1
|
Coll-Díez C, Giudici AM, Potenza A, González-Ros JM, Poveda JA. pH-induced conformational changes in the selectivity filter of a potassium channel lead to alterations in its selectivity and permeation properties. Front Pharmacol 2025; 15:1499383. [PMID: 39834826 PMCID: PMC11743430 DOI: 10.3389/fphar.2024.1499383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
The Selectivity Filter (SF) in tetrameric K+ channels, has a highly conserved sequence, TVGYG, at the extracellular entry to the channel pore region. There, the backbone carbonyl oxygens from the SF residues, create a stack of K+ binding sites where dehydrated K+ binds to induce a conductive conformation of the SF. This increases intersubunit interactions and confers a higher stability to the channel against thermal denaturation. Indeed, the fit of dehydrated K+ to its binding sites is fundamental to define K+ selectivity, an important feature of these channels. Nonetheless, the SF conformation can be modified by different effector molecules. Such conformational plasticity opposes selectivity, as the SF departs from the "induced-fit" conformation required for K+ recognition. Here we studied the KirBac1.1 channel, a prokaryotic analog of inwardly rectifying K+ channels, confronted to permeant (K+) and non-permeant (Na+) cations. This channel is pH-dependent and transits from the open state at neutral pH to the closed state at acidic pH. KirBac1.1 has the orthodox TVGYG sequence at the SF and thus, its behavior should resemble that of K+-selective channels. However, we found that when at neutral pH, KirBac1.1 is only partly K+ selective and permeates this ion causing the characteristic "induced-fit" phenomenon in the SF conformation. However, it also conducts Na+ with a mechanism of ion passage reminiscent of Na+ channels, i.e., through a wide-open pore, without increasing intersubunit interactions within the tetrameric channel. Conversely, when at acidic pH, the channel completely loses selectivity and conducts both K+ and Na+ similarly, increasing intersubunit interactions through an apparent "induced-fit"-like mechanism for the two ions. These observations underline that KirBac1.1 SF is able to adopt different conformations leading to changes in selectivity and in the mechanism of ion passage.
Collapse
Affiliation(s)
| | | | | | - José Manuel González-Ros
- IDiBE—Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain
| | - José Antonio Poveda
- IDiBE—Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain
| |
Collapse
|
2
|
Cheng D, Guo Y, Lyu J, Liu Y, Xu W, Zheng W, Wang Y, Qiao P. Advances and challenges in preparing membrane proteins for native mass spectrometry. Biotechnol Adv 2025; 78:108483. [PMID: 39571766 DOI: 10.1016/j.biotechadv.2024.108483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/07/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Native mass spectrometry (nMS) is becoming a crucial tool for analyzing membrane proteins (MPs), yet challenges remain in solubilizing and stabilizing their native conformations while resolving and characterizing the heterogeneity introduced by post-translational modifications and ligand binding. This review highlights recent advancements and persistent challenges in preparing MPs for nMS. Optimizing detergents and additives can significantly reduce sample heterogeneity and surface charge, enhancing MP signal quality and structural preservation in nMS. A strategic workflow incorporating affinity capture, stabilization agents, and size-exclusion chromatography to remove unfolded species demonstrates success in improving nMS characterization. Continued development of customized detergents and reagents tailored for specific MPs may further minimize heterogeneity and boost signals. Instrumental advances are also needed to elucidate more dynamically complex and labile MPs. Effective sample preparation workflows may provide insights into MP structures, dynamics, and interactions underpinning membrane biology. With ongoing methodological innovation, nMS shows promise to complement biophysical studies and facilitate drug discovery targeting this clinically important yet technically demanding protein class.
Collapse
Affiliation(s)
- Di Cheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yi Guo
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Yang Liu
- Regenxbox In., Rockville, MD 20850, USA
| | - Wenhao Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Weiyi Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yuchen Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Pei Qiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
3
|
Zhong W. Mechanism of selectivity filter constriction in potassium channel: Insights from high-throughput steered molecular dynamics simulations. Biochem Biophys Res Commun 2024; 741:151054. [PMID: 39615205 DOI: 10.1016/j.bbrc.2024.151054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 12/11/2024]
Abstract
Potassium channels are essential for regulating cellular excitability by controlling K+ ion flow. In voltage-gated potassium (Kv) channels, C-type inactivation modulates action potentials and holds significant physiological and clinical importance. The selectivity filter (SF) of potassium channels functions as the C-type inactivation gate by alternating between conductive and non-conductive states. The bacterial KcsA potassium channel, characterized by well-defined structural features, serves as an ideal model for investigating this mechanism through molecular dynamics (MD) simulations. However, limitations in computational power and the time scales of C-type inactivation, which extend up to seconds, have constrained a comprehensive understanding of this process. This study used high-throughput steered molecular dynamics (SMD) simulations, employing a knowledge-based acceleration strategy, to capture spontaneous SF constriction within nanoseconds in KcsA. Over a thousand SMD simulations recorded hundreds of SF constriction events, revealing a common constriction mechanism driven by an ion occupancy switch from state 13 to state 14 within the SF, facilitated by water molecules located behind the SF. Simulations of the E71V-mutated KcsA suggest that this constricted state and mechanism may also extend to Kv-like channels, albeit with reduced water dependence. These findings underscore the essential roles of ions and water molecules in regulating protein dynamics and highlight strategies for high-throughput MD studies to further explore protein dynamics.
Collapse
Affiliation(s)
- Wenyu Zhong
- Department of Mechanics, College of Architecture & Environment, & Failure Mechanics and Engineering Disaster Prevention, Key Laboratory of Sichuan Province, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
4
|
Maroli N, Ryan MJ, Zanni MT, Kananenka AA. Do selectivity filter carbonyls in K + channels flip away from the pore? Two-dimensional infrared spectroscopy study. J Struct Biol X 2024; 10:100108. [PMID: 39157159 PMCID: PMC11328031 DOI: 10.1016/j.yjsbx.2024.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/26/2024] [Accepted: 07/14/2024] [Indexed: 08/20/2024] Open
Abstract
Molecular dynamics simulations revealed that the carbonyls of the Val residue in the conserved selectivity filter sequence TVGTG of potassium ion channels can flip away from the pore to form hydrogen bonds with the network of water molecules residing behind the selectivity filter. Such a configuration has been proposed to be relevant for C-type inactivation. Experimentally, X-ray crystallography of the KcsA channel admits the possibility that the Val carbonyls can flip, but it cannot decisively confirm the existence of such a configuration. In this study, we combined molecular dynamics simulations and line shape theory to design two-dimensional infrared spectroscopy experiments that can corroborate the existence of the selectivity filter configuration with flipped Val carbonyls. This ability to distinguish between flipped and unflipped carbonyls is based on the varying strength of the electric field inside and outside the pore, which is directly linked to carbonyl stretching frequencies that can be resolved using infrared spectroscopy.
Collapse
Affiliation(s)
- Nikhil Maroli
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | - Matthew J. Ryan
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alexei A. Kananenka
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
5
|
Treptow W, Liu Y, Bassetto CAZ, Pinto BI, Alves Nunes JA, Uriarte RM, Chipot CJ, Bezanilla F, Roux B. Isoleucine gate blocks K + conduction in C-type inactivation. eLife 2024; 13:e97696. [PMID: 39530849 DOI: 10.7554/elife.97696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Many voltage-gated potassium (Kv) channels display a time-dependent phenomenon called C-type inactivation, whereby prolonged activation by voltage leads to the inhibition of ionic conduction, a process that involves a conformational change at the selectivity filter toward a non-conductive state. Recently, a high-resolution structure of a strongly inactivated triple-mutant channel kv1.2-kv2.1-3m revealed a novel conformation of the selectivity filter that is dilated at its outer end, distinct from the well-characterized conductive state. While the experimental structure was interpreted as the elusive non-conductive state, our molecular dynamics simulations and electrophysiological measurements show that the dilated filter of kv1.2-kv2.1-3m is conductive and, as such, cannot completely account for the inactivation of the channel observed in the structural experiments. The simulation shows that an additional conformational change, implicating isoleucine residues at position 398 along the pore lining segment S6, is required to effectively block ion conduction. The I398 residues from the four subunits act as a state-dependent hydrophobic gate located immediately beneath the selectivity filter. These observations are corroborated by electrophysiological experiments showing that ion permeation can be resumed in the kv1.2-kv2.1-3m channel when I398 is mutated to an asparagine-a mutation that does not abolish C-type inactivation since digitoxin (AgTxII) fails to block the ionic permeation of kv1.2-kv2.1-3m_I398N. As a critical piece of the C-type inactivation machinery, this structural feature is the potential target of a broad class of quaternary ammonium (QA) blockers and negatively charged activators thus opening new research directions toward the development of drugs that specifically modulate gating states of Kv channels.
Collapse
Affiliation(s)
- Werner Treptow
- Laboratório de Biologia Teórica e Computacional (LBTC), Universidade de Brasília, Brasilia, Brazil
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Yichen Liu
- Department of Neurobiology, The University of Chicago, Chicago, United States
| | - Carlos A Z Bassetto
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Bernardo I Pinto
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Joao Antonio Alves Nunes
- Laboratório de Biologia Teórica e Computacional (LBTC), Universidade de Brasília, Brasilia, Brazil
| | - Ramon Mendoza Uriarte
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Christophe J Chipot
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche No. 7019, Université de Lorraine, Université de Lorraine, Vandœuvre-lès-Nancy, France
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Benoit Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| |
Collapse
|
6
|
Catacuzzeno L, Leonardi MV, Franciolini F, Domene C, Michelucci A, Furini S. Building predictive Markov models of ion channel permeation from molecular dynamics simulations. Biophys J 2024; 123:3832-3843. [PMID: 39342432 PMCID: PMC11630636 DOI: 10.1016/j.bpj.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/25/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024] Open
Abstract
Molecular dynamics (MD) simulation of biological processes has always been a challenging task due to the long timescales of the processes involved and the large amount of output data to handle. Markov state models (MSMs) have been introduced as a powerful tool in this area of research, as they provide a mechanistically comprehensible synthesis of the large amount of MD data and, at the same time, can be used to rapidly estimate experimental properties of biological processes. Herein, we propose a method for building MSMs of ion channel permeation from MD trajectories, which directly evaluates the current flowing through the channel from the model's transition matrix (T), which is crucial for comparing simulations and experimental data. This is achieved by including in the model a flux matrix that summarizes information on the charge moving across the channel between each pair of states of the MSM and can be used in conjunction with T to predict the ion current. A procedure to drastically reduce the number of states in the MSM while preserving the estimated ion current is also proposed. Applying the method to the KcsA channel returned an MSM with five states with significant equilibrium occupancy, capable of accurately reproducing the single-channel ion current from microsecond MD trajectories.
