1
|
Kant R, Lee LS, Patterson A, Gibes N, Venkatakrishnan B, Zlotnick A, Bothner B. Small Molecule Assembly Agonist Alters the Dynamics of Hepatitis B Virus Core Protein Dimer and Capsid. J Am Chem Soc 2024; 146:28856-28865. [PMID: 39382517 PMCID: PMC11505896 DOI: 10.1021/jacs.4c08871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Chronic hepatitis B virus (HBV) poses a significant public health burden worldwide, encouraging the search for curative antivirals. One approach is capsid assembly modulators (CAMs), which are assembly agonists. CAMs lead to empty and defective capsids, inhibiting the formation of new viruses, and can also lead to defects in the release of the viral genome, inhibiting new infections. In this study, we employed hydrogen-deuterium exchange mass spectrometry (HDX-MS) to assess the impact of one such CAM, HAP18, on HBV dimers, capsids composed of 120 (or 90) capsid protein dimers, and cross-linked capsids (xl-capsids). HDX analysis revealed hydrogen bonding networks within and between the dimers. HAP18 disrupted the hydrogen bonding network of dimers, demonstrating a previously unappreciated impact on the dimer structure. Conversely, HAP18 stabilized both unmodified and cross-linked capsids. Intriguingly, cross-linking the capsid, which was accomplished by forming disulfides between an engineered C-terminal cysteine, increased the overall rate of HDX. Moreover, HAP18 binding induced conformational changes beyond the binding sites. Our findings provide evidence for allosteric communication within and between capsid protein dimers. These results show that CAMs are capable of harnessing this allosteric network to modulate the dimer and capsid dynamics.
Collapse
Affiliation(s)
- Ravi Kant
- Department
of Chemistry and Biochemistry, Montana State
University, Bozeman, Montana 59717, United States
- University
School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi 110078, India
| | - Lye-Siang Lee
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Angela Patterson
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Nora Gibes
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | | | - Adam Zlotnick
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Brian Bothner
- Department
of Chemistry and Biochemistry, Montana State
University, Bozeman, Montana 59717, United States
| |
Collapse
|
2
|
Pastor F, Charles E, Di Vona C, Chapelle M, Rivoire M, Passot G, Chabot B, de la Luna S, Lucifora J, Durantel D, Salvetti A. The dual-specificity kinase DYRK1A interacts with the Hepatitis B virus genome and regulates the production of viral RNA. PLoS One 2024; 19:e0311655. [PMID: 39405283 PMCID: PMC11478819 DOI: 10.1371/journal.pone.0311655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
The genome of Hepatitis B virus (HBV) persists in infected hepatocytes as a nuclear episome (cccDNA) that is responsible for the transcription of viral genes and viral rebound, following antiviral treatment arrest in chronically infected patients. There is currently no clinically approved therapeutic strategy able to efficiently target cccDNA (Lucifora J 2016). The development of alternative strategies aiming at permanently abrogating HBV RNA production requires a thorough understanding of cccDNA transcriptional and post-transcriptional regulation. In a previous study, we discovered that 1C8, a compound that inhibits the phosphorylation of some cellular RNA-binding proteins, could decrease the level of HBV RNAs. Here, we aimed at identifying kinases responsible for this effect. Among the kinases targeted by 1C8, we focused on DYRK1A, a dual-specificity kinase that controls the transcription of cellular genes by phosphorylating transcription factors, histones, chromatin regulators as well as RNA polymerase II. The results of a combination of genetic and chemical approaches using HBV-infected hepatocytes, indicated that DYRK1A positively regulates the production of HBV RNAs. In addition, we found that DYRK1A associates with cccDNA, and stimulates the production of HBV nascent RNAs. Finally, reporter gene assays showed that DYRK1A up-regulates the activity of the HBV enhancer 1/X promoter in a sequence-dependent manner. Altogether, these results indicate that DYRK1A is a proviral factor that may participate in the HBV life cycle by stimulating the production of HBx, a viral factor absolutely required to trigger the complete cccDNA transcriptional program.
Collapse
Affiliation(s)
- Florentin Pastor
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Emilie Charles
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Chiara Di Vona
- Genome Biology Program, Center for Genomic Regulation (CRG), and CIBER of Rare Diseases, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Maëlys Chapelle
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | | | - Guillaume Passot
- Service de Chirurgie Générale et Oncologique, Hôpital Lyon Sud, Hospices Civils de Lyon Et CICLY, EA3738, Université Lyon 1, Lyon, France
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Susana de la Luna
- Genome Biology Program, Center for Genomic Regulation (CRG), and CIBER of Rare Diseases, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Julie Lucifora
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - David Durantel
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Anna Salvetti
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| |
Collapse
|
3
|
Alom SE, Swaminathan K, Nuzelu V, Singh A, de Rocquigny H, Swaminathan R. Label-Free Tracking of Hepatitis B Virus Core Protein Capsid Assembly in Real-Time Using Protein Charge Transfer Spectra. Biomacromolecules 2024; 25:6425-6438. [PMID: 38900297 DOI: 10.1021/acs.biomac.4c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Hepatitis B virions are double-shelled particles, with a diameter of 40-42 nm, consisting of a nucleocapsid called the HBV core protein (HBV Cp). It is an ordered assembly of 90-120 homodimers arranged in an icosahedral symmetry. Both the full-length HBV Cp and the first-149 residue domain, HBV Cp149, can spontaneously assemble in vitro into capsids with 120 Cp dimers (T = 4) or 90 Cp dimers (T = 3), triggered by high ionic strength of 0.25-0.5 M NaCl. The assembly disassembly of HBV Cp149 capsids are generally studied by light scattering, size-exclusion chromatography, atomic force microscopy, transmission electron microscopy, and other high-end expensive techniques. Here, we report a simple, yet robust, label-free technique exploiting protein charge transfer spectra (ProCharTS) to monitor the capsid assembly in real-time. ProCharTS absorption in the near UV-visible region (250-800 nm) arises when photoinduced electron transfer occurs from HOMO of COO- in glutamate (donor) to LUMO of NH3+ in lysine or polypeptide backbone (acceptor) of the protein. Alternatively, it can also occur from polypeptide backbone (donor) to acceptor in arginine, histidine, or lysine cation. ProCharTS is observed profusely among proximal charge clusters in folded proteins. Here, we show that, ProCharTS absorption among growing HBV capsids is amplified when HBV Cp homodimers assemble, generating new contacts among charged residues in the dimer-dimer interface. We notice a time-dependent sigmoidal increase in ProCharTS absorbance and luminescence during capsid formation in comparison to pure dimers. Additionally, a combined approach of anisotropy-based fluorescence assay is reported, where an increased fluorescence anisotropy was observed in capsids as compared to native and unfolded dimers. We conclude that ProCharTS can serve as a sensitive label-free tool for rapid tracking of capsid assembly in real-time and characterize the assembled capsids from dimers.
Collapse
Affiliation(s)
- Shah Ekramul Alom
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Karthik Swaminathan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - V Nuzelu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Alka Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Hugues de Rocquigny
- Morphogenesis and Antigenicity of HIV, Hepatitis and Emerging Viruses MAVIVIHe, Inserm─U1259 MAVIVH, Tours 37032, France
| | - Rajaram Swaminathan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
4
|
Qi S, He X. Biomimetic Capsid-Like Nanoshells Self-Assembled from Homopolypeptides. Chemistry 2024; 30:e202401990. [PMID: 38923670 DOI: 10.1002/chem.202401990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
The preparation of capsid-like nanoshells and the elucidation of their formation pathways are crucial for the application potential of capsid-like nanomaterials. In this study, we have prepared biomimetic capsid-like nanoshells (CLNs) through the solution self-assembly of poly (β-phenethyl-L-aspartate) homopolypeptide (PPLA). The formation of CLNs is governed by an aggregation-fusion mechanism. Initially, PPLA molecules self-assemble into small spherical assemblies as subunits and the initial nuclei are formed through fusing some subunits. Subsequently, additional subunits rapidly fuse onto these nuclei, leading to the growth of full or partial CLNs during the growth phase. Moreover, the suitable condition benefiting CLNs formation is clarified by a morphological phase diagram based on the initial PPLA concentration against water content. Molecular-level measurements suggest that the molecular flexibility of PPLA is a key factor in the arrangement and fusion of subunits for the formation of CLNs. These findings offer new perspectives for a deeper understanding of the formation pathways of capsid-like nanoshells derived from synthetic polymers.
Collapse
Affiliation(s)
- Shuo Qi
- School of Chemistry and Molecular Engineering, East China Normal University, No.500 Dongchuan Road, Shanghai, 200241, China
| | - Xiaohua He
- School of Chemistry and Molecular Engineering, East China Normal University, No.500 Dongchuan Road, Shanghai, 200241, China
| |
Collapse
|
5
|
Hussain T, Zhao Z, Murphy B, Taylor ZE, Gudorf JA, Klein S, Barnes LF, VanNieuwenhze M, Jarrold MF, Zlotnick A. Chemically Tagging Cargo for Specific Packaging inside and on the Surface of Virus-like Particles. ACS NANO 2024; 18:21024-21037. [PMID: 39087909 PMCID: PMC11503556 DOI: 10.1021/acsnano.4c02056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Virus-like particles (VLPs) have untapped potential for packaging and delivery of macromolecular cargo. To be a broadly useful platform, there needs to be a strategy for attaching macromolecules to the inside or the outside of the VLP with minimal modification of the platform or cargo. Here, we repurpose antiviral compounds that bind to hepatitis B virus (HBV) capsids to create a chemical tag to noncovalently attach cargo to the VLP. Our tag consists of a capsid assembly modulator, HAP13, connected to a linker terminating in maleimide. Our cargo is a green fluorescent protein (GFP) with a single addressable cysteine, a feature that can be engineered in many proteins. The HAP-GFP construct maintained HAP's intrinsic ability to bind HBV capsids and accelerate assembly. We investigated the capacity of HAP-GFP to coassemble with HBV capsid protein and bind to preassembled capsids. HAP-GFP binding was concentration-dependent, sensitive to capsid stability, and dependent on linker length. Long linkers had the greatest activity to bind capsids, while short linkers impeded assembly and damaged intact capsids. In coassembly reactions, >20 HAP-GFP molecules were presented on the outside and inside of the capsid, concentrating the cargo by more than 100-fold compared to bulk solution. We also tested an HAP-GFP with a cleavable linker so that external GFP molecules could be removed, resulting in exclusive internal packaging. These results demonstrate a generalizable strategy for attaching cargo to a VLP, supporting development of HBV as a modular VLP platform.
Collapse
Affiliation(s)
- Tariq Hussain
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Zhongchao Zhao
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Brennan Murphy
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Zachary E Taylor
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jessica A Gudorf
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Shelby Klein
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Lauren F Barnes
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Michael VanNieuwenhze
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Martin F Jarrold
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
6
|
Li S, Li H, Lian R, Xie J, Feng R. New perspective of small-molecule antiviral drugs development for RNA viruses. Virology 2024; 594:110042. [PMID: 38492519 DOI: 10.1016/j.virol.2024.110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
High variability and adaptability of RNA viruses allows them to spread between humans and animals, causing large-scale infectious diseases which seriously threat human and animal health and social development. At present, AIDS, viral hepatitis and other viral diseases with high incidence and low cure rate are still spreading around the world. The outbreaks of Ebola, Zika, dengue and in particular of the global pandemic of COVID-19 have presented serious challenges to the global public health system. The development of highly effective and broad-spectrum antiviral drugs is a substantial and urgent research subject to deal with the current RNA virus infection and the possible new viral infections in the future. In recent years, with the rapid development of modern disciplines such as artificial intelligence technology, bioinformatics, molecular biology, and structural biology, some new strategies and targets for antivirals development have emerged. Here we review the main strategies and new targets for developing small-molecule antiviral drugs against RNA viruses through the analysis of the new drug development progress against several highly pathogenic RNA viruses, to provide clues for development of future antivirals.
