1
|
Gong G, Wu B, Liu L, Li J, He M. Engineering oleaginous red yeasts as versatile chassis for the production of oleochemicals and valuable compounds: Current advances and perspectives. Biotechnol Adv 2024; 76:108432. [PMID: 39163921 DOI: 10.1016/j.biotechadv.2024.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/04/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Enabling the transition towards a future circular bioeconomy based on industrial biomanufacturing necessitates the development of efficient and versatile microbial platforms for sustainable chemical and fuel production. Recently, there has been growing interest in engineering non-model microbes as superior biomanufacturing platforms due to their broad substrate range and high resistance to stress conditions. Among these non-conventional microbes, red yeasts belonging to the genus Rhodotorula have emerged as promising industrial chassis for the production of specialty chemicals such as oleochemicals, organic acids, fatty acid derivatives, terpenoids, and other valuable compounds. Advancements in genetic and metabolic engineering techniques, coupled with systems biology analysis, have significantly enhanced the production capacity of red yeasts. These developments have also expanded the range of substrates and products that can be utilized or synthesized by these yeast species. This review comprehensively examines the current efforts and recent progress made in red yeast research. It encompasses the exploration of available substrates, systems analysis using multi-omics data, establishment of genome-scale models, development of efficient molecular tools, identification of genetic elements, and engineering approaches for the production of various industrially relevant bioproducts. Furthermore, strategies to improve substrate conversion and product formation both with systematic and synthetic biology approaches are discussed, along with future directions and perspectives in improving red yeasts as more versatile biotechnological chassis in contributing to a circular bioeconomy. The review aims to provide insights and directions for further research in this rapidly evolving field. Ultimately, harnessing the capabilities of red yeasts will play a crucial role in paving the way towards next-generation sustainable bioeconomy.
Collapse
Affiliation(s)
- Guiping Gong
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.
| | - Bo Wu
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Linpei Liu
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Jianting Li
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| |
Collapse
|
2
|
Krajciova D, Holic R. The Plasma Membrane H+-ATPase Promoter Driving the Expression of FADX Enables Highly Efficient Production of Punicic Acid in Rhodotorula toruloides Cultivated on Glucose and Crude Glycerol. J Fungi (Basel) 2024; 10:649. [PMID: 39330409 PMCID: PMC11433134 DOI: 10.3390/jof10090649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Punicic acid (PuA) is a conjugated fatty acid with a wide range of nutraceutical properties naturally present in pomegranate seed oil. To meet the rising demand for pomegranate seed oil, a single-cell oil enriched in PuA provides a sustainable biomass-derived alternative. This study describes the production of a PuA-enriched single-cell oil through the engineering of the red yeast Rhodotorula toruloides grown in glucose and a low-cost substrate, crude glycerol. The gene for Punica granatum fatty acid conjugase, PgFADX, was randomly integrated into the genome of R. toruloides without disrupting the carotenoid synthesis. In shake flask studies, the effects of three promoters (PPGI1, PNAR1, and PPMA1) on PuA production were evaluated. PuA titers of 105.77 mg/L and 72.81 mg/L were obtained from engineered cells expressing PgFADX from the PPMA1 promoter cultivated for 72 h in glucose and for 168 h in crude glycerol, respectively. Furthermore, the detailed lipid analysis revealed a high enrichment PuA in the triacylglycerol lipid structures, even without substantial modifications to the metabolic pathways. This report demonstrates the high potential of R. toruloides in the upcycling of a low-cost substrate, crude glycerol, into a value-added product such as PuA. The findings support the feasibility of using engineered R. toruloides for sustainable production of PuA-enriched single-cell oil.
Collapse
Affiliation(s)
| | - Roman Holic
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 84005 Bratislava, Slovakia;
| |
Collapse
|
3
|
Mishra S, Deewan A, Zhao H, Rao CV. Nitrogen starvation causes lipid remodeling in Rhodotorula toruloides. Microb Cell Fact 2024; 23:141. [PMID: 38760782 PMCID: PMC11102182 DOI: 10.1186/s12934-024-02414-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/30/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND The oleaginous yeast Rhodotorula toruloides is a promising chassis organism for the biomanufacturing of value-added bioproducts. It can accumulate lipids at a high fraction of biomass. However, metabolic engineering efforts in this organism have progressed at a slower pace than those in more extensively studied yeasts. Few studies have investigated the lipid accumulation phenotype exhibited by R. toruloides under nitrogen limitation conditions. Consequently, there have been only a few studies exploiting the lipid metabolism for higher product titers. RESULTS We performed a multi-omic investigation of the lipid accumulation phenotype under nitrogen limitation. Specifically, we performed comparative transcriptomic and lipidomic analysis of the oleaginous yeast under nitrogen-sufficient and nitrogen deficient conditions. Clustering analysis of transcriptomic data was used to identify the growth phase where nitrogen-deficient cultures diverged from the baseline conditions. Independently, lipidomic data was used to identify that lipid fractions shifted from mostly phospholipids to mostly storage lipids under the nitrogen-deficient phenotype. Through an integrative lens of transcriptomic and lipidomic analysis, we discovered that R. toruloides undergoes lipid remodeling during nitrogen limitation, wherein the pool of phospholipids gets remodeled to mostly storage lipids. We identify specific mRNAs and pathways that are strongly correlated with an increase in lipid levels, thus identifying putative targets for engineering greater lipid accumulation in R. toruloides. One surprising pathway identified was related to inositol phosphate metabolism, suggesting further inquiry into its role in lipid accumulation. CONCLUSIONS Integrative analysis identified the specific biosynthetic pathways that are differentially regulated during lipid remodeling. This insight into the mechanisms of lipid accumulation can lead to the success of future metabolic engineering strategies for overproduction of oleochemicals.
