therapy. CRISPR-Cas9 gene-editing technology provides a solid basis for identifying driver and passenger mutations in cancer genomes, which is of great value in genetic screening and for developing cancer models and treatments. This article reviews the current applications of CRISPR-Cas9 gene-editing technology in various cancer studies, the challenges faced, and the existing solutions, highlighting the potential of this technology for cancer treatment.
Collapse
Affiliation(s)
- Ziyi Zhao
- The Third Affiliated Hospital of Nanchang University, Nanchang, 330008, China
| | - Chenxi Li
- The Third Affiliated Hospital of Nanchang University, Nanchang, 330008, China
| | - Fei Tong
- Orthodontic Department of Affiliated Stomatological Hospital of Nanchang University, Nanchang, 330008, China
| | - Jingkuang Deng
- The Third Affiliated Hospital of Nanchang University, Nanchang, 330008, China
| | - Guofu Huang
- The Third Affiliated Hospital of Nanchang University, Nanchang, 330008, China.
| | - Yi Sang
- The Third Affiliated Hospital of Nanchang University, Nanchang, 330008, China.
| |
Collapse
|
31
|
Born JR, Chenniappan VK, Davis DP, Dahlin JL, Marugan JJ, Patnaik S. The Impact of Assay Design on Medicinal Chemistry: Case Studies. SLAS DISCOVERY 2021; 26:1243-1255. [PMID: 34225522 DOI: 10.1177/24725552211026238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Joshua R Born
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Vinoth Kumar Chenniappan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Danielle P Davis
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Jayme L Dahlin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Juan J Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Samarjit Patnaik
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
32
|
Ahmed M, Daoud GH, Mohamed A, Harati R. New Insights into the Therapeutic Applications of CRISPR/Cas9 Genome Editing in Breast Cancer. Genes (Basel) 2021; 12:genes12050723. [PMID: 34066014 PMCID: PMC8150278 DOI: 10.3390/genes12050723] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is one of the most prevalent forms of cancer globally and is among the leading causes of death in women. Its heterogenic nature is a result of the involvement of numerous aberrant genes that contribute to the multi-step pathway of tumorigenesis. Despite the fact that several disease-causing mutations have been identified, therapy is often aimed at alleviating symptoms rather than rectifying the mutation in the DNA sequence. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 is a groundbreaking tool that is being utilized for the identification and validation of genomic targets bearing tumorigenic potential. CRISPR/Cas9 supersedes its gene-editing predecessors through its unparalleled simplicity, efficiency and affordability. In this review, we provide an overview of the CRISPR/Cas9 mechanism and discuss genes that were edited using this system for the treatment of breast cancer. In addition, we shed light on the delivery methods—both viral and non-viral—that may be used to deliver the system and the barriers associated with each. Overall, the present review provides new insights into the potential therapeutic applications of CRISPR/Cas9 for the advancement of breast cancer treatment.
Collapse
|
33
|
Tu HF, Ko CJ, Lee CT, Lee CF, Lan SW, Lin HH, Lin HY, Ku CC, Lee DY, Chen IC, Chuang YH, Del Caño-Ochoa F, Ramón-Maiques S, Ho CC, Lee MS, Chang GD. Afatinib Exerts Immunomodulatory Effects by Targeting the Pyrimidine Biosynthesis Enzyme CAD. Cancer Res 2021; 81:3270-3282. [PMID: 33771897 DOI: 10.1158/0008-5472.can-20-3436] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/24/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022]
Abstract
Current clinical trials of combined EGFR-tyrosine kinase inhibitors (TKI) and immune checkpoint blockade (ICB) therapies show no additional effect. This raises questions regarding whether EGFR-TKIs attenuate ICB-enhanced CD8+ T lymphocyte function. Here we show that the EGFR-TKI afatinib suppresses CD8+ T lymphocyte proliferation, and we identify CAD, a key enzyme of de novo pyrimidine biosynthesis, to be a novel afatinib target. Afatinib reduced tumor-infiltrating lymphocyte numbers in Lewis lung carcinoma (LLC)-bearing mice. Early afatinib treatment inhibited CD8+ T lymphocyte proliferation in patients with non-small cell lung cancer, but their proliferation unexpectedly rebounded following long-term treatment. This suggests a transient immunomodulatory effect of afatinib on CD8+ T lymphocytes. Sequential treatment of afatinib with anti-PD1 immunotherapy substantially enhanced therapeutic efficacy in MC38 and LLC-bearing mice, while simultaneous combination therapy showed only marginal improvement over each single treatment. These results suggest that afatinib can suppress CD8+ T lymphocyte proliferation by targeting CAD, proposing a timing window for combined therapy that may prevent the dampening of ICB efficacy by EGFR-TKIs. SIGNIFICANCE: This study elucidates a mechanism of afatinib-mediated immunosuppression and provides new insights into treatment timing for combined targeted therapy and immunotherapy. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/12/3270/F1.large.jpg.