Collapse
Affiliation(s)
- Shasha Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China; Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Huixia Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Ruiya Lian
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China; Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Jingying Xie
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China; Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| |
Collapse
|
7
|
Zhao S, Wang Y, Zhang X, Qiao L, Wang S, Jin Y, Wu S, Li Y, Zhan P, Liu X. Discovery of carboxyl-containing heteroaryldihydropyrimidine derivatives as novel HBV capsid assembly modulators with significantly improved metabolic stability. RSC Med Chem 2023; 14:2380-2400. [PMID: 37974964 PMCID: PMC10650354 DOI: 10.1039/d3md00461a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 09/30/2023] [Indexed: 11/19/2023] Open
Abstract
Interfering with the assembly of hepatitis B virus (HBV) capsid is a promising approach for treating chronic hepatitis B (CHB). In order to enhance the metabolic stability and reduce the strong hERG inhibitory effect of HBV capsid assembly modulator (CAM) GLS4, we rationally designed a series of carboxyl-containing heteroaryldihydropyrimidine (HAP) derivatives based on structural biology information combined with medicinal chemistry strategies. The results from biological evaluation demonstrated that compound 6a-25 (EC50 = 0.020 μM) exhibited greater potency than the positive drug lamivudine (EC50 = 0.09 μM), and was comparable to the lead compound GLS4 (EC50 = 0.007 μM). Furthermore, it was observed that 6a-25 reduced levels of core protein (Cp) and capsid in cells. Preliminary assessment of drug-likeness revealed that 6a-25 exhibited superior water solubility (pH 2.0: 374.81 μg mL-1; pH 7.0: 6.85 μg mL-1; pH 7.4: 25.48 μg mL-1), liver microsomal metabolic stability (t1/2 = 108.2 min), and lower hERG toxicity (10 μM inhibition rate was 72.66%) compared to the lead compound GLS4. Overall, compound 6a-25 holds promise for further investigation.
Collapse
Affiliation(s)
- Shujie Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Ya Wang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College 100050 Beijing PR China
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Lijun Qiao
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College 100050 Beijing PR China
| | - Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Yu Jin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Shuo Wu
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College 100050 Beijing PR China
| | - Yuhuan Li
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College 100050 Beijing PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| |
Collapse
|
8
|
Wang M, Zhang J, Dou Y, Liang M, Xie Y, Xue P, Liu L, Li C, Wang Y, Tao F, Zhang X, Hu H, Feng K, Zhang L, Wu Z, Chen Y, Zhan P, Jia H. Design, Synthesis, and Biological Evaluation of Novel Thioureidobenzamide (TBA) Derivatives as HBV Capsid Assembly Modulators. J Med Chem 2023; 66:13968-13990. [PMID: 37839070 DOI: 10.1021/acs.jmedchem.3c01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Hepatitis B virus (HBV) capsid assembly modulators (CAMs) represent a promising therapeutic approach for the treatment of HBV infection. In this study, we designed and synthesized five series of benzamide derivatives based on a multisite-binding strategy at the tolerant region and diversity modification in the solvent-exposed region. Among them, thioureidobenzamide compound 17i exhibited significantly increased anti-HBV activity in HepAD38 (EC50 = 0.012 μM) and HBV-infected HLCZ01 cells (EC50 = 0.033 μM). Moreover, 17i displayed a better inhibitory effect on the assembly of HBV capsid protein compared with NVR 3-778 and a inhibitory effect similar to the clinical drug GLS4. In addition, 17i showed moderate metabolic stability in human microsomes, had excellent oral bioavailability in Sprague-Dawley (SD) rats, and inhibited HBV replication in the HBV carrier mice model, which could be considered as a promising candidate drug for further development.
Collapse
Affiliation(s)
- Mei Wang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| | - Jian Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| | - Yutong Dou
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Dept. Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College, Shandong University, Jinan 250012, Shandong, P. R. China
| | - Minghui Liang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| | - Yong Xie
- State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd, Dongguan 523871, P. R. China
| | - Peng Xue
- School of Public Health, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| | - Linyue Liu
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| | - Chuanju Li
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong, P. R. China
| | - Yuanze Wang
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou 510000, Guangdong, P. R. China
| | - Feiyan Tao
- School of Public Health, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| | - Xiaohui Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College, Shandong University, Jinan 250012, P. R. China
- The Research Center of Stem Cell and Regenerative Medicine, Department of Systems Biomedicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Huili Hu
- Key Laboratory of Experimental Teratology, Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College, Shandong University, Jinan 250012, P. R. China
- The Research Center of Stem Cell and Regenerative Medicine, Department of Systems Biomedicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Kairui Feng
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| | - Lei Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Dept. Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College, Shandong University, Jinan 250012, Shandong, P. R. China
| | - Yunfu Chen
- State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd, Dongguan 523871, P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Haiyong Jia
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| |
Collapse
|
9
|
Kim C, Schlicksup CJ, Pérez-Segura C, Hadden-Perilla JA, Wang JCY, Zlotnick A. Structure of the Hepatitis B virus capsid quasi-6-fold with a trapped C-terminal domain reveals capsid movements associated with domain exit. J Biol Chem 2023; 299:105104. [PMID: 37517693 PMCID: PMC10463254 DOI: 10.1016/j.jbc.2023.105104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Many viruses undergo transient conformational change to surveil their environments for receptors and host factors. In Hepatitis B virus (HBV) infection, after the virus enters the cell, it is transported to the nucleus by interaction of the HBV capsid with an importin α/β complex. The interaction between virus and importins is mediated by nuclear localization signals on the capsid protein's C-terminal domain (CTD). However, CTDs are located inside the capsid. In this study, we asked where does a CTD exit the capsid, are all quasi-equivalent CTDs created equal, and does the capsid structure deform to facilitate CTD egress from the capsid? Here, we used Impβ as a tool to trap transiently exposed CTDs and examined this complex by cryo-electron microscopy. We examined an asymmetric reconstruction of a T = 4 icosahedral capsid and a focused reconstruction of a quasi-6-fold vertex (3.8 and 4.0 Å resolution, respectively). Both approaches showed that a subset of CTDs extended through a pore in the center of the quasi-6-fold complex. CTD egress was accompanied by enlargement of the pore and subtle changes in quaternary and tertiary structure of the quasi-6-fold. When compared to molecular dynamics simulations, structural changes were within the normal range of capsid flexibility. Although pore diameter was enlarged in the Impβ-bound reconstruction, simulations indicate that CTD egress does not exclusively depend on enlarged pores. In summary, we find that HBV surveillance of its environment by transient exposure of its CTD requires only modest conformational change of the capsid.
Collapse
Affiliation(s)
- Christine Kim
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| | | | - Carolina Pérez-Segura
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Jodi A Hadden-Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Joseph Che-Yen Wang
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Adam Zlotnick
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA.
| |
Collapse
|
10
|
Zhao Z, Huang Y, Liu C, Zhu D, Gao S, Liu S, Peng R, Zhang Y, Huang X, Qi J, Wong CCL, Zhang X, Wang P, Qin Q, Gao GF. Near-atomic architecture of Singapore grouper iridovirus and implications for giant virus assembly. Nat Commun 2023; 14:2050. [PMID: 37041173 PMCID: PMC10090177 DOI: 10.1038/s41467-023-37681-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Singapore grouper iridovirus (SGIV), one of the nucleocytoviricota viruses (NCVs), is a highly pathogenic iridovirid. SGIV infection results in massive economic losses to the aquaculture industry and significantly threatens global biodiversity. In recent years, high morbidity and mortality in aquatic animals have been caused by iridovirid infections worldwide. Effective control and prevention strategies are urgently needed. Here, we present a near-atomic architecture of the SGIV capsid and identify eight types of capsid proteins. The viral inner membrane-integrated anchor protein colocalizes with the endoplasmic reticulum (ER), supporting the hypothesis that the biogenesis of the inner membrane is associated with the ER. Additionally, immunofluorescence assays indicate minor capsid proteins (mCPs) could form various building blocks with major capsid proteins (MCPs) before the formation of a viral factory (VF). These results expand our understanding of the capsid assembly of NCVs and provide more targets for vaccine and drug design to fight iridovirid infections.
Collapse
Affiliation(s)
- Zhennan Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Congcong Liu
- Cryo-EM Center, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Dongjie Zhu
- School of Life Science, University of Science and Technology of China, Hefei, 230026, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuaixin Gao
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
- Department of Human Sciences & James Comprehensive Cancer Center, The Ohio State University, Columbus, 43210, USA
| | - Sheng Liu
- Cryo-EM Center, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ruchao Peng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Ya Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Life Science Academy, Beijing, 102209, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Peiyi Wang
- Cryo-EM Center, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Zhao S, Zhang X, da Silva-Júnior EF, Zhan P, Liu X. Computer-aided drug design in seeking viral capsid modulators. Drug Discov Today 2023; 28:103581. [PMID: 37030533 DOI: 10.1016/j.drudis.2023.103581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
Approved or licensed antiviral drugs have limited applications because of their drug resistance and severe adverse effects. By contrast, by stabilizing or destroying the viral capsid, compounds known as capsid modulators prevent viral replication by acting on new targets and, therefore, overcoming the problem of clinical drug resistance. For example. computer-aided drug design (CADD) methods, using strategies based on structures of biological targets (structure-based drug design; SBDD), such as docking, molecular dynamics (MD) simulations, and virtual screening (VS), have provided opportunities for fast and effective development of viral capsid modulators. In this review, we summarize the application of CADD in the discovery, optimization, and mechanism prediction of capsid-targeting small molecules, providing new insights into antiviral drug discovery modalities. Teaser: Computer-aided drug design will accelerate the development of viral capsid regulators, which brings new hope for the treatment of refractory viral diseases.
Collapse
Affiliation(s)
- Shujie Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Edeildo Ferreira da Silva-Júnior
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970 Maceió, Alagoas, Brazil.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| |
Collapse
|
12
|
Starr CA, Nair S, Huang SY, Hagan MF, Jacobson SC, Zlotnick A. Engineering Metastability into a Virus-like Particle to Enable Triggered Dissociation. J Am Chem Soc 2023; 145:2322-2331. [PMID: 36651799 PMCID: PMC10018796 DOI: 10.1021/jacs.2c10937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
For a virus-like particle (VLP) to serve as a delivery platform, the VLP must be able to release its cargo in response to a trigger. Here, we use a chemical biology approach to destabilize a self-assembling capsid for a subsequent triggered disassembly. We redesigned the dimeric hepatitis B virus (HBV) capsid protein (Cp) with two differentially addressable cysteines, C150 for reversibly crosslinking the capsid and C124 to react with a destabilizing moiety. The resulting construct, Cp150-V124C, assembles into icosahedral, 120-dimer VLPs that spontaneously crosslink via the C-terminal C150, leaving C124 buried at a dimer-dimer interface. The VLP is driven into a metastable state when C124 is reacted with the bulky fluorophore, maleimidyl BoDIPY-FL. The resulting VLP is stable until exposed to modest, physiologically relevant concentrations of reducing agent. We observe dissociation with FRET relaxation of polarization, size exclusion chromatography, and resistive-pulse sensing. Dissociation is slow, minutes to hours, with a characteristic lag phase. Mathematical modeling based on the presence of a nucleation step predicts disassembly dynamics that are consistent with experimental observations. VLPs transfected into hepatoma cells show similar dissociation behavior. These results suggest a generalizable strategy for designing a VLP that can release its contents in an environmentally responsive reaction.