Collapse
Affiliation(s)
- Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy.
| | | | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Carmen Domene
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Antonio Michelucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Simone Furini
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", University of Bologna, via dell'Università 50, Cesena (FC), Italy.
| |
Collapse
|
7
|
Matsuki Y, Iwamoto M, Maki T, Takashima M, Yoshida T, Oiki S. Programmable Lipid Bilayer Tension-Control Apparatus for Quantitative Mechanobiology. ACS NANO 2024; 18:30561-30573. [PMID: 39437160 PMCID: PMC11544928 DOI: 10.1021/acsnano.4c09017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
The biological membrane is not just a platform for information processing but also a field of mechanics. The lipid bilayer that constitutes the membrane is an elastic body, generating stress upon deformation, while the membrane protein embedded therein deforms the bilayer through structural changes. Among membrane-protein interplays, various channel species act as tension-current converters for signal transduction, serving as elementary processes in mechanobiology. However, in situ studies in chaotically complex cell membranes are challenging, and characterizing the tension dependency of mechanosensitive channels remains semiquantitative owing to technical limitations. Here, we developed a programmable membrane tension-control apparatus on a lipid bilayer system. This synthetic membrane system [contact bubble bilayer (CBB)] uses pressure to drive bilayer tension changes via the Young-Laplace principle, whereas absolute bilayer tension is monitored in real-time through image analysis of the bubble geometry via the Young principle. Consequently, the mechanical nature of the system permits the implementation of closed-loop feedback control of bilayer tension (tension-clamp CBB), maintaining a constant tension for minutes and allowing stepwise tension changes within a hundred milliseconds in the tension range of 0.8 to 15 mN·m-1. We verified the system performance by examining the single-channel behavior of tension-dependent KcsA and TREK-1 potassium channels under scheduled tension time courses prescribed via visual interfaces. The result revealed steady-state activity and dynamic responses to the step tension changes, which are essential to the biophysical characterization of the channels. The apparatus explores a frontier for quantitative mechanobiology studies and promotes the development of a tension-operating experimental robot.
Collapse
Affiliation(s)
- Yuka Matsuki
- Department
of Anesthesiology and Reanimatology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Life
Science Innovation Center, University of
Fukui, Fukui 910-8507, Japan
| | - Masayuki Iwamoto
- Department
of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Life
Science Innovation Center, University of
Fukui, Fukui 910-8507, Japan
| | - Takahisa Maki
- Department
of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Life
Science Innovation Center, University of
Fukui, Fukui 910-8507, Japan
| | - Masako Takashima
- Department
of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Toshiyuki Yoshida
- Department
of Information Science, Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan
| | - Shigetoshi Oiki
- Biomedical
Imaging Research Center, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
8
|
Qiao P, Odenkirk MT, Zheng W, Wang Y, Chen J, Xu W, Baker ES. Elucidating the role of lipid interactions in stabilizing the membrane protein KcsA. Biophys J 2024; 123:3205-3216. [PMID: 39030907 PMCID: PMC11427772 DOI: 10.1016/j.bpj.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024] Open
Abstract
The significant effects of lipid binding on the functionality of potassium channel KcsA have been validated by brilliant studies. However, the specific interactions between lipids and KcsA, such as binding parameters for each binding event, have not been fully elucidated. In this study, we employed native mass spectrometry to investigate the binding of lipids to KcsA and their effects on the channel. The tetrameric structure of KcsA remains intact even in the absence of lipid binding. However, the subunit architecture of the E71A mutant, which is constantly open at low pH, relies on tightly associated copurified lipids. Furthermore, we observed that lipids exhibit weak binding to KcsA at high pH when the channel is at a closed/inactivation state in the absence of permeant cation K+. This feeble interaction potentially facilitates the association of K+ ions, leading to the transition of the channel to a resting closed/open state. Interestingly, both anionic and zwitterionic lipids strongly bind to KcsA at low pH when the channel is in an open/inactivation state. We also investigated the binding patterns of KcsA with natural lipids derived from E. coli and Streptomyces lividans. Interestingly, lipids from E. coli exhibited much stronger binding affinity compared to the lipids from S. lividans. Among the natural lipids from S. lividans, free fatty acids and triacylglycerols demonstrated the tightest binding to KcsA, whereas no detectable binding events were observed with natural phosphatidic acid lipids. These findings suggest that the lipid association pattern in S. lividans, the natural host for KcsA, warrants further investigation. In conclusion, our study sheds light on the role of lipids in stabilizing KcsA and highlights the importance of specific lipid-protein interactions in modulating its conformational states.
Collapse
Affiliation(s)
- Pei Qiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas.
| | - Melanie T Odenkirk
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Weiyi Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuchen Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jinhui Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Wenhao Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
9
|
Neelsen LC, Riel EB, Rinné S, Schmid FR, Jürs BC, Bedoya M, Langer JP, Eymsh B, Kiper AK, Cordeiro S, Decher N, Baukrowitz T, Schewe M. Ion occupancy of the selectivity filter controls opening of a cytoplasmic gate in the K 2P channel TALK-2. Nat Commun 2024; 15:7545. [PMID: 39215031 PMCID: PMC11364775 DOI: 10.1038/s41467-024-51812-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Two-pore domain K+ (K2P) channel activity was previously thought to be controlled primarily via a selectivity filter (SF) gate. However, recent crystal structures of TASK-1 and TASK-2 revealed a lower gate at the cytoplasmic pore entrance. Here, we report functional evidence of such a lower gate in the K2P channel K2P17.1 (TALK-2, TASK-4). We identified compounds (drugs and lipids) and mutations that opened the lower gate allowing the fast modification of pore cysteine residues. Surprisingly, stimuli that directly target the SF gate (i.e., pHe., Rb+ permeation, membrane depolarization) also opened the cytoplasmic gate. Reciprocally, opening of the lower gate reduced the electric work to open the SF via voltage driven ion binding. Therefore, it appears that the SF is so rigidly locked into the TALK-2 protein structure that changes in ion occupancy can pry open a distant lower gate and, vice versa, opening of the lower gate concurrently promote SF gate opening. This concept might extent to other K+ channels that contain two gates (e.g., voltage-gated K+ channels) for which such a positive gate coupling has been suggested, but so far not directly demonstrated.
Collapse
Affiliation(s)
- Lea C Neelsen
- Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Elena B Riel
- Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Susanne Rinné
- Institute of Physiology and Pathophysiology, Philipps-University of Marburg, Marburg, Germany
| | | | - Björn C Jürs
- Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany
- MSH Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany
| | - Mauricio Bedoya
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
- Laboratorio de Bioinformática y Química Computacional (LBQC), Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Jan P Langer
- Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Bisher Eymsh
- Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Aytug K Kiper
- Institute of Physiology and Pathophysiology, Philipps-University of Marburg, Marburg, Germany
| | - Sönke Cordeiro
- Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Philipps-University of Marburg, Marburg, Germany.
| | - Thomas Baukrowitz
- Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany.
| | - Marcus Schewe
- Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany.
| |
Collapse
|
10
|
Wu Y, Yan Y, Yang Y, Bian S, Rivetta A, Allen K, Sigworth FJ. Cryo-EM structures of Kv1.2 potassium channels, conducting and non-conducting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.02.543446. [PMID: 37398110 PMCID: PMC10312591 DOI: 10.1101/2023.06.02.543446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
We present near-atomic-resolution cryo-EM structures of the mammalian voltage-gated potassium channel Kv1.2 in open, C-type inactivated, toxin-blocked and sodium-bound states at 3.2 Å, 2.5 Å, 3.2 Å, and 2.9Å. These structures, all obtained at nominally zero membrane potential in detergent micelles, reveal distinct ion-occupancy patterns in the selectivity filter. The first two structures are very similar to those reported in the related Shaker channel and the much-studied Kv1.2-2.1 chimeric channel. On the other hand, two new structures show unexpected patterns of ion occupancy. First, the toxin α-Dendrotoxin, like Charybdotoxin, is seen to attach to the negatively-charged channel outer mouth, and a lysine residue penetrates into the selectivity filter, with the terminal amine coordinated by carbonyls, partially disrupting the outermost ion-binding site. In the remainder of the filter two densities of bound ions are observed, rather than three as observed with other toxin-blocked Kv channels. Second, a structure of Kv1.2 in Na+ solution does not show collapse or destabilization of the selectivity filter, but instead shows an intact selectivity filter with ion density in each binding site. We also attempted to image the C-type inactivated Kv1.2 W366F channel in Na+ solution, but the protein conformation was seen to be highly variable and only a low-resolution structure could be obtained. These findings present new insights into the stability of the selectivity filter and the mechanism of toxin block of this intensively studied, voltage-gated potassium channel.
Collapse
Affiliation(s)
- Yangyu Wu
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut USA
| | - Yangyang Yan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut USA
| | - Youshan Yang
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut USA
| | - Shumin Bian
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut USA
| | - Alberto Rivetta
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut USA
| | - Ken Allen
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut USA
| | - Fred J Sigworth
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut USA
| |
Collapse
|
11
|
Matsuki Y, Takashima M, Ueki M, Iwamoto M, Oiki S. Probing membrane deformation energy by KcsA potassium channel gating under varied membrane thickness and tension. FEBS Lett 2024; 598:1955-1966. [PMID: 38880762 DOI: 10.1002/1873-3468.14956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024]
Abstract
This study investigated how membrane thickness and tension modify the gating of KcsA potassium channels when simultaneously varied. The KcsA channel undergoes global conformational changes upon gating: expansion of the cross-sectional area and longitudinal shortening upon opening. Thus, membranes impose differential effects on the open and closed conformations, such as hydrophobic mismatches. Here, the single-channel open probability was recorded in the contact bubble bilayer, by which variable thickness membranes under a defined tension were applied. A fully open channel in thin membranes turned to sporadic openings in thick membranes, where the channel responded moderately to tension increase. Quantitative gating analysis prompted the hypothesis that tension augmented the membrane deformation energy when hydrophobic mismatch was enhanced in thick membranes.
Collapse
Affiliation(s)
- Yuka Matsuki
- Department of Anesthesiology and Reanimatology, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Japan
- Life Science Innovation Center, University of Fukui, Yoshida-gun, Japan
| | - Masako Takashima
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Japan
| | - Misuzu Ueki
- Life Science Innovation Center, University of Fukui, Yoshida-gun, Japan
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Japan
| | - Masayuki Iwamoto
- Life Science Innovation Center, University of Fukui, Yoshida-gun, Japan
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Japan
| | - Shigetoshi Oiki
- Biomedical Imaging Research Center, University of Fukui, Yoshida-gun, Japan
| |
Collapse
|
12
|
Mironenko A, de Groot BL, Kopec W. Selectivity filter mutations shift ion permeation mechanism in potassium channels. PNAS NEXUS 2024; 3:pgae272. [PMID: 39015549 PMCID: PMC11251424 DOI: 10.1093/pnasnexus/pgae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024]
Abstract
Potassium (K+) channels combine high conductance with high ion selectivity. To explain this efficiency, two molecular mechanisms have been proposed. The "direct knock-on" mechanism is defined by water-free K+ permeation and formation of direct ion-ion contacts in the highly conserved selectivity filter (SF). The "soft knock-on" mechanism involves co-permeation of water and separation of K+ by water molecules. With the aim to distinguish between these mechanisms, crystal structures of the KcsA channel with mutations in two SF residues-G77 and T75-were published, where the arrangements of K+ ions and water display canonical soft knock-on configurations. These data were interpreted as evidence of the soft knock-on mechanism in wild-type channels. Here, we test this interpretation using molecular dynamics simulations of KcsA and its mutants. We show that while a strictly water-free direct knock-on permeation is observed in the wild type, conformational changes induced by these mutations lead to distinct ion permeation mechanisms, characterized by co-permeation of K+ and water. These mechanisms are characterized by reduced conductance and impaired potassium selectivity, supporting the importance of full dehydration of potassium ions for the hallmark high conductance and selectivity of K+ channels. In general, we present a case where mutations introduced at the critical points of the permeation pathway in an ion channel drastically change its permeation mechanism in a nonintuitive manner.
