1
|
Coulter ME, Gillespie AK, Chu J, Denovellis EL, Nguyen TTK, Liu DF, Wadhwani K, Sharma B, Wang K, Deng X, Eden UT, Kemere C, Frank LM. Closed-loop modulation of remote hippocampal representations with neurofeedback. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593085. [PMID: 38766135 PMCID: PMC11100667 DOI: 10.1101/2024.05.08.593085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Humans can remember specific remote events without acting on them and influence which memories are retrieved based on internal goals. However, animal models typically present sensory cues to trigger memory retrieval and then assess retrieval based on action. Thus, it is difficult to determine whether measured neural activity patterns relate to the cue(s), the memory, or the behavior. We therefore asked whether retrieval-related neural activity could be generated in animals without cues or a behavioral report. We focused on hippocampal "place cells" which primarily represent the animal's current location (local representations) but can also represent locations away from the animal (remote representations). We developed a neurofeedback system to reward expression of remote representations and found that rats could learn to generate specific spatial representations that often jumped directly to the experimenter-defined target location. Thus, animals can deliberately engage remote representations, enabling direct study of retrieval-related activity in the brain.
Collapse
|
2
|
Khamassi M, Peyrache A, Benchenane K, Hopkins DA, Lebas N, Douchamps V, Droulez J, Battaglia FP, Wiener SI. Rat anterior cingulate neurons responsive to rule or strategy changes are modulated by the hippocampal theta rhythm and sharp-wave ripples. Eur J Neurosci 2024; 60:5300-5327. [PMID: 39161082 DOI: 10.1111/ejn.16496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
To better understand neural processing during adaptive learning of stimulus-response-reward contingencies, we recorded synchrony of neuronal activity in anterior cingulate cortex (ACC) and hippocampal rhythms in male rats acquiring and switching between spatial and visual discrimination tasks in a Y-maze. ACC population activity as well as single unit activity shifted shortly after task rule changes or just before the rats adopted different task strategies. Hippocampal theta oscillations (associated with memory encoding) modulated an elevated proportion of rule-change responsive neurons (70%), but other neurons that were correlated with strategy-change, strategy value and reward-rate were not. However, hippocampal sharp wave-ripples modulated significantly higher proportions of rule-change, strategy-change and reward-rate responsive cells during post-session sleep but not pre-session sleep. This suggests an underestimated mechanism for hippocampal mismatch and contextual signals to facilitate ACC to detect contingency changes for cognitive flexibility, a function that is attenuated after it is damaged.
Collapse
Affiliation(s)
- M Khamassi
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
- CNRS, Institute of Intelligent Systems and Robotics, Sorbonne Université, Paris, France
| | - A Peyrache
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - K Benchenane
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - D A Hopkins
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - N Lebas
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - V Douchamps
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - J Droulez
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
- CNRS, Institute of Intelligent Systems and Robotics, Sorbonne Université, Paris, France
| | - F P Battaglia
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
- Donders Institute for Brain, Cognition, and Behavior, Radboud Universiteit Nijmegen, Nijmegen, The Netherlands
| | - S I Wiener
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
3
|
Gillespie AK, Astudillo Maya D, Denovellis EL, Desse S, Frank LM. Neurofeedback training can modulate task-relevant memory replay rate in rats. eLife 2024; 12:RP90944. [PMID: 38958562 PMCID: PMC11221834 DOI: 10.7554/elife.90944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Hippocampal replay - the time-compressed, sequential reactivation of ensembles of neurons related to past experience - is a key neural mechanism of memory consolidation. Replay typically coincides with a characteristic pattern of local field potential activity, the sharp-wave ripple (SWR). Reduced SWR rates are associated with cognitive impairment in multiple models of neurodegenerative disease, suggesting that a clinically viable intervention to promote SWRs and replay would prove beneficial. We therefore developed a neurofeedback paradigm for rat subjects in which SWR detection triggered rapid positive feedback in the context of a memory-dependent task. This training protocol increased the prevalence of task-relevant replay during the targeted neurofeedback period by changing the temporal dynamics of SWR occurrence. This increase was also associated with neural and behavioral forms of compensation after the targeted period. These findings reveal short-timescale regulation of SWR generation and demonstrate that neurofeedback is an effective strategy for modulating hippocampal replay.
Collapse
Affiliation(s)
- Anna K Gillespie
- Departments of Biological Structure and Lab Medicine & Pathology, University of WashingtonSeattleUnited States
- Departments of Physiology and Psychiatry and the Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Daniela Astudillo Maya
- Departments of Physiology and Psychiatry and the Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Eric L Denovellis
- Departments of Physiology and Psychiatry and the Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Sachi Desse
- Departments of Physiology and Psychiatry and the Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Loren M Frank
- Departments of Physiology and Psychiatry and the Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
4
|
Inayat S, McAllister BB, Whishaw IQ, Mohajerani MH. Hippocampal conjunctive and complementary CA1 populations relate sensory events to movement. iScience 2023; 26:106481. [PMID: 37096033 PMCID: PMC10121467 DOI: 10.1016/j.isci.2023.106481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/27/2023] [Accepted: 03/18/2023] [Indexed: 04/26/2023] Open
Abstract
Hippocampal CA1 neurons respond to sensory stimuli during enforced immobility, movement, and their transitions in a new conveyor belt task. Head-fixed mice were exposed to light flashes or air streams while at rest, spontaneously moving, or running a fixed distance. Two-photon calcium imaging of CA1 neurons revealed that 62% of 3341 imaged cells were active during one or more of 20 sensorimotor events. Of these active cells, 17% were active for any given sensorimotor event, with a higher proportion during locomotion. The study found two types of cells: Conjunctive cells that were active across multiple events, and complementary cells that were active only during individual events, encoding novel sensorimotor events or their delayed repetitions. The configuration of these cells across changing sensorimotor events may signify the role of hippocampus in functional networks integrating sensory information with ongoing movement making it suitable for movement guidance.