Collapse
Affiliation(s)
- Shekhar Mishra
- Department of Chemical and Biomolecular Engineering, DOE Center for Advanced Bioenergy and Bioproducts Innovation, Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Anshu Deewan
- Department of Chemical and Biomolecular Engineering, DOE Center for Advanced Bioenergy and Bioproducts Innovation, Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, DOE Center for Advanced Bioenergy and Bioproducts Innovation, Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Christopher V Rao
- Department of Chemical and Biomolecular Engineering, DOE Center for Advanced Bioenergy and Bioproducts Innovation, Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
Sander K, Abel AJ, Friedline S, Sharpless W, Skerker J, Deutschbauer A, Clark DS, Arkin AP. Eliminating genes for a two-component system increases PHB productivity in Cupriavidus basilensis 4G11 under PHB suppressing, nonstress conditions. Biotechnol Bioeng 2024; 121:139-156. [PMID: 37638652 DOI: 10.1002/bit.28532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023]
Abstract
Species of bacteria from the genus Cupriavidus are known, in part, for their ability to produce high amounts of poly-hydroxybutyrate (PHB) making them attractive candidates for bioplastic production. The native synthesis of PHB occurs during periods of metabolic stress, and the process regulating the initiation of PHB accumulation in these organisms is not fully understood. Screening an RB-TnSeq transposon library of Cupriavidus basilensis 4G11 allowed us to identify two genes of an apparent, uncharacterized two-component system, which when omitted from the genome enable increased PHB productivity in balanced, nonstress growth conditions. We observe average increases in PHB productivity of 56% and 41% relative to the wildtype parent strain upon deleting each gene individually from the genome. The increased PHB phenotype disappears, however, in nitrogen-free unbalanced growth conditions suggesting the phenotype is specific to fast-growing, replete, nonstress growth. Bioproduction modeling suggests this phenotype could be due to a decreased reliance on metabolic stress induced by nitrogen limitation to initiate PHB production in the mutant strains. Due to uncertainty in the two-component system's input signal and regulon, the mechanism by which these genes impart this phenotype remains unclear. Such strains may allow for the use of single-stage, continuous bioreactor systems, which are far simpler than many PHB bioproduction schemes used previously, given a similar product yield to batch systems in such a configuration. Bioproductivity modeling suggests that omitting this regulation in the cells may increase PHB productivity up to 24% relative to the wildtype organism when using single-stage continuous systems. This work expands our understanding of the regulation of PHB accumulation in Cupriavidus, in particular the initiation of this process upon transition into unbalanced growth regimes.
Collapse
Affiliation(s)
- Kyle Sander
- Center for the Utilization of Biological Engineering in Space, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Anthony J Abel
- Center for the Utilization of Biological Engineering in Space, Berkeley, California, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Skyler Friedline
- Center for the Utilization of Biological Engineering in Space, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - William Sharpless
- Center for the Utilization of Biological Engineering in Space, Berkeley, California, USA
| | - Jeffrey Skerker
- Center for the Utilization of Biological Engineering in Space, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Adam Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Douglas S Clark
- Center for the Utilization of Biological Engineering in Space, Berkeley, California, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Adam P Arkin
- Center for the Utilization of Biological Engineering in Space, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
5
|
Woodruff W, Deshavath NN, Susanto V, Rao CV, Singh V. Tolerance of engineered Rhodosporidium toruloides to sorghum hydrolysates during batch and fed-batch lipid production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:187. [PMID: 38031119 PMCID: PMC10688463 DOI: 10.1186/s13068-023-02429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Oleaginous yeasts are a promising candidate for the sustainable conversion of lignocellulosic feedstocks into fuels and chemicals, but their growth on these substrates can be inhibited as a result of upstream pretreatment and enzymatic hydrolysis conditions. Previous studies indicate a high citrate buffer concentration during hydrolysis inhibits downstream cell growth and ethanol fermentation in Saccharomyces cerevisiae. In this study, an engineered Rhodosporidium toruloides strain with enhanced lipid accumulation was grown on sorghum hydrolysate with high and low citrate buffer concentrations. RESULTS Both hydrolysis conditions resulted in similar sugar recovery rates and concentrations. No significant differences in cell growth, sugar utilization rates, or lipid production rates were observed between the two citrate buffer conditions during batch fermentation of R. toruloides. Under fed-batch growth on low-citrate hydrolysate a lipid titer of 16.7 g/L was obtained. CONCLUSIONS Citrate buffer was not found to inhibit growth or lipid production in this engineered R. toruloides strain, nor did reducing the citrate buffer concentration negatively affect sugar yields in the hydrolysate. As this process is scaled-up, $131 per ton of hydrothermally pretreated biomass can be saved by use of the lower citrate buffer concentration during enzymatic hydrolysis.
Collapse
Affiliation(s)
- William Woodruff
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Narendra Naik Deshavath
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Vionna Susanto
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Christopher V Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, USA.
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA.
| | - Vijay Singh
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA
| |
Collapse
|
6
|
Lane DM, Valentine DL, Peng X. Genomic analysis of the marine yeast Rhodotorula sphaerocarpa ETNP2018 reveals adaptation to the open ocean. BMC Genomics 2023; 24:695. [PMID: 37986036 PMCID: PMC10662464 DOI: 10.1186/s12864-023-09791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Despite a rising interest in the diversity and ecology of fungi in marine environments, there are few published genomes of fungi isolated from the ocean. The basidiomycetous yeast (unicellular fungus) genus Rhodotorula are prevalent and abundant in the open ocean, and they have been isolated from a wide range of other environments. Many of these environments are nutrient poor, such as the Antarctica and the Atacama deserts, raising the question as to how Rhodotorula yeasts may have adapted their metabolic strategies to optimize survival under low nutrient conditions. In order to understand their adaptive strategies in the ocean, the genome of R. sphaerocarpa ETNP2018 was compared to that of fourteen representative Rhodotorula yeasts, isolated from a variety of environments. RESULTS Rhodotorula sphaerocarpa ETNP2018, a strain isolated from the oligotrophic part of the eastern tropical North Pacific (ETNP) oxygen minimum zone (OMZ), hosts the smallest of the fifteen genomes and yet the number of protein-coding genes it possesses is on par with the other strains. Its genome exhibits a distinct reduction in genes dedicated to Major Facilitator Superfamily transporters as well as biosynthetic enzymes. However, its core metabolic pathways are fully conserved. Our research indicates that the selective pressures of the ETNP OMZ favor a streamlined genome with reduced overall biosynthetic potential balanced by a stable set of core metabolisms and an expansion of mechanisms for nutrient acquisition. CONCLUSIONS In summary, this study offers insights into the adaptation of fungi to the oligotrophic ocean and provides valuable information for understanding the ecological roles of fungi in the ocean.
