1
|
Meneau F, Lapébie P, Daldello EM, Le T, Chevalier S, Assaf S, Houliston E, Jessus C, Miot M. ARPP19 phosphorylation site evolution and the switch in cAMP control of oocyte maturation in vertebrates. Development 2024; 151:dev202655. [PMID: 39576213 DOI: 10.1242/dev.202655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024]
Abstract
cAMP-PKA signaling initiates the crucial process of oocyte meiotic maturation in many animals, but inhibits it in vertebrates. To address this 'cAMP paradox', we exchanged the key PKA substrate ARPP19 between representative species, the vertebrate Xenopus and the cnidarian Clytia, comparing its phosphorylation and function. We found that, as in Xenopus, Clytia maturing oocytes undergo ARPP19 phosphorylation on a highly conserved Gwl site, which inhibits PP2A and promotes M-phase entry. In contrast, despite a PKA phosphorylation signature motif recognizable across most animals, Clytia ARPP19 was only poorly phosphorylated by PKA in vitro and in vivo. Furthermore, unlike Xenopus ARPP19, exogenous Clytia ARPP19 did not delay Xenopus oocyte maturation. We conclude that, in Clytia, ARPP19 does not intervene in oocyte maturation initiation because of both poor recognition by PKA and the absence of effectors that mediate vertebrate oocyte prophase arrest. We propose that ancestral ARPP19 phosphorylated by Gwl has retained a key role in M-phase across eukaryotes and has acquired new functions during animal evolution mediated by enhanced PKA phosphorylation, allowing co-option into oocyte maturation regulation in the vertebrate lineage.
Collapse
Affiliation(s)
- Ferdinand Meneau
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, F-75005 Paris, France
| | - Pascal Lapébie
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), F-06230 Villefranche-sur-mer, France
| | - Enrico Maria Daldello
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, F-75005 Paris, France
| | - Tran Le
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, F-75005 Paris, France
| | - Sandra Chevalier
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), F-06230 Villefranche-sur-mer, France
| | - Sarah Assaf
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), F-06230 Villefranche-sur-mer, France
| | - Evelyn Houliston
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), F-06230 Villefranche-sur-mer, France
| | - Catherine Jessus
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, F-75005 Paris, France
| | - Marika Miot
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, F-75005 Paris, France
| |
Collapse
|
2
|
Gao Y, Tan DS, Girbig M, Hu H, Zhou X, Xie Q, Yeung SW, Lee KS, Ho SY, Cojocaru V, Yan J, Hochberg GKA, de Mendoza A, Jauch R. The emergence of Sox and POU transcription factors predates the origins of animal stem cells. Nat Commun 2024; 15:9868. [PMID: 39543096 PMCID: PMC11564870 DOI: 10.1038/s41467-024-54152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Stem cells are a hallmark of animal multicellularity. Sox and POU transcription factors are associated with stemness and were believed to be animal innovations, reported absent in their unicellular relatives. Here we describe unicellular Sox and POU factors. Choanoflagellate and filasterean Sox proteins have DNA-binding specificity similar to mammalian Sox2. Choanoflagellate-but not filasterean-Sox can replace Sox2 to reprogram mouse somatic cells into induced pluripotent stem cells (iPSCs) through interacting with the mouse POU member Oct4. In contrast, choanoflagellate POU has a distinct DNA-binding profile and cannot generate iPSCs. Ancestrally reconstructed Sox proteins indicate that iPSC formation capacity is pervasive among resurrected sequences, thus loss of Sox2-like properties fostered Sox family subfunctionalization. Our findings imply that the evolution of animal stem cells might have involved the exaptation of a pre-existing set of transcription factors, where pre-animal Sox was biochemically similar to extant Sox, whilst POU factors required evolutionary innovations.
Collapse
Affiliation(s)
- Ya Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Daisylyn Senna Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Mathias Girbig
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Haoqing Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Xiaomin Zhou
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Qianwen Xie
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- School of Medicine, Northwest University, Xi'an, China
| | - Shi Wing Yeung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Kin Shing Lee
- Transgenic Core Facility of the Centre for Comparative Medicine Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sik Yin Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory for Primate Embryogenesis, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
| | - Vlad Cojocaru
- STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania
- Computational Structural Biology Group, Utrecht University, Utrecht, The Netherlands
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Jian Yan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- School of Medicine, Northwest University, Xi'an, China
| | - Georg K A Hochberg
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University, Marburg, Germany
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
- Centre for Epigenetics, Queen Mary University of London, Lodon, UK.
| | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Centre for Translational Stem Cell Biology, Hong Kong SAR, China.
| |
Collapse
|
3
|
Olivetta M, Bhickta C, Chiaruttini N, Burns J, Dudin O. A multicellular developmental program in a close animal relative. Nature 2024; 635:382-389. [PMID: 39506108 DOI: 10.1038/s41586-024-08115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024]
Abstract
All animals develop from a single-celled zygote into a complex multicellular organism through a series of precisely orchestrated processes1,2. Despite the remarkable conservation of early embryogenesis across animals, the evolutionary origins of how and when this process first emerged remain elusive. Here, by combining time-resolved imaging and transcriptomic profiling, we show that single cells of the ichthyosporean Chromosphaera perkinsii-a close relative that diverged from animals about 1 billion years ago3,4-undergo symmetry breaking and develop through cleavage divisions to produce a prolonged multicellular colony with distinct co-existing cell types. Our findings about the autonomous and palintomic developmental program of C. perkinsii hint that such multicellular development either is much older than previously thought or evolved convergently in ichthyosporeans.
Collapse
Affiliation(s)
- Marine Olivetta
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Chandni Bhickta
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Nicolas Chiaruttini
- Bioimaging and Optics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - John Burns
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA.
| | - Omaya Dudin
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
4
|
Ansel M, Ramachandran K, Dey G, Brunet T. Origin and evolution of microvilli. Biol Cell 2024; 116:e2400054. [PMID: 39233537 DOI: 10.1111/boc.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND INFORMATION Microvilli are finger-like, straight, and stable cellular protrusions that are filled with F-actin and present a stereotypical length. They are present in a broad range of cell types across the animal tree of life and mediate several fundamental functions, including nutrient absorption, photosensation, and mechanosensation. Therefore, understanding the origin and evolution of microvilli is key to reconstructing the evolution of animal cellular form and function. Here, we review the current state of knowledge on microvilli evolution and perform a bioinformatic survey of the conservation of genes encoding microvillar proteins in animals and their unicellular relatives. RESULTS We first present a detailed description of mammalian microvilli based on two well-studied examples, the brush border microvilli of enterocytes and the stereocilia of hair cells. We also survey the broader diversity of microvilli and discuss similarities and differences between microvilli and filopodia. Based on our bioinformatic survey coupled with carefully reconstructed molecular phylogenies, we reconstitute the order of evolutionary appearance of microvillar proteins. We document the stepwise evolutionary assembly of the "molecular microvillar toolkit" with notable bursts of innovation at two key nodes: the last common filozoan ancestor (correlated with the evolution of microvilli distinct from filopodia) and the last common choanozoan ancestor (correlated with the emergence of inter-microvillar adhesions). CONCLUSION AND SIGNIFICANCE We conclude with a scenario for the evolution of microvilli from filopodia-like ancestral structures in unicellular precursors of animals.
Collapse
Affiliation(s)
- Mylan Ansel
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Paris, France
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
- Master BioSciences, Département de Biologie, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Kaustubh Ramachandran
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Thibaut Brunet
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Paris, France
| |
Collapse
|
5
|
Brunet T. Clues to the origin of embryonic development in animals. Nature 2024; 635:291-293. [PMID: 39506165 DOI: 10.1038/d41586-024-03468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
|
6
|
Liu H, Steenwyk JL, Zhou X, Schultz DT, Kocot KM, Shen XX, Rokas A, Li Y. A taxon-rich and genome-scale phylogeny of Opisthokonta. PLoS Biol 2024; 22:e3002794. [PMID: 39283949 PMCID: PMC11426530 DOI: 10.1371/journal.pbio.3002794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/26/2024] [Accepted: 08/07/2024] [Indexed: 09/27/2024] Open
Abstract
Ancient divergences within Opisthokonta-a major lineage that includes organisms in the kingdoms Animalia, Fungi, and their unicellular relatives-remain contentious. To assess progress toward a genome-scale Opisthokonta phylogeny, we conducted the most taxon rich phylogenomic analysis using sets of genes inferred with different orthology inference methods and established the geological timeline of Opisthokonta diversification. We also conducted sensitivity analysis by subsampling genes or taxa from the full data matrix based on filtering criteria previously shown to improve phylogenomic inference. We found that approximately 85% of internal branches were congruent across data matrices and the approaches used. Notably, the use of different orthology inference methods was a substantial contributor to the observed incongruence: analyses using the same set of orthologs showed high congruence of 97% to 98%, whereas different sets of orthologs resulted in somewhat lower congruence (87% to 91%). Examination of unicellular Holozoa relationships suggests that the instability observed across varying gene sets may stem from weak phylogenetic signals. Our results provide a comprehensive Opisthokonta phylogenomic framework that will be useful for illuminating ancient evolutionary episodes concerning the origin and diversification of the 2 major eukaryotic kingdoms and emphasize the importance of investigating effects of orthology inference on phylogenetic analyses to resolve ancient divergences.
Collapse
Affiliation(s)
- Hongyue Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Darrin T Schultz
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
- Monterey Bay Aquarium Research Institute, Moss Landing, California, United States of America
| | - Kevin M Kocot
- University of Alabama, Department of Biological Sciences & Alabama Museum of Natural History, Tuscaloosa, Alabama, United States of America
| | - Xing-Xing Shen
- Institute of Insect Sciences and Centre for Evolutionary and Organismal Biology, Zhejiang University, Hangzhou, China
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
7
|
Vosseberg J, van Hooff JJE, Köstlbacher S, Panagiotou K, Tamarit D, Ettema TJG. The emerging view on the origin and early evolution of eukaryotic cells. Nature 2024; 633:295-305. [PMID: 39261613 DOI: 10.1038/s41586-024-07677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/05/2024] [Indexed: 09/13/2024]
Abstract
The origin of the eukaryotic cell, with its compartmentalized nature and generally large size compared with bacterial and archaeal cells, represents a cornerstone event in the evolution of complex life on Earth. In a process referred to as eukaryogenesis, the eukaryotic cell is believed to have evolved between approximately 1.8 and 2.7 billion years ago from its archaeal ancestors, with a symbiosis with a bacterial (proto-mitochondrial) partner being a key event. In the tree of life, the branch separating the first from the last common ancestor of all eukaryotes is long and lacks evolutionary intermediates. As a result, the timing and driving forces of the emergence of complex eukaryotic features remain poorly understood. During the past decade, environmental and comparative genomic studies have revealed vital details about the identity and nature of the host cell and the proto-mitochondrial endosymbiont, enabling a critical reappraisal of hypotheses underlying the symbiotic origin of the eukaryotic cell. Here we outline our current understanding of the key players and events underlying the emergence of cellular complexity during the prokaryote-to-eukaryote transition and discuss potential avenues of future research that might provide new insights into the enigmatic origin of the eukaryotic cell.