Collapse
Affiliation(s)
- Samsoon Inayat
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Brendan B McAllister
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Ian Q Whishaw
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Majid H Mohajerani
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
5
|
Chen ZS, Wilson MA. How our understanding of memory replay evolves. J Neurophysiol 2023; 129:552-580. [PMID: 36752404 PMCID: PMC9988534 DOI: 10.1152/jn.00454.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Memory reactivations and replay, widely reported in the hippocampus and cortex across species, have been implicated in memory consolidation, planning, and spatial and skill learning. Technological advances in electrophysiology, calcium imaging, and human neuroimaging techniques have enabled neuroscientists to measure large-scale neural activity with increasing spatiotemporal resolution and have provided opportunities for developing robust analytic methods to identify memory replay. In this article, we first review a large body of historically important and representative memory replay studies from the animal and human literature. We then discuss our current understanding of memory replay functions in learning, planning, and memory consolidation and further discuss the progress in computational modeling that has contributed to these improvements. Next, we review past and present analytic methods for replay analyses and discuss their limitations and challenges. Finally, looking ahead, we discuss some promising analytic methods for detecting nonstereotypical, behaviorally nondecodable structures from large-scale neural recordings. We argue that seamless integration of multisite recordings, real-time replay decoding, and closed-loop manipulation experiments will be essential for delineating the role of memory replay in a wide range of cognitive and motor functions.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, New York, United States
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States
| | - Matthew A Wilson
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| |
Collapse
|
6
|
Activity Patterns of Individual Neurons and Ensembles Correlated with Retrieval of a Contextual Memory in the Dorsal CA1 of Mouse Hippocampus. J Neurosci 2023; 43:113-124. [PMID: 36332977 PMCID: PMC9838698 DOI: 10.1523/jneurosci.1407-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/11/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
The hippocampus is crucial for retrieval of contextual memories. The activation of a subpopulation of neurons in the dorsal CA1 (dCA1) of the hippocampus is required for memory retrieval. Given that hippocampal neurons exhibit distinct patterns of response during memory retrieval, the activity patterns of individual neurons or ensembles may be critically involved in memory retrieval. However, this relation has been unclear. To investigate this question, we used an in vivo microendoscope calcium imaging technique to optically record neuronal activity in the dCA1 of male and female mice. We observed that a portion of dCA1 neurons increased their responses to the learned context after contextual fear conditioning (FC), resulting in overall increase in response of neuronal population compared with simple context exposure. Such increased response was specific to the conditioned context as it disappeared in neutral context. The magnitude of increase in neuronal responses by FC was proportional to memory strength during retrieval. The increases in activity preferentially occurred during the putative sharp wave ripple events and were not simply because of animal's movement and immobility. At the ensemble level, synchronous cell activity patterns were associated with memory retrieval. Accordingly, when such patterns were more similar between conditioned and neutral context, animals displayed proportionally more similar level of freezing. Together, these results indicate that increase in responses of individual neurons and synchronous cell activity patterns in the dCA1 neuronal network are critically involved in representing a contextual memory recall.SIGNIFICANCE STATEMENT Neurons in the dorsal CA1 of the hippocampus are crucial for memory retrieval. By using in vivo calcium imaging methods for recording neuronal activity, we demonstrate that dCA1 neurons increased their responses to the learned context specifically by FC and such changes correlated with memory strength during retrieval. Moreover, distinct synchronous cell activity patterns were formed by FC and involved in representing contextual memory retrieval. These findings reveal dynamic activity features of dCA1 neurons that are involved in contextual memory retrieval.
Collapse
|
7
|
Comrie AE, Frank LM, Kay K. Imagination as a fundamental function of the hippocampus. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210336. [PMID: 36314152 PMCID: PMC9620759 DOI: 10.1098/rstb.2021.0336] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/20/2022] [Indexed: 08/25/2023] Open
Abstract
Imagination is a biological function that is vital to human experience and advanced cognition. Despite this importance, it remains unknown how imagination is realized in the brain. Substantial research focusing on the hippocampus, a brain structure traditionally linked to memory, indicates that firing patterns in spatially tuned neurons can represent previous and upcoming paths in space. This work has generally been interpreted under standard views that the hippocampus implements cognitive abilities primarily related to actual experience, whether in the past (e.g. recollection, consolidation), present (e.g. spatial mapping) or future (e.g. planning). However, relatively recent findings in rodents identify robust patterns of hippocampal firing corresponding to a variety of alternatives to actual experience, in many cases without overt reference to the past, present or future. Given these findings, and others on hippocampal contributions to human imagination, we suggest that a fundamental function of the hippocampus is to generate a wealth of hypothetical experiences and thoughts. Under this view, traditional accounts of hippocampal function in episodic memory and spatial navigation can be understood as particular applications of a more general system for imagination. This view also suggests that the hippocampus contributes to a wider range of cognitive abilities than previously thought. This article is part of the theme issue 'Thinking about possibilities: mechanisms, ontogeny, functions and phylogeny'.