Collapse
Affiliation(s)
- Hsin-Fang Tu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Jung Ko
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ching-Tai Lee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Fan Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shao-Wei Lan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Hsien Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Ying Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Chi Ku
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Der-Yen Lee
- Graduate Institute of Integrated Medicine/Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - I-Chun Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Hui Chuang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Francisco Del Caño-Ochoa
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain.,Group 739, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-Instituto de Salud Carlos III, Valencia, Spain
| | - Santiago Ramón-Maiques
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain.,Group 739, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-Instituto de Salud Carlos III, Valencia, Spain
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ming-Shyue Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Geen-Dong Chang
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
34
|
Ohashi M, Hayes M, McChesney K, Johannsen E. Epstein-Barr virus nuclear antigen 3C (EBNA3C) interacts with the metabolism sensing C-terminal binding protein (CtBP) repressor to upregulate host genes. PLoS Pathog 2021; 17:e1009419. [PMID: 33720992 PMCID: PMC7993866 DOI: 10.1371/journal.ppat.1009419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/25/2021] [Accepted: 02/22/2021] [Indexed: 12/04/2022] Open
Abstract
Epstein-Barr virus (EBV) infection is associated with the development of specific types of lymphoma and some epithelial cancers. EBV infection of resting B-lymphocytes in vitro drives them to proliferate as lymphoblastoid cell lines (LCLs) and serves as a model for studying EBV lymphomagenesis. EBV nuclear antigen 3C (EBNA3C) is one of the genes required for LCL growth and previous work has suggested that suppression of the CDKN2A encoded tumor suppressor p16INK4A and possibly p14ARF is central to EBNA3C’s role in this growth transformation. To directly assess whether loss of p16 and/or p14 was sufficient to explain EBNA3C growth effects, we used CRISPR/Cas9 to disrupt specific CDKN2A exons in EBV transformed LCLs. Disruption of p16 specific exon 1α and the p16/p14 shared exon 2 were each sufficient to restore growth in the absence of EBNA3C. Using EBNA3C conditional LCLs knocked out for either exon 1α or 2, we identified EBNA3C induced and repressed genes. By trans-complementing with EBNA3C mutants, we determined specific genes that require EBNA3C interaction with RBPJ or CtBP for their regulation. Unexpectedly, interaction with the CtBP repressor was required not only for repression, but also for EBNA3C induction of many host genes. Contrary to previously proposed models, we found that EBNA3C does not recruit CtBP to the promoters of these genes. Instead, our results suggest that CtBP is bound to these promoters in the absence of EBNA3C and that EBNA3C interaction with CtBP interferes with the repressive function of CtBP, leading to EBNA3C mediated upregulation. Epstein-Barr virus (EBV) is a gammaherpesvirus that establishes lifelong infection in about 95% of adult humans. EBV infection is usually benign, but can rarely result in several different malignancies, particularly lymphomas. EBV infection of resting B-lymphocytes in the laboratory drives them to proliferate as lymphoblastoid cell lines (LCLs), a model for EBV lymphomagenesis. In this manuscript we study how one EBV protein expressed in LCLs, EBNA3C, contributes to B lymphocyte transformation. Prior work has established that EBNA3C turns off the CDKN2A gene, but there is disagreement regarding the relative importance of silencing the two CDKN2A gene products: p14 and p16. Using a CRISPR/Cas9 gene editing strategy we confirm that p16 knock-out rescues LCL growth in the absence of EBNA3C even in the presence of wildtype p14. We then use these knock-out LCLs to identify EBNA3C regulated genes and uncover extensive growth-independent changes in B lymphocytes due to the EBNA3C transcription factor. We also discover an unexpected role for the CtBP repressor protein in EBNA3C gene upregulation. Contrary to prior models, we do not observe CtBP recruitment to target genes by EBNA3C. Instead, our data are consistent with EBNA3C interfering with the ability of pre-bound CtBP to repress genes.