Collapse
Affiliation(s)
- Dylan M Lane
- School of Earth, Ocean, and Environment, University of South Carolina, Columbia, SC, USA
| | - David L Valentine
- Marine Science Institute, University of California, Santa Barbara, CA, USA
- Department of Earth Science, University of California, Santa Barbara, CA, USA
| | - Xuefeng Peng
- School of Earth, Ocean, and Environment, University of South Carolina, Columbia, SC, USA.
- Marine Science Institute, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
7
|
Brink DP, Mierke F, Norbeck J, Siewers V, Andlid T. Expanding the genetic toolbox of Rhodotorula toruloides by identification and validation of six novel promoters induced or repressed under nitrogen starvation. Microb Cell Fact 2023; 22:160. [PMID: 37598166 PMCID: PMC10440040 DOI: 10.1186/s12934-023-02175-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND The non-conventional yeast Rhodotorula toruloides is an emerging host organism in biotechnology by merit of its natural capacity to accumulate high levels of carotenoids and intracellular storage lipids from a variety of carbon sources. While the number of genetic engineering strategies that employ R. toruloides is increasing, the lack of genetic tools available for modification of this yeast is still limiting strain development. For instance, several strong, constitutive R. toruloides promoters have been characterized, but to date, only five inducible promoters have been identified. Although nitrogen-limited cultivation conditions are commonly used to induce lipid accumulation in this yeast, no promoters regulated by nitrogen starvation have been described for R. toruloides. RESULTS In this study, we used a combination of genomics and transcriptomics methods to identify novel R. toruloides promoter sequences that are either inducible or repressible by nitrogen starvation. RNA sequencing was used to assess gene expression in the recently isolated strain R. toruloides BOT-A2 during exponential growth and during nitrogen starvation, when cultivated with either glucose or xylose as the carbon source. The genome of BOT-A2 was sequenced using a combination of long- and short-read sequencing and annotated with support of the RNAseq data. Differential expression analysis was used to identify genes with a |log2 fold change|≥ 2 when comparing their expression during nitrogen depletion to that during exponential growth. The promoter regions from 16 of these genes were evaluated for their ability to drive the expression of a fluorescent reporter gene. Three promoters that were clearly upregulated under nitrogen starvation and three that were downregulated were selected and further characterized. One promoter, derived from gene RTBOTA2_003877, was found to function like an on-off switch, as it was only upregulated under full nitrogen depletion and downregulated in the presence of the nitrogen source. CONCLUSIONS Six new R. toruloides promoters that were either upregulated or downregulated under nitrogen-starvation were identified. These substantially contribute to the available promoters when engineering this organism and are foreseen to be particularly useful for future engineering strategies requiring specific regulation of target genes in accordance with nitrogen availability.
Collapse
Affiliation(s)
- Daniel P Brink
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Friederike Mierke
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Joakim Norbeck
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| | - Thomas Andlid
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
8
|
Adamczyk PA, Coradetti ST, Gladden JM. Non-canonical D-xylose and L-arabinose metabolism via D-arabitol in the oleaginous yeast Rhodosporidium toruloides. Microb Cell Fact 2023; 22:145. [PMID: 37537595 PMCID: PMC10398940 DOI: 10.1186/s12934-023-02126-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/17/2023] [Indexed: 08/05/2023] Open
Abstract
R. toruloides is an oleaginous yeast, with diverse metabolic capacities and high tolerance for inhibitory compounds abundant in plant biomass hydrolysates. While R. toruloides grows on several pentose sugars and alcohols, further engineering of the native pathway is required for efficient conversion of biomass-derived sugars to higher value bioproducts. A previous high-throughput study inferred that R. toruloides possesses a non-canonical L-arabinose and D-xylose metabolism proceeding through D-arabitol and D-ribulose. In this study, we present a combination of genetic and metabolite data that refine and extend that model. Chiral separations definitively illustrate that D-arabitol is the enantiomer that accumulates under pentose metabolism. Deletion of putative D-arabitol-2-dehydrogenase (RTO4_9990) results in > 75% conversion of D-xylose to D-arabitol, and is growth-complemented on pentoses by heterologous xylulose kinase expression. Deletion of putative D-ribulose kinase (RTO4_14368) arrests all growth on any pentose tested. Analysis of several pentose dehydrogenase mutants elucidates a complex pathway with multiple enzymes mediating multiple different reactions in differing combinations, from which we also inferred a putative L-ribulose utilization pathway. Our results suggest that we have identified enzymes responsible for the majority of pathway flux, with additional unknown enzymes providing accessory activity at multiple steps. Further biochemical characterization of the enzymes described here will enable a more complete and quantitative understanding of R. toruloides pentose metabolism. These findings add to a growing understanding of the diversity and complexity of microbial pentose metabolism.
Collapse
Affiliation(s)
- Paul A Adamczyk
- Agile Biofoundry, Emeryville, CA, USA
- Sandia National Laboratories, Livermore, CA, USA
| | - Samuel T Coradetti
- Agile Biofoundry, Emeryville, CA, USA
- Sandia National Laboratories, Livermore, CA, USA
- United States Department of Agriculture, Agricultural Research Service, Ithaca, NY, USA
| | - John M Gladden
- Agile Biofoundry, Emeryville, CA, USA.
- Sandia National Laboratories, Livermore, CA, USA.
- Joint BioEnergy Institute, Emeryville, CA, USA.
