1
|
Porter SS, Dupin SE, Denison RF, Kiers ET, Sachs JL. Host-imposed control mechanisms in legume-rhizobia symbiosis. Nat Microbiol 2024:10.1038/s41564-024-01762-2. [PMID: 39095495 DOI: 10.1038/s41564-024-01762-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/17/2024] [Indexed: 08/04/2024]
Abstract
Legumes are ecologically and economically important plants that contribute to nutrient cycling and agricultural sustainability, features tied to their intimate symbiosis with nitrogen-fixing rhizobia. Rhizobia vary dramatically in quality, ranging from highly growth-promoting to non-beneficial; therefore, legumes must optimize their symbiosis with rhizobia through host mechanisms that select for beneficial rhizobia and limit losses to non-beneficial strains. In this Perspective, we examine the considerable scientific progress made in decoding host control over rhizobia, empirically examining both molecular and cellular mechanisms and their effects on rhizobia symbiosis and its benefits. We consider pre-infection controls, which require the production and detection of precise molecular signals by the legume to attract and select for compatible rhizobia strains. We also discuss post-infection mechanisms that leverage the nodule-level and cell-level compartmentalization of symbionts to enable host control over rhizobia development and proliferation in planta. These layers of host control each contribute to legume fitness by directing host resources towards a narrowing subset of more-beneficial rhizobia.
Collapse
Affiliation(s)
- Stephanie S Porter
- School of Biological Sciences, Washington State University, Vancouver, WA, USA
| | - Simon E Dupin
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - R Ford Denison
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - E Toby Kiers
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joel L Sachs
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
2
|
Granada Agudelo M, Ruiz B, Capela D, Remigi P. The role of microbial interactions on rhizobial fitness. FRONTIERS IN PLANT SCIENCE 2023; 14:1277262. [PMID: 37877089 PMCID: PMC10591227 DOI: 10.3389/fpls.2023.1277262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023]
Abstract
Rhizobia are soil bacteria that can establish a nitrogen-fixing symbiosis with legume plants. As horizontally transmitted symbionts, the life cycle of rhizobia includes a free-living phase in the soil and a plant-associated symbiotic phase. Throughout this life cycle, rhizobia are exposed to a myriad of other microorganisms that interact with them, modulating their fitness and symbiotic performance. In this review, we describe the diversity of interactions between rhizobia and other microorganisms that can occur in the rhizosphere, during the initiation of nodulation, and within nodules. Some of these rhizobia-microbe interactions are indirect, and occur when the presence of some microbes modifies plant physiology in a way that feeds back on rhizobial fitness. We further describe how these interactions can impose significant selective pressures on rhizobia and modify their evolutionary trajectories. More extensive investigations on the eco-evolutionary dynamics of rhizobia in complex biotic environments will likely reveal fascinating new aspects of this well-studied symbiotic interaction and provide critical knowledge for future agronomical applications.
Collapse
Affiliation(s)
- Margarita Granada Agudelo
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Bryan Ruiz
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Delphine Capela
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Philippe Remigi
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|
3
|
Libourel C, Keller J, Brichet L, Cazalé AC, Carrère S, Vernié T, Couzigou JM, Callot C, Dufau I, Cauet S, Marande W, Bulach T, Suin A, Masson-Boivin C, Remigi P, Delaux PM, Capela D. Comparative phylotranscriptomics reveals ancestral and derived root nodule symbiosis programmes. NATURE PLANTS 2023:10.1038/s41477-023-01441-w. [PMID: 37322127 PMCID: PMC10356618 DOI: 10.1038/s41477-023-01441-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
Symbiotic interactions such as the nitrogen-fixing root nodule symbiosis (RNS) have structured ecosystems during the evolution of life. Here we aimed at reconstructing ancestral and intermediate steps that shaped RNS observed in extant flowering plants. We compared the symbiotic transcriptomic responses of nine host plants, including the mimosoid legume Mimosa pudica for which we assembled a chromosome-level genome. We reconstructed the ancestral RNS transcriptome composed of most known symbiotic genes together with hundreds of novel candidates. Cross-referencing with transcriptomic data in response to experimentally evolved bacterial strains with gradual symbiotic proficiencies, we found the response to bacterial signals, nodule infection, nodule organogenesis and nitrogen fixation to be ancestral. By contrast, the release of symbiosomes was associated with recently evolved genes encoding small proteins in each lineage. We demonstrate that the symbiotic response was mostly in place in the most recent common ancestor of the RNS-forming species more than 90 million years ago.
Collapse
Affiliation(s)
- Cyril Libourel
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Lukas Brichet
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | | | - Sébastien Carrère
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Tatiana Vernié
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Jean-Malo Couzigou
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Caroline Callot
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Isabelle Dufau
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Stéphane Cauet
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - William Marande
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Tabatha Bulach
- INRAE, US1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Amandine Suin
- INRAE, US1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | | | - Philippe Remigi
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France.
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France.
| | - Delphine Capela
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France.
| |
Collapse
|
4
|
Burghardt LT, diCenzo GC. The evolutionary ecology of rhizobia: multiple facets of competition before, during, and after symbiosis with legumes. Curr Opin Microbiol 2023; 72:102281. [PMID: 36848712 DOI: 10.1016/j.mib.2023.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 02/27/2023]
Abstract
Rhizobial bacteria have complex lifestyles that involve growth and survival in bulk soil, plant rhizospheres and rhizoplanes, legume infection threads, and mature and senescing legume nodules. In nature, rhizobia coexist and compete with many other rhizobial strains and species to form host associations. We review recent work defining competitive interactions across these environments. We highlight the use of sophisticated measurement tools and sequencing technologies to examine competition mechanisms in planta, and highlight environments (e.g. soil and senescing nodules) where we still know exceedingly little. We argue that moving toward an explicitly ecological framework (types of competition, resources, and genetic differentiation) will clarify the evolutionary ecology of these foundational organisms and open doors for engineering sustainable, beneficial associations with hosts.