Collapse
Affiliation(s)
- Alison E. Comrie
- Neuroscience Graduate Program, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Center for Integrative Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Departments of Physiology and Psychiatry, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Loren M. Frank
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Center for Integrative Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Departments of Physiology and Psychiatry, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Kenneth Kay
- Zuckerman Institute, Center for Theoretical Neuroscience, Columbia University, 3227 Broadway, New York, NY 10027, USA
| |
Collapse
|
8
|
Mahr JB, Fischer B. Internally Triggered Experiences of Hedonic Valence in Nonhuman Animals: Cognitive and Welfare Considerations. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2022; 18:688-701. [PMID: 36288434 DOI: 10.1177/17456916221120425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Do any nonhuman animals have hedonically valenced experiences not directly caused by stimuli in their current environment? Do they, like us humans, experience anticipated or previously experienced pains and pleasures as respectively painful and pleasurable? We review evidence from comparative neuroscience about hippocampus-dependent simulation in relation to this question. Hippocampal sharp-wave ripples and theta oscillations have been found to instantiate previous and anticipated experiences. These hippocampal activations coordinate with neural reward and fear centers as well as sensory and cortical areas in ways that are associated with conscious episodic mental imagery in humans. Moreover, such hippocampal “re- and preplay” has been found to contribute to instrumental decision making, the learning of value representations, and the delay of rewards in rats. The functional and structural features of hippocampal simulation are highly conserved across mammals. This evidence makes it reasonable to assume that internally triggered experiences of hedonic valence (IHVs) are pervasive across (at least) all mammals. This conclusion has important welfare implications. Most prominently, IHVs act as a kind of “welfare multiplier” through which the welfare impacts of any given experience of pain or pleasure are increased through each future retrieval. However, IHVs also have practical implications for welfare assessment and cause prioritization.
Collapse
Affiliation(s)
| | - Bob Fischer
- Department of Philosophy, Texas State University
| |
Collapse
|
9
|
Caffarra S, Karipidis II, Yablonski M, Yeatman JD. Anatomy and physiology of word-selective visual cortex: from visual features to lexical processing. Brain Struct Funct 2021; 226:3051-3065. [PMID: 34636985 PMCID: PMC8639194 DOI: 10.1007/s00429-021-02384-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022]
Abstract
Over the past 2 decades, researchers have tried to uncover how the human brain can extract linguistic information from a sequence of visual symbols. The description of how the brain's visual system processes words and enables reading has improved with the progressive refinement of experimental methodologies and neuroimaging techniques. This review provides a brief overview of this research journey. We start by describing classical models of object recognition in non-human primates, which represent the foundation for many of the early models of visual word recognition in humans. We then review functional neuroimaging studies investigating the word-selective regions in visual cortex. This research led to the differentiation of highly specialized areas, which are involved in the analysis of different aspects of written language. We then consider the corresponding anatomical measurements and provide a description of the main white matter pathways carrying neural signals crucial to word recognition. Finally, in an attempt to integrate structural, functional, and electrophysiological findings, we propose a view of visual word recognition, accounting for spatial and temporal facets of word-selective neural processes. This multi-modal perspective on the neural circuitry of literacy highlights the relevance of a posterior-anterior differentiation in ventral occipitotemporal cortex for visual processing of written language and lexical features. It also highlights unanswered questions that can guide us towards future research directions. Bridging measures of brain structure and function will help us reach a more precise understanding of the transformation from vision to language.
Collapse
Affiliation(s)
- Sendy Caffarra
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, 291 Campus Drive, Li Ka Shing Building, Stanford, CA, 94305-5101, USA
- Stanford University Graduate School of Education, 485 Lasuen Mall, Stanford, CA, 94305, USA
- Basque Center on Cognition, Brain and Language, Mikeletegi 69, 20009, San Sebastian, Spain
- University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy
| | - Iliana I Karipidis
- Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research, School of Medicine, Stanford University, 401 Quarry Road, Stanford, CA, 94305-5717, USA.
| | - Maya Yablonski
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, 291 Campus Drive, Li Ka Shing Building, Stanford, CA, 94305-5101, USA
- Stanford University Graduate School of Education, 485 Lasuen Mall, Stanford, CA, 94305, USA
| | - Jason D Yeatman
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, 291 Campus Drive, Li Ka Shing Building, Stanford, CA, 94305-5101, USA
- Stanford University Graduate School of Education, 485 Lasuen Mall, Stanford, CA, 94305, USA
| |
Collapse
|
10
|
Krause EL, Drugowitsch J. A large majority of awake hippocampal sharp-wave ripples feature spatial trajectories with momentum. Neuron 2021; 110:722-733.e8. [PMID: 34863366 DOI: 10.1016/j.neuron.2021.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/06/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023]
Abstract
During periods of rest, hippocampal place cells feature bursts of activity called sharp-wave ripples (SWRs). Heuristic approaches have revealed that a small fraction of SWRs appear to "simulate" trajectories through the environment, called awake hippocampal replay. However, the functional role of a majority of these SWRs remains unclear. We find, using Bayesian model comparison of state-space models to characterize the spatiotemporal dynamics embedded in SWRs, that almost all SWRs of foraging rodents simulate such trajectories. Furthermore, these trajectories feature momentum, or inertia in their velocities, that mirrors the animals' natural movement, in contrast to replay events during sleep, which lack such momentum. Last, we show that past analyses of replayed trajectories for navigational planning were biased by the heuristic SWR sub-selection. Our findings thus identify the dominant function of awake SWRs as simulating trajectories with momentum and provide a principled foundation for future work on their computational function.