Collapse
Affiliation(s)
- Caleb A. Starr
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405 USA
| | - Smita Nair
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405 USA
- current address: Door Pharmaceuticals, Bloomington, IN 47401 USA
| | - Sheng-Yuan Huang
- Department of Chemistry, Indiana University, Bloomington, IN 47405 USA
| | - Michael F. Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454 USA
| | | | - Adam Zlotnick
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405 USA
| |
Collapse
|
13
|
Molecular elucidation of drug-induced abnormal assemblies of the hepatitis B virus capsid protein by solid-state NMR. Nat Commun 2023; 14:471. [PMID: 36709212 PMCID: PMC9884277 DOI: 10.1038/s41467-023-36219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/18/2023] [Indexed: 01/29/2023] Open
Abstract
Hepatitis B virus (HBV) capsid assembly modulators (CAMs) represent a recent class of anti-HBV antivirals. CAMs disturb proper nucleocapsid assembly, by inducing formation of either aberrant assemblies (CAM-A) or of apparently normal but genome-less empty capsids (CAM-E). Classical structural approaches have revealed the CAM binding sites on the capsid protein (Cp), but conformational information on the CAM-induced off-path aberrant assemblies is lacking. Here we show that solid-state NMR can provide such information, including for wild-type full-length Cp183, and we find that in these assemblies, the asymmetric unit comprises a single Cp molecule rather than the four quasi-equivalent conformers typical for the icosahedral T = 4 symmetry of the normal HBV capsids. Furthermore, while in contrast to truncated Cp149, full-length Cp183 assemblies appear, on the mesoscopic level, unaffected by CAM-A, NMR reveals that on the molecular level, Cp183 assemblies are equally aberrant. Finally, we use a eukaryotic cell-free system to reveal how CAMs modulate capsid-RNA interactions and capsid phosphorylation. Our results establish a structural view on assembly modulation of the HBV capsid, and they provide a rationale for recently observed differences between in-cell versus in vitro capsid assembly modulation.
Collapse
|
14
|
Mohajerani F, Tyukodi B, Schlicksup CJ, Hadden-Perilla JA, Zlotnick A, Hagan MF. Multiscale Modeling of Hepatitis B Virus Capsid Assembly and Its Dimorphism. ACS NANO 2022; 16:13845-13859. [PMID: 36054910 PMCID: PMC10273259 DOI: 10.1021/acsnano.2c02119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hepatitis B virus (HBV) is an endemic, chronic virus that leads to 800000 deaths per year. Central to the HBV lifecycle, the viral core has a protein capsid assembled from many copies of a single protein. The capsid protein adopts different (quasi-equivalent) conformations to form icosahedral capsids containing 180 or 240 proteins: T = 3 or T = 4, respectively, in Caspar-Klug nomenclature. HBV capsid assembly has become an important target for recently developed antivirals; nonetheless, the assembly pathways and mechanisms that control HBV dimorphism remain unclear. We describe computer simulations of the HBV assembly, using a coarse-grained model that has parameters learned from all-atom molecular dynamics simulations of a complete HBV capsid and yet is computationally tractable. Dynamical simulations with the resulting model reproduce experimental observations of HBV assembly pathways and products. By constructing Markov state models and employing transition path theory, we identify pathways leading to T = 3, T = 4, and other experimentally observed capsid morphologies. The analysis shows that capsid polymorphism is promoted by the low HBV capsid bending modulus, where the key factors controlling polymorphism are the conformational energy landscape and protein-protein binding affinities.
Collapse
Affiliation(s)
- Farzaneh Mohajerani
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts02453, United States
| | - Botond Tyukodi
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts02453, United States
- Department of Physics, Babeş-Bolyai University, 400084Cluj-Napoca, Romania
| | - Christopher J Schlicksup
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana47405, United States
| | - Jodi A Hadden-Perilla
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware19716, United States
| | - Adam Zlotnick
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana47405, United States
| | - Michael F Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts02453, United States
| |
Collapse
|
15
|
Medical Advances in Hepatitis D Therapy: Molecular Targets. Int J Mol Sci 2022; 23:ijms231810817. [PMID: 36142728 PMCID: PMC9506394 DOI: 10.3390/ijms231810817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
An approximate number of 250 million people worldwide are chronically infected with hepatitis B virus, making them susceptible to a coinfection with hepatitis D virus. The superinfection causes the most severe form of a viral hepatitis and thus drastically worsens the course of the disease. Until recently, the only available therapy consisted of interferon-α, only eligible for a minority of patients. In July 2020, the EMA granted Hepcludex conditional marketing authorization throughout the European Union. This first-in-class entry inhibitor offers the promise to prevent the spread in order to gain control and eventually participate in curing hepatitis B and D. Hepcludex is an example of how understanding the viral lifecycle can give rise to new therapy options. Sodium taurocholate co-transporting polypeptide, the virus receptor and the target of Hepcludex, and other targets of hepatitis D therapy currently researched are reviewed in this work. Farnesyltransferase inhibitors such as Lonafarnib, targeting another essential molecule in the HDV life cycle, represent a promising target for hepatitis D therapy. Farnesyltransferase attaches a farnesyl (isoprenyl) group to proteins carrying a C-terminal Ca1a2X (C: cysteine, a: aliphatic amino acid, X: C-terminal amino acid) motif like the large hepatitis D virus antigen. This modification enables the interaction of the HBV/HDV particle and the virus envelope proteins. Lonafarnib, which prevents this envelopment, has been tested in clinical trials. Targeting the lifecycle of the hepatitis B virus needs to be considered in hepatitis D therapy in order to cure a patient from both coexisting infections. Nucleic acid polymers target the hepatitis B lifecycle in a manner that is not yet understood. Understanding the possible targets of the hepatitis D virus therapy is inevitable for the improvement and development of a sufficient therapy that HDV patients are desperately in need of.
Collapse
|
16
|
Ji X, Jiang X, Kobayashi C, Ren Y, Hu L, Gao Z, Kang D, Jia R, Zhang X, Zhao S, Watashi K, Liu X, Zhan P. Design, Synthesis, and Evaluation of a Set of Carboxylic Acid and Phosphate Prodrugs Derived from HBV Capsid Protein Allosteric Modulator NVR 3-778. Molecules 2022; 27:molecules27185987. [PMID: 36144715 PMCID: PMC9505734 DOI: 10.3390/molecules27185987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/04/2022] [Accepted: 09/10/2022] [Indexed: 11/22/2022] Open
Abstract
Hepatitis B virus (HBV) capsid protein (Cp) is necessary for viral replication and the maintenance of viral persistence, having become an attractive target of anti-HBV drugs. To improve the water solubility of HBV capsid protein allosteric modulator (CpAM) NVR 3-778, a series of novel carboxylic acid and phosphate prodrugs were designed and synthesized using a prodrug strategy. In vitro HBV replication assay showed that these prodrugs maintained favorable antiviral potency (EC50 = 0.28−0.42 µM), which was comparable to that of NVR 3-778 (EC50 = 0.38 µM). More importantly, the cytotoxicity of prodrug N8 (CC50 > 256 µM) was significantly reduced compared to NVR 3-778 (CC50 = 13.65 ± 0.21 µM). In addition, the water solubility of prodrug N6 was hundreds of times better than that of NVR 3-778 in three phosphate buffers with various pH levels (2.0, 7.0, 7.4). In addition, N6 demonstrated excellent plasma and blood stability in vitro and good pharmacokinetic properties in rats. Finally, the hemisuccinate prodrug N6 significantly improved the candidate drug NVR 3-778’s water solubility and increased metabolic stability while maintaining its antiviral efficacy.
Collapse
Affiliation(s)
- Xiangkai Ji
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Chisa Kobayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 163-8001, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan
| | - Yujie Ren
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Lide Hu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Zhen Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Ruifang Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Shujie Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 163-8001, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 163-8001, Japan
- Correspondence: (K.W.); (X.L.); (P.Z.)
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
- Correspondence: (K.W.); (X.L.); (P.Z.)
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
- Correspondence: (K.W.); (X.L.); (P.Z.)
| |
Collapse
|
17
|
Zhang M, Harms ZD, Greibe T, Starr CA, Zlotnick A, Jacobson SC. In-Plane, In-Series Nanopores with Circular Cross Sections for Resistive-Pulse Sensing. ACS NANO 2022; 16:7352-7360. [PMID: 35500295 PMCID: PMC9626396 DOI: 10.1021/acsnano.1c08680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Resistive-pulse sensing with solid-state nanopores is a sensitive, label-free technique for analyzing single molecules in solution. To add functionality to resistive-pulse measurements, direct coupling of the nanopores to other pores and nanoscale fluidic elements, e.g., reactors, separators, and filters, in the same device is an important next step. One approach is monolithic fabrication of the fluidic elements in the plane of the substrate, but methods to generate pores with circular cross sections are needed to improve sensing performance with in-plane devices. Here, we report a fabrication method that directly patterns nanopores with circular cross sections in series and in plane with the substrate. A focused ion beam instrument is used to mill a lamella in a nanochannel and, subsequently, bore a nanopore through the lamella. The diameter and geometry of the nanopore are controlled by the current and dose of the ion beam and by the tilt angle and thickness of the lamella. We fabricated devices with vertical and tilted lamellae and nanopores with diameters from 40 to 90 nm in cylindrical and conical geometries. To test device performance, we conducted resistive-pulse measurements of hepatitis B virus capsids. Current pulses from T = 3 capsids (∼31 nm diameter) and T = 4 capsids (∼35 nm diameter) were well resolved and exhibited relative pulse amplitudes (Δi/i) up to 5 times higher than data obtained on nanopores with rectangular cross sections. For smaller pore diameters (<45 nm), which approach the diameters of the capsids, a dramatic increase in the pulse amplitude was observed for both T = 3 and T = 4 capsids. Two and three pores fabricated in series further improved the resolution between the relative pulse amplitude distributions for the T = 3 and T = 4 capsids by up to 2-fold.