Collapse
Affiliation(s)
- Julian Vosseberg
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jolien J E van Hooff
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Stephan Köstlbacher
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Kassiani Panagiotou
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Daniel Tamarit
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
8
|
Shabardina V, Dharamshi JE, Ara PS, Antó M, Bascón FJ, Suga H, Marshall W, Scazzocchio C, Casacuberta E, Ruiz-Trillo I. Ichthyosporea: a window into the origin of animals. Commun Biol 2024; 7:915. [PMID: 39075159 PMCID: PMC11286789 DOI: 10.1038/s42003-024-06608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024] Open
Abstract
Ichthyosporea is an underexplored group of unicellular eukaryotes closely related to animals. Thanks to their phylogenetic position, genomic content, and development through a multinucleate coenocyte reminiscent of some animal embryos, the members of Ichthyosporea are being increasingly recognized as pivotal to the study of animal origins. We delve into the existing knowledge of Ichthyosporea, identify existing gaps and discuss their life cycles, genomic insights, development, and potential to be model organisms. We also discuss the underestimated diversity of ichthyosporeans, based on new environmental data analyses. This review will be an essential resource for researchers venturing into the study of ichthyosporeans.
Collapse
Affiliation(s)
- Victoria Shabardina
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.
| | - Jennah E Dharamshi
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden
| | - Patricia S Ara
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Meritxell Antó
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Fernando J Bascón
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Hiroshi Suga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
| | - Wyth Marshall
- Bluefrontier Biological Services, Campbell River, BC, Canada
| | - Claudio Scazzocchio
- Department of Life Sciences, Imperial College London, London, UK
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Elena Casacuberta
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
9
|
Ros-Rocher N. The evolution of multicellularity and cell differentiation symposium: bridging evolutionary cell biology and computational modelling using emerging model systems. Biol Open 2024; 13:bio061720. [PMID: 39373528 PMCID: PMC11554258 DOI: 10.1242/bio.061720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
'The evolution of multicellularity and cell differentiation' symposium, organized as part of the EuroEvoDevo 2024 meeting on June 25-28th in Helsinki (Finland), addressed recent advances on the molecular and mechanistic basis for the evolution of multicellularity and cell differentiation in eukaryotes. The symposium involved over 100 participants and brought together 10 speakers at diverse career stages. Talks covered various topics at the interface of developmental biology, evolutionary cell biology, comparative genomics, computational biology, and ecology using animal, protist, algal and mathematical models. This symposium offered a unique opportunity for interdisciplinary dialog among researchers working on different systems, especially in promoting collaborations and aligning strategies for studying emerging model species. Moreover, it fostered opportunities to promote early career researchers in the field and opened discussions of ongoing work and unpublished results. In this Meeting Review, we aim to promote the research, capture the spirit of the meeting, and present key topics discussed within this dynamic, growing and open community.
Collapse
Affiliation(s)
- Núria Ros-Rocher
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, 25-28 Rue du Dr. Roux, 75015 Paris, France
| |
Collapse
|
10
|
Sarre LA, Kim IV, Ovchinnikov V, Olivetta M, Suga H, Dudin O, Sebé-Pedrós A, de Mendoza A. DNA methylation enables recurrent endogenization of giant viruses in an animal relative. SCIENCE ADVANCES 2024; 10:eado6406. [PMID: 38996012 PMCID: PMC11244446 DOI: 10.1126/sciadv.ado6406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/07/2024] [Indexed: 07/14/2024]
Abstract
5-Methylcytosine (5mC) is a widespread silencing mechanism that controls genomic parasites. In eukaryotes, 5mC has gained complex roles in gene regulation beyond parasite control, yet 5mC has also been lost in many lineages. The causes for 5mC retention and its genomic consequences are still poorly understood. Here, we show that the protist closely related to animals Amoebidium appalachense features both transposon and gene body methylation, a pattern reminiscent of invertebrates and plants. Unexpectedly, hypermethylated genomic regions in Amoebidium derive from viral insertions, including hundreds of endogenized giant viruses, contributing 14% of the proteome. Using a combination of inhibitors and genomic assays, we demonstrate that 5mC silences these giant virus insertions. Moreover, alternative Amoebidium isolates show polymorphic giant virus insertions, highlighting a dynamic process of infection, endogenization, and purging. Our results indicate that 5mC is critical for the controlled coexistence of newly acquired viral DNA into eukaryotic genomes, making Amoebidium a unique model to understand the hybrid origins of eukaryotic DNA.
Collapse
Affiliation(s)
- Luke A. Sarre
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Iana V. Kim
- CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Vladimir Ovchinnikov
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Marine Olivetta
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Hiroshi Suga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
| | - Omaya Dudin
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Arnau Sebé-Pedrós
- CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- ICREA, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
11
|
Holzem M, Boutros M, Holstein TW. The origin and evolution of Wnt signalling. Nat Rev Genet 2024; 25:500-512. [PMID: 38374446 DOI: 10.1038/s41576-024-00699-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
The Wnt signal transduction pathway has essential roles in the formation of the primary body axis during development, cellular differentiation and tissue homeostasis. This animal-specific pathway has been studied extensively in contexts ranging from developmental biology to medicine for more than 40 years. Despite its physiological importance, an understanding of the evolutionary origin and primary function of Wnt signalling has begun to emerge only recently. Recent studies on very basal metazoan species have shown high levels of conservation of components of both canonical and non-canonical Wnt signalling pathways. Furthermore, some pathway proteins have been described also in non-animal species, suggesting that recruitment and functional adaptation of these factors has occurred in metazoans. In this Review, we summarize the current state of research regarding the evolutionary origin of Wnt signalling, its ancestral function and the characteristics of the primal Wnt ligand, with emphasis on the importance of genomic studies in various pre-metazoan and basal metazoan species.
Collapse
Affiliation(s)
- Michaela Holzem
- Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany.
- Department of Cell and Molecular Biology & BioQuant, Heidelberg University, Heidelberg, Germany.
- Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany.
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Michael Boutros
- Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology & BioQuant, Heidelberg University, Heidelberg, Germany
- Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Thomas W Holstein
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
12
|
Shah H, Olivetta M, Bhickta C, Ronchi P, Trupinić M, Tromer EC, Tolić IM, Schwab Y, Dudin O, Dey G. Life-cycle-coupled evolution of mitosis in close relatives of animals. Nature 2024; 630:116-122. [PMID: 38778110 PMCID: PMC11153136 DOI: 10.1038/s41586-024-07430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Eukaryotes have evolved towards one of two extremes along a spectrum of strategies for remodelling the nuclear envelope during cell division: disassembling the nuclear envelope in an open mitosis or constructing an intranuclear spindle in a closed mitosis1,2. Both classes of mitotic remodelling involve key differences in the core division machinery but the evolutionary reasons for adopting a specific mechanism are unclear. Here we use an integrated comparative genomics and ultrastructural imaging approach to investigate mitotic strategies in Ichthyosporea, close relatives of animals and fungi. We show that species in this clade have diverged towards either a fungal-like closed mitosis or an animal-like open mitosis, probably to support distinct multinucleated or uninucleated states. Our results indicate that multinucleated life cycles favour the evolution of closed mitosis.
Collapse
Affiliation(s)
- Hiral Shah
- Cell Biology and Biophysics, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| | - Marine Olivetta
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Chandni Bhickta
- Cell Biology and Biophysics, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Paolo Ronchi
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Monika Trupinić
- Division of Molecular Biology, Ruđer Bošković Institute (RBI), Zagreb, Croatia
| | - Eelco C Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute (RBI), Zagreb, Croatia
| | - Yannick Schwab
- Cell Biology and Biophysics, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Omaya Dudin
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| | - Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
13
|
Sartorius AM, Rokicki J, Birkeland S, Bettella F, Barth C, de Lange AMG, Haram M, Shadrin A, Winterton A, Steen NE, Schwarz E, Stein DJ, Andreassen OA, van der Meer D, Westlye LT, Theofanopoulou C, Quintana DS. An evolutionary timeline of the oxytocin signaling pathway. Commun Biol 2024; 7:471. [PMID: 38632466 PMCID: PMC11024182 DOI: 10.1038/s42003-024-06094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Oxytocin is a neuropeptide associated with both psychological and somatic processes like parturition and social bonding. Although oxytocin homologs have been identified in many species, the evolutionary timeline of the entire oxytocin signaling gene pathway has yet to be described. Using protein sequence similarity searches, microsynteny, and phylostratigraphy, we assigned the genes supporting the oxytocin pathway to different phylostrata based on when we found they likely arose in evolution. We show that the majority (64%) of genes in the pathway are 'modern'. Most of the modern genes evolved around the emergence of vertebrates or jawed vertebrates (540 - 530 million years ago, 'mya'), including OXTR, OXT and CD38. Of those, 45% were under positive selection at some point during vertebrate evolution. We also found that 18% of the genes in the oxytocin pathway are 'ancient', meaning their emergence dates back to cellular organisms and opisthokonta (3500-1100 mya). The remaining genes (18%) that evolved after ancient and before modern genes were classified as 'medium-aged'. Functional analyses revealed that, in humans, medium-aged oxytocin pathway genes are highly expressed in contractile organs, while modern genes in the oxytocin pathway are primarily expressed in the brain and muscle tissue.
Collapse
Affiliation(s)
- Alina M Sartorius
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Jaroslav Rokicki
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Siri Birkeland
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Francesco Bettella
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Claudia Barth
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ann-Marie G de Lange
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Marit Haram
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Mental Health and Suicide, Norwegian Institute of Public Health, Oslo, Norway
| | - Alexey Shadrin
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Adriano Winterton
- Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway
| | - Nils Eiel Steen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Emanuel Schwarz
- Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dan J Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Daniel S Quintana
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway.
- Department of Psychology, University of Oslo, Oslo, Norway.
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway.
- NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
14
|
Domazet-Lošo M, Široki T, Šimičević K, Domazet-Lošo T. Macroevolutionary dynamics of gene family gain and loss along multicellular eukaryotic lineages. Nat Commun 2024; 15:2663. [PMID: 38531970 DOI: 10.1038/s41467-024-47017-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
The gain and loss of genes fluctuate over evolutionary time in major eukaryotic clades. However, the full profile of these macroevolutionary trajectories is still missing. To give a more inclusive view on the changes in genome complexity across the tree of life, here we recovered the evolutionary dynamics of gene family gain and loss ranging from the ancestor of cellular organisms to 352 eukaryotic species. We show that in all considered lineages the gene family content follows a common evolutionary pattern, where the number of gene families reaches the highest value at a major evolutionary and ecological transition, and then gradually decreases towards extant organisms. This supports theoretical predictions and suggests that the genome complexity is often decoupled from commonly perceived organismal complexity. We conclude that simplification by gene family loss is a dominant force in Phanerozoic genomes of various lineages, probably underpinned by intense ecological specializations and functional outsourcing.
Collapse
Affiliation(s)
- Mirjana Domazet-Lošo
- Department of Applied Computing, Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000, Zagreb, Croatia.
| | - Tin Široki
- Department of Applied Computing, Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000, Zagreb, Croatia
| | - Korina Šimičević
- Department of Applied Computing, Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000, Zagreb, Croatia
| | - Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia.