- Sandia National Laboratories, DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA, 94608, USA.
| |
Collapse
|
9
|
Coradetti ST, Adamczyk PA, Liu D, Gao Y, Otoupal PB, Geiselman GM, Webb-Robertson BJM, Burnet MC, Kim YM, Burnum-Johnson KE, Magnuson J, Gladden JM. Engineering transcriptional regulation of pentose metabolism in Rhodosporidium toruloides for improved conversion of xylose to bioproducts. Microb Cell Fact 2023; 22:144. [PMID: 37537586 PMCID: PMC10398944 DOI: 10.1186/s12934-023-02148-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Efficient conversion of pentose sugars remains a significant barrier to the replacement of petroleum-derived chemicals with plant biomass-derived bioproducts. While the oleaginous yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) has a relatively robust native metabolism of pentose sugars compared to other wild yeasts, faster assimilation of those sugars will be required for industrial utilization of pentoses. To increase the rate of pentose assimilation in R. toruloides, we leveraged previously reported high-throughput fitness data to identify potential regulators of pentose catabolism. Two genes were selected for further investigation, a putative transcription factor (RTO4_12978, Pnt1) and a homolog of a glucose transceptor involved in carbon catabolite repression (RTO4_11990). Overexpression of Pnt1 increased the specific growth rate approximately twofold early in cultures on xylose and increased the maximum specific growth by 18% while decreasing accumulation of arabitol and xylitol in fast-growing cultures. Improved growth dynamics on xylose translated to a 120% increase in the overall rate of xylose conversion to fatty alcohols in batch culture. Proteomic analysis confirmed that Pnt1 is a major regulator of pentose catabolism in R. toruloides. Deletion of RTO4_11990 increased the growth rate on xylose, but did not relieve carbon catabolite repression in the presence of glucose. Carbon catabolite repression signaling networks remain poorly characterized in R. toruloides and likely comprise a different set of proteins than those mainly characterized in ascomycete fungi.
Collapse
Affiliation(s)
- Samuel T. Coradetti
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Sandia National Laboratories, Livermore, CA USA
- Present Address: Agricultural Research Service, United States Department of Agriculture, Ithaca, NY USA
| | - Paul A. Adamczyk
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Sandia National Laboratories, Livermore, CA USA
| | - Di Liu
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Sandia National Laboratories, Livermore, CA USA
| | - Yuqian Gao
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Pacific Northwest National Laboratory, Richland, WA USA
| | - Peter B. Otoupal
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Sandia National Laboratories, Livermore, CA USA
| | - Gina M. Geiselman
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Sandia National Laboratories, Livermore, CA USA
| | | | | | - Young-Mo Kim
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Pacific Northwest National Laboratory, Richland, WA USA
| | - Kristin E. Burnum-Johnson
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Pacific Northwest National Laboratory, Richland, WA USA
| | - Jon Magnuson
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Pacific Northwest National Laboratory, Richland, WA USA
| | - John M. Gladden
- DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA 94608 USA
- Sandia National Laboratories, Livermore, CA USA
- Joint BioEnergy Institute, Emeryville, CA USA
| |
Collapse
|
10
|
Liu D, Hwang HJ, Otoupal PB, Geiselman GM, Kim J, Pomraning KR, Kim YM, Munoz N, Nicora CD, Gao Y, Burnum-Johnson KE, Jacobson O, Coradetti S, Kim J, Deng S, Dai Z, Prahl JP, Tanjore D, Lee TS, Magnuson JK, Gladden JM. Engineering Rhodosporidium toruloides for production of 3-hydroxypropionic acid from lignocellulosic hydrolysate. Metab Eng 2023; 78:72-83. [PMID: 37201565 DOI: 10.1016/j.ymben.2023.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Microbial production of valuable bioproducts is a promising route towards green and sustainable manufacturing. The oleaginous yeast, Rhodosporidium toruloides, has emerged as an attractive host for the production of biofuels and bioproducts from lignocellulosic hydrolysates. 3-hydroxypropionic acid (3HP) is an attractive platform molecule that can be used to produce a wide range of commodity chemicals. This study focuses on establishing and optimizing the production of 3HP in R. toruloides. As R. toruloides naturally has a high metabolic flux towards malonyl-CoA, we exploited this pathway to produce 3HP. Upon finding the yeast capable of catabolizing 3HP, we then implemented functional genomics and metabolomic analysis to identify the catabolic pathways. Deletion of a putative malonate semialdehyde dehydrogenase gene encoding an oxidative 3HP pathway was found to significantly reduce 3HP degradation. We further explored monocarboxylate transporters to promote 3HP transport and identified a novel 3HP transporter in Aspergillus pseudoterreus by RNA-seq and proteomics. Combining these engineering efforts with media optimization in a fed-batch fermentation resulted in 45.4 g/L 3HP production. This represents one of the highest 3HP titers reported in yeast from lignocellulosic feedstocks. This work establishes R. toruloides as a host for 3HP production from lignocellulosic hydrolysate at high titers, and paves the way for further strain and process optimization towards enabling industrial production of 3HP in the future.
Collapse
Affiliation(s)
- Di Liu
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA.
| | - Hee Jin Hwang
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA
| | - Peter B Otoupal
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA; DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
| | - Gina M Geiselman
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA; DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
| | - Joonhoon Kim
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kyle R Pomraning
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Young-Mo Kim
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nathalie Munoz
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Carrie D Nicora
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yuqian Gao
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kristin E Burnum-Johnson
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Oslo Jacobson
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Samuel Coradetti
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA
| | - Jinho Kim
- DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Shuang Deng
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ziyu Dai
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jan-Philip Prahl
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Deepti Tanjore
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Taek Soon Lee
- DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jon K Magnuson
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - John M Gladden
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA; DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA.
| |
Collapse
|
11
|
Bilbao A, Munoz N, Kim J, Orton DJ, Gao Y, Poorey K, Pomraning KR, Weitz K, Burnet M, Nicora CD, Wilton R, Deng S, Dai Z, Oksen E, Gee A, Fasani RA, Tsalenko A, Tanjore D, Gardner J, Smith RD, Michener JK, Gladden JM, Baker ES, Petzold CJ, Kim YM, Apffel A, Magnuson JK, Burnum-Johnson KE. PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements. Nat Commun 2023; 14:2461. [PMID: 37117207 PMCID: PMC10147702 DOI: 10.1038/s41467-023-37031-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 02/24/2023] [Indexed: 04/30/2023] Open
Abstract
Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards.