Collapse
Affiliation(s)
- Liana T Burghardt
- The Pennsylvania State University, Department of Plant Science, University Park, PA 16802, United States; The Pennsylvania State University, Ecology Graduate Program, University Park, PA 16802, United States.
| | - George C diCenzo
- Queen's University, Department of Biology, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
5
|
Lepetit M, Brouquisse R. Control of the rhizobium-legume symbiosis by the plant nitrogen demand is tightly integrated at the whole plant level and requires inter-organ systemic signaling. FRONTIERS IN PLANT SCIENCE 2023; 14:1114840. [PMID: 36968361 PMCID: PMC10033964 DOI: 10.3389/fpls.2023.1114840] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Symbiotic nodules formed on legume roots with rhizobia fix atmospheric N2. Bacteria reduce N2 to NH4 + that is assimilated into amino acids by the plant. In return, the plant provides photosynthates to fuel the symbiotic nitrogen fixation. Symbiosis is tightly adjusted to the whole plant nutritional demand and to the plant photosynthetic capacities, but regulatory circuits behind this control remain poorly understood. The use of split-root systems combined with biochemical, physiological, metabolomic, transcriptomic, and genetic approaches revealed that multiple pathways are acting in parallel. Systemic signaling mechanisms of the plant N demand are required for the control of nodule organogenesis, mature nodule functioning, and nodule senescence. N-satiety/N-deficit systemic signaling correlates with rapid variations of the nodules' sugar levels, tuning symbiosis by C resources allocation. These mechanisms are responsible for the adjustment of plant symbiotic capacities to the mineral N resources. On the one hand, if mineral N can satisfy the plant N demand, nodule formation is inhibited, and nodule senescence is activated. On the other hand, local conditions (abiotic stresses) may impair symbiotic activity resulting in plant N limitation. In these conditions, systemic signaling may compensate the N deficit by stimulating symbiotic root N foraging. In the past decade, several molecular components of the systemic signaling pathways controlling nodule formation have been identified, but a major challenge remains, that is, to understand their specificity as compared to the mechanisms of non-symbiotic plants that control root development and how they contribute to the whole plant phenotypes. Less is known about the control of mature nodule development and functioning by N and C nutritional status of the plant, but a hypothetical model involving the sucrose allocation to the nodule as a systemic signaling process, the oxidative pentose phosphate pathway, and the redox status as potential effectors of this signaling is emerging. This work highlights the importance of organism integration in plant biology.
Collapse
|
6
|
Kong X, Lv N, Liu S, Xu H, Huang J, Xie X, Tao Q, Wang B, Ji R, Zhang Q, Jiang J. Phytoremediation of isoproturon-contaminated sites by transgenic soybean. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:342-353. [PMID: 36278914 PMCID: PMC9884020 DOI: 10.1111/pbi.13951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
The widespread application of isoproturon (IPU) can cause serious pollution to the environment and threaten ecological functions. In this study, the IPU bacterial N-demethylase gene pdmAB was transferred and expressed in the chloroplast of soybean (Glycine max L. 'Zhonghuang13'). The transgenic soybeans exhibited significant tolerance to IPU and demethylated IPU to a less phytotoxic metabolite 3-(4-isopropylphenyl)-1-methylurea (MDIPU) in vivo. The transgenic soybeans removed 98% and 84% IPU from water and soil within 5 and 14 days, respectively, while accumulating less IPU in plant tissues compared with the wild-type (WT). Under IPU stress, transgenic soybeans showed a higher symbiotic nitrogen fixation performance (with higher total nodule biomass and nitrogenase activity) and a more stable rhizosphere bacterial community than the WT. This study developed a transgenic (TS) soybean capable of efficiently removing IPU from its growing environment and recovering a high-symbiotic nitrogen fixation capacity under IPU stress, and provides new insights into the interactions between rhizosphere microorganisms and TS legumes under herbicide stress.
Collapse
Affiliation(s)
- Xiangkun Kong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental MicrobiologyMinistry of Agriculture and Rural AffairsNanjingChina
| | - Na Lv
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental MicrobiologyMinistry of Agriculture and Rural AffairsNanjingChina
| | - Songmeng Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental MicrobiologyMinistry of Agriculture and Rural AffairsNanjingChina
| | - Hui Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life SciencesNanjing Agricultural UniversityNanjingChina
| | - Junwei Huang
- College of Resources and Environment, Key Laboratory of Agri‐food Safety of Anhui ProvinceAnhui Agricultural UniversityHefeiChina
| | | | - Qing Tao
- Beijing DaBeiNong Technology Co., Ltd.BeijingChina
| | - Baozhan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental MicrobiologyMinistry of Agriculture and Rural AffairsNanjingChina
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the EnvironmentNanjing UniversityNanjingChina
| | - Qun Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life SciencesNanjing Agricultural UniversityNanjingChina
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental MicrobiologyMinistry of Agriculture and Rural AffairsNanjingChina
| |
Collapse
|
7
|
Montoya AP, Wendlandt CE, Benedict AB, Roberts M, Piovia-Scott J, Griffitts JS, Porter SS. Hosts winnow symbionts with multiple layers of absolute and conditional discrimination mechanisms. Proc Biol Sci 2023; 290:20222153. [PMID: 36598018 PMCID: PMC9811631 DOI: 10.1098/rspb.2022.2153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In mutualism, hosts select symbionts via partner choice and preferentially direct more resources to symbionts that provide greater benefits via sanctions. At the initiation of symbiosis, prior to resource exchange, it is not known how the presence of multiple symbiont options (i.e. the symbiont social environment) impacts partner choice outcomes. Furthermore, little research addresses whether hosts primarily discriminate among symbionts via sanctions, partner choice or a combination. We inoculated the legume, Acmispon wrangelianus, with 28 pairs of fluorescently labelled Mesorhizobium strains that vary continuously in quality as nitrogen-fixing symbionts. We find that hosts exert robust partner choice, which enhances their fitness. This partner choice is conditional such that a strain's success in initiating nodules is impacted by other strains in the social environment. This social genetic effect is as important as a strain's own genotype in determining nodulation and has both transitive (consistent) and intransitive (idiosyncratic) effects on the probability that a symbiont will form a nodule. Furthermore, both absolute and conditional partner choice act in concert with sanctions, among and within nodules. Thus, multiple forms of host discrimination act as a series of sieves that optimize host benefits and select for costly symbiont cooperation in mixed symbiont populations.
Collapse
Affiliation(s)
- Angeliqua P. Montoya
- School of Biological Sciences, Washington State University, Vancouver, WA 98686, USA
| | - Camille E. Wendlandt
- School of Biological Sciences, Washington State University, Vancouver, WA 98686, USA
| | - Alex B. Benedict
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Miles Roberts
- School of Biological Sciences, Washington State University, Vancouver, WA 98686, USA
| | - Jonah Piovia-Scott
- School of Biological Sciences, Washington State University, Vancouver, WA 98686, USA
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Stephanie S. Porter
- School of Biological Sciences, Washington State University, Vancouver, WA 98686, USA
| |
Collapse
|
8
|
Denison RF, Muller KE. An evolutionary perspective on increasing net benefits to crops from symbiotic microbes. Evol Appl 2022; 15:1490-1504. [PMID: 36330301 PMCID: PMC9624085 DOI: 10.1111/eva.13384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
Plant-imposed, fitness-reducing sanctions against less-beneficial symbionts have been documented for rhizobia, mycorrhizal fungi, and fig wasps. Although most of our examples are for rhizobia, we argue that the evolutionary persistence of mutualism in any symbiosis would require such sanctions, if there are multiple symbiont genotypes per host plant. We therefore discuss methods that could be used to develop and assess crops with stricter sanctions. These include methods to screen strains for greater mutualism as resources to identify crop genotypes that impose stronger selection for mutualism. Single-strain experiments that measure costs as well as benefits have shown that diversion of resources by rhizobia can reduce nitrogen-fixation efficiency (N per C) and that some legumes can increase this efficiency by manipulating their symbionts. Plants in the field always host multiple strains with possible synergistic interactions, so benefits from different strains might best be compared by regressing plant growth or yield on each strain's abundance in a mixture. However, results from this approach have not yet been published. To measure legacy effects of stronger sanctions on future crops, single-genotype test crops could be planted in a field that recently had replicated plots with different genotypes of the sanction-imposing crop. Enhancing agricultural benefits from symbiosis may require accepting tradeoffs that constrained past natural selection, including tradeoffs between current and future benefits.