Collapse
Affiliation(s)
- Mi Zhang
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, United States of America
| | - Zachary D. Harms
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, United States of America
| | - Tine Greibe
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, United States of America
| | - Caleb A. Starr
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405-7003, United States of America
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405-7003, United States of America
| | - Stephen C. Jacobson
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, United States of America
| |
Collapse
|
18
|
Taverniti V, Ligat G, Debing Y, Kum DB, Baumert TF, Verrier ER. Capsid Assembly Modulators as Antiviral Agents against HBV: Molecular Mechanisms and Clinical Perspectives. J Clin Med 2022; 11:1349. [PMID: 35268440 PMCID: PMC8911156 DOI: 10.3390/jcm11051349] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Despite a preventive vaccine being available, more than 250 million people suffer from chronic hepatitis B virus (HBV) infection, a major cause of liver disease and HCC. HBV infects human hepatocytes where it establishes its genome, the cccDNA with chromosomal features. Therapies controlling HBV replication exist; however, they are not sufficient to eradicate HBV cccDNA, the main cause for HBV persistence in patients. Core protein is the building block of HBV nucleocapsid. This viral protein modulates almost every step of the HBV life cycle; hence, it represents an attractive target for the development of new antiviral therapies. Capsid assembly modulators (CAM) bind to core dimers and perturb the proper nucleocapsid assembly. The potent antiviral activity of CAM has been demonstrated in cell-based and in vivo models. Moreover, several CAMs have entered clinical development. The aim of this review is to summarize the mechanism of action (MoA) and the advancements in the clinical development of CAMs and in the characterization of their mod of action.
Collapse
Affiliation(s)
- Valerio Taverniti
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France; (V.T.); (G.L.); (T.F.B.)
| | - Gaëtan Ligat
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France; (V.T.); (G.L.); (T.F.B.)
| | - Yannick Debing
- Aligos Belgium BV, 3001 Leuven, Belgium; (Y.D.); (D.B.K.)
| | | | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France; (V.T.); (G.L.); (T.F.B.)
- Institut Hospitalo-Universitaire, Pôle Hépato-Digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France
| | - Eloi R. Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France; (V.T.); (G.L.); (T.F.B.)
| |
Collapse
|
19
|
Lin J, Yin L, Xu XZ, Sun HC, Huang ZH, Ni XY, Chen Y, Lin X. Bay41-4109-induced aberrant polymers of hepatitis b capsid proteins are removed via STUB1-promoted p62-mediated macroautophagy. PLoS Pathog 2022; 18:e1010204. [PMID: 35030230 PMCID: PMC8824320 DOI: 10.1371/journal.ppat.1010204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 02/08/2022] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
The hepatitis B virus (HBV) core protein (HBc) functions in multiple steps of the viral life cycle. Heteroaryldihydropyrimidine compounds (HAPs) such as Bay41-4109 are capsid protein allosteric modulators that accelerate HBc degradation and inhibit the virion secretion of HBV, specifically by misleading HBc assembly into aberrant non-capsid polymers. However, the subsequent cellular fates of these HAP-induced aberrant non-capsid polymers are not well understood. Here, we discovered that that the chaperone-binding E3 ubiquitin ligase protein STUB1 is required for the removal of Bay41-4109-induced aberrant non-capsid polymers from HepAD38 cells. Specifically, STUB1 recruits BAG3 to transport Bay41-4109-induced aberrant non-capsid polymers to the perinuclear region of cells, thereby initiating p62-mediated macroautophagy and lysosomal degradation. We also demonstrate that elevating the STUB1 level enhances the inhibitory effect of Bay41-4109 on the production of HBeAg and HBV virions in HepAD38 cells, in HBV-infected HepG2-NTCP cells, and in HBV transgenic mice. STUB1 overexpression also facilitates the inhibition of Bay41-4109 on the cccDNA formation in de novo infection of HBV. Understanding these molecular details paves the way for applying HAPs as a potentially curative regimen (or a component of a combination treatment) for eradicating HBV from hepatocytes of chronic infection patients. Hepatitis B virus (HBV) infects more than 250 million people worldwide chronically. It is a major pathogen causing liver cirrhosis and hepatocellular carcinoma now. The HBV capsid protein (HBc) plays multiple roles in the viral life cycle, and many antivirals targeting HBc such as Heteroaryldihydropyrimidine compounds (HAPs) are under clinical trial recently. This study aimed to investigate how a HAP compound Bay41-4109 induces the degradation of HBc protein. Bay41-4109 induces aberrant non-capsid polymers, which form in complex with the chaperone-binding E3 ubiquitin ligase protein STUB1 and co-chaperone BAG3 and are transported to the perinuclear compartment. Subsequently, Bay41-4109-induced aberrant non-capsid polymers are removed by p62-mediated macroautophagy and lysosomal degradation. STUB1 overexpression accelerates Bay41-4109-induced degradation of HBc protein, and thus enhances the effect of Bay41-4109 on inhibiting secretion of HBeAg and HBV virions. When Bay41-4109 are enforced during HBV infection, de novo cccDNA formation were also negatively regulated by STUB1 overexpression. Altogether, this study provides novel mechanistic insights into developing more potent and safe HAP-based antiviral treatment.
Collapse
Affiliation(s)
- Jiacheng Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Limin Yin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Xia-Zhen Xu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - He-Chen Sun
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Zhi-Hua Huang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Xue-Yun Ni
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Yan Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xu Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
20
|
Patel N, Clark S, Weiß EU, Mata CP, Bohon J, Farquhar ER, Maskell DP, Ranson NA, Twarock R, Stockley PG. In vitro functional analysis of gRNA sites regulating assembly of hepatitis B virus. Commun Biol 2021; 4:1407. [PMID: 34916604 PMCID: PMC8677749 DOI: 10.1038/s42003-021-02897-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The roles of RNA sequence/structure motifs, Packaging Signals (PSs), for regulating assembly of an HBV genome transcript have been investigated in an efficient in vitro assay containing only core protein (Cp) and RNA. Variants of three conserved PSs, within the genome of a strain not used previously, preventing correct presentation of a Cp-recognition loop motif are differentially deleterious for assembly of nucleocapsid-like particles (NCPs). Cryo-electron microscopy reconstruction of the T = 4 NCPs formed with the wild-type gRNA transcript, reveal that the interior of the Cp shell is in contact with lower resolution density, potentially encompassing the arginine-rich protein domains and gRNA. Symmetry relaxation followed by asymmetric reconstruction reveal that such contacts are made at every symmetry axis. We infer from their regulation of assembly that some of these contacts would involve gRNA PSs, and confirmed this by X-ray RNA footprinting. Mutation of the ε stem-loop in the gRNA, where polymerase binds in vivo, produces a poor RNA assembly substrate with Cp alone, largely due to alterations in its conformation. The results show that RNA PSs regulate assembly of HBV genomic transcripts in vitro, and therefore may play similar roles in vivo, in concert with other molecular factors.
Collapse
Affiliation(s)
- Nikesh Patel
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sam Clark
- Departments of Biology and Mathematics & York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
| | - Eva U Weiß
- Departments of Biology and Mathematics & York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Str. 2/D15, D-97080, Würzburg, Germany
| | - Carlos P Mata
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Electron and Confocal Microscopy Unit (UCCTs), National Centre for Microbiology (ISCIII). Majadahonda, Madrid, Spain
| | - Jen Bohon
- CWRU Center for Synchrotron Biosciences, NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Erik R Farquhar
- CWRU Center for Synchrotron Biosciences, NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Daniel P Maskell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Reidun Twarock
- Departments of Biology and Mathematics & York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
21
|
Kim H, Ko C, Lee JY, Kim M. Current Progress in the Development of Hepatitis B Virus Capsid Assembly Modulators: Chemical Structure, Mode-of-Action and Efficacy. Molecules 2021; 26:molecules26247420. [PMID: 34946502 PMCID: PMC8705634 DOI: 10.3390/molecules26247420] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) is a major causative agent of human hepatitis. Its viral genome comprises partially double-stranded DNA, which is complexed with viral polymerase within an icosahedral capsid consisting of a dimeric core protein. Here, we describe the effects of capsid assembly modulators (CAMs) on the geometric or kinetic disruption of capsid construction and the virus life cycle. We highlight classical, early-generation CAMs such as heteroaryldihydropyrimidines, phenylpropenamides or sulfamoylbenzamides, and focus on the chemical structure and antiviral efficacy of recently identified non-classical CAMs, which consist of carboxamides, aryl ureas, bithiazoles, hydrazones, benzylpyridazinones, pyrimidines, quinolines, dyes, and antimicrobial compounds. We summarize the therapeutic efficacy of four representative classical compounds with data from clinical phase 1 studies in chronic HBV patients. Most of these compounds are in phase 2 trials, either as monotherapy or in combination with approved nucleos(t)ides drugs or other immunostimulatory molecules. As followers of the early CAMs, the therapeutic efficacy of several non-classical CAMs has been evaluated in humanized mouse models of HBV infection. It is expected that these next-generation HBV CAMs will be promising candidates for a series of extended human clinical trials.
Collapse
Affiliation(s)
- Hyejin Kim
- Correspondence: (H.K.); (M.K.); Tel.: +82-42-860-7130 (H.K.); +82-42-860-7540 (M.K.)
| | | | | | - Meehyein Kim
- Correspondence: (H.K.); (M.K.); Tel.: +82-42-860-7130 (H.K.); +82-42-860-7540 (M.K.)
| |
Collapse
|
22
|
Liu H, Cheng J, Viswanathan U, Chang J, Lu F, Guo JT. Amino acid residues at core protein dimer-dimer interface modulate multiple steps of hepatitis B virus replication and HBeAg biogenesis. PLoS Pathog 2021; 17:e1010057. [PMID: 34752483 PMCID: PMC8604296 DOI: 10.1371/journal.ppat.1010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/19/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022] Open
Abstract
The core protein (Cp) of hepatitis B virus (HBV) assembles pregenomic RNA (pgRNA) and viral DNA polymerase to form nucleocapsids where the reverse transcriptional viral DNA replication takes place. Core protein allosteric modulators (CpAMs) inhibit HBV replication by binding to a hydrophobic "HAP" pocket at Cp dimer-dimer interfaces to misdirect the assembly of Cp dimers into aberrant or morphologically "normal" capsids devoid of pgRNA. We report herein that a panel of CpAM-resistant Cp with single amino acid substitution of residues at the dimer-dimer interface not only disrupted pgRNA packaging, but also compromised nucleocapsid envelopment, virion infectivity and covalently closed circular (ccc) DNA biosynthesis. Interestingly, these mutations also significantly reduced the secretion of HBeAg. Biochemical analysis revealed that the CpAM-resistant mutations in the context of precore protein (p25) did not affect the levels of p22 produced by signal peptidase removal of N-terminal 19 amino acid residues, but significantly reduced p17, which is produced by furin cleavage of C-terminal arginine-rich domain of p22 and secreted as HBeAg. Interestingly, p22 existed as both unphosphorylated and phosphorylated forms. While the unphosphorylated p22 is in the membranous secretary organelles and the precursor of HBeAg, p22 in the cytosol and nuclei is hyperphosphorylated at the C-terminal arginine-rich domain and interacts with Cp to disrupt capsid assembly and viral DNA replication. The results thus indicate that in addition to nucleocapsid assembly, interaction of Cp at dimer-dimer interface also plays important roles in the production and infectivity of progeny virions through modulation of nucleocapsid envelopment and uncoating. Similar interaction at reduced p17 dimer-dimer interface appears to be important for its metabolic stability and sensitivity to CpAM suppression of HBeAg secretion.