Collapse
Affiliation(s)
- Aivett Bilbao
- Pacific Northwest National Laboratory, Richland, WA, USA.
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA.
| | - Nathalie Munoz
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Joonhoon Kim
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Daniel J Orton
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yuqian Gao
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | | | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Karl Weitz
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Meagan Burnet
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Rosemarie Wilton
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
- Argonne National Laboratory, Lemont, IL, USA
| | - Shuang Deng
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Ziyu Dai
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Ethan Oksen
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aaron Gee
- Agilent Research Laboratories, Agilent Technologies, Santa Clara, CA, USA
| | - Rick A Fasani
- Agilent Research Laboratories, Agilent Technologies, Santa Clara, CA, USA
| | - Anya Tsalenko
- Agilent Research Laboratories, Agilent Technologies, Santa Clara, CA, USA
| | - Deepti Tanjore
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - James Gardner
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Joshua K Michener
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
- Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - John M Gladden
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
- Sandia National Laboratory, Livermore, CA, USA
| | - Erin S Baker
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Christopher J Petzold
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Young-Mo Kim
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Alex Apffel
- Agilent Research Laboratories, Agilent Technologies, Santa Clara, CA, USA
| | - Jon K Magnuson
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Kristin E Burnum-Johnson
- Pacific Northwest National Laboratory, Richland, WA, USA.
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA.
| |
Collapse
|
12
|
Roth MG, Westrick NM, Baldwin TT. Fungal biotechnology: From yesterday to tomorrow. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1135263. [PMID: 37746125 PMCID: PMC10512358 DOI: 10.3389/ffunb.2023.1135263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/07/2023] [Indexed: 09/26/2023]
Abstract
Fungi have been used to better the lives of everyday people and unravel the mysteries of higher eukaryotic organisms for decades. However, comparing progress and development stemming from fungal research to that of human, plant, and bacterial research, fungi remain largely understudied and underutilized. Recent commercial ventures have begun to gain popularity in society, providing a new surge of interest in fungi, mycelia, and potential new applications of these organisms to various aspects of research. Biotechnological advancements in fungal research cannot occur without intensive amounts of time, investments, and research tool development. In this review, we highlight past breakthroughs in fungal biotechnology, discuss requirements to advance fungal biotechnology even further, and touch on the horizon of new breakthroughs with the highest potential to positively impact both research and society.
Collapse
Affiliation(s)
- Mitchell G. Roth
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
| | - Nathaniel M. Westrick
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Thomas T. Baldwin
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
13
|
Martín-Hernández GC, Chmielarz M, Müller B, Brandt C, Viehweger A, Hölzer M, Passoth V. Enhanced glycerol assimilation and lipid production in Rhodotorula toruloides CBS14 upon addition of hemicellulose primarily correlates with early transcription of energy-metabolism-related genes. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:42. [PMID: 36899390 PMCID: PMC9999650 DOI: 10.1186/s13068-023-02294-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/01/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND Lipid formation from glycerol was previously found to be activated in Rhodotorula toruloides when the yeast was cultivated in a mixture of crude glycerol (CG) and hemicellulose hydrolysate (CGHH) compared to CG as the only carbon source. RNA samples from R. toruloides CBS14 cell cultures grown on either CG or CGHH were collected at different timepoints of cultivation, and a differential gene expression analysis was performed between cells grown at a similar physiological situation. RESULTS We observed enhanced transcription of genes involved in oxidative phosphorylation and enzymes localized in mitochondria in CGHH compared to CG. Genes involved in protein turnover, including those encoding ribosomal proteins, translation elongation factors, and genes involved in building the proteasome also showed an enhanced transcription in CGHH compared to CG. At 10 h cultivation, another group of activated genes in CGHH was involved in β-oxidation, handling oxidative stress and degradation of xylose and aromatic compounds. Potential bypasses of the standard GUT1 and GUT2-glycerol assimilation pathway were also expressed and upregulated in CGHH 10 h. When the additional carbon sources from HH were completely consumed, at CGHH 36 h, their transcription decreased and NAD+-dependent glycerol-3-phosphate dehydrogenase was upregulated compared to CG 60 h, generating NADH instead of NADPH with glycerol catabolism. TPI1 was upregulated in CGHH compared to cells grown on CG in all physiological situations, potentially channeling the DHAP formed through glycerol catabolism into glycolysis. The highest number of upregulated genes encoding glycolytic enzymes was found after 36 h in CGHH, when all additional carbon sources were already consumed. CONCLUSIONS We suspect that the physiological reason for the accelerated glycerol assimilation and faster lipid production, was primarily the activation of enzymes that provide energy.
Collapse
Affiliation(s)
- Giselle C Martín-Hernández
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, Box 7015, 75007, Uppsala, Sweden
| | - Mikołaj Chmielarz
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, Box 7015, 75007, Uppsala, Sweden
| | - Bettina Müller
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, Box 7015, 75007, Uppsala, Sweden
| | - Christian Brandt
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Adrian Viehweger
- Institute of Medical Microbiology and Virology, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Martin Hölzer
- Method Development and Research Infrastructure, Bioinformatics and Systems Biology, Robert Koch Institute, 13353, Berlin, Germany
| | - Volkmar Passoth
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, Box 7015, 75007, Uppsala, Sweden.