Collapse
Affiliation(s)
- Emma L Krause
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jan Drugowitsch
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Hayes TL, Krishnan GP, Bazhenov M, Siegelmann HT, Sejnowski TJ, Kanan C. Replay in Deep Learning: Current Approaches and Missing Biological Elements. Neural Comput 2021; 33:2908-2950. [PMID: 34474476 PMCID: PMC9074752 DOI: 10.1162/neco_a_01433] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/28/2021] [Indexed: 11/04/2022]
Abstract
Replay is the reactivation of one or more neural patterns that are similar to the activation patterns experienced during past waking experiences. Replay was first observed in biological neural networks during sleep, and it is now thought to play a critical role in memory formation, retrieval, and consolidation. Replay-like mechanisms have been incorporated in deep artificial neural networks that learn over time to avoid catastrophic forgetting of previous knowledge. Replay algorithms have been successfully used in a wide range of deep learning methods within supervised, unsupervised, and reinforcement learning paradigms. In this letter, we provide the first comprehensive comparison between replay in the mammalian brain and replay in artificial neural networks. We identify multiple aspects of biological replay that are missing in deep learning systems and hypothesize how they could be used to improve artificial neural networks.
Collapse
Affiliation(s)
- Tyler L Hayes
- Rochester Institute of Technology, Rochester, NY 14623, U.S.A.
| | - Giri P Krishnan
- University of California at San Diego, La Jolla, CA 92093, U.S.A.
| | - Maxim Bazhenov
- University of California at San Diego, La Jolla, CA 92093, U.S.A.
| | | | - Terrence J Sejnowski
- University of California at San Diego, La Jolla, CA 92093, U.S.A., and Salk Institute for Biological Studies, La Jolla, CA 92037, U.S.A.
| | - Christopher Kanan
- Rochester Institute of Technology, Rochester, NY 14623, U.S.A.; Paige, New York, NY 10036, U.S.A.; and Cornell Tech, New York, NY 10044, U.S.A.
| |
Collapse
|
12
|
Gillespie AK, Astudillo Maya DA, Denovellis EL, Liu DF, Kastner DB, Coulter ME, Roumis DK, Eden UT, Frank LM. Hippocampal replay reflects specific past experiences rather than a plan for subsequent choice. Neuron 2021; 109:3149-3163.e6. [PMID: 34450026 DOI: 10.1016/j.neuron.2021.07.029] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/21/2021] [Accepted: 07/29/2021] [Indexed: 01/06/2023]
Abstract
Executing memory-guided behavior requires storage of information about experience and later recall of that information to inform choices. Awake hippocampal replay, when hippocampal neural ensembles briefly reactivate a representation related to prior experience, has been proposed to critically contribute to these memory-related processes. However, it remains unclear whether awake replay contributes to memory function by promoting the storage of past experiences, facilitating planning based on evaluation of those experiences, or both. We designed a dynamic spatial task that promotes replay before a memory-based choice and assessed how the content of replay related to past and future behavior. We found that replay content was decoupled from subsequent choice and instead was enriched for representations of previously rewarded locations and places that had not been visited recently, indicating a role in memory storage rather than in directly guiding subsequent behavior.
Collapse
Affiliation(s)
- Anna K Gillespie
- Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Daniela A Astudillo Maya
- Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Eric L Denovellis
- Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniel F Liu
- Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David B Kastner
- Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael E Coulter
- Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Demetris K Roumis
- Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Uri T Eden
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
| | - Loren M Frank
- Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
13
|
Denovellis EL, Gillespie AK, Coulter ME, Sosa M, Chung JE, Eden UT, Frank LM. Hippocampal replay of experience at real-world speeds. eLife 2021; 10:64505. [PMID: 34570699 PMCID: PMC8476125 DOI: 10.7554/elife.64505] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 09/08/2021] [Indexed: 01/12/2023] Open
Abstract
Representations related to past experiences play a critical role in memory and decision-making processes. The rat hippocampus expresses these types of representations during sharp-wave ripple (SWR) events, and previous work identified a minority of SWRs that contain ‘replay’ of spatial trajectories at ∼20x the movement speed of the animal. Efforts to understand replay typically make multiple assumptions about which events to examine and what sorts of representations constitute replay. We therefore lack a clear understanding of both the prevalence and the range of representational dynamics associated with replay. Here, we develop a state space model that uses a combination of movement dynamics of different speeds to capture the spatial content and time evolution of replay during SWRs. Using this model, we find that the large majority of replay events contain spatially coherent, interpretable content. Furthermore, many events progress at real-world, rather than accelerated, movement speeds, consistent with actual experiences.
Collapse
Affiliation(s)
- Eric L Denovellis
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States.,Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, United States.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Anna K Gillespie
- Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, United States.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Michael E Coulter
- Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, United States.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Marielena Sosa
- Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
| | - Jason E Chung
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - Uri T Eden
- Department of Mathematics and Statistics, Boston University, Boston, United States
| | - Loren M Frank
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States.,Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, United States.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
14
|
Yu JY, Frank LM. Prefrontal cortical activity predicts the occurrence of nonlocal hippocampal representations during spatial navigation. PLoS Biol 2021; 19:e3001393. [PMID: 34529647 PMCID: PMC8494358 DOI: 10.1371/journal.pbio.3001393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/06/2021] [Accepted: 08/17/2021] [Indexed: 12/04/2022] Open
Abstract
The receptive field of a neuron describes the regions of a stimulus space where the neuron is consistently active. Sparse spiking outside of the receptive field is often considered to be noise, rather than a reflection of information processing. Whether this characterization is accurate remains unclear. We therefore contrasted the sparse, temporally isolated spiking of hippocampal CA1 place cells to the consistent, temporally adjacent spiking seen within their spatial receptive fields ("place fields"). We found that isolated spikes, which occur during locomotion, are strongly phase coupled to hippocampal theta oscillations and transiently express coherent nonlocal spatial representations. Further, prefrontal cortical activity is coordinated with and can predict the occurrence of future isolated spiking events. Rather than local noise within the hippocampus, sparse, isolated place cell spiking reflects a coordinated cortical-hippocampal process consistent with the generation of nonlocal scenario representations during active navigation.