Collapse
Affiliation(s)
- Hui Liu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Junjun Cheng
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Usha Viswanathan
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Jinhong Chang
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- * E-mail: (FL); (J-TG)
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
- * E-mail: (FL); (J-TG)
| |
Collapse
|
23
|
Buzón P, Maity S, Christodoulis P, Wiertsema MJ, Dunkelbarger S, Kim C, Wuite GJ, Zlotnick A, Roos WH. Virus self-assembly proceeds through contact-rich energy minima. SCIENCE ADVANCES 2021; 7:eabg0811. [PMID: 34730996 PMCID: PMC8565845 DOI: 10.1126/sciadv.abg0811] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Self-assembly of supramolecular complexes such as viral capsids occurs prominently in nature. Nonetheless, the mechanisms underlying these processes remain poorly understood. Here, we uncover the assembly pathway of hepatitis B virus (HBV), applying fluorescence optical tweezers and high-speed atomic force microscopy. This allows tracking the assembly process in real time with single-molecule resolution. Our results identify a specific, contact-rich pentameric arrangement of HBV capsid proteins as a key on-path assembly intermediate and reveal the energy balance of the self-assembly process. Real-time nucleic acid packaging experiments show that a free energy change of ~1.4 kBT per condensed nucleotide is used to drive protein oligomerization. The finding that HBV assembly occurs via contact-rich energy minima has implications for our understanding of the assembly of HBV and other viruses and also for the development of new antiviral strategies and the rational design of self-assembling nanomaterials.
Collapse
Affiliation(s)
- Pedro Buzón
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands
| | - Sourav Maity
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands
| | | | - Monique J. Wiertsema
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands
| | - Steven Dunkelbarger
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
| | - Christine Kim
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
| | - Gijs J.L. Wuite
- Physics of Living Systems, Vrije Universiteit, Amsterdam, Netherlands
| | - Adam Zlotnick
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
| | - Wouter H. Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands
- Corresponding author.
| |
Collapse
|
24
|
Niklasch M, Zimmermann P, Nassal M. The Hepatitis B Virus Nucleocapsid-Dynamic Compartment for Infectious Virus Production and New Antiviral Target. Biomedicines 2021; 9:1577. [PMID: 34829806 PMCID: PMC8615760 DOI: 10.3390/biomedicines9111577] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) is a small enveloped DNA virus which replicates its tiny 3.2 kb genome by reverse transcription inside an icosahedral nucleocapsid, formed by a single ~180 amino acid capsid, or core, protein (Cp). HBV causes chronic hepatitis B (CHB), a severe liver disease responsible for nearly a million deaths each year. Most of HBV's only seven primary gene products are multifunctional. Though less obvious than for the multi-domain polymerase, P protein, this is equally crucial for Cp with its multiple roles in the viral life-cycle. Cp provides a stable genome container during extracellular phases, allows for directed intracellular genome transport and timely release from the capsid, and subsequent assembly of new nucleocapsids around P protein and the pregenomic (pg) RNA, forming a distinct compartment for reverse transcription. These opposing features are enabled by dynamic post-transcriptional modifications of Cp which result in dynamic structural alterations. Their perturbation by capsid assembly modulators (CAMs) is a promising new antiviral concept. CAMs inappropriately accelerate assembly and/or distort the capsid shell. We summarize the functional, biochemical, and structural dynamics of Cp, and discuss the therapeutic potential of CAMs based on clinical data. Presently, CAMs appear as a valuable addition but not a substitute for existing therapies. However, as part of rational combination therapies CAMs may bring the ambitious goal of a cure for CHB closer to reality.
Collapse
Affiliation(s)
| | | | - Michael Nassal
- Internal Medicine II/Molecular Biology, University Hospital Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany; (M.N.); (P.Z.)
| |
Collapse
|
25
|
Core Protein-Directed Antivirals and Importin β Can Synergistically Disrupt HBV Capsids. J Virol 2021; 96:e0139521. [PMID: 34705562 DOI: 10.1128/jvi.01395-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral structural proteins can have multiple activities. Antivirals that target structural proteins have potential to exhibit multiple antiviral mechanisms. Hepatitis B Virus (HBV) core protein (Cp) is involved in most stages of the viral lifecycle: it assembles into capsids, packages viral RNA, is a metabolic compartment for reverse transcription, interacts with nuclear trafficking machinery, and disassembles to release the viral genome into the nucleus. During nuclear localization, HBV capsids bind to host importins (e.g. Impβ) via Cp's C-terminal domain (CTD); the CTD is localized to the interior of the capsid and is transiently exposed on the exterior. We used HAP12 as a representative Cp Allosteric Modulators (CpAMs), a class of antivirals that inappropriately stimulates and misdirects HBV assembly and deforms capsids. CpAM impact on other aspects of the HBV lifecycle is poorly understood. We investigated how HAP12 influenced the interactions between empty or RNA-filled capsids with Impβ and trypsin in vitro. We showed that HAP12 can modulate CTD accessibility and capsid stability, depending on the saturation of HAP12-binding sites. We demonstrated that Impβ synergistically contributes to capsid disruption at high levels of HAP12 saturation, using electron microscopy to visualize disruption and rearrangement of Cp dimers into aberrant complexes. However, RNA-filled capsids resisted the destabilizing effects of HAP12 and Impβ. In summary, we show host protein-induced catalysis of capsid disruption, an unexpected additional mechanism of action for CpAMs. Potentially, untimely capsid disassembly can hamper the HBV lifecycle and also cause the virus to become vulnerable to host innate immune responses. IMPORTANCE The HBV core, an icosahedral complex of 120 copies of the homodimeric core (capsid) protein with or without packaged nucleic acid, is transported to the host nucleus by its interaction with host importin proteins. Importin-core interaction requires the core protein C-terminal domain, which is inside the capsid, to "flip" to the capsid exterior. Core-protein directed drugs that affect capsid assembly and stability have been developed recently. We show that these molecules can, synergistically with importins, disrupt capsids. This mechanism of action, synergism with host protein, has potential to disrupt the virus lifecycle and activate the innate immune system.
Collapse
|
26
|
Binding of a Pocket Factor to Hepatitis B Virus Capsids Changes the Rotamer Conformation of Phenylalanine 97. Viruses 2021; 13:v13112115. [PMID: 34834922 PMCID: PMC8618838 DOI: 10.3390/v13112115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/26/2022] Open
Abstract
(1) Background: During maturation of the Hepatitis B virus, a viral polymerase inside the capsid transcribes a pre-genomic RNA into a partly double stranded DNA-genome. This is followed by envelopment with surface proteins inserted into a membrane. Envelopment is hypothetically regulated by a structural signal that reports the maturation state of the genome. NMR data suggest that such a signal can be mimicked by the binding of the detergent Triton X 100 to hydrophobic pockets in the capsid spikes. (2) Methods: We have used electron cryo-microscopy and image processing to elucidate the structural changes that are concomitant with the binding of Triton X 100. (3) Results: Our maps show that Triton X 100 binds with its hydrophobic head group inside the pocket. The hydrophilic tail delineates the outside of the spike and is coordinated via Lys-96. The binding of Triton X 100 changes the rotamer conformation of Phe-97 in helix 4, which enables a π-stacking interaction with Trp-62 in helix 3. Similar changes occur in mutants with low secretion phenotypes (P5T and L60V) and in a mutant with a pre-mature secretion phenotype (F97L). (4) Conclusion: Binding of Triton X 100 is unlikely to mimic structural maturation because mutants with different secretion phenotypes show similar structural responses.
Collapse
|
27
|
Abstract
The disassembly of a viral capsid leading to the release of its genetic material into the host cell is a fundamental step in viral infection. In hepatitis B virus (HBV), the capsid consists of identical protein monomers that dimerize and then arrange themselves into pentamers or hexamers on the capsid surface. By applying atomistic molecular dynamics simulation to an entire solvated HBV capsid subjected to a uniform mechanical stress protocol, we monitor the capsid-disassembly process and analyze the process down to the level of individual amino acids in 20 independent simulation replicas. The strain of an isotropic external force, combined with structural fluctuations, causes structurally heterogeneous cracks to appear in the HBV capsid. Analysis of the monomer-monomer interfaces reveals that, in contrast to the expectation from purely mechanical considerations, the cracks mainly occur within hexameric sites, whereas pentameric sites remain largely intact. Only a small subset of the capsid protein monomers, different in each simulation, are engaged in each instance of disassembly. We identify specific residues whose interactions are most readily lost during disassembly; R127, I139, Y132, N136, A137, and V149 are among the hot spots at the interfaces between dimers that lie within hexamers, leading to disassembly. The majority of these hot-spot residues are conserved by evolution, hinting to their importance for disassembly by avoiding overstabilization of capsids.
Collapse
|
28
|
Structural and Functional Characterizations of Cancer Targeting Nanoparticles Based on Hepatitis B Virus Capsid. Int J Mol Sci 2021; 22:ijms22179140. [PMID: 34502049 PMCID: PMC8430771 DOI: 10.3390/ijms22179140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer targeting nanoparticles have been extensively studied, but stable and applicable agents have yet to be developed. Here, we report stable nanoparticles based on hepatitis B core antigen (HBcAg) for cancer therapy. HBcAg monomers assemble into spherical capsids of 180 or 240 subunits. HBcAg was engineered to present an affibody for binding to human epidermal growth factor receptor 1 (EGFR) and to present histidine and tyrosine tags for binding to gold ions. The HBcAg engineered to present affibody and tags (HAF) bound specifically to EGFR and exterminated the EGFR-overexpressing adenocarcinomas under alternating magnetic field (AMF) after binding with gold ions. Using cryogenic electron microscopy (cryo-EM), we obtained the molecular structures of recombinant HAF and found that the overall structure of HAF was the same as that of HBcAg, except with the affibody on the spike. Therefore, HAF is viable for cancer therapy with the advantage of maintaining a stable capsid form. If the affibody in HAF is replaced with a specific sequence to bind to another targetable disease protein, the nanoparticles can be used for drug development over a wide spectrum.
Collapse
|
29
|
Asymmetrizing an icosahedral virus capsid by hierarchical assembly of subunits with designed asymmetry. Nat Commun 2021; 12:589. [PMID: 33500404 PMCID: PMC7838286 DOI: 10.1038/s41467-020-20862-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/07/2020] [Indexed: 11/08/2022] Open
Abstract
Symmetrical protein complexes are ubiquitous in biology. Many have been re-engineered for chemical and medical applications. Viral capsids and their assembly are frequent platforms for these investigations. A means to create asymmetric capsids may expand applications. Here, starting with homodimeric Hepatitis B Virus capsid protein, we develop a heterodimer, design a hierarchical assembly pathway, and produce asymmetric capsids. In the heterodimer, the two halves have different growth potentials and assemble into hexamers. These preformed hexamers can nucleate co-assembly with other dimers, leading to Janus-like capsids with a small discrete hexamer patch. We can remove the patch specifically and observe asymmetric holey capsids by cryo-EM reconstruction. The resulting hole in the surface can be refilled with fluorescently labeled dimers to regenerate an intact capsid. In this study, we show how an asymmetric subunit can be used to generate an asymmetric particle, creating the potential for a capsid with different surface chemistries.
Collapse
|
30
|
Fatehi F, Bingham RJ, Dykeman EC, Patel N, Stockley PG, Twarock R. An Intracellular Model of Hepatitis B Viral Infection: An In Silico Platform for Comparing Therapeutic Strategies. Viruses 2020; 13:v13010011. [PMID: 33374798 PMCID: PMC7823939 DOI: 10.3390/v13010011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/23/2022] Open
Abstract
Hepatitis B virus (HBV) is a major focus of antiviral research worldwide. The International Coalition to Eliminate HBV, together with the World Health Organisation (WHO), have prioritised the search for a cure, with the goal of eliminating deaths from viral hepatitis by 2030. We present here a comprehensive model of intracellular HBV infection dynamics that includes all molecular processes currently targeted by drugs and agrees well with the observed outcomes of several clinical studies. The model reveals previously unsuspected kinetic behaviour in the formation of sub-viral particles, which could lead to a better understanding of the immune responses to infection. It also enables rapid comparative assessment of the impact of different treatment options and their potential synergies as combination therapies. A comparison of available and currently developed treatment options reveals that combinations of multiple capsid assembly inhibitors perform best.