Collapse
Affiliation(s)
- Andrei Mironenko
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Wojciech Kopec
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
- Department of Chemistry, Queen Mary University of London, 327 Mile End Road, London E1 4NS, UK
| |
Collapse
|
13
|
Huffer K, Tan XF, Fernández-Mariño AI, Dhingra S, Swartz KJ. Dilation of ion selectivity filters in cation channels. Trends Biochem Sci 2024; 49:417-430. [PMID: 38514273 PMCID: PMC11069442 DOI: 10.1016/j.tibs.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
Ion channels establish the voltage gradient across cellular membranes by providing aqueous pathways for ions to selectively diffuse down their concentration gradients. The selectivity of any given channel for its favored ions has conventionally been viewed as a stable property, and in many cation channels, it is determined by an ion-selectivity filter within the external end of the ion-permeation pathway. In several instances, including voltage-activated K+ (Kv) channels, ATP-activated P2X receptor channels, and transient receptor potential (TRP) channels, the ion-permeation pathways have been proposed to dilate in response to persistent activation, dynamically altering ion permeation. Here, we discuss evidence for dynamic ion selectivity, examples where ion selectivity filters exhibit structural plasticity, and opportunities to fill gaps in our current understanding.
Collapse
Affiliation(s)
- Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiao-Feng Tan
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ana I Fernández-Mariño
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Surbhi Dhingra
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Renart ML, Giudici AM, González-Ros JM, Poveda JA. Steady-state and time-resolved fluorescent methodologies to characterize the conformational landscape of the selectivity filter of K + channels. Methods 2024; 225:89-99. [PMID: 38508347 DOI: 10.1016/j.ymeth.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/02/2024] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
A variety of equilibrium and non-equilibrium methods have been used in a multidisciplinary approach to study the conformational landscape associated with the binding of different cations to the pore of potassium channels. These binding processes, and the conformational changes resulting therefrom, modulate the functional properties of such integral membrane properties, revealing these permeant and blocking cations as true effectors of such integral membrane proteins. KcsA, a prototypic K+ channel from Streptomyces lividans, has been extensively characterized in this regard. Here, we revise several fluorescence-based approaches to monitor cation binding under different experimental conditions in diluted samples, analyzing the advantages and disadvantages of each approach. These studies have contributed to explain the selectivity, conduction, and inactivation properties of K+ channels at the molecular level, together with the allosteric communication between the two gates that control the ion channel flux, and how they are modulated by lipids.
Collapse
Affiliation(s)
- María Lourdes Renart
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Ana Marcela Giudici
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - José M González-Ros
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - José A Poveda
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain.
| |
Collapse
|
15
|
Ullah G, Nosyreva ED, Thompson D, Cuello VA, Cuello LG, Syeda R. Analysis of pressure-activated Piezo1 open and subconductance states at a single channel level. J Biol Chem 2024; 300:107156. [PMID: 38479601 PMCID: PMC11007442 DOI: 10.1016/j.jbc.2024.107156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/24/2024] [Accepted: 03/06/2024] [Indexed: 04/12/2024] Open
Abstract
Mechanically activated Piezo1 channels undergo transitions from closed to open-state in response to pressure and other mechanical stimuli. However, the molecular details of these mechanosensitive gating transitions are unknown. Here, we used cell-attached pressure-clamp recordings to acquire single channel data at steady-state conditions (where inactivation has settled down), at various pressures and voltages. Importantly, we identify and analyze subconductance states of the channel which were not reported before. Pressure-dependent activation of Piezo1 increases the occupancy of open and subconductance state at the expense of decreased occupancy of shut-states. No significant change in the mean open time of subconductance states was observed with increasing negative pipette pressure or with varying voltages (ranging from -40 to -100 mV). Using Markov-chain modeling, we identified a minimal four-states kinetic scheme, which recapitulates essential characteristics of the single channel data, including that of the subconductance level. This study advances our understanding of Piezo1-gating mechanism in response to discrete stimuli (such as pressure and voltage) and paves the path to develop cellular and tissue level models to predict Piezo1 function in various cell types.
Collapse
Affiliation(s)
- Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, Florida, USA
| | - Elena D Nosyreva
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David Thompson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Victoria A Cuello
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Luis G Cuello
- Department of Cell Physiology and Molecular Biophysics, TTUHSC, Lubbock, Texas, USA
| | - Ruhma Syeda
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
16
|
Ryan M, Gao L, Valiyaveetil FI, Kananenka AA, Zanni MT. Water inside the Selectivity Filter of a K + Ion Channel: Structural Heterogeneity, Picosecond Dynamics, and Hydrogen Bonding. J Am Chem Soc 2024; 146:1543-1553. [PMID: 38181505 PMCID: PMC10797622 DOI: 10.1021/jacs.3c11513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
Water inside biological ion channels regulates the key properties of these proteins, such as selectivity, ion conductance, and gating. In this article, we measure the picosecond spectral diffusion of amide I vibrations of an isotope-labeled KcsA potassium channel using two-dimensional infrared (2D IR) spectroscopy. By combining waiting time (100-2000 fs) 2D IR measurements of the KcsA channel including 13C18O isotope-labeled Val76 and Gly77 residues with molecular dynamics simulations, we elucidated the site-specific dynamics of water and K+ ions inside the selectivity filter of KcsA. We observe inhomogeneous 2D line shapes with extremely slow spectral diffusion. Our simulations quantitatively reproduce the experiments and show that water is the only component with any appreciable dynamics, whereas K+ ions and the protein are essentially static on a picosecond timescale. By analyzing simulated and experimental vibrational frequencies, we find that water in the selectivity filter can be oriented to form hydrogen bonds with adjacent or nonadjacent carbonyl groups with the reorientation timescales being three times slower and comparable to that of water molecules in liquid, respectively. Water molecules can reside in the cavity sufficiently far from carbonyls and behave essentially like "free" gas-phase-like water with fast reorientation times. Remarkably, no interconversion between these configurations was observed on a picosecond timescale. These dynamics are in stark contrast with liquid water, which remains highly dynamic even in the presence of ions at high concentrations.
Collapse
Affiliation(s)
- Matthew
J. Ryan
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lujia Gao
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Francis I. Valiyaveetil
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Alexei A. Kananenka
- Department
of Physics and Astronomy, University of
Delaware, Newark, Delaware 19716, United States
| | - Martin T. Zanni
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
17
|
Reddi R, Chatterjee S, Matulef K, Gustafson A, Gao L, Valiyaveetil FI. A facile approach for incorporating tyrosine esters to probe ion-binding sites and backbone hydrogen bonds. J Biol Chem 2024; 300:105517. [PMID: 38042487 PMCID: PMC10790091 DOI: 10.1016/j.jbc.2023.105517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023] Open
Abstract
Amide-to-ester substitutions are used to study the role of the amide bonds of the protein backbone in protein structure, function, and folding. An amber suppressor tRNA/synthetase pair has been reported for incorporation of p-hydroxy-phenyl-L-lactic acid (HPLA), thereby introducing ester substitution at tyrosine residues. However, the application of this approach was limited due to the low yields of the modified proteins and the high cost of HPLA. Here we report the in vivo generation of HPLA from the significantly cheaper phenyl-L-lactic acid. We also construct an optimized plasmid with the HPLA suppressor tRNA/synthetase pair that provides higher yields of the modified proteins. The combination of the new plasmid and the in-situ generation of HPLA provides a facile and economical approach for introducing tyrosine ester substitutions. We demonstrate the utility of this approach by introducing tyrosine ester substitutions into the K+ channel KcsA and the integral membrane enzyme GlpG. We introduce the tyrosine ester in the selectivity filter of the M96V mutant of the KcsA to probe the role of the second ion binding site in the conformation of the selectivity filter and the process of inactivation. We use tyrosine ester substitutions in GlpG to perturb backbone H-bonds to investigate the contribution of these H-bonds to membrane protein stability. We anticipate that the approach developed in this study will facilitate further investigations using tyrosine ester substitutions.
Collapse
Affiliation(s)
- Ravikumar Reddi
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Multnomah County, Portland, Oregon, USA
| | - Satyaki Chatterjee
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Multnomah County, Portland, Oregon, USA
| | - Kimberly Matulef
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Multnomah County, Portland, Oregon, USA
| | - Andrew Gustafson
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Multnomah County, Portland, Oregon, USA
| | - Lujia Gao
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Multnomah County, Portland, Oregon, USA
| | - Francis I Valiyaveetil
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Multnomah County, Portland, Oregon, USA.
| |
Collapse
|
18
|
Wang Y, Wang H, Ding W, Zhao X, Li Y, Liu C. Effect of THz Waves of Different Orientations on K + Permeation Efficiency in the KcsA Channel. Int J Mol Sci 2023; 25:429. [PMID: 38203598 PMCID: PMC10779155 DOI: 10.3390/ijms25010429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Potassium (K) channels show the highest variability and most frequent alterations in expression in many tumor types, and modulation of K+ channels may represent a new window for cancer therapy. In previous work, we found that a terahertz (THz) field incident along the z-axis with a frequency of 51.87 THz increased the ion flux through K+ channels. In practice, it is difficult to ensure that the incident electromagnetic (EM) wave is strictly parallel to the direction of channel ion flow. In this paper, we found by changing the direction of the applied electric field that the EM wave of a specific frequency has the largest ion flux when the incident direction is along the ion flow, and the smallest ion flux when the incident direction is perpendicular to the ion flow, and that overall the EM wave of this frequency enhances the ion flow of the K+ channel. Changes in the direction of the applied field at a specific frequency affect the stability of the φ dihedral angle of the GLY77 residue and alter the ion permeation mechanism in the selectivity filter (SF) region, thus affecting the ion flux. Therefore, this frequency can be used to modulate K+ fluxes by THz waves to cause rapid apoptosis in potassium-overloaded tumor cells. This approach consequently represents an important tool for the treatment of cancer and is expected to be applied in practical therapy.
Collapse
Affiliation(s)
- Yize Wang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China; (Y.W.); (W.D.); (X.Z.); (Y.L.); (C.L.)
- School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Hongguang Wang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China; (Y.W.); (W.D.); (X.Z.); (Y.L.); (C.L.)
- School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Wen Ding
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China; (Y.W.); (W.D.); (X.Z.); (Y.L.); (C.L.)
- School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xiaofei Zhao
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China; (Y.W.); (W.D.); (X.Z.); (Y.L.); (C.L.)
- School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yongdong Li
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China; (Y.W.); (W.D.); (X.Z.); (Y.L.); (C.L.)
- School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Chunliang Liu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China; (Y.W.); (W.D.); (X.Z.); (Y.L.); (C.L.)
- School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
19
|
Stix R, Tan XF, Bae C, Fernández-Mariño AI, Swartz KJ, Faraldo-Gómez JD. Eukaryotic Kv channel Shaker inactivates through selectivity filter dilation rather than collapse. SCIENCE ADVANCES 2023; 9:eadj5539. [PMID: 38064553 PMCID: PMC10708196 DOI: 10.1126/sciadv.adj5539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
Eukaryotic voltage-gated K+ channels have been extensively studied, but the structural bases for some of their most salient functional features remain to be established. C-type inactivation, for example, is an auto-inhibitory mechanism that confers temporal resolution to their signal-firing activity. In a recent breakthrough, studies of a mutant of Shaker that is prone to inactivate indicated that this process entails a dilation of the selectivity filter, the narrowest part of the ion conduction pathway. Here, we report an atomic-resolution cryo-electron microscopy structure that demonstrates that the wild-type channel can also adopt this dilated state. All-atom simulations corroborate this conformation is congruent with the electrophysiological characteristics of the C-type inactivated state, namely, residual K+ conductance and altered ion specificity, and help rationalize why inactivation is accelerated or impeded by certain mutations. In summary, this study establishes the molecular basis for an important self-regulatory mechanism in eukaryotic K+ channels, laying a solid foundation for further studies.