Collapse
Affiliation(s)
- R. Ford Denison
- Ecology, Evolution, & BehaviorUniversity of MinnesotaSaint PaulMinnesotaUSA
| | | |
Collapse
|
9
|
Burghardt LT, Epstein B, Hoge M, Trujillo DI, Tiffin P. Host-Associated Rhizobial Fitness: Dependence on Nitrogen, Density, Community Complexity, and Legume Genotype. Appl Environ Microbiol 2022; 88:e0052622. [PMID: 35852362 PMCID: PMC9361818 DOI: 10.1128/aem.00526-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022] Open
Abstract
The environmental context of the nitrogen-fixing mutualism between leguminous plants and rhizobial bacteria varies over space and time. Variation in resource availability, population density, and composition likely affect the ecology and evolution of rhizobia and their symbiotic interactions with hosts. We examined how host genotype, nitrogen addition, rhizobial density, and community complexity affected selection on 68 rhizobial strains in the Sinorhizobium meliloti-Medicago truncatula mutualism. As expected, host genotype had a substantial effect on the size, number, and strain composition of root nodules (the symbiotic organ). The understudied environmental variable of rhizobial density had a stronger effect on nodule strain frequency than the addition of low nitrogen levels. Higher inoculum density resulted in a nodule community that was less diverse and more beneficial but only in the context of the more selective host genotype. Higher density resulted in more diverse and less beneficial nodule communities with the less selective host. Density effects on strain composition deserve additional scrutiny as they can create feedback between ecological and evolutionary processes. Finally, we found that relative strain rankings were stable across increasing community complexity (2, 3, 8, or 68 strains). This unexpected result suggests that higher-order interactions between strains are rare in the context of nodule formation and development. Our work highlights the importance of examining mechanisms of density-dependent strain fitness and developing theoretical predictions that incorporate density dependence. Furthermore, our results have translational relevance for overcoming establishment barriers in bioinoculants and motivating breeding programs that maintain beneficial plant-microbe interactions across diverse agroecological contexts. IMPORTANCE Legume crops establish beneficial associations with rhizobial bacteria that perform biological nitrogen fixation, providing nitrogen to plants without the economic and greenhouse gas emission costs of chemical nitrogen inputs. Here, we examine the influence of three environmental factors that vary in agricultural fields on strain relative fitness in nodules. In addition to manipulating nitrogen, we also use two biotic variables that have rarely been examined: the rhizobial community's density and complexity. Taken together, our results suggest that (i) breeding legume varieties that select beneficial strains despite environmental variation is possible, (ii) changes in rhizobial population densities that occur routinely in agricultural fields could drive evolutionary changes in rhizobial populations, and (iii) the lack of higher-order interactions between strains will allow the high-throughput assessments of rhizobia winners and losers during plant interactions.
Collapse
Affiliation(s)
- Liana T. Burghardt
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
- Plant Science Department, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brendan Epstein
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Michelle Hoge
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Diana I. Trujillo
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
10
|
Amandine C, Ebert D, Stukenbrock E, Rodríguez de la Vega RC, Tiffin P, Croll D, Tellier A. Unraveling coevolutionary dynamics using ecological genomics. Trends Genet 2022; 38:1003-1012. [PMID: 35715278 DOI: 10.1016/j.tig.2022.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/27/2022]
Abstract
Coevolutionary interactions, from the delicate co-dependency in mutualistic interactions to the antagonistic relationship of hosts and parasites, are a ubiquitous driver of adaptation. Surprisingly, little is known about the genomic processes underlying coevolution in an ecological context. However, species comprise genetically differentiated populations that interact with temporally variable abiotic and biotic environments. We discuss the recent advances in coevolutionary theory and genomics as well as shortcomings, to identify coevolving genes that take into account this spatial and temporal variability of coevolution, and propose a practical guide to understand the dynamic of coevolution using an ecological genomics lens.
Collapse
Affiliation(s)
- Cornille Amandine
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190 Gif-sur-Yvette, France.
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Eva Stukenbrock
- Max Planck Institute for Terrestrial Microbiology, Max Planck Research Group, Fungal Biodiversity, Marburg, Germany
| | | | - Peter Tiffin
- Department of Plant and Microbial Biology, 250 Biological Sciences, 1445 Gortner Ave., University of Minnesota, Saint Paul, MN 55108, USA
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| | - Aurélien Tellier
- Population Genetics, Department of Life Science Systems, Technical University of Munich, Liesel-Beckman-Str. 2, 85354 Freising, Germany.
| |
Collapse
|
11
|
Bender FR, Nagamatsu ST, Delamuta JRM, Ribeiro RA, Nogueira MA, Hungria M. Genetic variation in symbiotic islands of natural variant strains of soybean Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens differing in competitiveness and in the efficiency of nitrogen fixation. Microb Genom 2022; 8:000795. [PMID: 35438622 PMCID: PMC9453064 DOI: 10.1099/mgen.0.000795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/07/2022] [Indexed: 11/18/2022] Open
Abstract
Soybean is the most important legume cropped worldwide and can highly benefit from the biological nitrogen fixation (BNF) process. Brazil is recognized for its leadership in the use of inoculants and two strains, Bradyrhizobium japonicum CPAC 15 (=SEMIA 5079) and Bradyrhizobium diazoefficiens CPAC 7 (=SEMIA 5080) compose the majority of the 70 million doses of soybean inoculants commercialized yearly in the country. We studied a collection of natural variants of these two strains, differing in properties of competitiveness and efficiency of BNF. We sequenced the genomes of the parental strain SEMIA 566 of B. japonicum, of three natural variants of this strain (S 204, S 340 and S 370), and compared with another variant of this group, strain CPAC 15. We also sequenced the genome of the parental strain SEMIA 586 of B. diazoefficiens, of three natural variants of this strain (CPAC 390, CPAC 392 and CPAC 394) and compared with the genome of another natural variant, strain CPAC 7. As the main genes responsible for nodulation (nod, noe, nol) and BNF (nif, fix) in soybean Bradyrhizobium are located in symbiotic islands, our objective was to identify genetic variations located in this region, including single nucleotide polymorphisms (SNPs) and insertions and deletions (indels), that could be potentially related to their different symbiotic phenotypes. We detected 44 genetic variations in the B. japonicum strains and three in B. diazoefficiens. As the B. japonicum strains have gone through a longer period of adaptation to the soil, the higher number of genetic variations could be explained by survival strategies under the harsh environmental conditions of the Brazilian Cerrado biome. Genetic variations were detected in genes enconding proteins such as a dephospho-CoA kinase, related to the CoA biosynthesis; a glucosamine-fructose-6-phosphate aminotransferase, key regulator of the hexosamine biosynthetic pathway; a LysR family transcriptional regulator related to nodulation genes; and NifE and NifS proteins, directly related to the BNF process. We suggest potential genetic variations related to differences in the symbiotic phenotypes.