Collapse
Affiliation(s)
- Makoto Ohashi
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mitchell Hayes
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kyle McChesney
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eric Johannsen
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
35
|
Yang Y, Xu J, Ge S, Lai L. CRISPR/Cas: Advances, Limitations, and Applications for Precision Cancer Research. Front Med (Lausanne) 2021; 8:649896. [PMID: 33748164 PMCID: PMC7965951 DOI: 10.3389/fmed.2021.649896] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer is one of the most leading causes of mortalities worldwide. It is caused by the accumulation of genetic and epigenetic alterations in 2 types of genes: tumor suppressor genes (TSGs) and proto-oncogenes. In recent years, development of the clustered regularly interspaced short palindromic repeats (CRISPR) technology has revolutionized genome engineering for different cancer research ranging for research ranging from fundamental science to translational medicine and precise cancer treatment. The CRISPR/CRISPR associated proteins (CRISPR/Cas) are prokaryote-derived genome editing systems that have enabled researchers to detect, image, manipulate and annotate specific DNA and RNA sequences in various types of living cells. The CRISPR/Cas systems have significant contributions to discovery of proto-oncogenes and TSGs, tumor cell epigenome normalization, targeted delivery, identification of drug resistance mechanisms, development of high-throughput genetic screening, tumor models establishment, and cancer immunotherapy and gene therapy in clinics. Robust technical improvements in CRISPR/Cas systems have shown a considerable degree of efficacy, specificity, and flexibility to target the specific locus in the genome for the desired applications. Recent developments in CRISPRs technology offers a significant hope of medical cure against cancer and other deadly diseases. Despite significant improvements in this field, several technical challenges need to be addressed, such as off-target activity, insufficient indel or low homology-directed repair (HDR) efficiency, in vivo delivery of the Cas system components, and immune responses. This study aims to overview the recent technological advancements, preclinical and perspectives on clinical applications of CRISPR along with their advantages and limitations. Moreover, the potential applications of CRISPR/Cas in precise cancer tumor research, genetic, and other precise cancer treatments discussed.
Collapse
Affiliation(s)
- Yue Yang
- Department of Pathology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Jin Xu
- Department of Otolaryngology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Shuyu Ge
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Liqin Lai
- Department of Pathology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
36
|
The evolution and history of gene editing technologies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 178:1-62. [PMID: 33685594 DOI: 10.1016/bs.pmbts.2021.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Scientific enquiry must be the driving force of research. This sentiment is manifested as the profound impact gene editing technologies are having in our current world. There exist three main gene editing technologies today: Zinc Finger Nucleases, TALENs and the CRISPR-Cas system. When these systems were being uncovered, none of the scientists set out to design tools to engineer genomes. They were simply trying to understand the mechanisms existing in nature. If it was not for this simple sense of wonder, we probably would not have these breakthrough technologies. In this chapter, we will discuss the history, applications and ethical issues surrounding these technologies, focusing on the now predominant CRISPR-Cas technology. Gene editing technologies, as we know them now, are poised to have an overwhelming impact on our world. However, it is impossible to predict the route they will take in the future or to comprehend the full impact of its repercussions.
Collapse
|
37
|
Meel MH, Guillén Navarro M, de Gooijer MC, Metselaar DS, Waranecki P, Breur M, Lagerweij T, Wedekind LE, Koster J, van de Wetering MD, Schouten-van Meeteren N, Aronica E, van Tellingen O, Bugiani M, Phoenix TN, Kaspers GJL, Hulleman E. MEK/MELK inhibition and blood-brain barrier deficiencies in atypical teratoid/rhabdoid tumors. Neuro Oncol 2021; 22:58-69. [PMID: 31504799 PMCID: PMC6954444 DOI: 10.1093/neuonc/noz151] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Atypical teratoid/rhabdoid tumors (AT/RT) are rare, but highly aggressive. These entities are of embryonal origin occurring in the central nervous system (CNS) of young children. Molecularly these tumors are driven by a single hallmark mutation, resulting in inactivation of SMARCB1 or SMARCA4. Additionally, activation of the MAPK signaling axis and preclinical antitumor efficacy of its inhibition have been described in AT/RT. Methods We established and validated a patient-derived neurosphere culture and xenograft model of sonic hedgehog (SHH) subtype AT/RT, at diagnosis and relapse from the same patient. We set out to study the vascular phenotype of these tumors to evaluate the integrity of the blood–brain barrier (BBB) in AT/RT. We also used the model to study combined mitogen-activated protein kinase kinase (MEK) and maternal embryonic leucine zipper kinase (MELK) inhibition as a therapeutic strategy for AT/RT. Results We found MELK to be highly overexpressed in both patient samples of AT/RT and our primary cultures and xenografts. We identified a potent antitumor efficacy of the MELK inhibitor OTSSP167, as well as strong synergy with the MEK inhibitor trametinib, against primary AT/RT neurospheres. Additionally, vascular phenotyping of AT/RT patient material and xenografts revealed significant BBB aberrancies in these tumors. Finally, we show in vivo efficacy of the non-BBB penetrable drugs OTSSP167 and trametinib in AT/RT xenografts, demonstrating the therapeutic implications of the observed BBB deficiencies and validating MEK/MELK inhibition as a potential treatment. Conclusion Altogether, we developed a combination treatment strategy for AT/RT based on MEK/MELK inhibition and identify therapeutically exploitable BBB deficiencies in these tumors.