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000, Zagreb, Croatia.
| |
Collapse
|
15
|
Ros-Rocher N, Brunet T. What is it like to be a choanoflagellate? Sensation, processing and behavior in the closest unicellular relatives of animals. Anim Cogn 2023; 26:1767-1782. [PMID: 37067637 PMCID: PMC10770216 DOI: 10.1007/s10071-023-01776-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023]
Abstract
All animals evolved from a single lineage of unicellular precursors more than 600 million years ago. Thus, the biological and genetic foundations for animal sensation, cognition and behavior must necessarily have arisen by modifications of pre-existing features in their unicellular ancestors. Given that the single-celled ancestors of the animal kingdom are extinct, the only way to reconstruct how these features evolved is by comparing the biology and genomic content of extant animals to their closest living relatives. Here, we reconstruct the Umwelt (the subjective, perceptive world) inhabited by choanoflagellates, a group of unicellular (or facultatively multicellular) aquatic microeukaryotes that are the closest living relatives of animals. Although behavioral research on choanoflagellates remains patchy, existing evidence shows that they are capable of chemosensation, photosensation and mechanosensation. These processes often involve specialized sensorimotor cellular appendages (cilia, microvilli, and/or filopodia) that resemble those that underlie perception in most animal sensory cells. Furthermore, comparative genomics predicts an extensive "sensory molecular toolkit" in choanoflagellates, which both provides a potential basis for known behaviors and suggests the existence of a largely undescribed behavioral complexity that presents exciting avenues for future research. Finally, we discuss how facultative multicellularity in choanoflagellates might help us understand how evolution displaced the locus of decision-making from a single cell to a collective, and how a new space of behavioral complexity might have become accessible in the process.
Collapse
Affiliation(s)
- Núria Ros-Rocher
- Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Institut Pasteur, Université Paris-Cité, CNRS UMR3691, 25-28 Rue du Docteur Roux, 75015, Paris, France
| | - Thibaut Brunet
- Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Institut Pasteur, Université Paris-Cité, CNRS UMR3691, 25-28 Rue du Docteur Roux, 75015, Paris, France.
| |
Collapse
|
16
|
Le AV, Větrovský T, Barucic D, Saraiva JP, Dobbler PT, Kohout P, Pospíšek M, da Rocha UN, Kléma J, Baldrian P. Improved recovery and annotation of genes in metagenomes through the prediction of fungal introns. Mol Ecol Resour 2023; 23:1800-1811. [PMID: 37561110 DOI: 10.1111/1755-0998.13852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/27/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
Metagenomics provides a tool to assess the functional potential of environmental and host-associated microbiomes based on the analysis of environmental DNA: assembly, gene prediction and annotation. While gene prediction is straightforward for most bacterial and archaeal taxa, it has limited applicability in the majority of eukaryotic organisms, including fungi that contain introns in gene coding sequences. As a consequence, eukaryotic genes are underrepresented in metagenomics datasets and our understanding of the contribution of fungi and other eukaryotes to microbiome functioning is limited. Here, we developed a machine intelligence-based algorithm that predicts fungal introns in environmental DNA with reasonable precision and used it to improve the annotation of environmental metagenomes. Intron removal increased the number of predicted genes by up to 9.1% and improved the annotation of several others. The proportion of newly predicted genes increased with the share of eukaryotic genes in the metagenome and-within fungal taxa-increased with the number of introns per gene. Our approach provides a tool named SVMmycointron for improved metagenome annotation, especially of microbiomes with a high proportion of eukaryotes. The scripts described in the paper are made publicly available and can be readily utilized by microbiome researchers analysing metagenomics data.
Collapse
Affiliation(s)
- Anh Vu Le
- Department of Computer Science, Czech Technical University in Prague, Praha, Czech Republic
| | - Tomáš Větrovský
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Praha, Czech Republic
| | - Denis Barucic
- Department of Computer Science, Czech Technical University in Prague, Praha, Czech Republic
| | - Joao Pedro Saraiva
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Priscila Thiago Dobbler
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Praha, Czech Republic
| | - Petr Kohout
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Praha, Czech Republic
| | - Martin Pospíšek
- Department of Genetics and Microbiology, Charles University, Praha, Czech Republic
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Jiří Kléma
- Department of Computer Science, Czech Technical University in Prague, Praha, Czech Republic
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Praha, Czech Republic
| |
Collapse
|
17
|
Abstract
Animal tissues are made up of multiple cell types that are increasingly well-characterized, yet our understanding of the core principles that govern tissue organization is still incomplete. This is in part because many observable tissue characteristics, such as cellular composition and spatial patterns, are emergent properties, and as such, they cannot be explained through the knowledge of individual cells alone. Here we propose a complex systems theory perspective to address this fundamental gap in our understanding of tissue biology. We introduce the concept of cell categories, which is based on cell relations rather than cell identity. Based on these notions we then discuss common principles of tissue modularity, introducing compositional, structural, and functional tissue modules. Cell diversity and cell relations provide a basis for a new perspective on the underlying principles of tissue organization in health and disease.
Collapse
Affiliation(s)
- Miri Adler
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Arun R Chavan
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ruslan Medzhitov
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
18
|
Najle SR, Grau-Bové X, Elek A, Navarrete C, Cianferoni D, Chiva C, Cañas-Armenteros D, Mallabiabarrena A, Kamm K, Sabidó E, Gruber-Vodicka H, Schierwater B, Serrano L, Sebé-Pedrós A. Stepwise emergence of the neuronal gene expression program in early animal evolution. Cell 2023; 186:4676-4693.e29. [PMID: 37729907 PMCID: PMC10580291 DOI: 10.1016/j.cell.2023.08.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/13/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
The assembly of the neuronal and other major cell type programs occurred early in animal evolution. We can reconstruct this process by studying non-bilaterians like placozoans. These small disc-shaped animals not only have nine morphologically described cell types and no neurons but also show coordinated behaviors triggered by peptide-secreting cells. We investigated possible neuronal affinities of these peptidergic cells using phylogenetics, chromatin profiling, and comparative single-cell genomics in four placozoans. We found conserved cell type expression programs across placozoans, including populations of transdifferentiating and cycling cells, suggestive of active cell type homeostasis. We also uncovered fourteen peptidergic cell types expressing neuronal-associated components like the pre-synaptic scaffold that derive from progenitor cells with neurogenesis signatures. In contrast, earlier-branching animals like sponges and ctenophores lacked this conserved expression. Our findings indicate that key neuronal developmental and effector gene modules evolved before the advent of cnidarian/bilaterian neurons in the context of paracrine cell signaling.
Collapse
Affiliation(s)
- Sebastián R Najle
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Xavier Grau-Bové
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anamaria Elek
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Navarrete
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Damiano Cianferoni
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Chiva
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Didac Cañas-Armenteros
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Arrate Mallabiabarrena
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Kai Kamm
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Harald Gruber-Vodicka
- Max Planck Institute for Marine Microbiology, Bremen, Germany; Zoological Institute, Christian Albrechts University, Kiel, Germany
| | - Bernd Schierwater
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany; American Museum of Natural History, Richard Gilder Graduate School, NY, USA
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Barcelona, Spain
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Barcelona, Spain.
| |
Collapse
|
19
|
Zheng JW, Lu Y, Yang YF, Huang D, Li DW, Wang X, Gao Y, Yang WD, Guan Y, Li HY. Systematic dissection of genomic features determining the vast diversity of conotoxins. BMC Genomics 2023; 24:598. [PMID: 37814244 PMCID: PMC10561478 DOI: 10.1186/s12864-023-09689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Conus, a highly diverse species of venomous predators, has attracted significant attention in neuroscience and new drug development due to their rich collection of neuroactive peptides called conotoxins. Recent advancements in transcriptome, proteome, and genome analyses have facilitated the identification of conotoxins within Conus' venom glands, providing insights into the genetic features and evolutionary patterns of conotoxin genes. However, the underlying mechanism behind the extraordinary hypervariability of conotoxins remains largely unknown. RESULTS We analyzed the transcriptomes of 34 Conus species, examining various tissues such as the venom duct, venom bulb, and salivary gland, leading to the identification of conotoxin genes. Genetic variation analysis revealed that a subset of these genes (15.78% of the total) in Conus species underwent positive selection (Ka/Ks > 1, p < 0.01). Additionally, we reassembled and annotated the genome of C. betulinus, uncovering 221 conotoxin-encoding genes. These genes primarily consisted of three exons, with a significant portion showing high transcriptional activity in the venom ducts. Importantly, the flanking regions and adjacent introns of conotoxin genes exhibited a higher prevalence of transposon elements, suggesting their potential contribution to the extensive variability observed in conotoxins. Furthermore, we detected genome duplication in C. betulinus, which likely contributed to the expansion of conotoxin gene numbers. Interestingly, our study also provided evidence of introgression among Conus species, indicating that interspecies hybridization may have played a role in shaping the evolution of diverse conotoxin genes. CONCLUSIONS This study highlights the impact of adaptive evolution and introgressive hybridization on the genetic diversity of conotoxin genes and the evolution of Conus. We also propose a hypothesis suggesting that transposable elements might significantly contribute to the remarkable diversity observed in conotoxins. These findings not only enhance our understanding of peptide genetic diversity but also present a novel approach for peptide bioengineering.
Collapse
Affiliation(s)
- Jian-Wei Zheng
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- College of Food Science and Engineering, Foshan University of Science and Technology, Foshan, 528231, China
| | - Yang Lu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yu-Feng Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Dan Huang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Da-Wei Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xiang Wang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yang Gao
- Gulou Hospital, Nanjing University, Nanjing, China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
20
|
Ruiz-Trillo I, Kin K, Casacuberta E. The Origin of Metazoan Multicellularity: A Potential Microbial Black Swan Event. Annu Rev Microbiol 2023; 77:499-516. [PMID: 37406343 DOI: 10.1146/annurev-micro-032421-120023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The emergence of animals from their unicellular ancestors is a major evolutionary event. Thanks to the study of diverse close unicellular relatives of animals, we now have a better grasp of what the unicellular ancestor of animals was like. However, it is unclear how that unicellular ancestor of animals became the first animals. To explain this transition, two popular theories, the choanoblastaea and the synzoospore, have been proposed. We will revise and expose the flaws in these two theories while showing that, due to the limits of our current knowledge, the origin of animals is a biological black swan event. As such, the origin of animals defies retrospective explanations. Therefore, we should be extra careful not to fall for confirmation biases based on few data and, instead, embrace this uncertainty and be open to alternative scenarios. With the aim to broaden the potential explanations on how animals emerged, we here propose two novel and alternative scenarios. In any case, to find the answer to how animals evolved, additional data will be required, as will the hunt for microscopic creatures that are closely related to animals but have not yet been sampled and studied.
Collapse
Affiliation(s)
- Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain;
- ICREA, Barcelona, Spain
| | - Koryu Kin
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain;
| | - Elena Casacuberta
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain;
| |
Collapse
|
21
|
LeBleu VS, Dai J, Tsutakawa S, MacDonald BA, Alge JL, Sund M, Xie L, Sugimoto H, Tainer J, Zon LI, Kalluri R. Identification of unique α4 chain structure and conserved antiangiogenic activity of α3NC1 type IV collagen in zebrafish. Dev Dyn 2023; 252:1046-1060. [PMID: 37002899 PMCID: PMC10524752 DOI: 10.1002/dvdy.590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/17/2023] [Accepted: 02/28/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Type IV collagen is an abundant component of basement membranes in all multicellular species and is essential for the extracellular scaffold supporting tissue architecture and function. Lower organisms typically have two type IV collagen genes, encoding α1 and α2 chains, in contrast with the six genes in humans, encoding α1-α6 chains. The α chains assemble into trimeric protomers, the building blocks of the type IV collagen network. The detailed evolutionary conservation of type IV collagen network remains to be studied. RESULTS We report on the molecular evolution of type IV collagen genes. The zebrafish α4 non-collagenous (NC1) domain, in contrast with its human ortholog, contains an additional cysteine residue and lacks the M93 and K211 residues involved in sulfilimine bond formation between adjacent protomers. This may alter α4 chain interactions with other α chains, as supported by temporal and anatomic expression patterns of collagen IV chains during the zebrafish development. Despite the divergence between zebrafish and human α3 NC1 domain (endogenous angiogenesis inhibitor, Tumstatin), the zebrafish α3 NC1 domain exhibits conserved antiangiogenic activity in human endothelial cells. CONCLUSIONS Our work supports type IV collagen is largely conserved between zebrafish and humans, with a possible difference involving the α4 chain.