| |
Collapse
|
14
|
Kim J, Lee EJ, Lee KE, Nho YH, Ryu J, Kim SY, Yoo JK, Kang S, Seo SW. Docsubty: FLALipid extract derived from newly isolated Rhodotorula toruloides LAB-07 for cosmetic applications. Comput Struct Biotechnol J 2023; 21:2009-2017. [PMID: 36968014 PMCID: PMC10036517 DOI: 10.1016/j.csbj.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Rhodotorula toruloides is a non-conventional yeast with a natural carotenoid pathway. In particular, R. toruloides is an oleaginous yeast that can accumulate lipids in high content, thereby gaining interest as a promising industrial host. In this study, we isolated and taxonomically identified a new R. toruloides LAB-07 strain. De novo genome assembly using PacBio and Illumina hybrid platforms yielded 27 contigs with a 20.78 Mb genome size. Subsequent genome annotation analysis based on RNA-seq predicted 5296 protein-coding genes, including the fatty acid production pathway. We compared lipid production under different media; it was highest in the yeast extract salt medium with glycerol as a carbon source. Polyunsaturated α-linolenic acid was detected among the fatty acids, and docking phosphatidylcholine as a substrate to modeled Fad2, which annotated as Δ12-fatty acid desaturase showed bifunctional Δ12, 15-desaturation is structurally possible in that the distances between the diiron center and the carbon-carbon bond in which desaturation occurs were similar to those of structurally identified mouse stearoyl-CoA desaturase. Finally, the applicability of the extracted total lipid fraction of R. toruloides was investigated, demonstrating an increase in filaggrin expression and suppression of heat-induced MMP-1 expression when applied to keratinocytes, along with the additional antioxidant activity. This work presents a new R. toruloides LAB-07 strain with genomic and lipidomic data, which would help understand the physiology of R. toruloides. Also, the various skin-related effect of R. toruloides lipid extract indicates its potential usage as a promising cosmetic ingredient.
Collapse
|
15
|
Yu Y, Shi S. Development and Perspective of Rhodotorula toruloides as an Efficient Cell Factory. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1802-1819. [PMID: 36688927 DOI: 10.1021/acs.jafc.2c07361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Rhodotorula toruloides is receiving significant attention as a novel cell factory because of its high production of lipids and carotenoids, fast growth and high cell density, as well as the ability to utilize a wide variety of substrates. These attractive traits of R. toruloides make it possible to become a low-cost producer that can be engineered for the production of various fuels and chemicals. However, the lack of understanding and genetic engineering tools impedes its metabolic engineering applications. A number of research efforts have been devoted to filling these gaps. This review focuses on recent developments in genetic engineering tools, advances in systems biology for improved understandings, and emerging engineered strains for metabolic engineering applications. Finally, future trends and barriers in developing R. toruloides as a cell factory are also discussed.
Collapse
Affiliation(s)
- Yi Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
16
|
Nora LC, Cassiano MHA, Santana ÍP, Guazzaroni ME, Silva-Rocha R, da Silva RR. Mining novel cis-regulatory elements from the emergent host Rhodosporidium toruloides using transcriptomic data. Front Microbiol 2023; 13:1069443. [PMID: 36687612 PMCID: PMC9853887 DOI: 10.3389/fmicb.2022.1069443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
The demand for robust microbial cell factories that produce valuable biomaterials while resisting stresses imposed by current bioprocesses is rapidly growing. Rhodosporidium toruloides is an emerging host that presents desirable features for bioproduction, since it can grow in a wide range of substrates and tolerate a variety of toxic compounds. To explore R. toruloides suitability for application as a cell factory in biorefineries, we sought to understand the transcriptional responses of this yeast when growing under experimental settings that simulated those used in biofuels-related industries. Thus, we performed RNA sequencing of the oleaginous, carotenogenic yeast in different contexts. The first ones were stress-related: two conditions of high temperature (37 and 42°C) and two ethanol concentrations (2 and 4%), while the other used the inexpensive and abundant sugarcane juice as substrate. Differential expression and functional analysis were implemented using transcriptomic data to select differentially expressed genes and enriched pathways from each set-up. A reproducible bioinformatics workflow was developed for mining new regulatory elements. We then predicted, for the first time in this yeast, binding motifs for several transcription factors, including HAC1, ARG80, RPN4, ADR1, and DAL81. Most putative transcription factors uncovered here were involved in stress responses and found in the yeast genome. Our method for motif discovery provides a new realm of possibilities in studying gene regulatory networks, not only for the emerging host R. toruloides, but for other organisms of biotechnological importance.
Collapse
Affiliation(s)
- Luísa Czamanski Nora
- Cell and Molecular Biology Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil,*Correspondence: Luísa Czamanski Nora,
| | | | - Ítalo Paulino Santana
- Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - María-Eugenia Guazzaroni
- Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafael Silva-Rocha
- Cell and Molecular Biology Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo Roberto da Silva
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil,Ricardo Roberto da Silva,
| |
Collapse
|
17
|
Seong K, Krasileva KV. Prediction of effector protein structures from fungal phytopathogens enables evolutionary analyses. Nat Microbiol 2023; 8:174-187. [PMID: 36604508 PMCID: PMC9816061 DOI: 10.1038/s41564-022-01287-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/11/2022] [Indexed: 01/07/2023]
Abstract
Elucidating the similarity and diversity of pathogen effectors is critical to understand their evolution across fungal phytopathogens. However, rapid divergence that diminishes sequence similarities between putatively homologous effectors has largely concealed the roots of effector evolution. Here we modelled the structures of 26,653 secreted proteins from 14 agriculturally important fungal phytopathogens, six non-pathogenic fungi and one oomycete with AlphaFold 2. With 18,000 successfully predicted folds, we performed structure-guided comparative analyses on two aspects of effector evolution: uniquely expanded sequence-unrelated structurally similar (SUSS) effector families and common folds present across the fungal species. Extreme expansion of lineage-specific SUSS effector families was found only in several obligate biotrophs, Blumeria graminis and Puccinia graminis. The highly expanded effector families were the source of conserved sequence motifs, such as the Y/F/WxC motif. We identified new classes of SUSS effector families that include known virulence factors, such as AvrSr35, AvrSr50 and Tin2. Structural comparisons revealed that the expanded structural folds further diversify through domain duplications and fusion with disordered stretches. Putatively sub- and neo-functionalized SUSS effectors could reconverge on regulation, expanding the functional pools of effectors in the pathogen infection cycle. We also found evidence that many effector families could have originated from ancestral folds conserved across fungi. Collectively, our study highlights diverse effector evolution mechanisms and supports divergent evolution as a major force in driving SUSS effector evolution from ancestral proteins.