Collapse
Affiliation(s)
- Jai Y. Yu
- Department of Psychology, Institute for Mind and Biology, Neuroscience Institute, University of Chicago, Chicago, Illinois, United States of America
| | - Loren M. Frank
- Howard Hughes Medical Institute, Kavli Institute for Fundamental Neuroscience, Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
15
|
Berners-Lee A, Wu X, Foster DJ. Prefrontal Cortical Neurons Are Selective for Non-Local Hippocampal Representations during Replay and Behavior. J Neurosci 2021; 41:5894-5908. [PMID: 34035138 PMCID: PMC8265798 DOI: 10.1523/jneurosci.1158-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022] Open
Abstract
Diverse functions such as decision-making and memory consolidation may depend on communication between neurons in the hippocampus (HP) and prefrontal cortex (PFC). HP replay is a candidate mechanism to facilitate this communication, however details remain largely unknown because of the technical challenges of recording sufficient numbers of HP neurons for replay while also recording PFC neurons. Here, we implanted male rats with 40-tetrode drives, split between HP and PFC, during learning of a Y-maze spatial memory task. Surprisingly, we found that in contrast to their non-selectivity for maze arm during movement, a portion of PFC neurons were highly selective for HP replay of different arms. Moreover, PFC neurons' selectivity to HP non-local arm representation during running tended to match their replay arm selectivity and was predictive of future choice. Thus, PFC activity that is tuned to HP activity is best explained by non-local HP position representations rather than HP representation of actual position, providing a new potential mechanism of HP-PFC coordination during HP replay.SIGNIFICANCE STATEMENT The hippocampus (HP) is implicated in spatial learning while the prefrontal cortex (PFC) is implicated in decision-making. The question of how the two areas interact has been of great interest. A specific activity type in HP called replay is particularly interesting because it resembles internal exploration of non-local experiences, but is technically challenging to study, requiring recordings from large numbers of HP neurons simultaneously. Here, we combined replay recordings from HP with prefrontal recordings, to reveal a surprising degree of selectivity for replay, and a pattern of coordination that supports some conceptions of hippocampocortical interaction and challenges others.
Collapse
Affiliation(s)
- Alice Berners-Lee
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, California 94720
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Xiaojing Wu
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - David J Foster
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, California 94720
| |
Collapse
|
16
|
Ferreira-Fernandes E, Pinto-Correia B, Quintino C, Remondes M. A Gradient of Hippocampal Inputs to the Medial Mesocortex. Cell Rep 2020; 29:3266-3279.e3. [PMID: 31801088 DOI: 10.1016/j.celrep.2019.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 09/04/2019] [Accepted: 11/04/2019] [Indexed: 12/31/2022] Open
Abstract
Memory-guided decisions depend on complex interactions between the hippocampus (HIPP) and medial mesocortical (MMC) regions, including the anterior cingulate (CG) and retrosplenial (RSC). The functional circuitry underlying these interactions is unclear. Using anatomy, electrophysiology, and optogenetics, we show that such circuitry is characterized by a functional-anatomical gradient. While the CG receives hippocampal excitatory projections originated in CA1 stratum pyramidale, the RSC additionally receives long-range inhibitory inputs from radiatum and lacunosum-moleculare. Such hippocampal projections establish bona fide synapses, with the RSC densely targeted on its superficial layers L1-L3 by a combination of inhibitory and excitatory synapses. We show that the MMC is targeted by dorsal-intermediate CA1 (diCA1) axons following a caudorostral gradient in which a dense, dual (excitatory/inhibitory), layer-specific projection is progressively converted in a sparse, excitatory, and diffuse projection. This gradient is reflected in higher oscillatory synchronicity between the HIPP and RSC in the awake-behaving animal, compatible with their known functional proximity and contrasting with that found in the CG.
Collapse
Affiliation(s)
- Emanuel Ferreira-Fernandes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Bárbara Pinto-Correia
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Carolina Quintino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Miguel Remondes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal.
| |
Collapse
|
17
|
Abstract
Contemporary brain research seeks to understand how cognition is reducible to neural activity. Crucially, much of this effort is guided by a scientific paradigm that views neural activity as essentially driven by external stimuli. In contrast, recent perspectives argue that this paradigm is by itself inadequate and that understanding patterns of activity intrinsic to the brain is needed to explain cognition. Yet, despite this critique, the stimulus-driven paradigm still dominates-possibly because a convincing alternative has not been clear. Here, we review a series of findings suggesting such an alternative. These findings indicate that neural activity in the hippocampus occurs in one of three brain states that have radically different anatomical, physiological, representational, and behavioral correlates, together implying different functional roles in cognition. This three-state framework also indicates that neural representations in the hippocampus follow a surprising pattern of organization at the timescale of ∼1 s or longer. Lastly, beyond the hippocampus, recent breakthroughs indicate three parallel states in the cortex, suggesting shared principles and brain-wide organization of intrinsic neural activity.