Collapse
Affiliation(s)
- Robyn Stix
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Xiao-Feng Tan
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chanhyung Bae
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ana I. Fernández-Mariño
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenton J. Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - José D. Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Ryan MJ, Gao L, Valiyaveetil FI, Kananenka AA, Zanni MT. Water inside the selectivity filter of a K + ion channel: structural heterogeneity, picosecond dynamics, and hydrogen-bonding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567415. [PMID: 38014355 PMCID: PMC10680850 DOI: 10.1101/2023.11.16.567415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Water inside biological ion channels regulates the key properties of these proteins such as selectivity, ion conductance, and gating. In this Article we measure the picosecond spectral diffusion of amide I vibrations of an isotope labeled KcsA potassium channel using two-dimensional infrared (2D IR) spectroscopy. By combining waiting time (100 - 2000 fs) 2D IR measurements of the KcsA channel including 13C18O isotope labeled Val76 and Gly77 residues with molecular dynamics simulations, we elucidated the site-specific dynamics of water and K+ ions inside the selectivity filter of KcsA. We observe inhomogeneous 2D lineshapes with extremely slow spectral diffusion. Our simulations quantitatively reproduce the experiments and show that water is the only component with any appreciable dynamics, whereas K+ ions and the protein are essentially static on a picosecond timescale. By analyzing simulated and experimental vibrational frequencies, we find that water in the selectivity filter can be oriented to form hydrogen bonds with adjacent, or non-adjacent carbonyl groups with the reorientation timescales being three times slower and comparable to that of water molecules in liquid, respectively. Water molecules can reside in the cavity sufficiently far from carbonyls and behave essentially like "free" gas-phase-like water with fast reorientation times. Remarkably, no interconversion between these configurations were observed on a picosecond timescale. These dynamics are in stark contrast with liquid water that remains highly dynamic even in the presence of ions at high concentrations.
Collapse
Affiliation(s)
- Matthew J. Ryan
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lujia Gao
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Francis I. Valiyaveetil
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alexei A. Kananenka
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
21
|
Kopec W, Thomson AS, de Groot BL, Rothberg BS. Interactions between selectivity filter and pore helix control filter gating in the MthK channel. J Gen Physiol 2023; 155:e202213166. [PMID: 37318452 PMCID: PMC10274084 DOI: 10.1085/jgp.202213166] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 01/13/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
K+ channel activity can be limited by C-type inactivation, which is likely initiated in part by dissociation of K+ ions from the selectivity filter and modulated by the side chains that surround it. While crystallographic and computational studies have linked inactivation to a "collapsed" selectivity filter conformation in the KcsA channel, the structural basis for selectivity filter gating in other K+ channels is less clear. Here, we combined electrophysiological recordings with molecular dynamics simulations, to study selectivity filter gating in the model potassium channel MthK and its V55E mutant (analogous to KcsA E71) in the pore-helix. We found that MthK V55E has a lower open probability than the WT channel, due to decreased stability of the open state, as well as a lower unitary conductance. Simulations account for both of these variables on the atomistic scale, showing that ion permeation in V55E is altered by two distinct orientations of the E55 side chain. In the "vertical" orientation, in which E55 forms a hydrogen bond with D64 (as in KcsA WT channels), the filter displays reduced conductance compared to MthK WT. In contrast, in the "horizontal" orientation, K+ conductance is closer to that of MthK WT; although selectivity filter stability is lowered, resulting in more frequent inactivation. Surprisingly, inactivation in MthK WT and V55E is associated with a widening of the selectivity filter, unlike what is observed for KcsA and reminisces recent structures of inactivated channels, suggesting a conserved inactivation pathway across the potassium channel family.
Collapse
Affiliation(s)
- Wojciech Kopec
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Andrew S. Thomson
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Bert L. de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Brad S. Rothberg
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
22
|
Szanto TG, Papp F, Zakany F, Varga Z, Deutsch C, Panyi G. Molecular rearrangements in S6 during slow inactivation in Shaker-IR potassium channels. J Gen Physiol 2023; 155:e202313352. [PMID: 37212728 PMCID: PMC10202832 DOI: 10.1085/jgp.202313352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 05/23/2023] Open
Abstract
Voltage-gated K+ channels have distinct gates that regulate ion flux: the activation gate (A-gate) formed by the bundle crossing of the S6 transmembrane helices and the slow inactivation gate in the selectivity filter. These two gates are bidirectionally coupled. If coupling involves the rearrangement of the S6 transmembrane segment, then we predict state-dependent changes in the accessibility of S6 residues from the water-filled cavity of the channel with gating. To test this, we engineered cysteines, one at a time, at S6 positions A471, L472, and P473 in a T449A Shaker-IR background and determined the accessibility of these cysteines to cysteine-modifying reagents MTSET and MTSEA applied to the cytosolic surface of inside-out patches. We found that neither reagent modified either of the cysteines in the closed or the open state of the channels. On the contrary, A471C and P473C, but not L472C, were modified by MTSEA, but not by MTSET, if applied to inactivated channels with open A-gate (OI state). Our results, combined with earlier studies reporting reduced accessibility of residues I470C and V474C in the inactivated state, strongly suggest that the coupling between the A-gate and the slow inactivation gate is mediated by rearrangements in the S6 segment. The S6 rearrangements are consistent with a rigid rod-like rotation of S6 around its longitudinal axis upon inactivation. S6 rotation and changes in its environment are concomitant events in slow inactivation of Shaker KV channels.
Collapse
Affiliation(s)
- Tibor G. Szanto
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Papp
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Carol Deutsch
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
23
|
Renart ML, Giudici AM, Coll-Díez C, González-Ros JM, Poveda JA. Anionic Phospholipids Shift the Conformational Equilibrium of the Selectivity Filter in the KcsA Channel to the Conductive Conformation: Predicted Consequences on Inactivation. Biomedicines 2023; 11:biomedicines11051376. [PMID: 37239046 DOI: 10.3390/biomedicines11051376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Here, we report an allosteric effect of an anionic phospholipid on a model K+ channel, KcsA. The anionic lipid in mixed detergent-lipid micelles specifically induces a change in the conformational equilibrium of the channel selectivity filter (SF) only when the channel inner gate is in the open state. Such change consists of increasing the affinity of the channel for K+, stabilizing a conductive-like form by maintaining a high ion occupancy in the SF. The process is highly specific in several aspects: First, lipid modifies the binding of K+, but not that of Na+, which remains unperturbed, ruling out a merely electrostatic phenomenon of cation attraction. Second, no lipid effects are observed when a zwitterionic lipid, instead of an anionic one, is present in the micelles. Lastly, the effects of the anionic lipid are only observed at pH 4.0, when the inner gate of KcsA is open. Moreover, the effect of the anionic lipid on K+ binding to the open channel closely emulates the K+ binding behaviour of the non-inactivating E71A and R64A mutant proteins. This suggests that the observed increase in K+ affinity caused by the bound anionic lipid should result in protecting the channel against inactivation.
Collapse
Affiliation(s)
- María Lourdes Renart
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain
| | - Ana Marcela Giudici
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain
| | - Carlos Coll-Díez
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain
| | - José M González-Ros
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain
| | - José A Poveda
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain
| |
Collapse
|
24
|
Gu RX, de Groot BL. Central cavity dehydration as a gating mechanism of potassium channels. Nat Commun 2023; 14:2178. [PMID: 37069187 PMCID: PMC10110622 DOI: 10.1038/s41467-023-37531-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/21/2023] [Indexed: 04/19/2023] Open
Abstract
The hydrophobic gating model, in which ion permeation is inhibited by the hydrophobicity, rather than a physical occlusion of the nanopore, functions in various ion channels including potassium channels. Available research focused on the energy barriers for ion/water conduction due to the hydrophobicity, whereas how hydrophobic gating affects the function and structure of channels remains unclear. Here, we use potassium channels as examples and conduct molecular dynamics simulations to investigate this problem. Our simulations find channel activities (ion currents) highly correlated with cavity hydration level, implying insufficient hydration as a barrier for ion permeation. Enforced cavity dehydration successfully induces conformational transitions between known channel states, further implying cavity dewetting as a key step in the gating procedure of potassium channels utilizing different activation mechanisms. Our work reveals how the cavity dewetting is coupled to structural changes of potassium channels and how it affects channel activity. The conclusion may also apply to other ion channels.
Collapse
Affiliation(s)
- Ruo-Xu Gu
- School of Life Sciences and Biotechnology, Shanghai Jia Tong University, 800 Dongchuan Road, 200240, Shanghai, China
- Department of Theoretical and Computational Biophysics, Max-Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Bert L de Groot
- Department of Theoretical and Computational Biophysics, Max-Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
25
|
Pettini F, Domene C, Furini S. Early Steps in C-Type Inactivation of the hERG Potassium Channel. J Chem Inf Model 2023; 63:251-258. [PMID: 36512342 PMCID: PMC9832476 DOI: 10.1021/acs.jcim.2c01028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fast C-type inactivation confers distinctive functional properties to the hERG potassium channel, and its association to inherited and acquired cardiac arrythmias makes the study of the inactivation mechanism of hERG at the atomic detail of paramount importance. At present, two models have been proposed to describe C-type inactivation in K+-channels. Experimental data and computational work on the bacterial KcsA channel support the hypothesis that C-type inactivation results from a closure of the selectivity filter that sterically impedes ion conduction. Alternatively, recent experimental structures of a mutated Shaker channel revealed a widening of the extracellular portion of the selectivity filter, which might diminish conductance by interfering with the mechanism of ion permeation. Here, we performed molecular dynamics simulations of the wild-type hERG, a non-inactivating mutant (hERG-N629D), and a mutant that inactivates faster than the wild-type channel (hERG-F627Y) to find out which and if any of the two reported C-type inactivation mechanisms applies to hERG. Closure events of the selectivity filter were not observed in any of the simulated trajectories but instead, the extracellular section of the selectivity filter deviated from the canonical conductive structure of potassium channels. The degree of widening of the potassium binding sites at the extracellular entrance of the channel was directly related to the degree of inactivation with hERG-F627Y > wild-type hERG > hERG-N629D. These findings support the hypothesis that C-type inactivation in hERG entails a widening of the extracellular entrance of the channel rather than a closure of the selectivity filter.