Collapse
Affiliation(s)
- Valerie S LeBleu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Feinberg School of Medicine and Kellogg School of Management, Northwestern University, Chicago, Illinois, USA
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Jianli Dai
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Susan Tsutakawa
- Lawrence Berkeley National Laboratory, University of California, Berkeley, California, USA
| | - Brian A MacDonald
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Joseph L Alge
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Malin Sund
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Liang Xie
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - John Tainer
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Leonard I Zon
- Department of Hematology/Oncology, Children's Hospital, Boston, Massachusetts, USA
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
22
|
Ros-Rocher N, Kidner R, Gerdt C, Davidson W, Ruiz-Trillo I, Gerdt J. Chemical factors induce aggregative multicellularity in a close unicellular relative of animals. Proc Natl Acad Sci U S A 2023; 120:e2216668120. [PMID: 37094139 PMCID: PMC10161120 DOI: 10.1073/pnas.2216668120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/14/2023] [Indexed: 04/26/2023] Open
Abstract
Regulated cellular aggregation is an essential process for development and healing in many animal tissues. In some animals and a few distantly related unicellular species, cellular aggregation is regulated by diffusible chemical cues. However, it is unclear whether regulated cellular aggregation was part of the life cycles of the first multicellular animals and/or their unicellular ancestors. To fill this gap, we investigated the triggers of cellular aggregation in one of animals' closest unicellular living relatives-the filasterean Capsaspora owczarzaki. We discovered that Capsaspora aggregation is induced by chemical cues, as observed in some of the earliest branching animals and other unicellular species. Specifically, we found that calcium ions and lipids present in lipoproteins function together to induce aggregation of viable Capsaspora cells. We also found that this multicellular stage is reversible as depletion of the cues triggers disaggregation, which can be overcome upon reinduction. Our finding demonstrates that chemically regulated aggregation is important across diverse members of the holozoan clade. Therefore, this phenotype was plausibly integral to the life cycles of the unicellular ancestors of animals.
Collapse
Affiliation(s)
- Núria Ros-Rocher
- Department of Functional Genomics and Evolution, Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), 08003 Barcelona, Spain
- Department of Cell Biology and Infection and Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France
| | - Ria Q. Kidner
- Department of Chemistry, Indiana University, Bloomington, IN47405
| | - Catherine Gerdt
- Department of Chemistry, Indiana University, Bloomington, IN47405
| | - W. Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH45221
| | - Iñaki Ruiz-Trillo
- Department of Functional Genomics and Evolution, Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010Barcelona, Spain
| | - Joseph P. Gerdt
- Department of Chemistry, Indiana University, Bloomington, IN47405
| |
Collapse
|
23
|
Rusin LY. Evolution of homology: From archetype towards a holistic concept of cell type. J Morphol 2023; 284:e21569. [PMID: 36789784 DOI: 10.1002/jmor.21569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
The concept of homology lies in the heart of comparative biological science. The distinction between homology as structure and analogy as function has shaped the evolutionary paradigm for a century and formed the axis of comparative anatomy and embryology, which accept the identity of structure as a ground measure of relatedness. The advent of single-cell genomics overturned the classical view of cell homology by establishing a backbone regulatory identity of cell types, the basic biological units bridging the molecular and phenotypic dimensions, to reveal that the cell is the most flexible unit of living matter and that many approaches of classical biology need to be revised to understand evolution and diversity at the cellular level. The emerging theory of cell types explicitly decouples cell identity from phenotype, essentially allowing for the divergence of evolutionarily related morphotypes beyond recognition, as well as it decouples ontogenetic cell lineage from cell-type phylogeny, whereby explicating that cell types can share common descent regardless of their structure, function or developmental origin. The article succinctly summarizes current progress and opinion in this field and formulates a more generalistic view of biological cell types as avatars, transient or terminal cell states deployed in a continuum of states by the developmental programme of one and the same omnipotent cell, capable of changing or combining identities with distinct evolutionary histories or inventing ad hoc identities that never existed in evolution or development. It highlights how the new logic grounded in the regulatory nature of cell identity transforms the concepts of cell homology and phenotypic stability, suggesting that cellular evolution is inherently and massively network-like, with one-to-one homologies being rather uncommon and restricted to shallower levels of the animal tree of life.
Collapse
Affiliation(s)
- Leonid Y Rusin
- Laboratory for Mathematic Methods and Models in Bioinformatics, Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
- EvoGenome Analytics LLC, Odintsovo, Moscow Region, Russia
| |
Collapse
|
24
|
van Rooijen LE, Tromer EC, van Hooff JJE, Kops GJPL, Snel B. Increased Sampling and Intracomplex Homologies Favor Vertical Over Horizontal Inheritance of the Dam1 Complex. Genome Biol Evol 2023; 15:evad017. [PMID: 36790109 PMCID: PMC9998035 DOI: 10.1093/gbe/evad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/23/2022] [Accepted: 01/21/2023] [Indexed: 02/16/2023] Open
Abstract
Kinetochores connect chromosomes to spindle microtubules to ensure their correct segregation during cell division. Kinetochores of human and yeasts are largely homologous, their ability to track depolymerizing microtubules, however, is carried out by the nonhomologous complexes Ska1-C and Dam1-C, respectively. We previously reported the unique anti-correlating phylogenetic profiles of Dam1-C and Ska-C found among a wide variety of eukaryotes. Based on these profiles and the limited presence of Dam1-C, we speculated that horizontal gene transfer could have played a role in the evolutionary history of Dam1-C. Here, we present an expanded analysis of Dam1-C evolution, using additional genome as well as transcriptome sequences and recently published 3D structures. This analysis revealed a wider and more complete presence of Dam1-C in Cryptista, Rhizaria, Ichthyosporea, CRuMs, and Colponemidia. The fungal Dam1-C cryo-EM structure supports earlier hypothesized intracomplex homologies, which enables the reconstruction of rooted and unrooted phylogenies. The rooted tree of concatenated Dam1-C subunits is statistically consistent with the species tree of eukaryotes, suggesting that Dam1-C is ancient, and that the present-day phylogenetic distribution is best explained by multiple, independent losses and no horizontal gene transfer was involved. Furthermore, we investigated the ancient origin of Dam1-C via profile-versus-profile searches. Homology among 8 out of the 10 Dam1-C subunits suggests that the complex largely evolved from a single multimerizing subunit that diversified into a hetero-octameric core via stepwise subunit duplication and subfunctionalization of the subunits before the origin of the last eukaryotic common ancestor.
Collapse
Affiliation(s)
- Laura E van Rooijen
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Eelco C Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Jolien J E van Hooff
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
25
|
Chen Y, Ma T, Zhang T, Ma L. Trends in the evolution of intronless genes in Poaceae. FRONTIERS IN PLANT SCIENCE 2023; 14:1065631. [PMID: 36875616 PMCID: PMC9978806 DOI: 10.3389/fpls.2023.1065631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Intronless genes (IGs), which are a feature of prokaryotes, are a fascinating group of genes that are also present in eukaryotes. In the current study, a comparison of Poaceae genomes revealed that the origin of IGs may have involved ancient intronic splicing, reverse transcription, and retrotranspositions. Additionally, IGs exhibit the typical features of rapid evolution, including recent duplications, variable copy numbers, low divergence between paralogs, and high non-synonymous to synonymous substitution ratios. By tracing IG families along the phylogenetic tree, we determined that the evolutionary dynamics of IGs differed among Poaceae subfamilies. IG families developed rapidly before the divergence of Pooideae and Oryzoideae and expanded slowly after the divergence. In contrast, they emerged gradually and consistently in the Chloridoideae and Panicoideae clades during evolution. Furthermore, IGs are expressed at low levels. Under relaxed selection pressure, retrotranspositions, intron loss, and gene duplications and conversions may promote the evolution of IGs. The comprehensive characterization of IGs is critical for in-depth studies on intron functions and evolution as well as for assessing the importance of introns in eukaryotes.
Collapse
Affiliation(s)
- Yong Chen
- *Correspondence: Tingting Zhang, ; Lei Ma,
| | | | | | - Lei Ma
- *Correspondence: Tingting Zhang, ; Lei Ma,
| |
Collapse
|
26
|
Cofre J, Saalfeld K. The first embryo, the origin of cancer and animal phylogeny. I. A presentation of the neoplastic process and its connection with cell fusion and germline formation. Front Cell Dev Biol 2023; 10:1067248. [PMID: 36684435 PMCID: PMC9846517 DOI: 10.3389/fcell.2022.1067248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/16/2022] [Indexed: 01/05/2023] Open
Abstract
The decisive role of Embryology in understanding the evolution of animal forms is founded and deeply rooted in the history of science. It is recognized that the emergence of multicellularity would not have been possible without the formation of the first embryo. We speculate that biophysical phenomena and the surrounding environment of the Ediacaran ocean were instrumental in co-opting a neoplastic functional module (NFM) within the nucleus of the first zygote. Thus, the neoplastic process, understood here as a biological phenomenon with profound embryologic implications, served as the evolutionary engine that favored the formation of the first embryo and cancerous diseases and allowed to coherently create and recreate body shapes in different animal groups during evolution. In this article, we provide a deep reflection on the Physics of the first embryogenesis and its contribution to the exaptation of additional NFM components, such as the extracellular matrix. Knowledge of NFM components, structure, dynamics, and origin advances our understanding of the numerous possibilities and different innovations that embryos have undergone to create animal forms via Neoplasia during evolutionary radiation. The developmental pathways of Neoplasia have their origins in ctenophores and were consolidated in mammals and other apical groups.