Collapse
Affiliation(s)
- Kenneth Kay
- Howard Hughes Medical Institute, Kavli Institute for Fundamental Neuroscience, Department of Physiology, University of California San Francisco, San Francisco, California
| | - Loren M Frank
- Howard Hughes Medical Institute, Kavli Institute for Fundamental Neuroscience, Department of Physiology, University of California San Francisco, San Francisco, California
| |
Collapse
|
18
|
Sosa M, Joo HR, Frank LM. Dorsal and Ventral Hippocampal Sharp-Wave Ripples Activate Distinct Nucleus Accumbens Networks. Neuron 2019; 105:725-741.e8. [PMID: 31864947 DOI: 10.1016/j.neuron.2019.11.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/08/2019] [Accepted: 11/15/2019] [Indexed: 12/31/2022]
Abstract
Memories of positive experiences link places, events, and reward outcomes. These memories recruit interactions between the hippocampus and nucleus accumbens (NAc). Both dorsal and ventral hippocampus (dH and vH) project to the NAc, but it remains unknown whether dH and vH act in concert or separately to engage NAc representations related to space and reward. We recorded simultaneously from the dH, vH, and NAc of rats during an appetitive spatial task and focused on hippocampal sharp-wave ripples (SWRs) to identify times of memory reactivation across brain regions. Here, we show that dH and vH awake SWRs occur asynchronously and activate distinct and opposing patterns of NAc spiking. Only NAc neurons activated during dH SWRs were tuned to task- and reward-related information. These temporally and anatomically separable hippocampal-NAc interactions point to distinct channels of mnemonic processing in the NAc, with the dH-NAc channel specialized for spatial task and reward information. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Marielena Sosa
- Neuroscience Graduate Program, Kavli Institute for Fundamental Neuroscience, and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hannah R Joo
- Neuroscience Graduate Program, Kavli Institute for Fundamental Neuroscience, and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Loren M Frank
- Neuroscience Graduate Program, Kavli Institute for Fundamental Neuroscience, and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, San Francisco, CA 94158, USA.
| |
Collapse
|
19
|
Hippocampal Network Dynamics during Rearing Episodes. Cell Rep 2019; 23:1706-1715. [PMID: 29742427 PMCID: PMC5978794 DOI: 10.1016/j.celrep.2018.04.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/19/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022] Open
Abstract
Animals build a model of their surroundings on the basis of information gathered during exploration. Rearing on the hindlimbs changes the vantage point of the animal, increasing the sampled area of the environment. This environmental knowledge is suggested to be integrated into a cognitive map stored by the hippocampus. Previous studies have found that damage to the hippocampus impairs rearing. Here, we characterize the operational state of the hippocampus during rearing episodes. We observe an increase of theta frequency paralleled by a sink in the dentate gyrus and a prominent theta-modulated fast gamma transient in the middle molecular layer. On the descending phase of rearing, a decrease of theta power is detected. Place cells stop firing during rearing, while a different subset of putative pyramidal cells is activated. Our results suggest that the hippocampus switches to a different operational state during rearing, possibly to update spatial representation with information from distant sources. Theta frequency increased during rearing coupled with an elevated dentate theta sink Robust theta-fast gamma phase coupling in the dentate gyrus accompanied rearing Rearing-specific firing rate increase of putative pyramidal cells was detected Conversely, if rearing occurred in a neuron’s place field, its firing rate decreased
Collapse
|
20
|
Sheeran WM, Ahmed OJ. The neural circuitry supporting successful spatial navigation despite variable movement speeds. Neurosci Biobehav Rev 2019; 108:821-833. [PMID: 31760048 DOI: 10.1016/j.neubiorev.2019.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/30/2019] [Accepted: 11/18/2019] [Indexed: 12/18/2022]
Abstract
Ants who have successfully navigated the long distance between their foraging spot and their nest dozens of times will drastically overshoot their destination if the size of their legs is doubled by the addition of stilts. This observation reflects a navigational strategy called path integration, a strategy also utilized by mammals. Path integration necessitates that animals keep track of their movement speed and use it to precisely and instantly modify where they think they are and where they want to go. Here we review the neural circuitry that has evolved to integrate speed and space. We start with the rate and temporal codes for speed in the hippocampus and work backwards towards the motor and sensory systems. We highlight the need for experiments designed to differentiate the respective contributions of motor efference copy versus sensory inputs. In particular, we discuss the importance of high-resolution tracking of the latency of speed-encoding as a precise way to disentangle the sensory versus motor computations that enable successful spatial navigation at very different speeds.
Collapse
Affiliation(s)
- William M Sheeran
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Omar J Ahmed
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
21
|
The hippocampal sharp wave-ripple in memory retrieval for immediate use and consolidation. Nat Rev Neurosci 2019; 19:744-757. [PMID: 30356103 DOI: 10.1038/s41583-018-0077-1] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Various cognitive functions have long been known to require the hippocampus. Recently, progress has been made in identifying the hippocampal neural activity patterns that implement these functions. One such pattern is the sharp wave-ripple (SWR), an event associated with highly synchronous neural firing in the hippocampus and modulation of neural activity in distributed brain regions. Hippocampal spiking during SWRs can represent past or potential future experience, and SWR-related interventions can alter subsequent memory performance. These findings and others suggest that SWRs support both memory consolidation and memory retrieval for processes such as decision-making. In addition, studies have identified distinct types of SWR based on representational content, behavioural state and physiological features. These various findings regarding SWRs suggest that different SWR types correspond to different cognitive functions, such as retrieval and consolidation. Here, we introduce another possibility - that a single SWR may support more than one cognitive function. Taking into account classic psychological theories and recent molecular results that suggest that retrieval and consolidation share mechanisms, we propose that the SWR mediates the retrieval of stored representations that can be utilized immediately by downstream circuits in decision-making, planning, recollection and/or imagination while simultaneously initiating memory consolidation processes.