Collapse
Affiliation(s)
- Farzad Fatehi
- York Cross-Disciplinary Centre for Systems Analysis, University of York, York YO10 5GE, UK; (F.F.); (R.J.B.); (E.C.D.)
- Department of Mathematics, University of York, York YO10 5DD, UK
| | - Richard J. Bingham
- York Cross-Disciplinary Centre for Systems Analysis, University of York, York YO10 5GE, UK; (F.F.); (R.J.B.); (E.C.D.)
- Department of Mathematics, University of York, York YO10 5DD, UK
- Department of Biology, University of York, York YO10 5NG, UK
| | - Eric C. Dykeman
- York Cross-Disciplinary Centre for Systems Analysis, University of York, York YO10 5GE, UK; (F.F.); (R.J.B.); (E.C.D.)
- Department of Mathematics, University of York, York YO10 5DD, UK
| | - Nikesh Patel
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT UK;
| | - Peter G. Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT UK;
- Correspondence: (P.G.S.); (R.T.)
| | - Reidun Twarock
- York Cross-Disciplinary Centre for Systems Analysis, University of York, York YO10 5GE, UK; (F.F.); (R.J.B.); (E.C.D.)
- Department of Mathematics, University of York, York YO10 5DD, UK
- Department of Biology, University of York, York YO10 5NG, UK
- Correspondence: (P.G.S.); (R.T.)
| |
Collapse
|
31
|
Bond K, Tsvetkova IB, Wang JCY, Jarrold MF, Dragnea B. Virus Assembly Pathways: Straying Away but Not Too Far. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004475. [PMID: 33241653 DOI: 10.1002/smll.202004475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Non-enveloped RNA viruses pervade all domains of life. In a cell, they co-assemble from viral RNA and capsid proteins. Virus-like particles can form in vitro where virtually any non-cognate polyanionic cargo can be packaged. How only viral RNA gets selected for packaging in vivo, in presence of myriad other polyanionic species, has been a puzzle. Through a combination of charge detection mass spectrometry and cryo-electron microscopy, it is determined that co-assembling brome mosaic virus (BMV) coat proteins and nucleic acid oligomers results in capsid structures and stoichiometries that differ from the icosahedral virion. These previously unknown shell structures are strained and less stable than the native one. However, they contain large native structure fragments that can be recycled to form BMV virions, should a viral genome become available. The existence of such structures suggest the possibility of a previously unknown regulatory pathway for the packaging process inside cells.
Collapse
Affiliation(s)
- Kevin Bond
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Irina B Tsvetkova
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | | | - Martin F Jarrold
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Bogdan Dragnea
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
32
|
Ren Y, Ma Y, Cherukupalli S, Tavis JE, Menéndez-Arias L, Liu X, Zhan P. Discovery and optimization of benzenesulfonamides-based hepatitis B virus capsid modulators via contemporary medicinal chemistry strategies. Eur J Med Chem 2020; 206:112714. [PMID: 32949990 DOI: 10.1016/j.ejmech.2020.112714] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022]
Abstract
Hepatitis B is a vaccine-preventable, but potentially life-threatening liver infection caused by the Hepatitis B virus (HBV). It represents an important health burden, with 257 million active cases globally. Current HBV treatments using nucleos(t)ide analogs and pegylated interferons cannot alleviate the situation completely since they are unable to cure the infection or reduce the amount of viral covalently closed circular DNA (cccDNA). The HBV core protein is a small protein of 183 amino acids that participates in multiple essential functions in the HBV replicative cycle. Capsid assembly modulators that target the core protein are being developed. Sulfonamides are synthetic functional groups, found in several drugs. Herein, we provide a concise report focusing on the sulfamoylbenzamides as HBV capsid modulators, and medicinal chemistry strategies used in their design and development.
Collapse
Affiliation(s)
- Yujie Ren
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Yue Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA; Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| |
Collapse
|
33
|
Xu C, Zhu W, Mao H, Zhang W, Yin GQ, Zhang XE, Li F. Switch from Polymorphic to Homogenous Self-Assembly of Virus-Like Particles of Simian Virus 40 through Double-Cysteine Substitution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004484. [PMID: 33063476 DOI: 10.1002/smll.202004484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Self-assembled virus-like particles (VLPs) hold great potential as natural nanomaterials for applications in many fields. For such purposes, monodisperse size distribution is a desirable property. However, the VLPs of simian virus 40 (SV40), a representative VLP platform, are characterized by polymorphism. In an attempt to eliminate the polymorphism, 15 mutants of the VLP subunit (VP1) are constructed through the substitution of double cysteines at the VP1 pentamer interfaces, generating a group of VLPs with altered size distributions. One of the mutants, SS2 (L102C/P300C), specifically forms homogenous T = 1-like tiny VLPs of 24 ± 3 nm in diameter. Moreover, the stability of the SS2 VLPs is markedly enhanced compared with that of wild-type VLPs. The homogeneous self-assembly and stability enhancement of SS2 VLPs can be attributed to the new disulfide bonds contributed by Cys102 and Cys300, which are identified by mass spectrometry and explored by molecular dynamics simulations. Endocytosis inhibition assays indicate that SS2 VLPs, like the polymorphic wild-type VLPs, preserve the multipathway feature of cellular uptake. SS2 VLPs may serve as an evolved version of SV40 VLPs in future studies and applications. The findings of this work would be useful for the design and fabrication of VLP-based materials and devices.
Collapse
Affiliation(s)
- Chengchen Xu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, P. R. China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, 430071, P. R. China
| | - Weiwei Zhu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, 430071, P. R. China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hanjing Mao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, 430071, P. R. China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenjing Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, 430071, P. R. China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gen-Quan Yin
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, P. R. China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, 100101, P. R. China
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, 430071, P. R. China
| |
Collapse
|
34
|
Wu R, Prabhu R, Ozkan A, Sitharam M. Rapid prediction of crucial hotspot interactions for icosahedral viral capsid self-assembly by energy landscape atlasing validated by mutagenesis. PLoS Comput Biol 2020; 16:e1008357. [PMID: 33079933 PMCID: PMC7598928 DOI: 10.1371/journal.pcbi.1008357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/30/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Icosahedral viruses are under a micrometer in diameter, their infectious genome encapsulated by a shell assembled by a multiscale process, starting from an integer multiple of 60 viral capsid or coat protein (VP) monomers. We predict and validate inter-atomic hotspot interactions between VP monomers that are important for the assembly of 3 types of icosahedral viral capsids: Adeno Associated Virus serotype 2 (AAV2) and Minute Virus of Mice (MVM), both T = 1 single stranded DNA viruses, and Bromo Mosaic Virus (BMV), a T = 3 single stranded RNA virus. Experimental validation is by in-vitro, site-directed mutagenesis data found in literature. We combine ab-initio predictions at two scales: at the interface-scale, we predict the importance (cruciality) of an interaction for successful subassembly across each interface between symmetry-related VP monomers; and at the capsid-scale, we predict the cruciality of an interface for successful capsid assembly. At the interface-scale, we measure cruciality by changes in the capsid free-energy landscape partition function when an interaction is removed. The partition function computation uses atlases of interface subassembly landscapes, rapidly generated by a novel geometric method and curated opensource software EASAL (efficient atlasing and search of assembly landscapes). At the capsid-scale, cruciality of an interface for successful assembly of the capsid is based on combinatorial entropy. Our study goes all the way from resource-light, multiscale computational predictions of crucial hotspot inter-atomic interactions to validation using data on site-directed mutagenesis' effect on capsid assembly. By reliably and rapidly narrowing down target interactions, (no more than 1.5 hours per interface on a laptop with Intel Core i5-2500K @ 3.2 Ghz CPU and 8GB of RAM) our predictions can inform and reduce time-consuming in-vitro and in-vivo experiments, or more computationally intensive in-silico analyses.
Collapse
Affiliation(s)
- Ruijin Wu
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Rahul Prabhu
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Aysegul Ozkan
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Meera Sitharam
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
35
|
Oliver RC, Potrzebowski W, Najibi SM, Pedersen MN, Arleth L, Mahmoudi N, André I. Assembly of Capsids from Hepatitis B Virus Core Protein Progresses through Highly Populated Intermediates in the Presence and Absence of RNA. ACS NANO 2020; 14:10226-10238. [PMID: 32672447 PMCID: PMC7458484 DOI: 10.1021/acsnano.0c03569] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/16/2020] [Indexed: 05/17/2023]
Abstract
The genetic material of viruses is protected by protein shells that are assembled from a large number of subunits in a process that is efficient and robust. Many of the mechanistic details underpinning efficient assembly of virus capsids are still unknown. The assembly mechanism of hepatitis B capsids has been intensively researched using a truncated core protein lacking the C-terminal domain responsible for binding genomic RNA. To resolve the assembly intermediates of hepatitis B virus (HBV), we studied the formation of nucleocapsids and empty capsids from full-length hepatitis B core proteins, using time-resolved small-angle X-ray scattering. We developed a detailed structural model of the HBV capsid assembly process using a combination of analysis with multivariate curve resolution, structural modeling, and Bayesian ensemble inference. The detailed structural analysis supports an assembly pathway that proceeds through the formation of two highly populated intermediates, a trimer of dimers and a partially closed shell consisting of around 40 dimers. These intermediates are on-path, transient and efficiently convert into fully formed capsids. In the presence of an RNA oligo that binds specifically to the C-terminal domain the assembly proceeds via a similar mechanism to that in the absence of nucleic acids. Comparisons between truncated and full-length HBV capsid proteins reveal that the unstructured C-terminal domain has a significant impact on the assembly process and is required to obtain a more complete mechanistic understanding of HBV capsid formation. These results also illustrate how combining scattering information from different time-points during time-resolved experiments can be utilized to derive a structural model of protein self-assembly pathways.