Collapse
Affiliation(s)
- Flavia Raquel Bender
- Department of Biotechnology, Universidade Estadual de Londrina, C.P. 10011, 86057-970 Londrina, Paraná, Brazil
- Soil Biotechnology Laboratory, Embrapa Soja, C.P. 4006, 86085-981, Londrina-PR, Brazil
| | - Sheila Tiemi Nagamatsu
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jakeline Renata Marçon Delamuta
- Soil Biotechnology Laboratory, Embrapa Soja, C.P. 4006, 86085-981, Londrina-PR, Brazil
- CNPq, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001, Brasília, Federal District, Brazil
| | - Renan Augusto Ribeiro
- CNPq, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001, Brasília, Federal District, Brazil
| | - Marco Antonio Nogueira
- Soil Biotechnology Laboratory, Embrapa Soja, C.P. 4006, 86085-981, Londrina-PR, Brazil
- CNPq, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001, Brasília, Federal District, Brazil
| | - Mariangela Hungria
- Department of Biotechnology, Universidade Estadual de Londrina, C.P. 10011, 86057-970 Londrina, Paraná, Brazil
- Soil Biotechnology Laboratory, Embrapa Soja, C.P. 4006, 86085-981, Londrina-PR, Brazil
- CNPq, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001, Brasília, Federal District, Brazil
| |
Collapse
|
12
|
Mendoza-Suárez M, Andersen SU, Poole PS, Sánchez-Cañizares C. Competition, Nodule Occupancy, and Persistence of Inoculant Strains: Key Factors in the Rhizobium-Legume Symbioses. FRONTIERS IN PLANT SCIENCE 2021; 12:690567. [PMID: 34489993 PMCID: PMC8416774 DOI: 10.3389/fpls.2021.690567] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/19/2021] [Indexed: 05/06/2023]
Abstract
Biological nitrogen fixation by Rhizobium-legume symbioses represents an environmentally friendly and inexpensive alternative to the use of chemical nitrogen fertilizers in legume crops. Rhizobial inoculants, applied frequently as biofertilizers, play an important role in sustainable agriculture. However, inoculants often fail to compete for nodule occupancy against native rhizobia with inferior nitrogen-fixing abilities, resulting in low yields. Strains with excellent performance under controlled conditions are typically selected as inoculants, but the rates of nodule occupancy compared to native strains are rarely investigated. Lack of persistence in the field after agricultural cycles, usually due to the transfer of symbiotic genes from the inoculant strain to naturalized populations, also limits the suitability of commercial inoculants. When rhizobial inoculants are based on native strains with a high nitrogen fixation ability, they often have superior performance in the field due to their genetic adaptations to the local environment. Therefore, knowledge from laboratory studies assessing competition and understanding how diverse strains of rhizobia behave, together with assays done under field conditions, may allow us to exploit the effectiveness of native populations selected as elite strains and to breed specific host cultivar-rhizobial strain combinations. Here, we review current knowledge at the molecular level on competition for nodulation and the advances in molecular tools for assessing competitiveness. We then describe ongoing approaches for inoculant development based on native strains and emphasize future perspectives and applications using a multidisciplinary approach to ensure optimal performance of both symbiotic partners.
Collapse
Affiliation(s)
| | - Stig U. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Philip S. Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
13
|
Combining SIMS and mechanistic modelling to reveal nutrient kinetics in an algal-bacterial mutualism. PLoS One 2021; 16:e0251643. [PMID: 34014955 PMCID: PMC8136852 DOI: 10.1371/journal.pone.0251643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/29/2021] [Indexed: 11/21/2022] Open
Abstract
Microbial communities are of considerable significance for biogeochemical processes, for the health of both animals and plants, and for biotechnological purposes. A key feature of microbial interactions is the exchange of nutrients between cells. Isotope labelling followed by analysis with secondary ion mass spectrometry (SIMS) can identify nutrient fluxes and heterogeneity of substrate utilisation on a single cell level. Here we present a novel approach that combines SIMS experiments with mechanistic modelling to reveal otherwise inaccessible nutrient kinetics. The method is applied to study the onset of a synthetic mutualistic partnership between a vitamin B12-dependent mutant of the alga Chlamydomonas reinhardtii and the B12-producing, heterotrophic bacterium Mesorhizobium japonicum, which is supported by algal photosynthesis. Results suggest that an initial pool of fixed carbon delays the onset of mutualistic cross-feeding; significantly, our approach allows the first quantification of this expected delay. Our method is widely applicable to other microbial systems, and will contribute to furthering a mechanistic understanding of microbial interactions.
Collapse
|
14
|
Westhoek A, Clark LJ, Culbert M, Dalchau N, Griffiths M, Jorrin B, Karunakaran R, Ledermann R, Tkacz A, Webb I, James EK, Poole PS, Turnbull LA. Conditional sanctioning in a legume- Rhizobium mutualism. Proc Natl Acad Sci U S A 2021; 118:e2025760118. [PMID: 33941672 PMCID: PMC8126861 DOI: 10.1073/pnas.2025760118] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Legumes are high in protein and form a valuable part of human diets due to their interaction with symbiotic nitrogen-fixing bacteria known as rhizobia. Plants house rhizobia in specialized root nodules and provide the rhizobia with carbon in return for nitrogen. However, plants usually house multiple rhizobial strains that vary in their fixation ability, so the plant faces an investment dilemma. Plants are known to sanction strains that do not fix nitrogen, but nonfixers are rare in field settings, while intermediate fixers are common. Here, we modeled how plants should respond to an intermediate fixer that was otherwise isogenic and tested model predictions using pea plants. Intermediate fixers were only tolerated when a better strain was not available. In agreement with model predictions, nodules containing the intermediate-fixing strain were large and healthy when the only alternative was a nonfixer, but nodules of the intermediate-fixing strain were small and white when the plant was coinoculated with a more effective strain. The reduction in nodule size was preceded by a lower carbon supply to the nodule even before differences in nodule size could be observed. Sanctioned nodules had reduced rates of nitrogen fixation, and in later developmental stages, sanctioned nodules contained fewer viable bacteria than nonsanctioned nodules. This indicates that legumes can make conditional decisions, most likely by comparing a local nodule-dependent cue of nitrogen output with a global cue, giving them remarkable control over their symbiotic partners.