Collapse
Affiliation(s)
- Jaime Cofre
- Laboratório de Embriologia Molecular e Câncer, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil,*Correspondence: Jaime Cofre,
| | - Kay Saalfeld
- Laboratório de Filogenia Animal, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
27
|
Gomis-Rüth FX, Stöcker W. Structural and evolutionary insights into astacin metallopeptidases. Front Mol Biosci 2023; 9:1080836. [PMID: 36685277 PMCID: PMC9848320 DOI: 10.3389/fmolb.2022.1080836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
The astacins are a family of metallopeptidases (MPs) that has been extensively described from animals. They are multidomain extracellular proteins, which have a conserved core architecture encompassing a signal peptide for secretion, a prodomain or prosegment and a zinc-dependent catalytic domain (CD). This constellation is found in the archetypal name-giving digestive enzyme astacin from the European crayfish Astacus astacus. Astacin catalytic domains span ∼200 residues and consist of two subdomains that flank an extended active-site cleft. They share several structural elements including a long zinc-binding consensus sequence (HEXXHXXGXXH) immediately followed by an EXXRXDRD motif, which features a family-specific glutamate. In addition, a downstream SIMHY-motif encompasses a "Met-turn" methionine and a zinc-binding tyrosine. The overall architecture and some structural features of astacin catalytic domains match those of other more distantly related MPs, which together constitute the metzincin clan of metallopeptidases. We further analysed the structures of PRO-, MAM, TRAF, CUB and EGF-like domains, and described their essential molecular determinants. In addition, we investigated the distribution of astacins across kingdoms and their phylogenetic origin. Through extensive sequence searches we found astacin CDs in > 25,000 sequences down the tree of life from humans beyond Metazoa, including Choanoflagellata, Filasterea and Ichtyosporea. We also found < 400 sequences scattered across non-holozoan eukaryotes including some fungi and one virus, as well as in selected taxa of archaea and bacteria that are pathogens or colonizers of animal hosts, but not in plants. Overall, we propose that astacins originate in the root of Holozoa consistent with Darwinian descent and that the latter genes might be the result of horizontal gene transfer from holozoan donors.
Collapse
Affiliation(s)
- F. Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (IBMB), Higher Scientific Research Council (CSIC), Barcelona, Catalonia, Spain,*Correspondence: F. Xavier Gomis-Rüth, ; Walter Stöcker,
| | - Walter Stöcker
- Institute of Molecular Physiology (IMP), Johannes Gutenberg-University Mainz (JGU), Mainz, Germany,*Correspondence: F. Xavier Gomis-Rüth, ; Walter Stöcker,
| |
Collapse
|
28
|
Bajgar A, Krejčová G. On the origin of the functional versatility of macrophages. Front Physiol 2023; 14:1128984. [PMID: 36909237 PMCID: PMC9998073 DOI: 10.3389/fphys.2023.1128984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Macrophages represent the most functionally versatile cells in the animal body. In addition to recognizing and destroying pathogens, macrophages remove senescent and exhausted cells, promote wound healing, and govern tissue and metabolic homeostasis. In addition, many specialized populations of tissue-resident macrophages exhibit highly specialized functions essential for the function of specific organs. Sometimes, however, macrophages cease to perform their protective function and their seemingly incomprehensible response to certain stimuli leads to pathology. In this study, we address the question of the origin of the functional versatility of macrophages. To this end, we have searched for the evolutionary origin of macrophages themselves and for the emergence of their characteristic properties. We hypothesize that many of the characteristic features of proinflammatory macrophages evolved in the unicellular ancestors of animals, and that the functional repertoire of macrophage-like amoebocytes further expanded with the evolution of multicellularity and the increasing complexity of tissues and organ systems. We suggest that the entire repertoire of macrophage functions evolved by repurposing and diversification of basic functions that evolved early in the evolution of metazoans under conditions barely comparable to that in tissues of multicellular organisms. We believe that by applying this perspective, we may find an explanation for the otherwise counterintuitive behavior of macrophages in many human pathologies.
Collapse
Affiliation(s)
- Adam Bajgar
- Faculty of Science, Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia.,Biology Centre, Institute of Entomology, Academy of Sciences, Ceske Budejovice, Czechia
| | - Gabriela Krejčová
- Faculty of Science, Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia.,Biology Centre, Institute of Entomology, Academy of Sciences, Ceske Budejovice, Czechia
| |
Collapse
|
29
|
Divergent genomic trajectories predate the origin of animals and fungi. Nature 2022; 609:747-753. [PMID: 36002568 PMCID: PMC9492541 DOI: 10.1038/s41586-022-05110-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/14/2022] [Indexed: 12/27/2022]
Abstract
Animals and fungi have radically distinct morphologies, yet both evolved within the same eukaryotic supergroup: Opisthokonta1,2. Here we reconstructed the trajectory of genetic changes that accompanied the origin of Metazoa and Fungi since the divergence of Opisthokonta with a dataset that includes four novel genomes from crucial positions in the Opisthokonta phylogeny. We show that animals arose only after the accumulation of genes functionally important for their multicellularity, a tendency that began in the pre-metazoan ancestors and later accelerated in the metazoan root. By contrast, the pre-fungal ancestors experienced net losses of most functional categories, including those gained in the path to Metazoa. On a broad-scale functional level, fungal genomes contain a higher proportion of metabolic genes and diverged less from the last common ancestor of Opisthokonta than did the gene repertoires of Metazoa. Metazoa and Fungi also show differences regarding gene gain mechanisms. Gene fusions are more prevalent in Metazoa, whereas a larger fraction of gene gains were detected as horizontal gene transfers in Fungi and protists, in agreement with the long-standing idea that transfers would be less relevant in Metazoa due to germline isolation3-5. Together, our results indicate that animals and fungi evolved under two contrasting trajectories of genetic change that predated the origin of both groups. The gradual establishment of two clearly differentiated genomic contexts thus set the stage for the emergence of Metazoa and Fungi.
Collapse
|
30
|
Gahan JM, Leclère L, Hernandez-Valladares M, Rentzsch F. A developmental role for the chromatin-regulating CoREST complex in the cnidarian Nematostella vectensis. BMC Biol 2022; 20:184. [PMID: 35999597 PMCID: PMC9400249 DOI: 10.1186/s12915-022-01385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromatin-modifying proteins are key players in the regulation of development and cell differentiation in animals. Most chromatin modifiers, however, predate the evolution of animal multicellularity, and how they gained new functions and became integrated into the regulatory networks underlying development is unclear. One way this may occur is the evolution of new scaffolding proteins that integrate multiple chromatin regulators into larger complexes that facilitate coordinated deposition or removal of different chromatin modifications. We test this hypothesis by analyzing the evolution of the CoREST-Lsd1-HDAC complex. RESULTS Using phylogenetic analyses, we show that a bona fide CoREST homolog is found only in choanoflagellates and animals. We then use the sea anemone Nematostella vectensis as a model for early branching metazoans and identify a conserved CoREST complex by immunoprecipitation and mass spectrometry of an endogenously tagged Lsd1 allele. In addition to CoREST, Lsd1 and HDAC1/2 this complex contains homologs of HMG20A/B and PHF21A, two subunits that have previously only been identified in mammalian CoREST complexes. NvCoREST expression overlaps fully with that of NvLsd1 throughout development, with higher levels in differentiated neural cells. NvCoREST mutants, generated using CRISPR-Cas9, fail to develop beyond the primary polyp stage, thereby revealing essential roles during development and for the differentiation of cnidocytes that phenocopy NvLsd1 mutants. We also show that this requirement is cell autonomous using a cell-type-specific rescue approach. CONCLUSIONS The identification of a Nematostella CoREST-Lsd1-HDAC1/2 complex, its similarity in composition with the vertebrate complex, and the near-identical expression patterns and mutant phenotypes of NvCoREST and NvLsd1 suggest that the complex was present before the last common cnidarian-bilaterian ancestor and thus represents an ancient component of the animal developmental toolkit.
Collapse
Affiliation(s)
- James M Gahan
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.
| | - Lucas Leclère
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-Sur-Mer (LBDV), 06230, Villefranche-sur-Mer, France
| | - Maria Hernandez-Valladares
- Department of Physical Chemistry, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
- Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5020, Bergen, Norway
| | - Fabian Rentzsch
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.
- Department for Biological Sciences, University of Bergen, Thormøhlensgate 53, 5006, Bergen, Norway.
| |
Collapse
|
31
|
Cavalier-Smith T. Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi. PROTOPLASMA 2022; 259:487-593. [PMID: 34940909 PMCID: PMC9010356 DOI: 10.1007/s00709-021-01665-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/03/2021] [Indexed: 05/19/2023]
Abstract
I thoroughly discuss ciliary transition zone (TZ) evolution, highlighting many overlooked evolutionarily significant ultrastructural details. I establish fundamental principles of TZ ultrastructure and evolution throughout eukaryotes, inferring unrecognised ancestral TZ patterns for Fungi, opisthokonts, and Corticata (i.e., kingdoms Plantae and Chromista). Typical TZs have a dense transitional plate (TP), with a previously overlooked complex lattice as skeleton. I show most eukaryotes have centriole/TZ junction acorn-V filaments (whose ancestral function was arguably supporting central pair microtubule-nucleating sites; I discuss their role in centriole growth). Uniquely simple malawimonad TZs (without TP, simpler acorn) pinpoint the eukaryote tree's root between them and TP-bearers, highlighting novel superclades. I integrate TZ/ciliary evolution with the best multiprotein trees, naming newly recognised major eukaryote clades and revise megaclassification of basal kingdom Protozoa. Recent discovery of non-photosynthetic phagotrophic flagellates with genome-free plastids (Rhodelphis), the sister group to phylum Rhodophyta (red algae), illuminates plant and chromist early evolution. I show previously overlooked marked similarities in cell ultrastructure between Rhodelphis and Picomonas, formerly considered an early diverging chromist. In both a nonagonal tube lies between their TP and an annular septum surrounding their 9+2 ciliary axoneme. Mitochondrial dense condensations and mitochondrion-linked smooth endomembrane cytoplasmic partitioning cisternae further support grouping Picomonadea and Rhodelphea as new plant phylum Pararhoda. As Pararhoda/Rhodophyta form a robust clade on site-heterogeneous multiprotein trees, I group Pararhoda and Rhodophyta as new infrakingdom Rhodaria of Plantae within subkingdom Biliphyta, which also includes Glaucophyta with fundamentally similar TZ, uniquely in eukaryotes. I explain how biliphyte TZs generated viridiplant stellate-structures.
Collapse
|
32
|
Dudin O, Wielgoss S, New AM, Ruiz-Trillo I. Regulation of sedimentation rate shapes the evolution of multicellularity in a close unicellular relative of animals. PLoS Biol 2022; 20:e3001551. [PMID: 35349578 PMCID: PMC8963540 DOI: 10.1371/journal.pbio.3001551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/21/2022] [Indexed: 01/03/2023] Open
Abstract
Significant increases in sedimentation rate accompany the evolution of multicellularity. These increases should lead to rapid changes in ecological distribution, thereby affecting the costs and benefits of multicellularity and its likelihood to evolve. However, how genetic and cellular traits control this process, their likelihood of emergence over evolutionary timescales, and the variation in these traits as multicellularity evolves are still poorly understood. Here, using isolates of the ichthyosporean genus Sphaeroforma-close unicellular relatives of animals with brief transient multicellular life stages-we demonstrate that sedimentation rate is a highly variable and evolvable trait affected by at least 2 distinct physical mechanisms. First, we find extensive (>300×) variation in sedimentation rates for different Sphaeroforma species, mainly driven by size and density during the unicellular-to-multicellular life cycle transition. Second, using experimental evolution with sedimentation rate as a focal trait, we readily obtained, for the first time, fast settling and multicellular Sphaeroforma arctica isolates. Quantitative microscopy showed that increased sedimentation rates most often arose by incomplete cellular separation after cell division, leading to clonal "clumping" multicellular variants with increased size and density. Strikingly, density increases also arose by an acceleration of the nuclear doubling time relative to cell size. Similar size- and density-affecting phenotypes were observed in 4 additional species from the Sphaeroforma genus, suggesting that variation in these traits might be widespread in the marine habitat. By resequencing evolved isolates to high genomic coverage, we identified mutations in regulators of cytokinesis, plasma membrane remodeling, and chromatin condensation that may contribute to both clump formation and the increase in the nuclear number-to-volume ratio. Taken together, this study illustrates how extensive cellular control of density and size drive sedimentation rate variation, likely shaping the onset and further evolution of multicellularity.