Collapse
Affiliation(s)
- Francesco Pettini
- Department
of Medical Biotechnologies, University of
Siena, viale Mario Bracci 12, Siena 53100, Italy,Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, viale Mario Bracci 12, Siena 53100, Italy
| | - Carmen Domene
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.,Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.,
| | - Simone Furini
- Department
of Electrical, Electronic and Information Engineering ″Guglielmo
Marconi”, University of Bologna, via dell’Università
50, Cesena (FC) 47521, Italy,
| |
Collapse
|
26
|
Wang Y, Wang H, Ding W, Zhao X, Li Y, Liu C. Regulation of Ion Permeation of the KcsA Channel by Applied Midinfrared Field. Int J Mol Sci 2022; 24:ijms24010556. [PMID: 36613998 PMCID: PMC9820211 DOI: 10.3390/ijms24010556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
Ion transport molecules are involved in many physiological and pathological processes and are considered potential targets for cancer treatment. In the large family of ion transport molecules, potassium (K) ion channels, as surface-expressed proteins, show the highest variability and most frequent expression changes in many tumor types. The key to exploring the permeation of K+ through potassium channels lies in the conserved sequence TVGYG, which is common in the selectivity filter (SF) region of all potassium channels. We found that the K+ flux significantly increased with the help of a specific frequency terahertz electromagnetic wave (51.87 THz) in the KcsA channel using a molecular dynamics combined model through the combined simulation of the constant electric field method and ion imbalance method. This frequency has the strongest absorption peak in the infrared spectrum of -C=O groups in the SF region. With the applied electric field of 51.87 THz, the Y78 residue at the S1 site of the SF has a smaller vibration amplitude and a more stable structure, which enables the K+ to bind closely with the carbonyl oxygen atoms in the SF and realize ion conduction in a more efficient direct Coulomb knock-on.
Collapse
Affiliation(s)
- Yize Wang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China
- School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Hongguang Wang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China
- School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- Correspondence: ; Tel.: +86-18191765263
| | - Wen Ding
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China
- School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xiaofei Zhao
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China
- School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yongdong Li
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China
- School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Chunliang Liu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China
- School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
27
|
Kurauskas V, Tonelli M, Henzler-Wildman K. Full opening of helix bundle crossing does not lead to NaK channel activation. J Gen Physiol 2022; 154:213659. [PMID: 36326620 PMCID: PMC9640265 DOI: 10.1085/jgp.202213196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/11/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
A critical part of ion channel function is the ability to open and close in response to stimuli and thus conduct ions in a regulated fashion. While x-ray diffraction studies of ion channels suggested a general steric gating mechanism located at the helix bundle crossing (HBC), recent functional studies on several channels indicate that the helix bundle crossing is wide-open even in functionally nonconductive channels. Two NaK channel variants were crystallized in very different open and closed conformations, which served as important models of the HBC gating hypothesis. However, neither of these NaK variants is conductive in liposomes unless phenylalanine 92 is mutated to alanine (F92A). Here, we use NMR to probe distances at near-atomic resolution of the two NaK variants in lipid bicelles. We demonstrate that in contrast to the crystal structures, both NaK variants are in a fully open conformation, akin to Ca2+-bound MthK channel structure where the HBC is widely open. While we were not able to determine what a conductive NaK structure is like, our further inquiry into the gating mechanism suggests that the selectivity filter and pore helix are coupled to the M2 helix below and undergo changes in the structure when F92 is mutated. Overall, our data show that NaK exhibits coupling between the selectivity filter and HBC, similar to K+ channels, and has a more complex gating mechanism than previously thought, where the full opening of HBC does not lead to channel activation.
Collapse
Affiliation(s)
- Vilius Kurauskas
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, University of Wisconsin—Madison, Madison, WI
| | - Katherine Henzler-Wildman
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI
- National Magnetic Resonance Facility at Madison, University of Wisconsin—Madison, Madison, WI
- Correspondence to Katherine Henzler-Wildman:
| |
Collapse
|
28
|
Wu X, Gupta K, Swartz KJ. Mutations within the selectivity filter reveal that Kv1 channels have distinct propensities to slow inactivate. J Gen Physiol 2022; 154:e202213222. [PMID: 36197416 PMCID: PMC9539455 DOI: 10.1085/jgp.202213222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 01/18/2023] Open
Abstract
Voltage-activated potassium (Kv) channels open in response to membrane depolarization and subsequently inactivate through distinct mechanisms. For the model Shaker Kv channel from Drosophila, fast N-type inactivation is thought to occur by a mechanism involving blockade of the internal pore by the N-terminus, whereas slow C-type inactivation results from conformational changes in the ion selectivity filter in the external pore. Kv channel inactivation plays critical roles in shaping the action potential and regulating firing frequency, and has been implicated in a range of diseases including episodic ataxia and arrhythmias. Although structures of the closely related Shaker and Kv1.2 channels containing mutations that promote slow inactivation both support a mechanism involving dilation of the outer selectivity filter, mutations in the outer pores of these two Kv channels have been reported to have markedly distinct effects on slow inactivation, raising questions about the extent to which slow inactivation is related in both channels. In this study, we characterized the influence of a series of mutations within the external pore of Shaker and Kv1.2 channels and observed many distinct mutant phenotypes. We find that mutations at four positions near the selectivity filter promote inactivation less dramatically in Kv1.2 when compared to Shaker, and they identify one key variable position (T449 in Shaker and V381 in Kv1.2) underlying the different phenotypes in the two channels. Collectively, our results suggest that Kv1.2 is less prone to inactivate compared to Shaker, yet support a common mechanism of inactivation in the two channels.
Collapse
Affiliation(s)
- Xiaosa Wu
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Kanchan Gupta
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Kenton J. Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
29
|
Coonen L, Martinez-Morales E, Van De Sande DV, Snyders DJ, Cortes DM, Cuello LG, Labro AJ. The nonconducting W434F mutant adopts upon membrane depolarization an inactivated-like state that differs from wild-type Shaker-IR potassium channels. SCIENCE ADVANCES 2022; 8:eabn1731. [PMID: 36112676 PMCID: PMC9481120 DOI: 10.1126/sciadv.abn1731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Voltage-gated K+ (Kv) channels mediate the flow of K+ across the cell membrane by regulating the conductive state of their activation gate (AG). Several Kv channels display slow C-type inactivation, a process whereby their selectivity filter (SF) becomes less or nonconductive. It has been proposed that, in the fast inactivation-removed Shaker-IR channel, the W434F mutation epitomizes the C-type inactivated state because it functionally accelerates this process. By introducing another pore mutation that prevents AG closure, P475D, we found a way to record ionic currents of the Shaker-IR-W434F-P475D mutant at hyperpolarized membrane potentials as the W434F-mutant SF recovers from its inactivated state. This W434F conductive state lost its high K+ over Na+ selectivity, and even NMDG+ can permeate, features not observed in a wild-type SF. This indicates that, at least during recovery from inactivation, the W434F-mutant SF transitions to a widened and noncationic specific conformation.
Collapse
Affiliation(s)
- Laura Coonen
- Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Evelyn Martinez-Morales
- Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Dieter V. Van De Sande
- Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Dirk J. Snyders
- Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - D. Marien Cortes
- Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Luis G. Cuello
- Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Alain J. Labro
- Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Department of Basic and Applied Medical Sciences, Faculty of Medicine, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
30
|
Horng TL, Chen RS, Leonardi MV, Franciolini F, Catacuzzeno L. A Multi-Scale Approach to Model K+ Permeation Through the KcsA Channel. Front Mol Biosci 2022; 9:880660. [PMID: 35911957 PMCID: PMC9332843 DOI: 10.3389/fmolb.2022.880660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
K+ channels allow a very efficient passage of K+ ions through the membrane while excluding Na+ ions, and these properties are essential for life. The 3D structure of the KcsA K+ channel, solved more than 20 years ago, allows to address many relevant aspects of K+ permeation and selectivity mechanisms at the molecular level. Recent crystallographic data and molecular dynamics (MD) studies suggest that no water is normally present inside the selectivity filter (SF), which can instead accommodate four adjacent K+ ions. Using a multi-scale approach, whereby information taken from a low-level simulation approach is used to feed a high-level model, we studied the mechanism of K+ permeation through KcsA channels. More specifically, we used MD to find stable ion configurations under physiological conditions. They were characterized by two adjacent K+ ions occupying the more central positions of the SF (sites S2 and S3), while the other two K+ ions could be found at the external and internal entrances to the SF. Sites S1 and S4 were instead not occupied by K+. A continuum Bikerman–Poisson–Boltzmann model that takes into account the volume of the ions and their dehydration when entering the SF fully confirmed the MD results, showing peaks of K+ occupancy at S2, S3, and the external and internal entrances, with S1 and S4 sites being virtually never occupied by K+. Inspired by the newly found ion configuration in the SF at equilibrium, we developed a simple kinetic permeation model which, fed with kinetic rate constants assessed from molecular meta-dynamics, reproduced the main permeation properties of the KcsA channel found experimentally, including sublinear current-voltage and saturating conductance-concentration relationships. This good agreement with the experimental data also implies that the ion configuration in the SF we identified at equilibrium would also be a key configuration during permeation.
Collapse
Affiliation(s)
- T. L. Horng
- Department of Applied Mathematics, Feng Chia University, Taichung, Taiwan
- *Correspondence: T. L. Horng, ; L. Catacuzzeno,
| | - R. S. Chen
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - M. V. Leonardi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - F. Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - L. Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
- *Correspondence: T. L. Horng, ; L. Catacuzzeno,
| |
Collapse
|
31
|
Selvakumar P, Fernández-Mariño AI, Khanra N, He C, Paquette AJ, Wang B, Huang R, Smider VV, Rice WJ, Swartz KJ, Meyerson JR. Structures of the T cell potassium channel Kv1.3 with immunoglobulin modulators. Nat Commun 2022; 13:3854. [PMID: 35788586 PMCID: PMC9253088 DOI: 10.1038/s41467-022-31285-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
The Kv1.3 potassium channel is expressed abundantly on activated T cells and mediates the cellular immune response. This role has made the channel a target for therapeutic immunomodulation to block its activity and suppress T cell activation. Here, we report structures of human Kv1.3 alone, with a nanobody inhibitor, and with an antibody-toxin fusion blocker. Rather than block the channel directly, four copies of the nanobody bind the tetramer's voltage sensing domains and the pore domain to induce an inactive pore conformation. In contrast, the antibody-toxin fusion docks its toxin domain at the extracellular mouth of the channel to insert a critical lysine into the pore. The lysine stabilizes an active conformation of the pore yet blocks ion permeation. This study visualizes Kv1.3 pore dynamics, defines two distinct mechanisms to suppress Kv1.3 channel activity with exogenous inhibitors, and provides a framework to aid development of emerging T cell immunotherapies.
Collapse
Affiliation(s)
- Purushotham Selvakumar
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Ana I Fernández-Mariño
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Nandish Khanra
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Changhao He
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Alice J Paquette
- Cryo-Electron Microscopy Core, New York University School of Medicine, New York, NY, USA
| | - Bing Wang
- Cryo-Electron Microscopy Core, New York University School of Medicine, New York, NY, USA
| | - Ruiqi Huang
- Applied Biomedical Science Institute, San Diego, CA, USA
- Minotaur Therapeutics, San Diego, CA, USA
| | - Vaughn V Smider
- Applied Biomedical Science Institute, San Diego, CA, USA
- Minotaur Therapeutics, San Diego, CA, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - William J Rice
- Cryo-Electron Microscopy Core, New York University School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Joel R Meyerson
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
32
|
Ong ST, Tyagi A, Chandy KG, Bhushan S. Mechanisms Underlying C-type Inactivation in Kv Channels: Lessons From Structures of Human Kv1.3 and Fly Shaker-IR Channels. Front Pharmacol 2022; 13:924289. [PMID: 35833027 PMCID: PMC9271579 DOI: 10.3389/fphar.2022.924289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Voltage-gated potassium (Kv) channels modulate the function of electrically-excitable and non-excitable cells by using several types of “gates” to regulate ion flow through the channels. An important gating mechanism, C-type inactivation, limits ion flow by transitioning Kv channels into a non-conducting inactivated state. Here, we highlight two recent papers, one on the human Kv1.3 channel and the second on the Drosophila Shaker Kv channel, that combined cryogenic electron microscopy and molecular dynamics simulation to define mechanisms underlying C-type inactivation. In both channels, the transition to the non-conducting inactivated conformation begins with the rupture of an intra-subunit hydrogen bond that fastens the selectivity filter to the pore helix. The freed filter swings outwards and gets tethered to an external residue. As a result, the extracellular end of the selectivity filter dilates and K+ permeation through the pore is impaired. Recovery from inactivation may entail a reversal of this process. Such a reversal, at least partially, is induced by the peptide dalazatide. Binding of dalazatide to external residues in Kv1.3 frees the filter to swing inwards. The extracellular end of the selectivity filter narrows allowing K+ to move in single file through the pore typical of conventional knock-on conduction. Inter-subunit hydrogen bonds that stabilize the outer pore in the dalazatide-bound structure are equivalent to those in open-conducting conformations of Kv channels. However, the intra-subunit bond that fastens the filter to the pore-helix is absent, suggesting an incomplete reversal of the process. These mechanisms define how Kv channels self-regulate the flow of K+ by changing the conformation of the selectivity filter.