Collapse
Affiliation(s)
- Michaël H Meel
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Miriam Guillén Navarro
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Mark C de Gooijer
- Division of Pharmacology/Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Dennis S Metselaar
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Piotr Waranecki
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Marjolein Breur
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Tonny Lagerweij
- Department of Neurosurgery, Neuro-oncology Research Group, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Laurine E Wedekind
- Department of Neurosurgery, Neuro-oncology Research Group, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jan Koster
- Department of Oncogenomics, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Marianne D van de Wetering
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Pediatric Oncology, Academic Medical Center, Emma Children's Hospital, Amsterdam, Netherlands
| | - Netteke Schouten-van Meeteren
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Pediatric Oncology, Academic Medical Center, Emma Children's Hospital, Amsterdam, Netherlands
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology/Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Timothy N Phoenix
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati/Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Gertjan J L Kaspers
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Esther Hulleman
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
38
|
Malandraki-Miller S, Riley PR. Use of artificial intelligence to enhance phenotypic drug discovery. Drug Discov Today 2021; 26:887-901. [PMID: 33484947 DOI: 10.1016/j.drudis.2021.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/28/2020] [Accepted: 01/15/2021] [Indexed: 01/17/2023]
Abstract
Research and development (R&D) productivity across the pharmaceutical industry has received close scrutiny over the past two decades, especially taking into consideration reports of attrition rates and the colossal cost for drug development. The respective merits of the two main drug discovery approaches, phenotypic and target based, have divided opinion across the research community, because each hold different advantages for identifying novel molecular entities with a successful path to the market. Nevertheless, both have low translatability in the clinic. Artificial intelligence (AI) and adoption of machine learning (ML) tools offer the promise of revolutionising drug development, and overcoming obstacles in the drug discovery pipeline. Here, we assess the potential of target-driven and phenotypic-based approaches and offer a holistic description of the current state of the field, from both a scientific and industry perspective. With the emerging partnerships between AI/ML and pharma still in their relative infancy, we investigate the potential and current limitations with a particular focus on phenotypic drug discovery. Finally, we emphasise the value of public-private partnerships (PPPs) and cross-disciplinary collaborations to foster innovation and facilitate efficient drug discovery programmes.
Collapse
Affiliation(s)
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
39
|
Discovery of a new molecule inducing melanoma cell death: dual AMPK/MELK targeting for novel melanoma therapies. Cell Death Dis 2021; 12:64. [PMID: 33431809 PMCID: PMC7801734 DOI: 10.1038/s41419-020-03344-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
In the search of biguanide-derived molecules against melanoma, we have discovered and developed a series of bioactive products and identified the promising new compound CRO15. This molecule exerted anti-melanoma effects on cells lines and cells isolated from patients including the ones derived from tumors resistant to BRAF inhibitors. Moreover, CRO15 was able to decrease viability of cells lines from a broad range of cancer types. This compound acts by two distinct mechanisms. First by activating the AMPK pathway induced by a mitochondrial disorder. Second by inhibition of MELK kinase activity, which induces cell cycle arrest and activation of DNA damage repair pathways by p53 and REDD1 activation. All of these mechanisms activate autophagic and apoptotic processes resulting in melanoma cell death. The strong efficacy of CRO15 to reduce the growth of melanoma xenograft sensitive or resistant to BRAF inhibitors opens interesting perspective.