Collapse
Affiliation(s)
- Annet Westhoek
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
- Systems Biology Doctoral Training Centre, Doctoral Training Centre, University of Oxford, OX1 3NP Oxford, United Kingdom
| | - Laura J Clark
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | - Michael Culbert
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | - Neil Dalchau
- Biological Computation, Microsoft Research Cambridge, CB1 2FB Cambridge, United Kingdom
| | - Megan Griffiths
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | - Beatriz Jorrin
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | - Ramakrishnan Karunakaran
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, NR4 7UH Norwich, United Kingdom
| | - Raphael Ledermann
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | - Andrzej Tkacz
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | - Isabel Webb
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | - Euan K James
- Ecological Sciences, The James Hutton Institute, DD2 5DA Invergowrie, United Kingdom
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom;
| | - Lindsay A Turnbull
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom;
| |
Collapse
|
15
|
Abstract
Rhizobia are a phylogenetically diverse group of soil bacteria that engage in mutualistic interactions with legume plants. Although specifics of the symbioses differ between strains and plants, all symbioses ultimately result in the formation of specialized root nodule organs which host the nitrogen-fixing microsymbionts called bacteroids. Inside nodules, bacteroids encounter unique conditions that necessitate global reprogramming of physiological processes and rerouting of their metabolism. Decades of research have addressed these questions using genetics, omics approaches, and more recently computational modelling. Here we discuss the common adaptations of rhizobia to the nodule environment that define the core principles of bacteroid functioning. All bacteroids are growth-arrested and perform energy-intensive nitrogen fixation fueled by plant-provided C4-dicarboxylates at nanomolar oxygen levels. At the same time, bacteroids are subject to host control and sanctioning that ultimately determine their fitness and have fundamental importance for the evolution of a stable mutualistic relationship.
Collapse
|
16
|
Burghardt LT. Evolving together, evolving apart: measuring the fitness of rhizobial bacteria in and out of symbiosis with leguminous plants. THE NEW PHYTOLOGIST 2020; 228:28-34. [PMID: 31276218 DOI: 10.1111/nph.16045] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/20/2019] [Indexed: 05/11/2023]
Abstract
Most plant-microbe interactions are facultative, with microbes experiencing temporally and spatially variable selection. How this variation affects microbial evolution is poorly understood. Given its tractability and ecological and agricultural importance, the legume-rhizobia nitrogen-fixing symbiosis is a powerful model for identifying traits and genes underlying bacterial fitness. New technologies allow high-throughput measurement of the relative fitness of bacterial mutants, strains and species in mixed inocula in the host, rhizosphere and soil environments. I consider how host genetic variation (G × G), other environmental factors (G × E), and host life-cycle variation may contribute to the maintenance of genetic variation and adaptive trajectories of rhizobia - and, potentially, other facultative symbionts. Lastly, I place these findings in the context of developing beneficial inoculants in a changing climate.
Collapse
Affiliation(s)
- Liana T Burghardt
- Department of Plant and Microbial Biology, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St Paul, MN, 55108, USA
| |
Collapse
|
17
|
Younginger BS, Friesen ML. Connecting signals and benefits through partner choice in plant-microbe interactions. FEMS Microbiol Lett 2020; 366:5626345. [PMID: 31730203 DOI: 10.1093/femsle/fnz217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 10/17/2019] [Indexed: 12/20/2022] Open
Abstract
Stabilizing mechanisms in plant-microbe symbioses are critical to maintaining beneficial functions, with two main classes: host sanctions and partner choice. Sanctions are currently presumed to be more effective and widespread, based on the idea that microbes rapidly evolve cheating while retaining signals matching cooperative strains. However, hosts that effectively discriminate among a pool of compatible symbionts would gain a significant fitness advantage. Using the well-characterized legume-rhizobium symbiosis as a model, we evaluate the evidence for partner choice in the context of the growing field of genomics. Empirical studies that rely upon bacteria varying only in nitrogen-fixation ability ignore host-symbiont signaling and frequently conclude that partner choice is not a robust stabilizing mechanism. Here, we argue that partner choice is an overlooked mechanism of mutualism stability and emphasize that plants need not use the microbial services provided a priori to discriminate among suitable partners. Additionally, we present a model that shows that partner choice signaling increases symbiont and host fitness in the absence of sanctions. Finally, we call for a renewed focus on elucidating the signaling mechanisms that are critical to partner choice while further aiming to understand their evolutionary dynamics in nature.
Collapse
Affiliation(s)
- Brett S Younginger
- Department of Plant Pathology, Washington State University, PO Box 646430, 345 Johnson Hall, Pullman, WA 99164, USA
| | - Maren L Friesen
- Department of Plant Pathology, Washington State University, PO Box 646430, 345 Johnson Hall, Pullman, WA 99164, USA.,Department of Crop and Soil Sciences, Washington State University, PO Box 646420, 115 Johnson Hall, Pullman, WA 99164, USA
| |
Collapse
|
18
|
Mendoza-Suárez MA, Geddes BA, Sánchez-Cañizares C, Ramírez-González RH, Kirchhelle C, Jorrin B, Poole PS. Optimizing Rhizobium-legume symbioses by simultaneous measurement of rhizobial competitiveness and N 2 fixation in nodules. Proc Natl Acad Sci U S A 2020; 117:9822-9831. [PMID: 32317381 PMCID: PMC7211974 DOI: 10.1073/pnas.1921225117] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Legumes tend to be nodulated by competitive rhizobia that do not maximize nitrogen (N2) fixation, resulting in suboptimal yields. Rhizobial nodulation competitiveness and effectiveness at N2 fixation are independent traits, making their measurement extremely time-consuming with low experimental throughput. To transform the experimental assessment of rhizobial competitiveness and effectiveness, we have used synthetic biology to develop reporter plasmids that allow simultaneous high-throughput measurement of N2 fixation in individual nodules using green fluorescent protein (GFP) and barcode strain identification (Plasmid ID) through next generation sequencing (NGS). In a proof-of-concept experiment using this technology in an agricultural soil, we simultaneously monitored 84 different Rhizobium leguminosarum strains, identifying a supercompetitive and highly effective rhizobial symbiont for peas. We also observed a remarkable frequency of nodule coinfection by rhizobia, with mixed occupancy identified in ∼20% of nodules, containing up to six different strains. Critically, this process can be adapted to multiple Rhizobium-legume symbioses, soil types, and environmental conditions to permit easy identification of optimal rhizobial inoculants for field testing to maximize agricultural yield.