Collapse
Affiliation(s)
- Seow Theng Ong
- LKCMedicine-ICESing Ion Channel Platform, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Anu Tyagi
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Singapore and Nanyang Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - K. George Chandy
- LKCMedicine-ICESing Ion Channel Platform, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- *Correspondence: K. George Chandy, ; Shashi Bhushan,
| | - Shashi Bhushan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Singapore and Nanyang Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
- *Correspondence: K. George Chandy, ; Shashi Bhushan,
| |
Collapse
|
33
|
Reddi R, Matulef K, Riederer EA, Whorton MR, Valiyaveetil FI. Structural basis for C-type inactivation in a Shaker family voltage-gated K + channel. SCIENCE ADVANCES 2022; 8:eabm8804. [PMID: 35452285 PMCID: PMC9032944 DOI: 10.1126/sciadv.abm8804] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
C-type inactivation is a process by which ion flux through a voltage-gated K+ (Kv) channel is regulated at the selectivity filter. While prior studies have indicated that C-type inactivation involves structural changes at the selectivity filter, the nature of the changes has not been resolved. Here, we report the crystal structure of the Kv1.2 channel in a C-type inactivated state. The structure shows that C-type inactivation involves changes in the selectivity filter that disrupt the outer two ion binding sites in the filter. The changes at the selectivity filter propagate to the extracellular mouth and the turret regions of the channel pore. The structural changes observed are consistent with the functional hallmarks of C-type inactivation. This study highlights the intricate interplay between K+ occupancy at the ion binding sites and the interactions of the selectivity filter in determining the balance between the conductive and the inactivated conformations of the filter.
Collapse
Affiliation(s)
- Ravikumar Reddi
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Kimberly Matulef
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Erika A. Riederer
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Matthew R. Whorton
- Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Francis I. Valiyaveetil
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| |
Collapse
|
34
|
Rohaim A, Slezak T, Koh YH, Blachowicz L, Kossiakoff AA, Roux B. Engineering of a synthetic antibody fragment for structural and functional studies of K+ channels. J Gen Physiol 2022; 154:e202112965. [PMID: 35234830 PMCID: PMC8924934 DOI: 10.1085/jgp.202112965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 01/28/2022] [Indexed: 11/20/2022] Open
Abstract
Engineered antibody fragments (Fabs) have made major impacts on structural biology research, particularly to aid structural determination of membrane proteins. Nonetheless, Fabs generated by traditional monoclonal technology suffer from challenges of routine production and storage. Starting from the known IgG paratopes of an antibody that binds to the "turret loop" of the KcsA K+ channel, we engineered a synthetic Fab (sFab) based upon the highly stable Herceptin Fab scaffold, which can be recombinantly expressed in Escherichia coli and purified with single-step affinity chromatography. This synthetic Fab was used as a crystallization chaperone to obtain crystals of the KcsA channel that diffracted to a resolution comparable to that from the parent Fab. Furthermore, we show that the turret loop can be grafted into the unrelated voltage-gated Kv1.2-Kv2.1 channel and still strongly bind the engineered sFab, in support of the loop grafting strategy. Macroscopic electrophysiology recordings show that the sFab affects the activation and conductance of the chimeric voltage-gated channel. These results suggest that straightforward engineering of antibodies using recombinant formats can facilitate the rapid and scalable production of Fabs as structural biology tools and functional probes. The impact of this approach is expanded significantly based on the potential portability of the turret loop to a myriad of other K+ channels.
Collapse
Affiliation(s)
- Ahmed Rohaim
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Tomasz Slezak
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - Young Hoon Koh
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - Lydia Blachowicz
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - Anthony A. Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| |
Collapse
|
35
|
A distinct mechanism of C-type inactivation in the Kv-like KcsA mutant E71V. Nat Commun 2022; 13:1574. [PMID: 35322021 PMCID: PMC8943062 DOI: 10.1038/s41467-022-28866-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/01/2022] [Indexed: 11/08/2022] Open
Abstract
C-type inactivation is of great physiological importance in voltage-activated K+ channels (Kv), but its structural basis remains unresolved. Knowledge about C-type inactivation has been largely deduced from the bacterial K+ channel KcsA, whose selectivity filter constricts under inactivating conditions. However, the filter is highly sensitive to its molecular environment, which is different in Kv channels than in KcsA. In particular, a glutamic acid residue at position 71 along the pore helix in KcsA is substituted by a valine conserved in most Kv channels, suggesting that this side chain is a molecular determinant of function. Here, a combination of X-ray crystallography, solid-state NMR and MD simulations of the E71V KcsA mutant is undertaken to explore inactivation in this Kv-like construct. X-ray and ssNMR data show that the filter of the Kv-like mutant does not constrict under inactivating conditions. Rather, the filter adopts a conformation that is slightly narrowed and rigidified. On the other hand, MD simulations indicate that the constricted conformation can nonetheless be stably established in the mutant channel. Together, these findings suggest that the Kv-like KcsA mutant may be associated with different modes of C-type inactivation, showing that distinct filter environments entail distinct C-type inactivation mechanisms.
Collapse
|
36
|
Tan XF, Bae C, Stix R, Fernández-Mariño AI, Huffer K, Chang TH, Jiang J, Faraldo-Gómez JD, Swartz KJ. Structure of the Shaker Kv channel and mechanism of slow C-type inactivation. SCIENCE ADVANCES 2022; 8:eabm7814. [PMID: 35302848 PMCID: PMC8932672 DOI: 10.1126/sciadv.abm7814] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Voltage-activated potassium (Kv) channels open upon membrane depolarization and proceed to spontaneously inactivate. Inactivation controls neuronal firing rates and serves as a form of short-term memory and is implicated in various human neurological disorders. Here, we use high-resolution cryo-electron microscopy and computer simulations to determine one of the molecular mechanisms underlying this physiologically crucial process. Structures of the activated Shaker Kv channel and of its W434F mutant in lipid bilayers demonstrate that C-type inactivation entails the dilation of the ion selectivity filter and the repositioning of neighboring residues known to be functionally critical. Microsecond-scale molecular dynamics trajectories confirm that these changes inhibit rapid ion permeation through the channel. This long-sought breakthrough establishes how eukaryotic K+ channels self-regulate their functional state through the plasticity of their selectivity filters.
Collapse
Affiliation(s)
- Xiao-Feng Tan
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chanhyung Bae
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robyn Stix
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Ana I. Fernández-Mariño
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Tsg-Hui Chang
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiansen Jiang
- Laboratory of Membrane Proteins and Structural Biology and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - José D. Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenton J. Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
37
|
Reddi R, Matulef K, Riederer E, Moenne-Loccoz P, Valiyaveetil FI. Structures of Gating Intermediates in a K + channel. J Mol Biol 2021; 433:167296. [PMID: 34627789 DOI: 10.1016/j.jmb.2021.167296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 11/30/2022]
Abstract
Regulation of ion conduction through the pore of a K+ channel takes place through the coordinated action of the activation gate at the bundle crossing of the inner helices and the inactivation gate located at the selectivity filter. The mechanism of allosteric coupling of these gates is of key interest. Here we report new insights into this allosteric coupling mechanism from studies on a W67F mutant of the KcsA channel. W67 is in the pore helix and is highly conserved in K+ channels. The KcsA W67F channel shows severely reduced inactivation and an enhanced rate of activation. We use continuous wave EPR spectroscopy to establish that the KcsA W67F channel shows an altered pH dependence of activation. Structural studies on the W67F channel provide the structures of two intermediate states: a pre- open state and a pre-inactivated state of the KcsA channel. These structures highlight key nodes in the allosteric pathway. The structure of the KcsA W67F channel with the activation gate open shows altered ion occupancy at the second ion binding site (S2) in the selectivity filter. This finding in combination with previous studies strongly support a requirement for ion occupancy at the S2 site for the channel to inactivate.
Collapse
Affiliation(s)
- Ravikumar Reddi
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States. https://twitter.com/Ravi_K_Reddi
| | - Kimberly Matulef
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Erika Riederer
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Pierre Moenne-Loccoz
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Francis I Valiyaveetil
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States.
| |
Collapse
|
38
|
Gabriel TS, Hansen UP, Urban M, Drexler N, Winterstein T, Rauh O, Thiel G, Kast SM, Schroeder I. Asymmetric Interplay Between K + and Blocker and Atomistic Parameters From Physiological Experiments Quantify K + Channel Blocker Release. Front Physiol 2021; 12:737834. [PMID: 34777005 PMCID: PMC8586521 DOI: 10.3389/fphys.2021.737834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/04/2021] [Indexed: 11/23/2022] Open
Abstract
Modulating the activity of ion channels by blockers yields information on both the mode of drug action and on the biophysics of ion transport. Here we investigate the interplay between ions in the selectivity filter (SF) of K+ channels and the release kinetics of the blocker tetrapropylammonium in the model channel KcvNTS. A quantitative expression calculates blocker release rate constants directly from voltage-dependent ion occupation probabilities in the SF. The latter are obtained by a kinetic model of single-channel currents recorded in the absence of the blocker. The resulting model contains only two adjustable parameters of ion-blocker interaction and holds for both symmetric and asymmetric ionic conditions. This data-derived model is corroborated by 3D reference interaction site model (3D RISM) calculations on several model systems, which show that the K+ occupation probability is unaffected by the blocker, a direct consequence of the strength of the ion-carbonyl attraction in the SF, independent of the specific protein background. Hence, KcvNTS channel blocker release kinetics can be reduced to a small number of system-specific parameters. The pore-independent asymmetric interplay between K+ and blocker ions potentially allows for generalizing these results to similar potassium channels.