Collapse
Affiliation(s)
- Kyungyong Seong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
18
|
Crabtree Effect on Rhodosporidium toruloides Using Wood Hydrolysate as a Culture Media. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation9010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The interest in microorganisms to produce microbial lipids at large-scale processes has increased during the last decades. Rhodosporidium toruloides-1588 could be an efficient option for its ability to simultaneously utilize five- and six-carbon sugars. Nevertheless, one of the most important characteristics that any strain needs to be considered or used at an industrial scale is its capacity to grow in substrates with high sugar concentrations. In this study, the effect of high sugar concentrations and the effect of ammonium sulfate were tested on R. toruloides-1588 and its capacity to grow and accumulate lipids using undetoxified wood hydrolysates. Batch fermentations showed a catabolic repression effect on R. toruloides-1588 growth at sugar concentrations of 120 g/L. The maximum lipid accumulation was 8.2 g/L with palmitic, stearic, oleic, linoleic, and lignoceric acids as predominant fatty acids in the produced lipids. Furthermore, R. toruloides-1588 was able to utilize up to 80% of the total xylose content. Additionally, this study is the first to report the effect of using high xylose concentrations on the growth, sugar utilization, and lipid accumulation by R. toruloides-1588.
Collapse
|
19
|
Otoupal PB, Geiselman GM, Oka AM, Barcelos CA, Choudhary H, Dinh D, Zhong W, Hwang H, Keasling JD, Mukhopadhyay A, Sundstrom E, Haushalter RW, Sun N, Simmons BA, Gladden JM. Advanced one-pot deconstruction and valorization of lignocellulosic biomass into triacetic acid lactone using Rhodosporidium toruloides. Microb Cell Fact 2022; 21:254. [PMID: 36482295 PMCID: PMC9733078 DOI: 10.1186/s12934-022-01977-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/19/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rhodosporidium toruloides is capable of co-utilization of complex carbon sources and robust growth from lignocellulosic hydrolysates. This oleaginous yeast is therefore an attractive host for heterologous production of valuable bioproducts at high titers from low-cost, deconstructed biomass in an economically and environmentally sustainable manner. Here we demonstrate this by engineering R. toruloides to produce the polyketide triacetic acid lactone (TAL) directly from unfiltered hydrolysate deconstructed from biomass with minimal unit process operations. RESULTS Introduction of the 2-pyrone synthase gene into R. toruloides enabled the organism to produce 2.4 g/L TAL from simple media or 2.0 g/L from hydrolysate produced from sorghum biomass. Both of these titers are on par with titers from other better-studied microbial hosts after they had been heavily engineered. We next demonstrate that filtered hydrolysates produced from ensiled sorghum are superior to those derived from dried sorghum for TAL production, likely due to the substantial organic acids produced during ensiling. We also demonstrate that the organic acids found in ensiled biomass can be used for direct synthesis of ionic liquids within the biomass pretreatment process, enabling consolidation of unit operations of in-situ ionic liquid synthesis, pretreatment, saccharification, and fermentation into a one-pot, separations-free process. Finally, we demonstrate this consolidation in a 2 L bioreactor using unfiltered hydrolysate, producing 3.9 g/L TAL. CONCLUSION Many steps involved in deconstructing biomass into fermentable substrate can be combined into a distinct operation, and directly fed to cultures of engineered R. toruloides cultures for subsequent valorization into gram per liter titers of TAL in a cost-effective manner.
Collapse
Affiliation(s)
- Peter B. Otoupal
- grid.474523.30000000403888279Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA USA ,grid.184769.50000 0001 2231 4551DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,Agile BioFoundry, Department of Energy, Emeryville, CA USA
| | - Gina M. Geiselman
- grid.474523.30000000403888279Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA USA ,grid.184769.50000 0001 2231 4551DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,Agile BioFoundry, Department of Energy, Emeryville, CA USA
| | - Asun M. Oka
- grid.184769.50000 0001 2231 4551Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Carolina A. Barcelos
- grid.184769.50000 0001 2231 4551Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Hemant Choudhary
- grid.474523.30000000403888279Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA USA ,grid.184769.50000 0001 2231 4551DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA USA
| | - Duy Dinh
- grid.184769.50000 0001 2231 4551Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Wenqing Zhong
- grid.184769.50000 0001 2231 4551Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - HeeJin Hwang
- grid.474523.30000000403888279Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA USA ,Agile BioFoundry, Department of Energy, Emeryville, CA USA
| | - Jay D. Keasling
- grid.184769.50000 0001 2231 4551DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA ,grid.47840.3f0000 0001 2181 7878Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA USA ,grid.47840.3f0000 0001 2181 7878Department of Bioengineering, University of California, Berkeley, Berkeley, CA USA ,grid.5170.30000 0001 2181 8870Center for Biosustainability, Danish Technical University, Lyngby, Denmark ,grid.458489.c0000 0001 0483 7922Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Aindrila Mukhopadhyay
- grid.474523.30000000403888279Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA ,grid.184769.50000 0001 2231 4551Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Eric Sundstrom
- grid.184769.50000 0001 2231 4551Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Robert W. Haushalter
- grid.184769.50000 0001 2231 4551DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Ning Sun
- grid.184769.50000 0001 2231 4551Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Blake A. Simmons
- grid.184769.50000 0001 2231 4551DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,Agile BioFoundry, Department of Energy, Emeryville, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - John M. Gladden
- grid.474523.30000000403888279Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA USA ,grid.184769.50000 0001 2231 4551DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,Agile BioFoundry, Department of Energy, Emeryville, CA USA
| |
Collapse
|
20
|
Zhang Y, Zhang S, Chu Y, Zhang Q, Zhou R, Yu D, Wang S, Lyu L, Xu G, Zhao ZK. Genetic manipulation of the interconversion between diacylglycerols and triacylglycerols in Rhodosporidium toruloides. Front Bioeng Biotechnol 2022; 10:1034972. [PMID: 36394004 PMCID: PMC9643831 DOI: 10.3389/fbioe.2022.1034972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
The basidiomycetous yeast Rhodosporidium toruloides (R. toruloides) is an excellent producer for neutral lipids, including triacylglycerols (TAG). Partially because genetic tools for this yeast were less developed, limited efforts were shown to explore its capacity for the production of higher-value lipids such as diacylglycerols (DAG). Here, four genes linked to the interconversion between DAG and TAG were manipulated to promote the production of DAG and free fatty acids (FFA). Among them, three TAG synthesis-related genes, DGA1, LRO1, and ARE1, were down-regulated successively via the RNA interference technology, and an endogenous TAG lipase encoded by TGL5 was fused with LDP1 and over-expressed to convert TAG into DAG and FFA. Results showed that those engineered R. toruloides strains grew normally under nutrient-rich conditions but notably slower than the parental strain NP11 in the lipid production stage. When cultivated in nitrogen-limited media, engineered strains were able to produce total lipids with improved contents of DAG and FFA by up to two-fold and three-fold, respectively. Further correlation analysis between lipid composition and cell density indicated that the formation of TAG correlated positively with cell growth; however, other lipids including DAG did negatively. This study offered valuable information and strains to engineer R. toruloides for advanced production of fatty acid derivatives.