Collapse
Affiliation(s)
| | - Barney A Geddes
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | | | | | - Charlotte Kirchhelle
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | - Beatriz Jorrin
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom;
| |
Collapse
|
19
|
Kusakabe S, Higasitani N, Kaneko T, Yasuda M, Miwa H, Okazaki S, Saeki K, Higashitani A, Sato S. Lotus Accessions Possess Multiple Checkpoints Triggered by Different Type III Secretion System Effectors of the Wide-Host-Range Symbiont Bradyrhizobium elkanii USDA61. Microbes Environ 2020; 35. [PMID: 32074548 PMCID: PMC7104275 DOI: 10.1264/jsme2.me19141] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bradyrhizobium elkanii, a rhizobium with a relatively wide host range, possesses a functional type III secretion system (T3SS) that is involved in symbiotic incompatibility against Rj4-genotype soybean (Glycine max) and some accessions of mung bean (Vigna radiata). To expand our knowledge on the T3SS-mediated partner selection mechanism in the symbiotic legume-rhizobia association, we inoculated three Lotus experimental accessions with wild-type and T3SS-mutant strains of B. elkanii USDA61. Different responses were induced by T3SS in a host genotype-dependent manner. Lotus japonicus Gifu inhibited infection; L. burttii allowed infection, but inhibited nodule maturation at the post-infection stage; and L. burttii and L. japonicus MG-20 both displayed a nodule early senescence-like response. By conducting inoculation tests with mutants of previously reported and newly identified effector protein genes of B. elkanii USDA61, we identified NopF as the effector protein triggering the inhibition of infection, and NopM as the effector protein triggering the nodule early senescence–like response. Consistent with these results, the B. elkanii USDA61 gene for NopF introduced into the Lotus symbiont Mesorhizobium japonicum induced infection inhibition in L. japonicus Gifu, but did not induce any response in L. burttii or L. japonicus MG-20. These results suggest that Lotus accessions possess at least three checkpoints to eliminate unfavorable symbionts, including the post-infection stage, by recognizing different T3SS effector proteins at each checkpoint.
Collapse
Affiliation(s)
| | | | | | - Michiko Yasuda
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Hiroki Miwa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Shin Okazaki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Kazuhiko Saeki
- Department of Biological Sciences and Kyousei Science Center for Life and Nature, Nara Women's University
| | | | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University
| |
Collapse
|
20
|
Doin de Moura GG, Remigi P, Masson-Boivin C, Capela D. Experimental Evolution of Legume Symbionts: What Have We Learnt? Genes (Basel) 2020; 11:E339. [PMID: 32210028 PMCID: PMC7141107 DOI: 10.3390/genes11030339] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Rhizobia, the nitrogen-fixing symbionts of legumes, are polyphyletic bacteria distributed in many alpha- and beta-proteobacterial genera. They likely emerged and diversified through independent horizontal transfers of key symbiotic genes. To replay the evolution of a new rhizobium genus under laboratory conditions, the symbiotic plasmid of Cupriavidus taiwanensis was introduced in the plant pathogen Ralstonia solanacearum, and the generated proto-rhizobium was submitted to repeated inoculations to the C. taiwanensis host, Mimosa pudica L.. This experiment validated a two-step evolutionary scenario of key symbiotic gene acquisition followed by genome remodeling under plant selection. Nodulation and nodule cell infection were obtained and optimized mainly via the rewiring of regulatory circuits of the recipient bacterium. Symbiotic adaptation was shown to be accelerated by the activity of a mutagenesis cassette conserved in most rhizobia. Investigating mutated genes led us to identify new components of R. solanacearum virulence and C. taiwanensis symbiosis. Nitrogen fixation was not acquired in our short experiment. However, we showed that post-infection sanctions allowed the increase in frequency of nitrogen-fixing variants among a non-fixing population in the M. pudica-C. taiwanensis system and likely allowed the spread of this trait in natura. Experimental evolution thus provided new insights into rhizobium biology and evolution.
Collapse
Affiliation(s)
| | | | | | - Delphine Capela
- LIPM, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31320, France; (G.G.D.d.M.); (P.R.); (C.M.-B.)
| |
Collapse
|
21
|
Daubech B, Poinsot V, Klonowska A, Capela D, Chaintreuil C, Moulin L, Marchetti M, Masson-Boivin C. noeM, a New Nodulation Gene Involved in the Biosynthesis of Nod Factors with an Open-Chain Oxidized Terminal Residue and in the Symbiosis with Mimosa pudica. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1635-1648. [PMID: 31617792 DOI: 10.1094/mpmi-06-19-0168-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The β-rhizobium Cupriavidus taiwanensis is a nitrogen-fixing symbiont of Mimosa pudica. Nod factors produced by this species were previously found to be pentameric chitin-oligomers carrying common C18:1 or C16:0 fatty acyl chains, N-methylated and C-6 carbamoylated on the nonreducing terminal N-acetylglucosamine and sulfated on the reducing terminal residue. Here, we report that, in addition, C. taiwanensis LMG19424 produces molecules where the reducing sugar is open and oxidized. We identified a novel nodulation gene located on the symbiotic plasmid pRalta, called noeM, which is involved in this atypical Nod factor structure. noeM encodes a transmembrane protein bearing a fatty acid hydroxylase domain. This gene is expressed during symbiosis with M. pudica and requires NodD and luteolin for optimal expression. The closest noeM homologs formed a separate phylogenetic clade containing rhizobial genes only, which are located on symbiosis plasmids downstream from a nod box. Corresponding proteins, referred to as NoeM, may have specialized in symbiosis via the connection to the nodulation pathway and the spread in rhizobia. noeM was mostly found in isolates of the Mimoseae tribe, and specifically detected in all tested strains able to nodulate M. pudica. A noeM deletion mutant of C. taiwanensis was affected for the nodulation of M. pudica, confirming the role of noeM in the symbiosis with this legume.