Collapse
|
40
|
Grand Moursel L, Visser M, Servant G, Durmus S, Zuurmond AM. CRISPRing future medicines. Expert Opin Drug Discov 2021; 16:463-473. [PMID: 33322954 DOI: 10.1080/17460441.2021.1850687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: The ability to engineer mammalian genomes in a quick and cost-effective way has led to rapid adaptation of CRISPR technology in biomedical research. CRISPR-based engineering has the potential to accelerate drug discovery, to support the reduction of high attrition rate in drug development and to enhance development of cell and gene-based therapies.Areas covered: How CRISPR technology is transforming drug discovery is discussed in this review. From target identification to target validation in both in vitro and in vivo models, CRISPR technology is positively impacting the early stages of drug development by providing a straightforward way to genome engineering. This property also attracted attention for CRISPR application in the cell and gene therapy area.Expert opinion: CRISPR technology is rapidly becoming the preferred tool for genome engineering and nowadays it is hard to imagine the drug discovery pipeline without this technology. With the years to come, CRISPR technology will undoubtedly be further refined and will flourish into a mature technology that will play a key role in supporting genome engineering requirements in the drug discovery pipeline as well as in cell and gene therapy development.
Collapse
Affiliation(s)
| | - Mijke Visser
- Charles River Laboratories, Leiden, The Netherlands
| | | | - Selvi Durmus
- Charles River Laboratories, Leiden, The Netherlands
| | | |
Collapse
|
41
|
Emmerich CH, Gamboa LM, Hofmann MCJ, Bonin-Andresen M, Arbach O, Schendel P, Gerlach B, Hempel K, Bespalov A, Dirnagl U, Parnham MJ. Improving target assessment in biomedical research: the GOT-IT recommendations. Nat Rev Drug Discov 2021; 20:64-81. [PMID: 33199880 PMCID: PMC7667479 DOI: 10.1038/s41573-020-0087-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
Academic research plays a key role in identifying new drug targets, including understanding target biology and links between targets and disease states. To lead to new drugs, however, research must progress from purely academic exploration to the initiation of efforts to identify and test a drug candidate in clinical trials, which are typically conducted by the biopharma industry. This transition can be facilitated by a timely focus on target assessment aspects such as target-related safety issues, druggability and assayability, as well as the potential for target modulation to achieve differentiation from established therapies. Here, we present recommendations from the GOT-IT working group, which have been designed to support academic scientists and funders of translational research in identifying and prioritizing target assessment activities and in defining a critical path to reach scientific goals as well as goals related to licensing, partnering with industry or initiating clinical development programmes. Based on sets of guiding questions for different areas of target assessment, the GOT-IT framework is intended to stimulate academic scientists' awareness of factors that make translational research more robust and efficient, and to facilitate academia-industry collaboration.
Collapse
Affiliation(s)
| | - Lorena Martinez Gamboa
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- QUEST Center for Transforming Biomedical Research, Berlin Institute of Health, Berlin, Germany
| | - Martine C J Hofmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine & Pharmacology TMP, Frankfurt am Main, Germany
| | - Marc Bonin-Andresen
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Olga Arbach
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- SPARK-Validation Fund, Berlin Institute of Health, Berlin, Germany
| | - Pascal Schendel
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Katja Hempel
- Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Anton Bespalov
- PAASP GmbH, Heidelberg, Germany
- Valdman Institute of Pharmacology, Pavlov Medical University, St. Petersburg, Russia
| | - Ulrich Dirnagl
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- QUEST Center for Transforming Biomedical Research, Berlin Institute of Health, Berlin, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine & Pharmacology TMP, Frankfurt am Main, Germany
- Faculty of Biochemistry, Chemistry & Pharmacy, J.W. Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
42
|
PIG-1 MELK-dependent phosphorylation of nonmuscle myosin II promotes apoptosis through CES-1 Snail partitioning. PLoS Genet 2020; 16:e1008912. [PMID: 32946434 PMCID: PMC7527206 DOI: 10.1371/journal.pgen.1008912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/30/2020] [Accepted: 07/29/2020] [Indexed: 01/06/2023] Open
Abstract