Collapse
Affiliation(s)
- Tobias S Gabriel
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Ulf-Peter Hansen
- Department of Structural Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Martin Urban
- Physikalische Chemie III, Technische Universita̋t Dortmund, Dortmund, Germany
| | - Nils Drexler
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Tobias Winterstein
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Oliver Rauh
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Gerhard Thiel
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stefan M Kast
- Physikalische Chemie III, Technische Universita̋t Dortmund, Dortmund, Germany
| | - Indra Schroeder
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany.,Institute of Physiology II, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
39
|
Szanto TG, Zakany F, Papp F, Varga Z, Deutsch CJ, Panyi G. The activation gate controls steady-state inactivation and recovery from inactivation in Shaker. J Gen Physiol 2021; 152:151805. [PMID: 32442242 PMCID: PMC7398138 DOI: 10.1085/jgp.202012591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/18/2020] [Indexed: 01/15/2023] Open
Abstract
Despite major advances in the structure determination of ion channels, the sequence of molecular rearrangements at negative membrane potentials in voltage-gated potassium channels of the Shaker family remains unknown. Four major composite gating states are documented during the gating process: closed (C), open (O), open-inactivated (OI), and closed-inactivated (CI). Although many steps in the gating cycle have been clarified experimentally, the development of steady-state inactivation at negative membrane potentials and mandatory gating transitions for recovery from inactivation have not been elucidated. In this study, we exploit the biophysical properties of Shaker-IR mutants T449A/V474C and T449A/V476C to evaluate the status of the activation and inactivation gates during steady-state inactivation and upon locking the channel open with intracellular Cd2+. We conclude that at negative membrane potentials, the gating scheme of Shaker channels can be refined in two aspects. First, the most likely pathway for the development of steady-state inactivation is C→O→OI⇌CI. Second, the OI→CI transition is a prerequisite for recovery from inactivation. These findings are in accordance with the widely accepted view that tight coupling is present between the activation and C-type inactivation gates in Shaker and underscore the role of steady-state inactivation and recovery from inactivation as determinants of excitability.
Collapse
Affiliation(s)
- Tibor G Szanto
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Florina Zakany
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Papp
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Varga
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Carol J Deutsch
- Department of Physiology, University of Pennsylvania, Philadelphia, PA
| | - Gyorgy Panyi
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
40
|
Domene C, Ocello R, Masetti M, Furini S. Ion Conduction Mechanism as a Fingerprint of Potassium Channels. J Am Chem Soc 2021; 143:12181-12193. [PMID: 34323472 DOI: 10.1021/jacs.1c04802] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
K+-channels are membrane proteins that regulate the selective conduction of potassium ions across cell membranes. Although the atomic mechanisms of K+ permeation have been extensively investigated, previous work focused on characterizing the selectivity and occupancy of the binding sites, the role of water molecules in the conduction process, or the identification of the minimum energy pathways enabling permeation. Here, we exploit molecular dynamics simulations and the analytical power of Markov state models to perform a comparative study of ion conduction in three distinct channel models. Significant differences emerged in terms of permeation mechanisms and binding site occupancy by potassium ions and/or water molecules from 100 μs cumulative trajectories. We found that, at odds with the current paradigm, each system displays a characteristic permeation mechanism, and thus, there is not a unique way by which potassium ions move through K+-channels. The high functional diversity of K+-channels can be attributed in part to the differences in conduction features that have emerged from this work. This study provides crucial information and further inspiration for wet-lab chemists designing new synthetic strategies to produce versatile artificial ion channels that emulate membrane transport for their applications in diagnosis, sensors, the next generation of water treatment technologies, etc., as the ability of synthetic channels to transport molecular ions across a bilayer in a controlled way is usually governed through the choice of metal ions, their oxidation states, or their coordination geometries.
Collapse
Affiliation(s)
- Carmen Domene
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, U.K.,Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Riccardo Ocello
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Matteo Masetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Simone Furini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| |
Collapse
|
41
|
Gubič Š, Hendrickx LA, Toplak Ž, Sterle M, Peigneur S, Tomašič T, Pardo LA, Tytgat J, Zega A, Mašič LP. Discovery of K V 1.3 ion channel inhibitors: Medicinal chemistry approaches and challenges. Med Res Rev 2021; 41:2423-2473. [PMID: 33932253 PMCID: PMC8252768 DOI: 10.1002/med.21800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
The KV 1.3 voltage-gated potassium ion channel is involved in many physiological processes both at the plasma membrane and in the mitochondria, chiefly in the immune and nervous systems. Therapeutic targeting KV 1.3 with specific peptides and small molecule inhibitors shows great potential for treating cancers and autoimmune diseases, such as multiple sclerosis, type I diabetes mellitus, psoriasis, contact dermatitis, rheumatoid arthritis, and myasthenia gravis. However, no KV 1.3-targeted compounds have been approved for therapeutic use to date. This review focuses on the presentation of approaches for discovering new KV 1.3 peptide and small-molecule inhibitors, and strategies to improve the selectivity of active compounds toward KV 1.3. Selectivity of dalatazide (ShK-186), a synthetic derivate of the sea anemone toxin ShK, was achieved by chemical modification and has successfully reached clinical trials as a potential therapeutic for treating autoimmune diseases. Other peptides and small-molecule inhibitors are critically evaluated for their lead-like characteristics and potential for progression into clinical development. Some small-molecule inhibitors with well-defined structure-activity relationships have been optimized for selective delivery to mitochondria, and these offer therapeutic potential for the treatment of cancers. This overview of KV 1.3 inhibitors and methodologies is designed to provide a good starting point for drug discovery to identify novel effective KV 1.3 modulators against this target in the future.
Collapse
Affiliation(s)
- Špela Gubič
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | - Louise A. Hendrickx
- Toxicology and PharmacologyUniversity of Leuven, Campus GasthuisbergLeuvenBelgium
| | - Žan Toplak
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | - Maša Sterle
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | - Steve Peigneur
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | | | - Luis A. Pardo
- AG OncophysiologyMax‐Planck Institute for Experimental MedicineGöttingenGermany
| | - Jan Tytgat
- Toxicology and PharmacologyUniversity of Leuven, Campus GasthuisbergLeuvenBelgium
| | - Anamarija Zega
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | | |
Collapse
|
42
|
Structure and function at the lipid-protein interface of a pentameric ligand-gated ion channel. Proc Natl Acad Sci U S A 2021; 118:2100164118. [PMID: 34083441 DOI: 10.1073/pnas.2100164118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although it has long been proposed that membrane proteins may contain tightly bound lipids, their identity, the structure of their binding sites, and their functional and structural relevance have remained elusive. To some extent, this is because tightly bound lipids are often located at the periphery of proteins, where the quality of density maps is usually poorer, and because they may be outcompeted by detergent molecules used during standard purification procedures. As a step toward characterizing natively bound lipids in the superfamily of pentameric ligand-gated ion channels (pLGICs), we applied single-particle cryogenic electron microscopy to fragments of native membrane obtained in the complete absence of detergent-solubilization steps. Because of the heterogeneous lipid composition of membranes in the secretory pathway of eukaryotic cells, we chose to study a bacterial pLGIC (ELIC) expressed in Escherichia coli's inner membrane. We obtained a three-dimensional reconstruction of unliganded ELIC (2.5-Å resolution) that shows clear evidence for two types of tightly bound lipid at the protein-bulk-membrane interface. One of them was consistent with a "regular" diacylated phospholipid, in the cytoplasmic leaflet, whereas the other one was consistent with the tetra-acylated structure of cardiolipin, in the periplasmic leaflet. Upon reconstitution in E. coli polar-lipid bilayers, ELIC retained the functional properties characteristic of members of this superfamily, and thus, the fitted atomic model is expected to represent the (long-debated) unliganded-closed, "resting" conformation of this ion channel. Notably, the addition of cardiolipin to phosphatidylcholine membranes restored the ion-channel activity that is largely lost in phosphatidylcholine-only bilayers.
Collapse
|
43
|
DeMarco KR, Yang PC, Singh V, Furutani K, Dawson JRD, Jeng MT, Fettinger JC, Bekker S, Ngo VA, Noskov SY, Yarov-Yarovoy V, Sack JT, Wulff H, Clancy CE, Vorobyov I. Molecular determinants of pro-arrhythmia proclivity of d- and l-sotalol via a multi-scale modeling pipeline. J Mol Cell Cardiol 2021; 158:163-177. [PMID: 34062207 PMCID: PMC8906354 DOI: 10.1016/j.yjmcc.2021.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/03/2021] [Accepted: 05/24/2021] [Indexed: 11/20/2022]
Abstract
Drug isomers may differ in their proarrhythmia risk. An interesting example is the drug sotalol, an antiarrhythmic drug comprising d- and l- enantiomers that both block the hERG cardiac potassium channel and confer differing degrees of proarrhythmic risk. We developed a multi-scale in silico pipeline focusing on hERG channel – drug interactions and used it to probe and predict the mechanisms of pro-arrhythmia risks of the two enantiomers of sotalol. Molecular dynamics (MD) simulations predicted comparable hERG channel binding affinities for d- and l-sotalol, which were validated with electrophysiology experiments. MD derived thermodynamic and kinetic parameters were used to build multi-scale functional computational models of cardiac electrophysiology at the cell and tissue scales. Functional models were used to predict inactivated state binding affinities to recapitulate electrocardiogram (ECG) QT interval prolongation observed in clinical data. Our study demonstrates how modeling and simulation can be applied to predict drug effects from the atom to the rhythm for dl-sotalol and also increased proarrhythmia proclivity of d- vs. l-sotalol when accounting for stereospecific beta-adrenergic receptor blocking.
Collapse
Affiliation(s)
- Kevin R DeMarco
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA
| | - Pei-Chi Yang
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA
| | - Vikrant Singh
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | - Kazuharu Furutani
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA; Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Tokushima 770-8514, Japan
| | - John R D Dawson
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA; Biophysics Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Mao-Tsuen Jeng
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA
| | - James C Fettinger
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Slava Bekker
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA; Department of Science and Engineering, American River College, Sacramento, CA 95841, USA
| | - Van A Ngo
- Centre for Molecular Simulation and Biochemistry Research Cluster, Department of Biological Sciences, University of Calgary, Calgary, AB T2N1N4, Canada
| | - Sergei Y Noskov
- Centre for Molecular Simulation and Biochemistry Research Cluster, Department of Biological Sciences, University of Calgary, Calgary, AB T2N1N4, Canada
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA; Department of Anesthesiology and Pain Medicine, University of California Davis, Davis, CA 95616, USA
| | - Jon T Sack
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA; Department of Anesthesiology and Pain Medicine, University of California Davis, Davis, CA 95616, USA
| | - Heike Wulff
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | - Colleen E Clancy
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA; Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | - Igor Vorobyov
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA; Department of Pharmacology, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
44
|
Gibby WAT, Barabash ML, Guardiani C, Luchinsky DG, McClintock PVE. Physics of Selective Conduction and Point Mutation in Biological Ion Channels. PHYSICAL REVIEW LETTERS 2021; 126:218102. [PMID: 34114848 DOI: 10.1103/physrevlett.126.218102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
We introduce a statistical and linear response theory of selective conduction in biological ion channels with multiple binding sites and possible point mutation. We derive an effective grand-canonical ensemble and generalized Einstein relations for the selectivity filter, assuming strongly coordinated ionic motion, and allowing for ionic Coulomb blockade. The theory agrees well with data from the KcsA K^{+} channel and a mutant. We show that the Eisenman relations for thermodynamic selectivity follow from the condition for fast conduction and find that maximum conduction requires the binding sites to be nearly identical.