Collapse
Affiliation(s)
- Benoit Daubech
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Verena Poinsot
- Université de Toulouse 3, UPS CNRS 5623, UMR, Lab IMRCP, F-31062 Toulouse, France
| | | | - Delphine Capela
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Clémence Chaintreuil
- Université Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, LSTM, Montpellier, France
| | - Lionel Moulin
- IRD, CIRAD, Université Montpellier, IPME, Montpellier, France
| | - Marta Marchetti
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | | |
Collapse
|
22
|
Benezech C, Doudement M, Gourion B. Legumes tolerance to rhizobia is not always observed and not always deserved. Cell Microbiol 2019; 22:e13124. [DOI: 10.1111/cmi.13124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Claire Benezech
- LIPM, Université de Toulouse, INRA, CNRS Castanet‐Tolosan France
| | - Maëva Doudement
- LIPM, Université de Toulouse, INRA, CNRS Castanet‐Tolosan France
| | - Benjamin Gourion
- LIPM, Université de Toulouse, INRA, CNRS Castanet‐Tolosan France
| |
Collapse
|
23
|
Burghardt LT, Epstein B, Tiffin P. Legacy of prior host and soil selection on rhizobial fitness in planta. Evolution 2019; 73:2013-2023. [PMID: 31334838 DOI: 10.1111/evo.13807] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 01/03/2023]
Abstract
Measuring selection acting on microbial populations in natural or even seminatural environments is challenging because many microbial populations experience variable selection. The majority of rhizobial bacteria are found in the soil. However, they also live symbiotically inside nodules of legume hosts and each nodule can release thousands of daughter cells back into the soil. We tested how past selection (i.e., legacies) by two plant genotypes and by the soil alone affected selection and genetic diversity within a population of 101 strains of Ensifer meliloti. We also identified allelic variants most strongly associated with soil- and host-dependent fitness. In addition to imposing direct selection on rhizobia populations, soil and host environments had lasting effects across host generations. Host presence and genotype during the legacy period explained 22% and 12% of the variance in the strain composition of nodule communities in the second cohort, respectively. Although strains with high host fitness in the legacy cohort tended to be enriched in the second cohort, the diversity of the strain community was greater when the second cohort was preceded by host rather than soil legacies. Our results indicate the potential importance of soil selection driving the evolution of these plant-associated microbes.
Collapse
Affiliation(s)
- Liana T Burghardt
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, 55108
| | - Brendan Epstein
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, 55108
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, 55108
| |
Collapse
|
24
|
Remigi P, Masson-Boivin C, Rocha EP. Experimental Evolution as a Tool to Investigate Natural Processes and Molecular Functions. Trends Microbiol 2019; 27:623-634. [DOI: 10.1016/j.tim.2019.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 12/17/2022]
|
25
|
Microbial associations enabling nitrogen acquisition in plants. Curr Opin Microbiol 2019; 49:83-89. [DOI: 10.1016/j.mib.2019.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/03/2019] [Accepted: 10/11/2019] [Indexed: 01/29/2023]
|
26
|
|
27
|
Iturralde ET, Covelli JM, Alvarez F, Pérez-Giménez J, Arrese-Igor C, Lodeiro AR. Soybean-Nodulating Strains With Low Intrinsic Competitiveness for Nodulation, Good Symbiotic Performance, and Stress-Tolerance Isolated From Soybean-Cropped Soils in Argentina. Front Microbiol 2019; 10:1061. [PMID: 31139173 PMCID: PMC6527597 DOI: 10.3389/fmicb.2019.01061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/26/2019] [Indexed: 01/04/2023] Open
Abstract
Soybean is the most important oilseed in the world, cropped in 120–130 million hectares each year. The three most important soybean producers are Argentina, Brazil, and United States, where soybean crops are routinely inoculated with symbiotic N2-fixing Bradyrhizobium spp. This extended inoculation gave rise to soybean-nodulating allochthonous populations (SNAPs) that compete against new inoculant for nodulation, thus impairing yield responses. Competitiveness depends on intrinsic factors contributed by genotype, extrinsic ones determined by growth and environmental conditions, and strain persistence in the soil. To assess these factors in Argentinean SNAPs, we studied 58 isolates from five sites of the main soybean cropping area. BOX-A1R DNA fingerprint distributed these isolates in 10 clades that paralleled the pHs of their original soils. By contrast, reference Bradyrhizobium spp. strains, including those used as soybean-inoculants, were confined to a single clade. More detailed characterization of a subset of 11 SNAP-isolates revealed that five were Bradyrhizobium japonicum, two Bradyrhizobium elkanii, two Rhizobium radiobacter (formerly Agrobacterium tumefaciens), one Bradyrhizobium diazoefficiens, and one Paenibacillus glycanilyticus-which did not nodulate when inoculated alone, and therefore was excluded from further characterization. The remaining subset of 10 SNAP-isolates was used for deeper characterization. All SNAP-isolates were aluminum- and heat-tolerant, and most of them were glyphosate-tolerant. Meanwhile, inoculant strains tested were sensitive to aluminum and glyphosate. In addition, all SNAP-isolates were motile to different degrees. Only three SNAP-isolates were deficient for N2-fixation, and none was intrinsically more competitive than the inoculant strain. These results are in contrast to the general belief that rhizobia from soil populations evolved as intrinsically more competitive for nodulation and less N2-fixing effective than inoculants strains. Shoot:root ratios, both as dry biomass and as total N, were highly correlated with leaf ureide contents, and therefore may be easy indicators of N2-fixing performance, suggesting that highly effective N2-fixing and well-adapted strains may be readily selected from SNAPs. In addition, intrinsic competitiveness of the inoculants strains seems already optimized against SNAP strains, and therefore our efforts to improve nodules occupation by inoculated strains should focus on the optimization of extrinsic competitiveness factors, such as inoculant formulation and inoculation technology.
Collapse
Affiliation(s)
- Esteban T Iturralde
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), UNLP y CCT La Plata-CONICET, La Plata, Argentina
| | - Julieta M Covelli
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), UNLP y CCT La Plata-CONICET, La Plata, Argentina
| | - Florencia Alvarez
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), UNLP y CCT La Plata-CONICET, La Plata, Argentina
| | - Julieta Pérez-Giménez
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), UNLP y CCT La Plata-CONICET, La Plata, Argentina
| | - Cesar Arrese-Igor
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Pamplona, Spain
| | - Aníbal R Lodeiro
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), UNLP y CCT La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
28
|
Clark TJ, Friel CA, Grman E, Friesen ML, Shachar-Hill Y. Unfair trade underground revealed by integrating data with Nash bargaining models. THE NEW PHYTOLOGIST 2019; 222:1325-1337. [PMID: 30671951 DOI: 10.1111/nph.15703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Mutually beneficial resource exchange is fundamental to global biogeochemical cycles and plant and animal nutrition. However, there is inherent potential conflict in mutualisms, as each organism benefits more when the exchange ratio ('price') minimizes its own costs and maximizes its benefits. Understanding the bargaining power that each partner has in these interactions is key to our ability to predict the exchange ratio and therefore the functionality of the cell, organism, community and ecosystem. We tested whether partners have symmetrical ('fair') or asymmetrical ('unfair') bargaining power in a legume-rhizobia nitrogen-fixing symbiosis using measurements of carbon and nitrogen dynamics in a mathematical modeling framework derived from economic theory. A model of symmetric bargaining power was not consistent with our data. Instead, our data indicate that the growth benefit to the plant (Medicago truncatula) has greater weight in determining trade dynamics than the benefit to the bacteria. Quantitative estimates of the relative power of the plant revealed that the plant's influence rises as soil nitrogen availability decreases and trade benefits to both partners increase. Our finding that M. truncatula legumes have more bargaining power than their rhizobial partner at lower nitrogen availabilities highlights the importance of context-dependence for the evolution of mutualism with increasing nutrient deposition.