The mechanism(s) through which mammalian kinase MELK promotes tumorigenesis is not understood. We find that the C. elegans orthologue of MELK, PIG-1, promotes apoptosis by partitioning an anti-apoptotic factor. The C. elegans NSM neuroblast divides to produce a larger cell that differentiates into a neuron and a smaller cell that dies. We find that in this context, PIG-1 MELK is required for partitioning of CES-1 Snail, a transcriptional repressor of the pro-apoptotic gene egl-1 BH3-only. pig-1 MELK is controlled by both a ces-1 Snail- and par-4 LKB1-dependent pathway, and may act through phosphorylation and cortical enrichment of nonmuscle myosin II prior to neuroblast division. We propose that pig-1 MELK-induced local contractility of the actomyosin network plays a conserved role in the acquisition of the apoptotic fate. Our work also uncovers an auto-regulatory loop through which ces-1 Snail controls its own activity through the formation of a gradient of CES-1 Snail protein. Apoptosis is critical for the elimination of ‘unwanted’ cells. What distinguishes wanted from unwanted cells in developing animals is poorly understood. We report that in the C. elegans NSM neuroblast lineage, the level of CES-1, a Snail-family member and transcriptional repressor of the pro-apoptotic gene egl-1, contributes to this process. In addition, we demonstrate that C. elegans PIG-1, the orthologue of mammalian proto-oncoprotein MELK, plays a critical role in controlling CES-1Snail levels. Specifically, during NSM neuroblast division, PIG-1MELK controls partitioning of CES-1Snail into one but not the other daughter cell thereby promoting the making of one wanted and one unwanted cell. Furthermore, we present evidence that PIG-1MELK acts prior to NSM neuroblast division by locally activating the actomyosin network.
Collapse
|
43
|
Noorani I, Bradley A, de la Rosa J. CRISPR and transposon in vivo screens for cancer drivers and therapeutic targets. Genome Biol 2020; 21:204. [PMID: 32811551 PMCID: PMC7437018 DOI: 10.1186/s13059-020-02118-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Human cancers harbor substantial genetic, epigenetic, and transcriptional changes, only some of which drive oncogenesis at certain times during cancer evolution. Identifying the cancer-driver alterations amongst the vast swathes of "passenger" changes still remains a major challenge. Transposon and CRISPR screens in vivo provide complementary methods for achieving this, and each platform has its own advantages. Here, we review recent major technological breakthroughs made with these two approaches and highlight future directions. We discuss how each genetic screening platform can provide unique insight into cancer evolution, including intra-tumoral heterogeneity, metastasis, and immune evasion, presenting transformative opportunities for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Imran Noorani
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
- Department of Neurosurgery, University of Cambridge, Cambridge, CB2 0QQ, UK.
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Allan Bradley
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Jorge de la Rosa
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
44
|
Girish V, Sheltzer JM. A CRISPR Competition Assay to Identify Cancer Genetic Dependencies. Bio Protoc 2020; 10:e3682. [PMID: 33659353 DOI: 10.21769/bioprotoc.3682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/29/2020] [Accepted: 05/28/2020] [Indexed: 11/02/2022] Open
Abstract
The CRISPR/Cas9 system is a powerful tool for genome editing, wherein the RNA-guided nuclease Cas9 can be directed to introduce double-stranded breaks (DSBs) at a targeted locus. In mammalian cells, these DSBs are typically repaired through error-prone processes, resulting in insertions or deletions (indels) at the targeted locus. Researchers can use these Cas9-mediated lesions to probe the consequences of loss-of-function perturbations in genes of interest. Here, we describe an optimized protocol to identify specific genes required for cancer cell fitness through a CRISPR-mediated cellular competition assay. Identifying these genetic dependencies is of utmost importance, as they provide potential targets for anti-cancer drug development. This protocol provides researchers with a robust and scalable approach to investigate gene dependencies in a variety of cell lines and cancer types and to validate the results of high-throughput or whole-genome screens.
Collapse
Affiliation(s)
- Vishruth Girish
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jason M Sheltzer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
45
|
Haley B, Roudnicky F. Functional Genomics for Cancer Drug Target Discovery. Cancer Cell 2020; 38:31-43. [PMID: 32442401 DOI: 10.1016/j.ccell.2020.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/06/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022]
Abstract
Functional genomics describes a field of biology that uses a range of approaches for assessing gene function with high-throughput molecular, genetic, and cellular technologies. The near limitless potential for applying these concepts to study the activities of all genetic loci has completely upended how today's cancer biologists tackle drug target discovery. We provide an overview of contemporary functional genomics platforms, highlighting areas of distinction and complementarity across technologies, so as to aid in the development or interpretation of cancer-focused screening efforts.