Collapse
|
22
|
Chung JE, Joo HR, Fan JL, Liu DF, Barnett AH, Chen S, Geaghan-Breiner C, Karlsson MP, Karlsson M, Lee KY, Liang H, Magland JF, Pebbles JA, Tooker AC, Greengard LF, Tolosa VM, Frank LM. High-Density, Long-Lasting, and Multi-region Electrophysiological Recordings Using Polymer Electrode Arrays. Neuron 2019; 101:21-31.e5. [PMID: 30502044 PMCID: PMC6326834 DOI: 10.1016/j.neuron.2018.11.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 10/03/2018] [Accepted: 10/31/2018] [Indexed: 01/26/2023]
Abstract
The brain is a massive neuronal network, organized into anatomically distributed sub-circuits, with functionally relevant activity occurring at timescales ranging from milliseconds to years. Current methods to monitor neural activity, however, lack the necessary conjunction of anatomical spatial coverage, temporal resolution, and long-term stability to measure this distributed activity. Here we introduce a large-scale, multi-site, extracellular recording platform that integrates polymer electrodes with a modular stacking headstage design supporting up to 1,024 recording channels in freely behaving rats. This system can support months-long recordings from hundreds of well-isolated units across multiple brain regions. Moreover, these recordings are stable enough to track large numbers of single units for over a week. This platform enables large-scale electrophysiological interrogation of the fast dynamics and long-timescale evolution of anatomically distributed circuits, and thereby provides a new tool for understanding brain activity.
Collapse
Affiliation(s)
- Jason E Chung
- Medical Scientist Training Program and Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Hannah R Joo
- Medical Scientist Training Program and Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiang Lan Fan
- Bioengineering Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniel F Liu
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Bioengineering Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alex H Barnett
- Center for Computational Biology, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA
| | - Supin Chen
- Center for Micro- and Nano-Technology, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Charlotte Geaghan-Breiner
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | - Kye Y Lee
- Center for Micro- and Nano-Technology, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Hexin Liang
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeremy F Magland
- Center for Computational Biology, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA
| | - Jeanine A Pebbles
- Center for Micro- and Nano-Technology, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Angela C Tooker
- Center for Micro- and Nano-Technology, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Leslie F Greengard
- Center for Computational Biology, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA; Courant Institute, NYU, New York, NY 10012, USA
| | - Vanessa M Tolosa
- Center for Micro- and Nano-Technology, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Loren M Frank
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, San Francisco, CA, USA.
| |
Collapse
|
23
|
Dutta S, Ackermann E, Kemere C. Analysis of an open source, closed-loop, realtime system for hippocampal sharp-wave ripple disruption. J Neural Eng 2018; 16:016009. [PMID: 30507556 DOI: 10.1088/1741-2552/aae90e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The ability to modulate neural activity in a closed-loop fashion enables causal tests of hypotheses which link dynamically-changing neural circuits to specific behavioral functions. One such dynamically-changing neural circuit is the hippocampus, in which momentary sharp-wave ripple (SWR) events-≈ 100 ms periods of large 150-250 Hz oscillations-have been linked to specific mnemonic functions via selective closed-loop perturbation. The limited duration of SWR means that the latency in systems used for closed-loop interaction is of significant consequence compared to other longer-lasting circuit states. While closed-loop SWR perturbation is becoming more wide-spread, the performance trade-offs involved in building a SWR disruption system have not been explored, limiting the design and interpretation of paradigms involving ripple disruption. APPROACH We developed and evaluated a low-latency closed-loop SWR detection system implemented as a module to an open-source neural data acquisition software suite capable of interfacing with two separate data acquisition hardware platforms. We first use synthetic data to explore the parameter space of our detection algorithm, then proceed to quantify the realtime in vivo performance and limitations of our system. MAIN RESULTS We evaluate the realtime system performance of two data acquisition platforms, one using USB and one using ethernet for communication. We report that signal detection latency decomposes into a data acquisition component of 7.5-13.8 ms and 1.35-2.6 ms for USB and ethernet hardware respectively, and an algorithmic component which varies depending on the threshold parameter. Using ethernet acquisition hardware, we report that an algorithmic latency in the range of ≈20-66 ms can be achieved while maintaining <10 false detections per minute, and that these values are highly dependent upon algorithmic parameter space trade-offs. SIGNIFICANCE By characterizing this system in detail, we establish a framework for analyzing other closed-loop neural interfacing systems. Thus, we anticipate this modular, open-source, realtime system will facilitate a wide range of carefully-designed causal closed-loop experiments.
Collapse
Affiliation(s)
- Shayok Dutta
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States of America
| | | | | |
Collapse
|
24
|
Ciliberti D, Michon F, Kloosterman F. Real-time classification of experience-related ensemble spiking patterns for closed-loop applications. eLife 2018; 7:36275. [PMID: 30373716 PMCID: PMC6207426 DOI: 10.7554/elife.36275] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023] Open
Abstract
Communication in neural circuits across the cortex is thought to be mediated by spontaneous temporally organized patterns of population activity lasting ~50 –200 ms. Closed-loop manipulations have the unique power to reveal direct and causal links between such patterns and their contribution to cognition. Current brain–computer interfaces, however, are not designed to interpret multi-neuronal spiking patterns at the millisecond timescale. To bridge this gap, we developed a system for classifying ensemble patterns in a closed-loop setting and demonstrated its application in the online identification of hippocampal neuronal replay sequences in the rat. Our system decodes multi-neuronal patterns at 10 ms resolution, identifies within 50 ms experience-related patterns with over 70% sensitivity and specificity, and classifies their content with 95% accuracy. This technology scales to high-count electrode arrays and will help to shed new light on the contribution of internally generated neural activity to coordinated neural assembly interactions and cognition.