Collapse
Affiliation(s)
- Omaya Dudin
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Sébastien Wielgoss
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Aaron M. New
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
33
|
Robert NSM, Sarigol F, Zimmermann B, Meyer A, Voolstra CR, Simakov O. Emergence of distinct syntenic density regimes is associated with early metazoan genomic transitions. BMC Genomics 2022; 23:143. [PMID: 35177000 PMCID: PMC8851819 DOI: 10.1186/s12864-022-08304-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/10/2022] [Indexed: 12/03/2022] Open
Abstract
Background Animal genomes are strikingly conserved in terms of local gene order (microsynteny). While some of these microsyntenies have been shown to be coregulated or to form gene regulatory blocks, the diversity of their genomic and regulatory properties across the metazoan tree of life remains largely unknown. Results Our comparative analyses of 49 animal genomes reveal that the largest gains of synteny occurred in the last common ancestor of bilaterians and cnidarians and in that of bilaterians. Depending on their node of emergence, we further show that novel syntenic blocks are characterized by distinct functional compositions (Gene Ontology terms enrichment) and gene density properties, such as high, average and low gene density regimes. This is particularly pronounced among bilaterian novel microsyntenies, most of which fall into high gene density regime associated with higher gene coexpression levels. Conversely, a majority of vertebrate novel microsyntenies display a low gene density regime associated with lower gene coexpression levels. Conclusions Our study provides first evidence for evolutionary transitions between different modes of microsyntenic block regulation that coincide with key events of metazoan evolution. Moreover, the microsyntenic profiling strategy and interactive online application (Syntenic Density Browser, available at: http://synteny.csb.univie.ac.at/) we present here can be used to explore regulatory properties of microsyntenic blocks and predict their coexpression in a wide-range of animal genomes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08304-2.
Collapse
Affiliation(s)
- Nicolas S M Robert
- Department of Neurosciences and Developmental Biology, University of Vienna, Althanstrasse 14, 1090, Wien, Austria.
| | - Fatih Sarigol
- Department of Neurosciences and Developmental Biology, University of Vienna, Althanstrasse 14, 1090, Wien, Austria
| | - Bob Zimmermann
- Department of Neurosciences and Developmental Biology, University of Vienna, Althanstrasse 14, 1090, Wien, Austria
| | - Axel Meyer
- Department of Biology, University of Konstanz, 78457, Constance, Germany
| | | | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna, Althanstrasse 14, 1090, Wien, Austria.
| |
Collapse
|
34
|
Leger MM, Ros-Rocher N, Najle SR, Ruiz-Trillo I. Rel/NF-κB Transcription Factors Emerged at the Onset of Opisthokonts. Genome Biol Evol 2022; 14:6499270. [PMID: 34999783 PMCID: PMC8763368 DOI: 10.1093/gbe/evab289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2021] [Indexed: 12/23/2022] Open
Abstract
The Rel/NF-κB transcription factor family has myriad roles in immunity, development, and differentiation in animals, and was considered a key innovation for animal multicellularity. Rel homology domain-containing proteins were previously hypothesized to have originated in a last common ancestor of animals and some of their closest unicellular relatives. However, key taxa were missing from previous analyses, necessitating a systematic investigation into the distribution and evolution of these proteins. Here, we address this knowledge gap by surveying taxonomically broad data from eukaryotes, with a special emphasis on lineages closely related to animals. We report an earlier origin for Rel/NF-κB proteins than previously described, in the last common ancestor of animals and fungi, and show that even in the sister group to fungi, these proteins contain elements that in animals are necessary for the subcellular regulation of Rel/NF-κB.
Collapse
Affiliation(s)
- Michelle M Leger
- Institute of Evolutionary Biology (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Núria Ros-Rocher
- Institute of Evolutionary Biology (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Sebastián R Najle
- Institute of Evolutionary Biology (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institute of Evolutionary Biology (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain.,Department of Genetics, Microbiology and Statistics, Institute for Research on Biodiversity, University of Barcelona, Catalonia, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
35
|
Evolution of a histone variant involved in compartmental regulation of NAD metabolism. Nat Struct Mol Biol 2021; 28:1009-1019. [PMID: 34887560 DOI: 10.1038/s41594-021-00692-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022]
Abstract
NAD metabolism is essential for all forms of life. Compartmental regulation of NAD+ consumption, especially between the nucleus and the mitochondria, is required for energy homeostasis. However, how compartmental regulation evolved remains unclear. In the present study, we investigated the evolution of the macrodomain-containing histone variant macroH2A1.1, an integral chromatin component that limits nuclear NAD+ consumption by inhibiting poly(ADP-ribose) polymerase 1 in vertebrate cells. We found that macroH2A originated in premetazoan protists. The crystal structure of the macroH2A macrodomain from the protist Capsaspora owczarzaki allowed us to identify highly conserved principles of ligand binding and pinpoint key residue substitutions, selected for during the evolution of the vertebrate stem lineage. Metabolic characterization of the Capsaspora lifecycle suggested that the metabolic function of macroH2A was associated with nonproliferative stages. Taken together, we provide insight into the evolution of a chromatin element involved in compartmental NAD regulation, relevant for understanding its metabolism and potential therapeutic applications.
Collapse
|
36
|
Urrutia A, Mitsi K, Foster R, Ross S, Carr M, Ward GM, van Aerle R, Marigomez I, Leger MM, Ruiz-Trillo I, Feist SW, Bass D. Txikispora philomaios n. sp., n. g., a Micro-Eukaryotic Pathogen of Amphipods, Reveals Parasitism and Hidden Diversity in Class Filasterea. J Eukaryot Microbiol 2021; 69:e12875. [PMID: 34726818 DOI: 10.1111/jeu.12875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study provides a morphological, ultrastructural, and phylogenetic characterization of a novel micro-eukaryotic parasite (2.3-2.6 µm) infecting amphipod genera Echinogammarus and Orchestia. Longitudinal studies across two years revealed that infection prevalence peaked in late April and May, reaching 64% in Echinogammarus sp. and 15% in Orchestia sp., but was seldom detected during the rest of the year. The parasite infected predominantly haemolymph, connective tissue, tegument, and gonad, although hepatopancreas and nervous tissue were affected in heavier infections, eliciting melanization and granuloma formation. Cell division occurred inside walled parasitic cysts, often within host haemocytes, resulting in haemolymph congestion. Small subunit (18S) rRNA gene phylogenies including related environmental sequences placed the novel parasite as a highly divergent lineage within Class Filasterea, which together with Choanoflagellatea represent the closest protistan relatives of Metazoa. We describe the new parasite as Txikispora philomaios n. sp. n. g., the first confirmed parasitic filasterean lineage, which otherwise comprises four free-living flagellates and a rarely observed endosymbiont of snails. Lineage-specific PCR probing of other hosts and surrounding environments only detected T. philomaios in the platyhelminth Procerodes sp. We expand the known diversity of Filasterea by targeted searches of metagenomic datasets, resulting in 13 previously unknown lineages from environmental samples.
Collapse
Affiliation(s)
- Ander Urrutia
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries, and Aquaculture Science (CEFAS), Barrack Road, Weymouth, DT4 8UB, UK.,Cell Biology in Environmental Toxicology Research Group, Department of Zoology and Animal Cell Biology (Faculty of Science and Technology), Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country (UPV/EHU), Areatza Pasealekua z/g, Plentzia, 48620, Basque Country, Spain
| | - Konstantina Mitsi
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona, 08003, Catalonia, Spain
| | - Rachel Foster
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Stuart Ross
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries, and Aquaculture Science (CEFAS), Barrack Road, Weymouth, DT4 8UB, UK
| | - Martin Carr
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Georgia M Ward
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Ronny van Aerle
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries, and Aquaculture Science (CEFAS), Barrack Road, Weymouth, DT4 8UB, UK
| | - Ionan Marigomez
- Cell Biology in Environmental Toxicology Research Group, Department of Zoology and Animal Cell Biology (Faculty of Science and Technology), Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country (UPV/EHU), Areatza Pasealekua z/g, Plentzia, 48620, Basque Country, Spain
| | - Michelle M Leger
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona, 08003, Catalonia, Spain.,Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and evolutionary Bioinformatics, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona, 08003, Catalonia, Spain.,Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, 08028, Catalonia, Spain.,ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Catalonia, Spain
| | - Stephen W Feist
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries, and Aquaculture Science (CEFAS), Barrack Road, Weymouth, DT4 8UB, UK
| | - David Bass
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries, and Aquaculture Science (CEFAS), Barrack Road, Weymouth, DT4 8UB, UK.,Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| |
Collapse
|
37
|
Kożyczkowska A, Najle SR, Ocaña-Pallarès E, Aresté C, Shabardina V, Ara PS, Ruiz-Trillo I, Casacuberta E. Stable transfection in protist Corallochytriumlimacisporum identifies novel cellular features among unicellular animals relatives. Curr Biol 2021; 31:4104-4110.e5. [PMID: 34293333 DOI: 10.1016/j.cub.2021.06.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/07/2021] [Accepted: 06/22/2021] [Indexed: 01/31/2023]
Abstract
The evolutionary path from protists to multicellular animals remains a mystery. Recent work on the genomes of several unicellular relatives of animals has shaped our understanding of the genetic changes that may have occurred in this transition.1-3 However, the specific cellular modifications that took place to accommodate these changes remain unclear. To address this, we need to compare metazoan cells with those of their extant relatives, which are choanoflagellates, filastereans, ichthyosporeans, and corallochytreans/pluriformeans. Interestingly, these lineages display a range of developmental patterns potentially homologous to animal ones. Genetic tools have already been established in three of those lineages.4-7 However, there are no genetic tools available for Corallochytrea. We here report the development of stable transfection in the corallochytrean Corallochytrium limacisporum. Using these tools, we discern previously unknown biological features of C. limacisporum. In particular, we identify two different paths for cell division-binary fission and coenocytic growth-that reveal a non-linear life cycle. Additionally, we found that C. limacisporum is binucleate for most of its life cycle, and that, contrary to what happens in most eukaryotes, nuclear division is decoupled from cellular division. Moreover, its actin cytoskeleton shares characteristics with both fungal and animal cells. The establishment of these tools in C. limacisporum fills an important gap in the unicellular relatives of animals, opening up new avenues of research to elucidate the specific cellular changes that occurred in the evolution of animals.