Collapse
Affiliation(s)
- Benjamin Haley
- Molecular Biology Department, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Filip Roudnicky
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland.
| |
Collapse
|
46
|
McDonald IM, Graves LM. Enigmatic MELK: The controversy surrounding its complex role in cancer. J Biol Chem 2020; 295:8195-8203. [PMID: 32350113 DOI: 10.1074/jbc.rev120.013433] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Ser/Thr protein kinase MELK (maternal embryonic leucine zipper kinase) has been considered an attractive therapeutic target for managing cancer since 2005. Studies using expression analysis have indicated that MELK expression is higher in numerous cancer cells and tissues than in their normal, nonneoplastic counterparts. Further, RNAi-mediated MELK depletion impairs proliferation of multiple cancers, including triple-negative breast cancer (TNBC), and these growth defects can be rescued with exogenous WT MELK, but not kinase-dead MELK complementation. Pharmacological MELK inhibition with OTS167 (alternatively called OTSSP167) and NVS-MELK8a, among other small molecules, also impairs cancer cell growth. These collective results led to MELK being classified as essential for cancer proliferation. More recently, in 2017, the proliferation of TNBC and other cancer cell lines was reported to be unaffected by genetic CRISPR/Cas9-mediated MELK deletion, calling into question the essentiality of this kinase in cancer. To date, the requirement of MELK in cancer remains controversial, and mechanisms underlying the disparate growth effects observed with RNAi, pharmacological inhibition, and CRISPR remain unclear. Our objective with this review is to highlight the evidence on both sides of this controversy, to provide commentary on the purported requirement of MELK in cancer, and to emphasize the need for continued elucidation of the functions of MELK.
Collapse
Affiliation(s)
- Ian M McDonald
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lee M Graves
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA .,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA.,UNC Michael Hooker Proteomics Core Facility, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
47
|
Liu E, Zhang ZZ, Cheng X, Liu X, Cheng L. SCNrank: spectral clustering for network-based ranking to reveal potential drug targets and its application in pancreatic ductal adenocarcinoma. BMC Med Genomics 2020; 13:50. [PMID: 32241274 PMCID: PMC7119297 DOI: 10.1186/s12920-020-0681-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is the most common pancreatic malignancy. Due to its wide heterogeneity, PDAC acts aggressively and responds poorly to most chemotherapies, causing an urgent need for the development of new therapeutic strategies. Cell lines have been used as the foundation for drug development and disease modeling. CRISPR-Cas9 plays a key role in every step-in drug discovery: from target identification and validation to preclinical cancer cell testing. Using cell-line models and CRISPR-Cas9 technology together make drug target prediction feasible. However, there is still a large gap between predicted results and actionable targets in real tumors. Biological network models provide great modus to mimic genetic interactions in real biological systems, which can benefit gene perturbation studies and potential target identification for treating PDAC. Nevertheless, building a network model that takes cell-line data and CRISPR-Cas9 data as input to accurately predict potential targets that will respond well on real tissue remains unsolved. Methods We developed a novel algorithm ‘Spectral Clustering for Network-based target Ranking’ (SCNrank) that systematically integrates three types of data: expression profiles from tumor tissue, normal tissue and cell-line PDAC; protein-protein interaction network (PPI); and CRISPR-Cas9 data to prioritize potential drug targets for PDAC. The whole algorithm can be classified into three steps: 1. using STRING PPI network skeleton, SCNrank constructs tissue-specific networks with PDAC tumor and normal pancreas tissues from expression profiles; 2. With the same network skeleton, SCNrank constructs cell-line-specific networks using the cell-line PDAC expression profiles and CRISPR-Cas 9 data from pancreatic cancer cell-lines; 3. SCNrank applies a novel spectral clustering approach to reduce data dimension and generate gene clusters that carry common features from both networks. Finally, SCNrank applies a scoring scheme called ‘Target Influence score’ (TI), which estimates a given target’s influence towards the cluster it belongs to, for scoring and ranking each drug target. Results We applied SCNrank to analyze 263 expression profiles, CRPSPR-Cas9 data from 22 different pancreatic cancer cell-lines and the STRING protein-protein interaction (PPI) network. With SCNrank, we successfully constructed an integrated tissue PDAC network and an integrated cell-line PDAC network, both of which contain 4414 selected genes that are overexpressed in tumor tissue samples. After clustering, 4414 genes are distributed into 198 clusters, which include 367 targets of FDA approved drugs. These drug targets are all scored and ranked by their TI scores, which we defined to measure their influence towards the network. We validated top-ranked targets in three aspects: Firstly, mapping them onto the existing clinical drug targets of PDAC to measure the concordance. Secondly, we performed enrichment analysis to these drug targets and the clusters there are within, to reveal functional associations between clusters and PDAC; Thirdly, we performed survival analysis for the top-ranked targets to connect targets with clinical outcomes. Survival analysis reveals that overexpression of three top-ranked genes, PGK1, HMMR and POLE2, significantly increases the risk of death in PDAC patients. Conclusion SCNrank is an unbiased algorithm that systematically integrates multiple types of omics data to do potential drug target selection and ranking. SCNrank shows great capability in predicting drug targets for PDAC. Pancreatic cancer-associated gene candidates predicted by our SCNrank approach have the potential to guide genetics-based anti-pancreatic drug discovery.