Collapse
Affiliation(s)
- Ryan C. Oliver
- Department
of Biochemistry and Structural Biology, Lund University, Box 124, Lund, Sweden, 22100
| | - Wojciech Potrzebowski
- Department
of Biochemistry and Structural Biology, Lund University, Box 124, Lund, Sweden, 22100
- Data
Management and Software Centre, European
Spallation Source ERIC, Ole Maaloes Vej 3, 2200 Copenhagen, Denmark
| | - Seyed Morteza Najibi
- Department
of Biochemistry and Structural Biology, Lund University, Box 124, Lund, Sweden, 22100
| | - Martin Nors Pedersen
- Niels
Bohr Institute, Faculty of Science, University
of Copenhagen, Universitetsparken
5, 2100 Copenhagen, Denmark
| | - Lise Arleth
- Niels
Bohr Institute, Faculty of Science, University
of Copenhagen, Universitetsparken
5, 2100 Copenhagen, Denmark
| | - Najet Mahmoudi
- ISIS
Neutron and Muon Source, STFC Rutherford
Appleton Laboratory, Chilton, Didcot OX11 0QX, U. K.
| | - Ingemar André
- Department
of Biochemistry and Structural Biology, Lund University, Box 124, Lund, Sweden, 22100
| |
Collapse
|
36
|
Viswanathan U, Mani N, Hu Z, Ban H, Du Y, Hu J, Chang J, Guo JT. Targeting the multifunctional HBV core protein as a potential cure for chronic hepatitis B. Antiviral Res 2020; 182:104917. [PMID: 32818519 DOI: 10.1016/j.antiviral.2020.104917] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022]
Abstract
The core (capsid) protein of hepatitis B virus (HBV) is the building block of nucleocapsids where viral DNA reverse transcriptional replication takes place and mediates virus-host cell interaction important for the persistence of HBV infection. The pleiotropic role of core protein (Cp) in HBV replication makes it an attractive target for antiviral therapies of chronic hepatitis B, a disease that affects more than 257 million people worldwide without a cure. Recent clinical studies indicate that core protein allosteric modulators (CpAMs) have a great promise as a key component of hepatitis B curative therapies. Particularly, it has been demonstrated that modulation of Cp dimer-dimer interactions by several chemical series of CpAMs not only inhibit nucleocapsid assembly and viral DNA replication, but also induce the disassembly of double-stranded DNA-containing nucleocapsids to prevent the synthesis of cccDNA. Moreover, the different chemotypes of CpAMs modulate Cp assembly by interaction with distinct amino acid residues at the HAP pocket between Cp dimer-dimer interfaces, which results in the assembly of Cp dimers into either non-capsid Cp polymers (type I CpAMs) or empty capsids with distinct physical property (type II CpAMs). The different CpAMs also differentially modulate Cp metabolism and subcellular distribution, which may impact cccDNA metabolism and host antiviral immune responses, the critical factors for the cure of chronic HBV infection. This review article highlights the recent research progress on the structure and function of core protein in HBV replication cycle, the mode of action of CpAMs, as well as the current status and perspectives on the discovery and development of core protein-targeting antivirals. This article forms part of a symposium in Antiviral Research on "Wide-ranging immune and direct-acting antiviral approaches to curing HBV and HDV infections."
Collapse
Affiliation(s)
- Usha Viswanathan
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Nagraj Mani
- Arbutus Biopharma Inc., 701 Veterans Circle, Warminster, PA, 18974, USA
| | - Zhanying Hu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Haiqun Ban
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Yanming Du
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Jin Hu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Jinhong Chang
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA.
| |
Collapse
|
37
|
Makbul C, Nassal M, Böttcher B. Slowly folding surface extension in the prototypic avian hepatitis B virus capsid governs stability. eLife 2020; 9:e57277. [PMID: 32795390 PMCID: PMC7455244 DOI: 10.7554/elife.57277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) is an important but difficult to study human pathogen. Most basics of the hepadnaviral life-cycle were unraveled using duck HBV (DHBV) as a model although DHBV has a capsid protein (CP) comprising ~260 rather than ~180 amino acids. Here we present high-resolution structures of several DHBV capsid-like particles (CLPs) determined by electron cryo-microscopy. As for HBV, DHBV CLPs consist of a dimeric α-helical frame-work with protruding spikes at the dimer interface. A fundamental new feature is a ~ 45 amino acid proline-rich extension in each monomer replacing the tip of the spikes in HBV CP. In vitro, folding of the extension takes months, implying a catalyzed process in vivo. DHBc variants lacking a folding-proficient extension produced regular CLPs in bacteria but failed to form stable nucleocapsids in hepatoma cells. We propose that the extension domain acts as a conformational switch with differential response options during viral infection.
Collapse
Affiliation(s)
- Cihan Makbul
- Julius Maximilian University of Würzburg, Department of Biochemistry and Rudolf Virchow CentreWürzburgGermany
| | - Michael Nassal
- University Hospital Freiburg, Internal Medicine 2/Molecular BiologyFreiburgGermany
| | - Bettina Böttcher
- Julius Maximilian University of Würzburg, Department of Biochemistry and Rudolf Virchow CentreWürzburgGermany
| |
Collapse
|
38
|
Schlicksup CJ, Zlotnick A. Viral structural proteins as targets for antivirals. Curr Opin Virol 2020; 45:43-50. [PMID: 32777753 DOI: 10.1016/j.coviro.2020.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/29/2022]
Abstract
Viral structural proteins are emerging as effective targets for new antivirals. In a viral lifecycle, the capsid must assemble, disassemble, and respond to host proteins, all at the right time and place. These reactions work within a narrow range of conditions, making them susceptible to small molecule interference. In at least three specific viruses, this approach has had met with preliminary success. In rhinovirus and poliovirus, compounds like pleconaril bind capsid and block RNA release. Bevirimat binds to Gag protein in HIV, inhibiting maturation. In Hepatitis B virus, core protein allosteric modulators (CpAMs) promote spontaneous assembly of capsid protein leading to empty and aberrant particles. Despite the biological diversity between viruses and the chemical diversity between antiviral molecules, we observe common features in these antivirals' mechanisms of action. These approaches work by stabilizing protein-protein interactions.
Collapse
Affiliation(s)
- Christopher John Schlicksup
- Molecular and Cellular Biology Department, Indiana University-Bloomington, Bloomington, IN 47401, United States
| | - Adam Zlotnick
- Molecular and Cellular Biology Department, Indiana University-Bloomington, Bloomington, IN 47401, United States.
| |
Collapse
|
39
|
A cocrystal structure of dengue capsid protein in complex of inhibitor. Proc Natl Acad Sci U S A 2020; 117:17992-18001. [PMID: 32669438 DOI: 10.1073/pnas.2003056117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dengue virus (DENV) was designated as a top 10 public health threat by the World Health Organization in 2019. No clinically approved anti-DENV drug is currently available. Here we report the high-resolution cocrystal structure (1.5 Å) of the DENV-2 capsid protein in complex with an inhibitor that potently suppresses DENV-2 but not other DENV serotypes. The inhibitor induces a "kissing" interaction between two capsid dimers. The inhibitor-bound capsid tetramers are assembled inside virions, resulting in defective uncoating of nucleocapsid when infecting new cells. Resistant DENV-2 emerges through one mutation that abolishes hydrogen bonds in the capsid structure, leading to a loss of compound binding. Structure-based analysis has defined the amino acids responsible for the inhibitor's inefficacy against other DENV serotypes. The results have uncovered an antiviral mechanism through inhibitor-induced tetramerization of the viral capsid and provided essential structural and functional knowledge for rational design of panserotype DENV capsid inhibitors.
Collapse
|
40
|
Schlicksup CJ, Laughlin P, Dunkelbarger S, Wang JCY, Zlotnick A. Local Stabilization of Subunit-Subunit Contacts Causes Global Destabilization of Hepatitis B Virus Capsids. ACS Chem Biol 2020; 15:1708-1717. [PMID: 32369333 DOI: 10.1021/acschembio.0c00320] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Development of antiviral molecules that bind virion is a strategy that remains in its infancy, and the details of their mechanisms are poorly understood. Here we investigate the behavior of DBT1, a dibenzothiazepine that specifically interacts with the capsid protein of hepatitis B virus (HBV). We found that DBT1 stabilizes protein-protein interaction, accelerates capsid assembly, and can induce formation of aberrant particles. Paradoxically, DBT1 can cause preformed capsids to dissociate. These activities may lead to (i) assembly of empty and defective capsids, inhibiting formation of new virus, and (ii) disruption of mature viruses, which are metastable, to inhibit new infection. Using cryo-electron microscopy, we observed that DBT1 led to asymmetric capsids where well-defined DBT1 density was bound at all intersubunit contacts. These results suggest that DBT1 can support assembly by increasing buried surface area but induce disassembly of metastable capsids by favoring asymmetry to induce structural defects.
Collapse
Affiliation(s)
- Christopher John Schlicksup
- Molecular and Cellular Biology Department, Indiana University—Bloomington, Bloomington, Indiana 47401, United States
| | - Patrick Laughlin
- Molecular and Cellular Biology Department, Indiana University—Bloomington, Bloomington, Indiana 47401, United States
| | - Steven Dunkelbarger
- Molecular and Cellular Biology Department, Indiana University—Bloomington, Bloomington, Indiana 47401, United States
| | - Joseph Che-Yen Wang
- Molecular and Cellular Biology Department, Indiana University—Bloomington, Bloomington, Indiana 47401, United States
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Adam Zlotnick
- Molecular and Cellular Biology Department, Indiana University—Bloomington, Bloomington, Indiana 47401, United States
| |
Collapse
|
41
|
Expression of quasi-equivalence and capsid dimorphism in the Hepadnaviridae. PLoS Comput Biol 2020; 16:e1007782. [PMID: 32310951 PMCID: PMC7192502 DOI: 10.1371/journal.pcbi.1007782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 04/30/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) is a leading cause of liver disease. The capsid is an essential component of the virion and it is therefore of interest how it assembles and disassembles. The capsid protein is unusual both for its rare fold and that it polymerizes according to two different icosahedral symmetries, causing the polypeptide chain to exist in seven quasi-equivalent environments: A, B, and C in AB and CC dimers in T = 3 capsids, and A, B, C, and D in AB and CD dimers in T = 4 capsids. We have compared the two capsids by cryo-EM at 3.5 Å resolution. To ensure a valid comparison, the two capsids were prepared and imaged under identical conditions. We find that the chains have different conformations and potential energies, with the T = 3 C chain having the lowest. Three of the four quasi-equivalent dimers are asymmetric with respect to conformation and potential energy; however, the T = 3 CC dimer is symmetrical and has the lowest potential energy although its intra-dimer interface has the least free energy of formation. Of all the inter-dimer interfaces, the CB interface has the least area and free energy, in both capsids. From the calculated energies of higher-order groupings of dimers discernible in the lattices we predict early assembly intermediates, and indeed we observe such structures by negative stain EM of in vitro assembly reactions. By sequence analysis and computational alanine scanning we identify key residues and motifs involved in capsid assembly. Our results explain several previously reported observations on capsid assembly, disassembly, and dimorphism. Hepatitis B virus has infected approximately one third of the human population and causes almost 1 million deaths from liver disease annually. The capsid is a defining feature of a virus, distinct from host components, and therefore a target for intervention. Unusually for a virus, Hepatitis B assembles two capsids, with different geometries, from the same dimeric protein. Geometric principles dictate that the subunits in this system occupy seven different environments. From comparing the two capsids by cryo-electron microscopy at high resolution under the exact same conditions we find that the polypeptide chains adopt seven different conformations. We use these structures to calculate potential energies (analogous to elastic deformation or strain) for the individual chains, dimers, and several higher-order groupings discernible in the two lattices. We also calculate the binding energies between chains. We find that some groupings have substantially lower energy and are therefore potentially more stable, allowing us to predict likely intermediates on the two assembly pathways. We also observe such intermediates by electron microscopy of in vitro capsid assembly reactions. This is the first structural characterization of the early assembly intermediates of this important human pathogen.