Collapse
Affiliation(s)
- Aleksandra Kożyczkowska
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Sebastián R Najle
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Eduard Ocaña-Pallarès
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Cristina Aresté
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain
| | - Victoria Shabardina
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Patricia S Ara
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain; Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal, 645, 08028 Barcelona, Catalonia, Spain; ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Catalonia, Spain.
| | - Elena Casacuberta
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain.
| |
Collapse
|
38
|
Kang S, Tice AK, Stairs CW, Jones RE, Lahr DJG, Brown MW. The integrin-mediated adhesive complex in the ancestor of animals, fungi, and amoebae. Curr Biol 2021; 31:3073-3085.e3. [PMID: 34077702 DOI: 10.1016/j.cub.2021.04.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 03/17/2021] [Accepted: 04/28/2021] [Indexed: 11/25/2022]
Abstract
Integrins are transmembrane receptors that activate signal transduction pathways upon extracellular matrix binding. The integrin-mediated adhesive complex (IMAC) mediates various cell physiological processes. Although the IMAC was thought to be specific to animals, in the past ten years these complexes were discovered in other lineages of Obazoa, the group containing animals, fungi, and several microbial eukaryotes. Very recently, many genomes and transcriptomes from Amoebozoa (the eukaryotic supergroup sister to Obazoa), other obazoans, orphan protist lineages, and the eukaryotes' closest prokaryotic relatives, have become available. To increase the resolution of where and when IMAC proteins exist and have emerged, we surveyed these newly available genomes and transcriptomes for the presence of IMAC proteins. Our results highlight that many of these proteins appear to have evolved earlier in eukaryote evolution than previously thought and that co-option of this apparently ancient protein complex was key to the emergence of animal-type multicellularity. The role of the IMACs in amoebozoans is unknown, but they play critical adhesive roles in at least some unicellular organisms.
Collapse
Affiliation(s)
- Seungho Kang
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA; Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Starkville, MS, USA
| | - Alexander K Tice
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA; Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Starkville, MS, USA
| | - Courtney W Stairs
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden; Department of Biology, Lund University, Lund, Sweden
| | - Robert E Jones
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA; Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Starkville, MS, USA
| | - Daniel J G Lahr
- Department of Zoology, University of São Paulo, São Paulo, Brazil
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA; Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Starkville, MS, USA.
| |
Collapse
|
39
|
Wang SY, Pollina EA, Wang IH, Pino LK, Bushnell HL, Takashima K, Fritsche C, Sabin G, Garcia BA, Greer PL, Greer EL. Role of epigenetics in unicellular to multicellular transition in Dictyostelium. Genome Biol 2021; 22:134. [PMID: 33947439 PMCID: PMC8094536 DOI: 10.1186/s13059-021-02360-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/22/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The evolution of multicellularity is a critical event that remains incompletely understood. We use the social amoeba, Dictyostelium discoideum, one of the rare organisms that readily transits back and forth between both unicellular and multicellular stages, to examine the role of epigenetics in regulating multicellularity. RESULTS While transitioning to multicellular states, patterns of H3K4 methylation and H3K27 acetylation significantly change. By combining transcriptomics, epigenomics, chromatin accessibility, and orthologous gene analyses with other unicellular and multicellular organisms, we identify 52 conserved genes, which are specifically accessible and expressed during multicellular states. We validated that four of these genes, including the H3K27 deacetylase hdaD, are necessary and that an SMC-like gene, smcl1, is sufficient for multicellularity in Dictyostelium. CONCLUSIONS These results highlight the importance of epigenetics in reorganizing chromatin architecture to facilitate multicellularity in Dictyostelium discoideum and raise exciting possibilities about the role of epigenetics in the evolution of multicellularity more broadly.
Collapse
Affiliation(s)
- Simon Yuan Wang
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | | | - I-Hao Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Lindsay Kristina Pino
- Department of Biochemistry and Biophysics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Henry L Bushnell
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Ken Takashima
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Colette Fritsche
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - George Sabin
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Benjamin Aaron Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Paul Lieberman Greer
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Eric Lieberman Greer
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
40
|
Lim CS, Weinstein BN, Roy SW, Brown CM. Analysis of fungal genomes reveals commonalities of intron gain or loss and functions in intron-poor species. Mol Biol Evol 2021; 38:4166-4186. [PMID: 33772558 PMCID: PMC8476143 DOI: 10.1093/molbev/msab094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous evolutionary reconstructions have concluded that early eukaryotic ancestors including both the last common ancestor of eukaryotes and of all fungi had intron-rich genomes. By contrast, some extant eukaryotes have few introns, underscoring the complex histories of intron–exon structures, and raising the question as to why these few introns are retained. Here, we have used recently available fungal genomes to address a variety of questions related to intron evolution. Evolutionary reconstruction of intron presence and absence using 263 diverse fungal species supports the idea that massive intron reduction through intron loss has occurred in multiple clades. The intron densities estimated in various fungal ancestors differ from zero to 7.6 introns per 1 kb of protein-coding sequence. Massive intron loss has occurred not only in microsporidian parasites and saccharomycetous yeasts, but also in diverse smuts and allies. To investigate the roles of the remaining introns in highly-reduced species, we have searched for their special characteristics in eight intron-poor fungi. Notably, the introns of ribosome-associated genes RPL7 and NOG2 have conserved positions; both intron-containing genes encoding snoRNAs. Furthermore, both the proteins and snoRNAs are involved in ribosome biogenesis, suggesting that the expression of the protein-coding genes and noncoding snoRNAs may be functionally coordinated. Indeed, these introns are also conserved in three-quarters of fungi species. Our study shows that fungal introns have a complex evolutionary history and underappreciated roles in gene expression.
Collapse
Affiliation(s)
- Chun Shen Lim
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Brooke N Weinstein
- Quantitative & Systems Biology, School of Natural Sciences, University of California-Merced, Merced, CA, USA.,Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Scott W Roy
- Quantitative & Systems Biology, School of Natural Sciences, University of California-Merced, Merced, CA, USA.,Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Chris M Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
41
|
The Roles of Protein Structure, Taxon Sampling, and Model Complexity in Phylogenomics: A Case Study Focused on Early Animal Divergences. BIOPHYSICA 2021. [DOI: 10.3390/biophysica1020008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite the long history of using protein sequences to infer the tree of life, the potential for different parts of protein structures to retain historical signal remains unclear. We propose that it might be possible to improve analyses of phylogenomic datasets by incorporating information about protein structure. We test this idea using the position of the root of Metazoa (animals) as a model system. We examined the distribution of “strongly decisive” sites (alignment positions that support a specific tree topology) in a dataset comprising >1500 proteins and almost 100 taxa. The proportion of each class of strongly decisive sites in different structural environments was very sensitive to the model used to analyze the data when a limited number of taxa were used but they were stable when taxa were added. As long as enough taxa were analyzed, sites in all structural environments supported the same topology regardless of whether standard tree searches or decisive sites were used to select the optimal tree. However, the use of decisive sites revealed a difference between the support for minority topologies for sites in different structural environments: buried sites and sites in sheet and coil environments exhibited equal support for the minority topologies, whereas solvent-exposed and helix sites had unequal numbers of sites, supporting the minority topologies. This suggests that the relatively slowly evolving buried, sheet, and coil sites are giving an accurate picture of the true species tree and the amount of conflict among gene trees. Taken as a whole, this study indicates that phylogenetic analyses using sites in different structural environments can yield different topologies for the deepest branches in the animal tree of life and that analyzing larger numbers of taxa eliminates this conflict. More broadly, our results highlight the desirability of incorporating information about protein structure into phylogenomic analyses.
Collapse
|
42
|
Abstract
The term “microbiome” is currently applied predominantly to assemblages of organisms with 16S rRNA genes. In this context, “microbiome” is a misnomer that has been conferred a wide-ranging primacy over terms for community members lacking such genes, e.g., mycobiome, eukaryome, and virome, yet these are also important subsets of microbial communities. Widespread convenient and affordable 16S rRNA sequencing pipelines have accelerated continued use of such a “microbiome”, but at what intellectual and practical costs? Here we show that the use of “microbiome” in ribosomal gene-based studies has been egregiously misapplied, and discuss potential impacts. We argue that the current focus of “microbiome” research, predominantly on only ‘bacteria’, presents a dangerous narrowing of scope which encourages dismissal and even ignorance of other organisms’ contributions to microbial diversity, sensu stricto, and as etiologic agents; we put this in context by discussing cases in both marine microbial diversity and the role of pathogens in global amphibian decline. Fortunately, the solution is simple. We must use descriptive nouns that strictly reflect the outcomes attainable by the methods used. “Microbiome”, as a descriptive noun, should only be used when diversity in the three recognized domains is explored.
Collapse
|
43
|
Patthy L. Exon Shuffling Played a Decisive Role in the Evolution of the Genetic Toolkit for the Multicellular Body Plan of Metazoa. Genes (Basel) 2021; 12:382. [PMID: 33800339 PMCID: PMC8001218 DOI: 10.3390/genes12030382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 11/30/2022] Open
Abstract
Division of labor and establishment of the spatial pattern of different cell types of multicellular organisms require cell type-specific transcription factor modules that control cellular phenotypes and proteins that mediate the interactions of cells with other cells. Recent studies indicate that, although constituent protein domains of numerous components of the genetic toolkit of the multicellular body plan of Metazoa were present in the unicellular ancestor of animals, the repertoire of multidomain proteins that are indispensable for the arrangement of distinct body parts in a reproducible manner evolved only in Metazoa. We have shown that the majority of the multidomain proteins involved in cell-cell and cell-matrix interactions of Metazoa have been assembled by exon shuffling, but there is no evidence for a similar role of exon shuffling in the evolution of proteins of metazoan transcription factor modules. A possible explanation for this difference in the intracellular and intercellular toolkits is that evolution of the transcription factor modules preceded the burst of exon shuffling that led to the creation of the proteins controlling spatial patterning in Metazoa. This explanation is in harmony with the temporal-to-spatial transition hypothesis of multicellularity that proposes that cell differentiation may have predated spatial segregation of cell types in animal ancestors.
Collapse
Affiliation(s)
- Laszlo Patthy
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| |
Collapse
|
44
|
Ros-Rocher N, Pérez-Posada A, Leger MM, Ruiz-Trillo I. The origin of animals: an ancestral reconstruction of the unicellular-to-multicellular transition. Open Biol 2021; 11:200359. [PMID: 33622103 PMCID: PMC8061703 DOI: 10.1098/rsob.200359] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
How animals evolved from a single-celled ancestor, transitioning from a unicellular lifestyle to a coordinated multicellular entity, remains a fascinating question. Key events in this transition involved the emergence of processes related to cell adhesion, cell–cell communication and gene regulation. To understand how these capacities evolved, we need to reconstruct the features of both the last common multicellular ancestor of animals and the last unicellular ancestor of animals. In this review, we summarize recent advances in the characterization of these ancestors, inferred by comparative genomic analyses between the earliest branching animals and those radiating later, and between animals and their closest unicellular relatives. We also provide an updated hypothesis regarding the transition to animal multicellularity, which was likely gradual and involved the use of gene regulatory mechanisms in the emergence of early developmental and morphogenetic plans. Finally, we discuss some new avenues of research that will complement these studies in the coming years.
Collapse
Affiliation(s)
- Núria Ros-Rocher
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Alberto Pérez-Posada
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain.,Centro Andaluz de Biología del Desarrollo (CSIC-Universidad Pablo de Olavide), Carretera de Utrera Km 1, 41013 Sevilla, Andalusia, Spain
| | - Michelle M Leger
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain.,Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain.,ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
45
|
Abstract
The Ediacara Biota preserves the oldest fossil evidence of abundant, complex metazoans. Despite their significance, assigning individual taxa to specific phylogenetic groups has proved problematic. To better understand these forms, we identify developmentally controlled characters in representative taxa from the Ediacaran White Sea assemblage and compare them with the regulatory tools underlying similar traits in modern organisms. This analysis demonstrates that the genetic pathways for multicellularity, axial polarity, musculature, and a nervous system were likely present in some of these early animals. Equally meaningful is the absence of evidence for major differentiation of macroscopic body units, including distinct organs, localized sensory machinery or appendages. Together these traits help to better constrain the phylogenetic position of several key Ediacara taxa and inform our views of early metazoan evolution. An apparent lack of heads with concentrated sensory machinery or ventral nerve cords in such taxa supports the hypothesis that these evolved independently in disparate bilaterian clades.