Collapse
Affiliation(s)
- Enze Liu
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
| | - Zhuang Zhuang Zhang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Xiaolin Cheng
- College of Pharmacy, Division of Medicinal Chemistry and Pharmacognosy, the Ohio State University, Columbus, OH, 43210, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA.
| | - Lijun Cheng
- Department of Biomedical informatics, College of medicine, the Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
48
|
Rolver MG, Elingaard-Larsen LO, Andersen AP, Counillon L, Pedersen SF. Pyrazine ring-based Na +/H + exchanger (NHE) inhibitors potently inhibit cancer cell growth in 3D culture, independent of NHE1. Sci Rep 2020; 10:5800. [PMID: 32242030 PMCID: PMC7118118 DOI: 10.1038/s41598-020-62430-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/12/2020] [Indexed: 12/24/2022] Open
Abstract
The Na+/H+ exchanger-1 (NHE1) supports tumour growth, making NHE1 inhibitors of interest in anticancer therapy, yet their molecular effects are incompletely characterized. Here, we demonstrate that widely used pyrazinoylguanidine-type NHE1 inhibitors potently inhibit growth and survival of cancer cell spheroids, in a manner unrelated to NHE1 inhibition. Cancer and non-cancer cells were grown as 3-dimensional (3D) spheroids and treated with pyrazinoylguanidine-type (amiloride, 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), 5-(N,N-dimethyl)-amiloride (DMA), and 5-(N,N-hexamethylene)-amiloride (HMA)) or benzoylguanidine-type (eniporide, cariporide) NHE1 inhibitors for 2-7 days, followed by analyses of viability, compound accumulation, and stress- and death-associated signalling. EIPA, DMA and HMA dose-dependently reduced breast cancer spheroid viability while cariporide and eniporide had no effect. Although both compound types inhibited NHE1, the toxic effects were NHE1-independent, as inhibitor-induced viability loss was unaffected by NHE1 CRISPR/Cas9 knockout. EIPA and HMA accumulated extensively in spheroids, and this was associated with marked vacuolization, apparent autophagic arrest, ER stress, mitochondrial- and DNA damage and poly-ADP-ribose-polymerase (PARP) cleavage, indicative of severe stress and paraptosis-like cell death. Pyrazinoylguanidine-induced cell death was partially additive to that induced by conventional anticancer therapies and strongly additive to extracellular-signal-regulated-kinase (ERK) pathway inhibition. Thus, in addition to inhibiting NHE1, pyrazinoylguanidines exert potent, NHE1-independent cancer cell death, pointing to a novel relevance for these compounds in anticancer therapy.
Collapse
Affiliation(s)
- Michala G Rolver
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Line O Elingaard-Larsen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Anne P Andersen
- Center for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laurent Counillon
- Université Côte d'Azur, CNRS, France LP2M, 28 Avenue de Valombrose, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Stine F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
49
|
|
50
|
Jordan B. [Significant target misidentification]. Med Sci (Paris) 2020; 36:87-89. [PMID: 32014106 DOI: 10.1051/medsci/2019258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bertrand Jordan
- UMR 7268 ADÉS, Aix-Marseille, Université /EFS/CNRS ; CoReBio PACA, case 901, Parc scientifique de Luminy, 13288 Marseille Cedex 09, France
| |
Collapse
|