Collapse
|
42
|
Mu T, Zhao X, Zhu Y, Fan H, Tang H. The E3 Ubiquitin Ligase TRIM21 Promotes HBV DNA Polymerase Degradation. Viruses 2020; 12:v12030346. [PMID: 32245233 PMCID: PMC7150939 DOI: 10.3390/v12030346] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/26/2022] Open
Abstract
The tripartite motif (TRIM) protein family is an E3 ubiquitin ligase family. Recent reports have indicated that some TRIM proteins have antiviral functions, especially against retroviruses. However, most studies mainly focus on the relationship between TRIM21 and interferon or other antiviral effectors. The effect of TRIM21 on virus-encoded proteins remains unclear. In this study, we screened candidate interacting proteins of HBV DNA polymerase (Pol) by FLAG affinity purification and mass spectrometry assay and identified TRIM21 as its regulator. We used a coimmunoprecipitation (co-IP) assay to demonstrate that TRIM21 interacted with the TP domain of HBV DNA Pol. In addition, TRIM21 promoted the ubiquitination and degradation of HBV DNA Pol using its RING domain, which has E3 ubiquitin ligase activity. Lys260 and Lys283 of HBV DNA Pol were identified as targets for ubiquitination mediated by TRIM21. Finally, we uncovered that TRIM21 degrades HBV DNA Pol to restrict HBV DNA replication, and its SPRY domain is critical for this activity. Taken together, our results indicate that TRIM21 suppresses HBV DNA replication mainly by promoting the ubiquitination of HBV DNA Pol, which may provide a new potential target for the treatment of HBV.
Collapse
Affiliation(s)
| | | | | | | | - Hua Tang
- Correspondence: ; Tel./Fax: +86-22-2354-2503
| |
Collapse
|
43
|
Luque D, Castón JR. Cryo-electron microscopy for the study of virus assembly. Nat Chem Biol 2020; 16:231-239. [PMID: 32080621 DOI: 10.1038/s41589-020-0477-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
Abstract
Although viruses are extremely diverse in shape and size, evolution has led to a limited number of viral classes or lineages, which is probably linked to the assembly constraints of a viable capsid. Viral assembly mechanisms are restricted to two general pathways, (i) co-assembly of capsid proteins and single-stranded nucleic acids and (ii) a sequential mechanism in which scaffolding-mediated capsid precursor assembly is followed by genome packaging. Cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET), which are revolutionizing structural biology, are central to determining the high-resolution structures of many viral assemblies as well as those of assembly intermediates. This wealth of cryo-EM data has also led to the development and redesign of virus-based platforms for biomedical and biotechnological applications. In this Review, we will discuss recent viral assembly analyses by cryo-EM and cryo-ET showing how natural assembly mechanisms are used to encapsulate heterologous cargos including chemicals, enzymes, and/or nucleic acids for a variety of nanotechnological applications.
Collapse
Affiliation(s)
- Daniel Luque
- Centro Nacional de Microbiología/ISCIII, Majadahonda, Madrid, Spain
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, Madrid, Spain.
| |
Collapse
|
44
|
Abstract
Chronic hepatitis B (CHB) is a widespread global infection and a leading cause of hepatocellular carcinoma and liver failure. Current approaches to treat CHB involve the suppression of viral replication with either interferon or nucleos(t)ide analog therapy, but neither of these approaches can reliably induce viral eradication, immunologic control or long-lived viral suppression in the absence of continued therapy. In this update, we explore the major obstacles of CHB cure and review new therapeutic strategies and drug candidates.
Collapse
Affiliation(s)
- Lydia Tang
- Division of Clinical Care & Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Oncology, University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Shyam Kottilil
- Division of Clinical Care & Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Oncology, University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Eleanor Wilson
- Division of Clinical Care & Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Oncology, University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
45
|
Goetschius DJ, Lee H, Hafenstein S. CryoEM reconstruction approaches to resolve asymmetric features. Adv Virus Res 2019; 105:73-91. [PMID: 31522709 DOI: 10.1016/bs.aivir.2019.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although icosahedral viruses have highly symmetrical capsid features, asymmetric structural elements are also present since the genome and minor structural proteins are usually incorporated without adhering to icosahedral symmetry. Besides this inherent asymmetry, interactions with the host during the virus life cycle are also asymmetric. However, until recently it was impossible to resolve high resolution asymmetric features during single-particle cryoEM image processing. This review summarizes the current approaches that can be used to visualize asymmetric structural features. We have included examples of advanced structural strategies developed to reveal unique features and asymmetry in icosahedral viruses.
Collapse
Affiliation(s)
- Daniel J Goetschius
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States; Department of Medicine, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - Hyunwook Lee
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Susan Hafenstein
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States; Department of Medicine, College of Medicine, The Pennsylvania State University, Hershey, PA, United States; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
46
|
A New Role for Capsid Assembly Modulators To Target Mature Hepatitis B Virus Capsids and Prevent Virus Infection. Antimicrob Agents Chemother 2019; 64:AAC.01440-19. [PMID: 31658963 DOI: 10.1128/aac.01440-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) is a major human pathogen, killing an estimated 887,000 people per year. Therefore, potentially curative therapies are of high importance. Following infection, HBV deposits a covalently closed circular DNA (cccDNA) in the nucleus of infected cells that serves as a transcription template and is not affected by current therapies. HBV core protein allosteric modulators (CpAMs) prevent correct capsid assembly but may also affect early stages of HBV infection. In this study, we aimed to determine the antiviral efficacy of a novel, structurally distinct heteroaryldihydropyrimidine (HAP)-type CpAM, HAP_R01, and investigated whether and how HAP_R01 prevents the establishment of HBV infection. HAP_R01 shows a significant inhibition of cccDNA formation when applied during the first 48 h of HBV infection. Inhibiting cccDNA formation, however, requires >1-log10-higher concentrations than inhibition of the assembly of newly forming capsids (half-maximal effective concentration [EC50], 345 to 918 nM versus 26.8 to 43.5 nM, respectively). Biophysical studies using a new method to detect the incoming capsid in de novo infection revealed that HAP_R01 can physically change mature capsids of incoming virus particles and affect particle integrity. Treating purified HBV virions with HAP_R01 reduced their infectivity, highlighting the unique antiviral activity of CpAMs to target the capsid within mature HBV particles. Accordingly, HAP_R01 shows an additive antiviral effect in limiting de novo infection when combined with viral entry inhibitors. In summary, HAP_R01 perturbs capsid integrity of incoming virus particles and reduces their infectivity and thus inhibits cccDNA formation in addition to preventing HBV capsid assembly.
Collapse
|
47
|
Wang S, Fogeron ML, Schledorn M, Dujardin M, Penzel S, Burdette D, Berke JM, Nassal M, Lecoq L, Meier BH, Böckmann A. Combining Cell-Free Protein Synthesis and NMR Into a Tool to Study Capsid Assembly Modulation. Front Mol Biosci 2019; 6:67. [PMID: 31440516 PMCID: PMC6694763 DOI: 10.3389/fmolb.2019.00067] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022] Open
Abstract
Modulation of capsid assembly by small molecules has become a central concept in the fight against viral infection. Proper capsid assembly is crucial to form the high molecular weight structures that protect the viral genome and that, often in concert with the envelope, allow for cell entry and fusion. Atomic details underlying assembly modulation are generally studied using preassembled protein complexes, while the activity of assembly modulators during assembly remains largely open and poorly understood, as necessary tools are lacking. We here use the full-length hepatitis B virus (HBV) capsid protein (Cp183) as a model to present a combination of cell-free protein synthesis and solid-state NMR as an approach which shall open the possibility to produce and analyze the formation of higher-order complexes directly on exit from the ribosome. We demonstrate that assembled capsids can be synthesized in amounts sufficient for structural studies, and show that addition of assembly modulators to the cell-free reaction produces objects similar to those obtained by addition of the compounds to preformed Cp183 capsids. These results establish the cell-free system as a tool for the study of capsid assembly modulation directly after synthesis by the ribosome, and they open the perspective of assessing the impact of natural or synthetic compounds, or even enzymes that perform post-translational modifications, on capsids structures.
Collapse
Affiliation(s)
- Shishan Wang
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Marie-Laure Fogeron
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | | | - Marie Dujardin
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | | | | | | | - Michael Nassal
- Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Lauriane Lecoq
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| |
Collapse
|
48
|
Abstract
There is no reliable cure for chronic Hepatitis B Virus (HBV). In this issue of Structure, Eren et al. (2018) show how antibody-derived proteins bind different forms of the HBV capsid protein, blocking assembly. This interaction may also affect downstream signaling. These antibody-derived molecules mark a new strategy that may ultimately contribute to a cure.
Collapse
Affiliation(s)
- Zhongchao Zhao
- Department of Molecular and Cellular Biochemistry Indiana University, Bloomington, IN 47405, USA
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
49
|
Abstract
Chronic hepatitis B remains a significant cause of morbidity and mortality worldwide. Most hepatitis B virus (HBV)-infected individuals are neither diagnosed nor treated. In those treated, nucleos(t)ide polymerase inhibitors persistently suppress viremia to the limits of quantitation; however, few achieve a "functional cure," defined as sustained off-treatment loss of detectable serum HBV DNA with or without loss of hepatitis B surface antigen. The low cure rate has been attributed to an inability to eliminate the viral reservoir of covalently closed circular DNA from hepatocytes. This review focuses on the diverse therapeutic approaches currently under development that may contribute to the goal of HBV cure.
Collapse
|
50
|
Structural Differences between the Woodchuck Hepatitis Virus Core Protein in the Dimer and Capsid States Are Consistent with Entropic and Conformational Regulation of Assembly. J Virol 2019; 93:JVI.00141-19. [PMID: 31043524 DOI: 10.1128/jvi.00141-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
Hepadnaviruses are hepatotropic enveloped DNA viruses with an icosahedral capsid. Hepatitis B virus (HBV) causes chronic infection in an estimated 240 million people; woodchuck hepatitis virus (WHV), an HBV homologue, has been an important model system for drug development. The dimeric capsid protein (Cp) has multiple functions during the viral life cycle and thus has become an important target for a new generation of antivirals. Purified HBV and WHV Cp spontaneously assemble into 120-dimer capsids. Though they have 65% identity, WHV Cp has error-prone assembly with stronger protein-protein association. We have taken advantage of the differences in assemblies to investigate the basis of assembly regulation. We determined the structures of the WHV capsid to 4.5-Å resolution by cryo-electron microscopy (cryo-EM) and of the WHV Cp dimer to 2.9-Å resolution by crystallography and examined the biophysical properties of the dimer. We found, in dimer, that the subdomain that makes protein-protein interactions is partially disordered and rotated 21° from its position in capsid. This subdomain is susceptible to proteolysis, consistent with local disorder. WHV assembly shows similar susceptibility to HBV antiviral molecules, suggesting that HBV assembly follows similar transitions. These data show that there is an entropic cost for assembly that is compensated for by the energetic gain of burying hydrophobic interprotein contacts. We propose a series of stages in assembly that incorporate a disorder-to-order transition and structural shifts. We suggest that a cascade of structural changes may be a common mechanism for regulating high-fidelity capsid assembly in HBV and other viruses.IMPORTANCE Virus capsids assemble spontaneously with surprisingly high fidelity. This requires strict geometry and a narrow range of association energies for these protein-protein interactions. It was hypothesized that requiring subunits to undergo a conformational change to become assembly active could regulate assembly by creating an energetic barrier and attenuating association. We found that woodchuck hepatitis virus capsid protein undergoes structural transitions between its dimeric and its 120-dimer capsid states. It is likely that the closely related hepatitis B virus capsid protein undergoes similar structural changes, which has implications for drug design. Regulation of assembly by structural transition may be a common mechanism for many viruses.
Collapse
|