Collapse
Affiliation(s)
- W A T Gibby
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - M L Barabash
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - C Guardiani
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
- Department of Mechanical and Aerospace Engineering, Sapienza University, Rome 00184, Italy
| | - D G Luchinsky
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
- KBR Inc., Ames Research Center, Moffett Field, Mountain View, California 94035, USA
| | - P V E McClintock
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
45
|
Szanto TG, Gaal S, Karbat I, Varga Z, Reuveny E, Panyi G. Shaker-IR K+ channel gating in heavy water: Role of structural water molecules in inactivation. J Gen Physiol 2021; 153:212166. [PMID: 34014250 PMCID: PMC8148028 DOI: 10.1085/jgp.202012742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 04/30/2021] [Indexed: 01/01/2023] Open
Abstract
It has been reported earlier that the slow (C-type) inactivated conformation in Kv channels is stabilized by a multipoint hydrogen-bond network behind the selectivity filter. Furthermore, MD simulations revealed that structural water molecules are also involved in the formation of this network locking the selectivity filter in its inactive conformation. We found that the application of an extracellular, but not intracellular, solution based on heavy water (D2O) dramatically slowed entry into the slow inactivated state in Shaker-IR mutants (T449A, T449A/I470A, and T449K/I470C, displaying a wide range of inactivation kinetics), consistent with the proposed effect of the dynamics of structural water molecules on the conformational stability of the selectivity filter. Alternative hypotheses capable of explaining the observed effects of D2O were examined. Increased viscosity of the external solution mimicked by the addition of glycerol had a negligible effect on the rate of inactivation. In addition, the inactivation time constants of K+ currents in the outward and the inward directions in asymmetric solutions were not affected by a H2O/D2O exchange, negating an indirect effect of D2O on the rate of K+ rehydration. The elimination of the nonspecific effects of D2O on our macroscopic current measurements supports the hypothesis that the rate of structural water exchange at the region behind the selectivity filter determines the rate of slow inactivation, as proposed by molecular modeling.
Collapse
Affiliation(s)
- Tibor G Szanto
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szabolcs Gaal
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Izhar Karbat
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eitan Reuveny
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
46
|
Pérez-Conesa S, Keeler EG, Zhang D, Delemotte L, McDermott AE. Informing NMR experiments with molecular dynamics simulations to characterize the dominant activated state of the KcsA ion channel. J Chem Phys 2021; 154:165102. [PMID: 33940802 PMCID: PMC9250420 DOI: 10.1063/5.0040649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/26/2021] [Indexed: 11/14/2022] Open
Abstract
As the first potassium channel with an x-ray structure determined, and given its homology to eukaryotic channels, the pH-gated prokaryotic channel KcsA has been extensively studied. Nevertheless, questions related, in particular, to the allosteric coupling between its gates remain open. The many currently available x-ray crystallography structures appear to correspond to various stages of activation and inactivation, offering insights into the molecular basis of these mechanisms. Since these studies have required mutations, complexation with antibodies, and substitution of detergents in place of lipids, examining the channel under more native conditions is desirable. Solid-state nuclear magnetic resonance (SSNMR) can be used to study the wild-type protein under activating conditions (low pH), at room temperature, and in bacteriomimetic liposomes. In this work, we sought to structurally assign the activated state present in SSNMR experiments. We used a combination of molecular dynamics (MD) simulations, chemical shift prediction algorithms, and Bayesian inference techniques to determine which of the most plausible x-ray structures resolved to date best represents the activated state captured in SSNMR. We first identified specific nuclei with simulated NMR chemical shifts that differed significantly when comparing partially open vs fully open ensembles from MD simulations. The simulated NMR chemical shifts for those specific nuclei were then compared to experimental ones, revealing that the simulation of the partially open state was in good agreement with the SSNMR data. Nuclei that discriminate effectively between partially and fully open states belong to residues spread over the sequence and provide a molecular level description of the conformational change.
Collapse
Affiliation(s)
- Sergio Pérez-Conesa
- KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Eric G. Keeler
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Dongyu Zhang
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Lucie Delemotte
- KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Ann E. McDermott
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
47
|
Natale AM, Deal PE, Minor DL. Structural Insights into the Mechanisms and Pharmacology of K 2P Potassium Channels. J Mol Biol 2021; 433:166995. [PMID: 33887333 PMCID: PMC8436263 DOI: 10.1016/j.jmb.2021.166995] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 01/10/2023]
Abstract
Leak currents, defined as voltage and time independent flows of ions across cell membranes, are central to cellular electrical excitability control. The K2P (KCNK) potassium channel class comprises an ion channel family that produces potassium leak currents that oppose excitation and stabilize the resting membrane potential in cells in the brain, cardiovascular system, immune system, and sensory organs. Due to their widespread tissue distribution, K2Ps contribute to many physiological and pathophysiological processes including anesthesia, pain, arrythmias, ischemia, hypertension, migraine, intraocular pressure regulation, and lung injury responses. Structural studies of six homomeric K2Ps have established the basic architecture of this channel family, revealed key moving parts involved in K2P function, uncovered the importance of asymmetric pinching and dilation motions in the K2P selectivity filter (SF) C-type gate, and defined two K2P structural classes based on the absence or presence of an intracellular gate. Further, a series of structures characterizing K2P:modulator interactions have revealed a striking polysite pharmacology housed within a relatively modestly sized (~70 kDa) channel. Binding sites for small molecules or lipids that control channel function are found at every layer of the channel structure, starting from its extracellular side through the portion that interacts with the membrane bilayer inner leaflet. This framework provides the basis for understanding how gating cues sensed by different channel parts control function and how small molecules and lipids modulate K2P activity. Such knowledge should catalyze development of new K2P modulators to probe function and treat a wide range of disorders.
Collapse
Affiliation(s)
- Andrew M Natale
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Parker E Deal
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience University of California, San Francisco, CA 94158, USA; Molecular Biophysics and Integrated Bio-imaging Division Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
48
|
Stautz J, Hellmich Y, Fuss MF, Silberberg JM, Devlin JR, Stockbridge RB, Hänelt I. Molecular Mechanisms for Bacterial Potassium Homeostasis. J Mol Biol 2021; 433:166968. [PMID: 33798529 DOI: 10.1016/j.jmb.2021.166968] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Potassium ion homeostasis is essential for bacterial survival, playing roles in osmoregulation, pH homeostasis, regulation of protein synthesis, enzyme activation, membrane potential adjustment and electrical signaling. To accomplish such diverse physiological tasks, it is not surprising that a single bacterium typically encodes several potassium uptake and release systems. To understand the role each individual protein fulfills and how these proteins work in concert, it is important to identify the molecular details of their function. One needs to understand whether the systems transport ions actively or passively, and what mechanisms or ligands lead to the activation or inactivation of individual systems. Combining mechanistic information with knowledge about the physiology under different stress situations, such as osmostress, pH stress or nutrient limitation, one can identify the task of each system and deduce how they are coordinated with each other. By reviewing the general principles of bacterial membrane physiology and describing the molecular architecture and function of several bacterial K+-transporting systems, we aim to provide a framework for microbiologists studying bacterial potassium homeostasis and the many K+-translocating systems that are still poorly understood.
Collapse
Affiliation(s)
- Janina Stautz
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Yvonne Hellmich
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Michael F Fuss
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jakob M Silberberg
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jason R Devlin
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Randy B Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.
| | - Inga Hänelt
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
49
|
Giudici AM, Díaz-García C, Renart ML, Coutinho A, Prieto M, González-Ros JM, Poveda JA. Tetraoctylammonium, a Long Chain Quaternary Ammonium Blocker, Promotes a Noncollapsed, Resting-Like Inactivated State in KcsA. Int J Mol Sci 2021; 22:ijms22020490. [PMID: 33419017 PMCID: PMC7825302 DOI: 10.3390/ijms22020490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023] Open
Abstract
Alkylammonium salts have been used extensively to study the structure and function of potassium channels. Here, we use the hydrophobic tetraoctylammonium (TOA+) to shed light on the structure of the inactivated state of KcsA, a tetrameric prokaryotic potassium channel that serves as a model to its homologous eukaryotic counterparts. By the combined use of a thermal denaturation assay and the analysis of homo-Förster resonance energy transfer in a mutant channel containing a single tryptophan (W67) per subunit, we found that TOA+ binds the channel cavity with high affinity, either with the inner gate open or closed. Moreover, TOA+ bound at the cavity allosterically shifts the equilibrium of the channel's selectivity filter conformation from conductive to an inactivated-like form. The inactivated TOA+-KcsA complex exhibits a loss in the affinity towards permeant K+ at pH 7.0, when the channel is in its closed state, but maintains the two sets of K+ binding sites and the W67-W67 intersubunit distances characteristic of the selectivity filter in the channel resting state. Thus, the TOA+-bound state differs clearly from the collapsed channel state described by X-ray crystallography and claimed to represent the inactivated form of KcsA.
Collapse
Affiliation(s)
- Ana Marcela Giudici
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, E-03202 Elche, Spain; (A.M.G.); (M.L.R.)
| | - Clara Díaz-García
- Institute for Bioengineering and Bioscience (IBB), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (C.D.-G.); (A.C.); (M.P.)
| | - Maria Lourdes Renart
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, E-03202 Elche, Spain; (A.M.G.); (M.L.R.)
| | - Ana Coutinho
- Institute for Bioengineering and Bioscience (IBB), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (C.D.-G.); (A.C.); (M.P.)
- Departamento de Química e Bioquímica, Faculty of Sciences, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Manuel Prieto
- Institute for Bioengineering and Bioscience (IBB), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (C.D.-G.); (A.C.); (M.P.)
| | - José M. González-Ros
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, E-03202 Elche, Spain; (A.M.G.); (M.L.R.)
- Correspondence: (J.M.G.-R.); (J.A.P.); Tel.: +34-966-658-757 (J.M.G.-R.); +34-966-658-466 (J.A.P.)
| | - José Antonio Poveda
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, E-03202 Elche, Spain; (A.M.G.); (M.L.R.)
- Correspondence: (J.M.G.-R.); (J.A.P.); Tel.: +34-966-658-757 (J.M.G.-R.); +34-966-658-466 (J.A.P.)
| |
Collapse
|
50
|
Cosseddu SM, Choe EJ, Khovanov IA. Unraveling of a Strongly Correlated Dynamical Network of Residues Controlling the Permeation of Potassium in KcsA Ion Channel. ENTROPY (BASEL, SWITZERLAND) 2021; 23:E72. [PMID: 33418985 PMCID: PMC7825352 DOI: 10.3390/e23010072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/23/2020] [Accepted: 01/02/2021] [Indexed: 12/26/2022]
Abstract
The complicated patterns of the single-channel currents in potassium ion channel KcsA are governed by the structural variability of the selectivity filter. A comparative analysis of the dynamics of the wild type KcsA channel and several of its mutants showing different conducting patterns was performed. A strongly correlated dynamical network of interacting residues is found to play a key role in regulating the state of the wild type channel. The network is centered on the aspartate D80 which plays the role of a hub by strong interacting via hydrogen bonds with residues E71, R64, R89, and W67. Residue D80 also affects the selectivity filter via its backbones. This network further compromises ions and water molecules located inside the channel that results in the mutual influence: the permeation depends on the configuration of residues in the network, and the dynamics of network's residues depends on locations of ions and water molecules inside the selectivity filter. Some features of the network provide a further understanding of experimental results describing the KcsA activity. In particular, the necessity of anionic lipids to be present for functioning the channel is explained by the interaction between the lipids and the arginine residues R64 and R89 that prevents destabilizing the structure of the selectivity filter.
Collapse
Affiliation(s)
| | | | - Igor A. Khovanov
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (S.M.C.); (E.J.C.)
| |
Collapse
|