Collapse
Affiliation(s)
- Scott D Evans
- Department of Paleobiology MRC-121, National Museum of Natural History, Washington, DC 20013-7012, USA
| | - Mary L Droser
- Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521, USA
| | - Douglas H Erwin
- Department of Paleobiology MRC-121, National Museum of Natural History, Washington, DC 20013-7012, USA
| |
Collapse
|
46
|
Leclère L, Nir TS, Bazarsky M, Braitbard M, Schneidman-Duhovny D, Gat U. Dynamic Evolution of the Cthrc1 Genes, a Newly Defined Collagen-Like Family. Genome Biol Evol 2020; 12:3957-3970. [PMID: 32022859 PMCID: PMC7058181 DOI: 10.1093/gbe/evaa020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Collagen triple helix repeat containing protein 1 (Cthrc1) is a secreted glycoprotein reported to regulate collagen deposition and to be linked to the Transforming growth factor β/Bone morphogenetic protein and the Wnt/planar cell polarity pathways. It was first identified as being induced upon injury to rat arteries and was found to be highly expressed in multiple human cancer types. Here, we explore the phylogenetic and evolutionary trends of this metazoan gene family, previously studied only in vertebrates. We identify Cthrc1 orthologs in two distant cnidarian species, the sea anemone Nematostella vectensis and the hydrozoan Clytia hemisphaerica, both of which harbor multiple copies of this gene. We find that Cthrc1 clade-specific diversification occurred multiple times in cnidarians as well as in most metazoan clades where we detected this gene. Many other groups, such as arthropods and nematodes, have entirely lost this gene family. Most vertebrates display a single highly conserved gene, and we show that the sequence evolutionary rate of Cthrc1 drastically decreased within the gnathostome lineage. Interestingly, this reduction coincided with the origin of its conserved upstream neighboring gene, Frizzled 6 (FZD6), which in mice has been shown to functionally interact with Cthrc1. Structural modeling methods further reveal that the yet uncharacterized C-terminal domain of Cthrc1 is similar in structure to the globular C1q superfamily domain, also found in the C-termini of collagens VIII and X. Thus, our studies show that the Cthrc1 genes are a collagen-like family with a variable short collagen triple helix domain and a highly conserved C-terminal domain structure resembling the C1q family.
Collapse
Affiliation(s)
- Lucas Leclère
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Tal S Nir
- Department of Cell and Developmental Biology, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel
| | - Michael Bazarsky
- Department of Cell and Developmental Biology, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel
| | - Merav Braitbard
- Department of Biochemistry, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel
| | - Dina Schneidman-Duhovny
- Department of Biochemistry, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel.,School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
| | - Uri Gat
- Department of Cell and Developmental Biology, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
47
|
Ruiz-Trillo I, de Mendoza A. Towards understanding the origin of animal development. Development 2020; 147:147/23/dev192575. [PMID: 33272929 DOI: 10.1242/dev.192575] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Almost all animals undergo embryonic development, going from a single-celled zygote to a complex multicellular adult. We know that the patterning and morphogenetic processes involved in development are deeply conserved within the animal kingdom. However, the origins of these developmental processes are just beginning to be unveiled. Here, we focus on how the protist lineages sister to animals are reshaping our view of animal development. Most intriguingly, many of these protistan lineages display transient multicellular structures, which are governed by similar morphogenetic and gene regulatory processes as animal development. We discuss here two potential alternative scenarios to explain the origin of animal embryonic development: either it originated concomitantly at the onset of animals or it evolved from morphogenetic processes already present in their unicellular ancestors. We propose that an integrative study of several unicellular taxa closely related to animals will allow a more refined picture of how the last common ancestor of animals underwent embryonic development.
Collapse
Affiliation(s)
- Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain .,Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Alex de Mendoza
- Queen Mary University of London, School of Biological and Chemical Sciences, London E1 4DQ, UK
| |
Collapse
|
48
|
Tikhonenkov DV, Mikhailov KV, Hehenberger E, Karpov SA, Prokina KI, Esaulov AS, Belyakova OI, Mazei YA, Mylnikov AP, Aleoshin VV, Keeling PJ. New Lineage of Microbial Predators Adds Complexity to Reconstructing the Evolutionary Origin of Animals. Curr Biol 2020; 30:4500-4509.e5. [PMID: 32976804 DOI: 10.1016/j.cub.2020.08.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/20/2020] [Accepted: 08/17/2020] [Indexed: 02/05/2023]
Abstract
The origin of animals is one of the most intensely studied evolutionary events, and our understanding of this transition was greatly advanced by analyses of unicellular relatives of animals, which have shown many "animal-specific" genes actually arose in protistan ancestors long before the emergence of animals [1-3]. These genes have complex distributions, and the protists have diverse lifestyles, so understanding their evolutionary significance requires both a robust phylogeny of animal relatives and a detailed understanding of their biology [4, 5]. But discoveries of new animal-related lineages are rare and historically biased to bacteriovores and parasites. Here, we characterize the morphology and transcriptome content of a new animal-related lineage, predatory flagellate Tunicaraptor unikontum. Tunicaraptor is an extremely small (3-5 μm) and morphologically simple cell superficially resembling some fungal zoospores, but it survives by preying on other eukaryotes, possibly using a dedicated but transient "mouth," which is unique for unicellular opisthokonts. The Tunicaraptor transcriptome encodes a full complement of flagellar genes and the flagella-associated calcium channel, which is only common to predatory animal relatives and missing in microbial parasites and grazers. Tunicaraptor also encodes several major classes of animal cell adhesion molecules, as well as transcription factors and homologs of proteins involved in neurodevelopment that have not been found in other animal-related lineages. Phylogenomics, including Tunicaraptor, challenges the existing framework used to reconstruct the evolution of animal-specific genes and emphasizes that the diversity of animal-related lineages may be better understood only once the smaller, more inconspicuous animal-related lineages are better studied. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Denis V Tikhonenkov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok 152742, Russia; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Kirill V Mikhailov
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia.
| | - Elisabeth Hehenberger
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrookerweg 20, 24105 Kiel, Germany
| | - Sergei A Karpov
- Zoological Institute, Russian Academy of Sciences, Saint Petersburg 199034, Russia; Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Kristina I Prokina
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok 152742, Russia; Zoological Institute, Russian Academy of Sciences, Saint Petersburg 199034, Russia
| | - Anton S Esaulov
- Department of Zoology and Ecology, Penza State University, Penza 440026, Russia
| | - Olga I Belyakova
- Department of Zoology and Ecology, Penza State University, Penza 440026, Russia
| | - Yuri A Mazei
- Department of General Ecology and Hydrobiology, Lomonosov Moscow State University, Moscow 119991, Russia; A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 119071, Russia
| | - Alexander P Mylnikov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok 152742, Russia
| | - Vladimir V Aleoshin
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
49
|
Arroyo AS, Lannes R, Bapteste E, Ruiz-Trillo I. Gene Similarity Networks Unveil a Potential Novel Unicellular Group Closely Related to Animals from the Tara Oceans Expedition. Genome Biol Evol 2020; 12:1664-1678. [PMID: 32533833 PMCID: PMC7533066 DOI: 10.1093/gbe/evaa117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2020] [Indexed: 12/21/2022] Open
Abstract
The Holozoa clade comprises animals and several unicellular lineages (choanoflagellates, filastereans, and teretosporeans). Understanding their full diversity is essential to address the origins of animals and other evolutionary questions. However, they are poorly known. To provide more insights into the real diversity of holozoans and check for undiscovered diversity, we here analyzed 18S rDNA metabarcoding data from the global Tara Oceans expedition. To overcome the low phylogenetic information contained in the metabarcoding data set (composed of sequences from the short V9 region of the gene), we used similarity networks by combining two data sets: unknown environmental sequences from Tara Oceans and known reference sequences from GenBank. We then calculated network metrics to compare environmental sequences with reference sequences. These metrics reflected the divergence between both types of sequences and provided an effective way to search for evolutionary relevant diversity, further validated by phylogenetic placements. Our results showed that the percentage of unicellular holozoan diversity remains hidden. We found novelties in several lineages, especially in Acanthoecida choanoflagellates. We also identified a potential new holozoan group that could not be assigned to any of the described extant clades. Data on geographical distribution showed that, although ubiquitous, each unicellular holozoan lineage exhibits a different distribution pattern. We also identified a positive association between new animal hosts and the ichthyosporean symbiont Creolimax fragrantissima, as well as for other holozoans previously reported as free-living. Overall, our analyses provide a fresh perspective into the diversity and ecology of unicellular holozoans, highlighting the amount of undescribed diversity.
Collapse
Affiliation(s)
- Alicia S Arroyo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Romain Lannes
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Departament de Genètica, Microbiologia I Estadística, Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
50
|
Erwin DH. A conceptual framework of evolutionary novelty and innovation. Biol Rev Camb Philos Soc 2020; 96:1-15. [PMID: 32869437 DOI: 10.1111/brv.12643] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/31/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022]
Abstract
Since 1990 the recognition of deep homologies among metazoan developmental processes and the spread of more mechanistic approaches to developmental biology have led to a resurgence of interest in evolutionary novelty and innovation. Other evolutionary biologists have proposed central roles for behaviour and phenotypic plasticity in generating the conditions for the construction of novel morphologies, or invoked the accessibility of new regions of vast sequence spaces. These approaches contrast with more traditional emphasis on the exploitation of ecological opportunities as the primary source of novelty. This definitional cornucopia reflects differing stress placed on three attributes of novelties: their radical nature, the generation of new taxa, and ecological and evolutionary impact. Such different emphasis has led to conflating four distinct issues: the origin of novel attributes (genes, developmental processes, phenotypic characters), new functions, higher clades and the ecological impact of new structures and functions. Here I distinguish novelty (the origin of new characters, deep character transformations, or new combinations) from innovation, the ecological and evolutionary success of clades. Evidence from the fossil record of macroevolutionary lags between the origin of a novelty and its ecological success demonstrates that novelty may be decoupled from innovation, and only definitions of novelty based on radicality (rather than generativity or consequentiality) can be assessed without reference to the subsequent history of the clade to which a novelty belongs. These considerations suggest a conceptual framework for novelty and innovation, involving: (i) generation of the potential for novelty; (ii) the formation of novel attributes; (iii) refinement of novelties through adaptation; (iv) exploitation of novelties by a clade, which may coincide with a new round of ecological or environmental potentiation; followed by (v) the establishment of innovations through ecological processes. This framework recognizes that there is little empirical support for either the dominance of ecological opportunity, nor abrupt discontinuities (often caricatured as 'hopeful monsters'). This general framework may be extended to aspects of cultural and social innovation.
Collapse
Affiliation(s)
- Douglas H Erwin
- Department of Paleobiology, MRC-121 National Museum of Natural History, PO Box 37012, Washington, DC, 20013-7012, U.S.A.,Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, U.S.A
| |
Collapse
|