Collapse
Affiliation(s)
- Davide Ciliberti
- Neuro-Electronics Research Flanders, Leuven, Belgium.,Brain and Cognition, KU Leuven, Leuven, Belgium.,VIB, Leuven, Belgium
| | - Frédéric Michon
- Neuro-Electronics Research Flanders, Leuven, Belgium.,Brain and Cognition, KU Leuven, Leuven, Belgium.,VIB, Leuven, Belgium
| | - Fabian Kloosterman
- Neuro-Electronics Research Flanders, Leuven, Belgium.,Brain and Cognition, KU Leuven, Leuven, Belgium.,VIB, Leuven, Belgium.,imec, Leuven, Belgium
| |
Collapse
|
25
|
Yu JY, Liu DF, Loback A, Grossrubatscher I, Frank LM. Specific hippocampal representations are linked to generalized cortical representations in memory. Nat Commun 2018; 9:2209. [PMID: 29880860 PMCID: PMC5992161 DOI: 10.1038/s41467-018-04498-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/27/2018] [Indexed: 01/22/2023] Open
Abstract
Memories link information about specific experiences to more general knowledge that is abstracted from and contextualizes those experiences. Hippocampal-cortical activity patterns representing features of past experience are reinstated during awake memory reactivation events, but whether representations of both specific and general features of experience are simultaneously reinstated remains unknown. We examined hippocampal and prefrontal cortical firing patterns during memory reactivation in rats performing a well-learned foraging task with multiple spatial paths. We found that specific hippocampal place representations are preferentially reactivated with the subset of prefrontal cortical task representations that generalize across different paths. Our results suggest that hippocampal-cortical networks maintain links between stored representations for specific and general features of experience, which could support abstraction and task guidance in mammals.
Collapse
Affiliation(s)
- Jai Y Yu
- UCSF Center for Integrative Neuroscience and Department of Physiology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Daniel F Liu
- UCSF Center for Integrative Neuroscience and Department of Physiology, University of California San Francisco, San Francisco, CA, 94143, USA
- University of California Berkeley, Berkeley, CA, 94720, USA
| | | | | | - Loren M Frank
- UCSF Center for Integrative Neuroscience and Department of Physiology, University of California San Francisco, San Francisco, CA, 94143, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, CA, 94143, USA.
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
26
|
Kupferschmidt DA, Gordon JA. The dynamics of disordered dialogue: Prefrontal, hippocampal and thalamic miscommunication underlying working memory deficits in schizophrenia. Brain Neurosci Adv 2018; 2. [PMID: 31058245 PMCID: PMC6497416 DOI: 10.1177/2398212818771821] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The prefrontal cortex is central to the orchestrated brain network communication that gives rise to working memory and other cognitive functions. Accordingly, working memory deficits in schizophrenia are increasingly thought to derive from prefrontal cortex dysfunction coupled with broader network disconnectivity. How the prefrontal cortex dynamically communicates with its distal network partners to support working memory and how this communication is disrupted in individuals with schizophrenia remain unclear. Here we review recent evidence that prefrontal cortex communication with the hippocampus and thalamus is essential for normal spatial working memory, and that miscommunication between these structures underlies spatial working memory deficits in schizophrenia. We focus on studies using normal rodents and rodent models designed to probe schizophrenia-related pathology to assess the dynamics of neural interaction between these brain regions. We also highlight recent preclinical work parsing roles for long-range prefrontal cortex connections with the hippocampus and thalamus in normal and disordered spatial working memory. Finally, we discuss how emerging rodent endophenotypes of hippocampal- and thalamo-prefrontal cortex dynamics in spatial working memory could translate into richer understanding of the neural bases of cognitive function and dysfunction in humans.
Collapse
Affiliation(s)
- David A Kupferschmidt
- Integrative Neuroscience Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Joshua A Gordon
- Integrative Neuroscience Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.,National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Rothschild G. The transformation of multi-sensory experiences into memories during sleep. Neurobiol Learn Mem 2018; 160:58-66. [PMID: 29588222 DOI: 10.1016/j.nlm.2018.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/11/2018] [Accepted: 03/23/2018] [Indexed: 12/12/2022]
Abstract
Our everyday lives present us with a continuous stream of multi-modal sensory inputs. While most of this information is soon forgotten, sensory information associated with salient experiences can leave long-lasting memories in our minds. Extensive human and animal research has established that the hippocampus is critically involved in this process of memory formation and consolidation. However, the underlying mechanistic details are still only partially understood. Specifically, the hippocampus has often been suggested to encode information during experience, temporarily store it, and gradually transfer this information to the cortex during sleep. In rodents, ample evidence has supported this notion in the context of spatial memory, yet whether this process adequately describes the consolidation of multi-sensory experiences into memories is unclear. Here, focusing on rodent studies, I examine how multi-sensory experiences are consolidated into long term memories by hippocampal and cortical circuits during sleep. I propose that in contrast to the classical model of memory consolidation, the cortex is a "fast learner" that has a rapid and instructive role in shaping hippocampal-dependent memory consolidation. The proposed model may offer mechanistic insight into memory biasing using sensory cues during sleep.
Collapse
Affiliation(s)
- Gideon Rothschild
- Department of Psychology and Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|