Collapse
Affiliation(s)
- Teresa J Clark
- Department of Plant Biology, Michigan State University, 612 Wilson Rd., East Lansing, MI, 48824, USA
| | - Colleen A Friel
- Department of Plant Biology, Michigan State University, 612 Wilson Rd., East Lansing, MI, 48824, USA
| | - Emily Grman
- Department of Biology, Eastern Michigan University, 441 Mark Jefferson Science Complex, Ypsilanti, MI, 48197, USA
| | - Maren L Friesen
- Department of Plant Biology, Michigan State University, 612 Wilson Rd., East Lansing, MI, 48824, USA
- Department of Plant Pathology, Washington State University, Johnson Hall Rm 345, Pullman, WA, 99164, USA
- Department of Crop and Soil Sciences, Washington State University, Johnson Hall Rm 115, Pullman, WA, 99164, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, 612 Wilson Rd., East Lansing, MI, 48824, USA
| |
Collapse
|
29
|
diCenzo GC, Zamani M, Checcucci A, Fondi M, Griffitts JS, Finan TM, Mengoni A. Multidisciplinary approaches for studying rhizobium–legume symbioses. Can J Microbiol 2019; 65:1-33. [DOI: 10.1139/cjm-2018-0377] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The rhizobium–legume symbiosis is a major source of fixed nitrogen (ammonia) in the biosphere. The potential for this process to increase agricultural yield while reducing the reliance on nitrogen-based fertilizers has generated interest in understanding and manipulating this process. For decades, rhizobium research has benefited from the use of leading techniques from a very broad set of fields, including population genetics, molecular genetics, genomics, and systems biology. In this review, we summarize many of the research strategies that have been employed in the study of rhizobia and the unique knowledge gained from these diverse tools, with a focus on genome- and systems-level approaches. We then describe ongoing synthetic biology approaches aimed at improving existing symbioses or engineering completely new symbiotic interactions. The review concludes with our perspective of the future directions and challenges of the field, with an emphasis on how the application of a multidisciplinary approach and the development of new methods will be necessary to ensure successful biotechnological manipulation of the symbiosis.
Collapse
Affiliation(s)
- George C. diCenzo
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Maryam Zamani
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alice Checcucci
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Marco Fondi
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Turlough M. Finan
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| |
Collapse
|
30
|
Porter SS, Faber-Hammond J, Montoya AP, Friesen ML, Sackos C. Dynamic genomic architecture of mutualistic cooperation in a wild population of Mesorhizobium. ISME JOURNAL 2018; 13:301-315. [PMID: 30218020 PMCID: PMC6331556 DOI: 10.1038/s41396-018-0266-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/01/2018] [Accepted: 08/04/2018] [Indexed: 12/14/2022]
Abstract
Research on mutualism seeks to explain how cooperation can be maintained when uncooperative mutants co-occur with cooperative kin. Gains and losses of the gene modules required for cooperation punctuate symbiont phylogenies and drive lifestyle transitions between cooperative symbionts and uncooperative free-living lineages over evolutionary time. Yet whether uncooperative symbionts commonly evolve from within cooperative symbiont populations or from within distantly related lineages with antagonistic or free-living lifestyles (i.e., third-party mutualism exploiters or parasites), remains controversial. We use genomic data to show that genotypes that differ in the presence or absence of large islands of symbiosis genes are common within a single wild recombining population of Mesorhizobium symbionts isolated from host tissues and are an important source of standing heritable variation in cooperation in this population. In a focal population of Mesorhizobium, uncooperative variants that lack a symbiosis island segregate at 16% frequency in nodules, and genome size and symbiosis gene number are positively correlated with cooperation. This finding contrasts with the genomic architecture of variation in cooperation in other symbiont populations isolated from host tissues in which the islands of genes underlying cooperation are ubiquitous and variation in cooperation is primarily driven by allelic substitution and individual gene gain and loss events. Our study demonstrates that uncooperative mutants within mutualist populations can comprise a significant component of genetic variation in nature, providing biological rationale for models and experiments that seek to explain the maintenance of mutualism in the face of non-cooperators.
Collapse
Affiliation(s)
- Stephanie S Porter
- School of Biological Sciences, Washington State University, Vancouver, WA, 98686, USA.
| | - Joshua Faber-Hammond
- School of Biological Sciences, Washington State University, Vancouver, WA, 98686, USA
| | - Angeliqua P Montoya
- School of Biological Sciences, Washington State University, Vancouver, WA, 98686, USA
| | - Maren L Friesen
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA.,Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Cynthia Sackos
- School of Biological Sciences, Washington State University, Vancouver, WA, 98686, USA
| |
Collapse
|
31
|
Parallels between experimental and natural evolution of legume symbionts. Nat Commun 2018; 9:2264. [PMID: 29891837 PMCID: PMC5995829 DOI: 10.1038/s41467-018-04778-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/11/2018] [Indexed: 12/29/2022] Open
Abstract
The emergence of symbiotic interactions has been studied using population genomics in nature and experimental evolution in the laboratory, but the parallels between these processes remain unknown. Here we compare the emergence of rhizobia after the horizontal transfer of a symbiotic plasmid in natural populations of Cupriavidus taiwanensis, over 10 MY ago, with the experimental evolution of symbiotic Ralstonia solanacearum for a few hundred generations. In spite of major differences in terms of time span, environment, genetic background, and phenotypic achievement, both processes resulted in rapid genetic diversification dominated by purifying selection. We observe no adaptation in the plasmid carrying the genes responsible for the ecological transition. Instead, adaptation was associated with positive selection in a set of genes that led to the co-option of the same quorum-sensing system in both processes. Our results provide evidence for similarities in experimental and natural evolutionary transitions and highlight the potential of comparisons between both processes to understand symbiogenesis. It is unclear if experimental evolution is a good model for natural processes. Here, Clerissi et al. find parallels between the evolution of symbiosis in rhizobia after horizontal transfer of a plasmid over 10 million years ago and experimentally evolved symbionts.
Collapse
|