Collapse
Affiliation(s)
- Yue Zhang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sufang Zhang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China
| | - Yadong Chu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China
| | - Qi Zhang
- University of Chinese Academy of Sciences, Beijing, China
| | - Renhui Zhou
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China
| | - Di Yu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China
| | - Shuang Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liting Lyu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Guowang Xu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China
| | - Zongbao Kent Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- *Correspondence: Zongbao Kent Zhao,
| |
Collapse
|
21
|
The NPR/Hal family of protein kinases in yeasts: biological role, phylogeny and regulation under environmental challenges. Comput Struct Biotechnol J 2022; 20:5698-5712. [PMID: 36320937 PMCID: PMC9596735 DOI: 10.1016/j.csbj.2022.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/30/2022] Open
Abstract
Protein phosphorylation is the most common and versatile post-translational modification occurring in eukaryotes. In yeast, protein phosphorylation is fundamental for maintaining cell growth and adapting to sudden changes in environmental conditions by regulating cellular processes and activating signal transduction pathways. Protein kinases catalyze the reversible addition of phosphate groups to target proteins, thereby regulating their activity. In Saccharomyces cerevisiae, kinases are classified into six major groups based on structural and functional similarities. The NPR/Hal family of kinases comprises nine fungal-specific kinases that, due to lack of similarity with the remaining kinases, were classified to the “Other” group. These kinases are primarily implicated in regulating fundamental cellular processes such as maintaining ion homeostasis and controlling nutrient transporters’ concentration at the plasma membrane. Despite their biological relevance, these kinases remain poorly characterized and explored. This review provides an overview of the information available regarding each of the kinases from the NPR/Hal family, including their known biological functions, mechanisms of regulation, and integration in signaling pathways in S. cerevisiae. Information gathered for non-Saccharomyces species of biotechnological or clinical relevance is also included.
Collapse
|
22
|
Comparative Fatty Acid Compositional Profiles of Rhodotorula toruloides Haploid and Diploid Strains under Various Storage Conditions. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microbial-based fatty acids (FAs), biofuels and oleochemicals are potential alternatives to fossil fuels and other non-renewable resources. Rhodotorula toruloides (formerly Rhodosporidium toruloides) is a basidiomycetous oleaginous yeast, and cells of the wild-type diploids can accumulate lipids to over 70 wt% on a dry cell weight basis in nutrient-limited conditions. Meanwhile, several haploid strains have been applied as hosts for producing high-value fatty acid derivatives through genetic modification and metabolic engineering. However, the differences in fatty acid compositional profiles and their stability between diploid and haploid strains remain unknown in this oleaginous yeast. Here, we grew a haploid strain R. toruloides NP11 and its parental diploid strain R. toruloides CGMCC 2.1389 (4#) under identical conditions and compared the profiles in terms of cell growth, lipid production, fatty acid compositions of lipids as well as storage stability of fatty acid methyl esters (FAMEs). It was found that lipids from R. toruloides composed of fatty acids in terms of chain length ranged from short-chain FAs (C6–C9) to very long-chain FAs (VLCFAs, C20–C24) and some odd-chain FAs (C15 and C17), while long-chain fatty acids (C14–C18) were the most abundant ones. In addition, NP11 produced a little more (1 wt%) VLCFAs than that of the diploid strain 4#. Moreover, no major changes were found for FAMEs being held under varied storage conditions, suggesting that FAMEs samples were stable and robust for fatty acid compositional analysis of microbial lipids. This work revealed the fatty acid profiles of lipids from R. toruloides haploid and diploid strains, and their stability under various storage conditions. The information is valuable for reliable assessment of fatty acid compositions of lipids from oleaginous yeasts and related microbial cell factories.
Collapse
|
23
|
Bo S, Ni X, Guo J, Liu Z, Wang X, Sheng Y, Zhang G, Yang J. Carotenoid Biosynthesis: Genome-Wide Profiling, Pathway Identification in Rhodotorula glutinis X-20, and High-Level Production. Front Nutr 2022; 9:918240. [PMID: 35782944 PMCID: PMC9247606 DOI: 10.3389/fnut.2022.918240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/13/2022] [Indexed: 01/04/2023] Open
Abstract
Rhodotorula glutinis, as a member of the family Sporidiobolaceae, is of great value in the field of biotechnology. However, the evolutionary relationship of R. glutinis X-20 with Rhodosporidiobolus, Sporobolomyces, and Rhodotorula are not well understood, and its metabolic pathways such as carotenoid biosynthesis are not well resolved. Here, genome sequencing and comparative genome techniques were employed to improve the understanding of R. glutinis X-20. Phytoene desaturase (crtI) and 15-cis-phytoene synthase/lycopene beta-cyclase (crtYB), key enzymes in carotenoid pathway from R. glutinis X-20 were more efficiently expressed in S. cerevisiae INVSc1 than in S. cerevisiae CEN.PK2-1C. High yielding engineered strains were obtained by using synthetic biology technology constructing carotenoid pathway in S. cerevisiae and optimizing the precursor supply after fed-batch fermentation with palmitic acid supplementation. Genome sequencing analysis and metabolite identification has enhanced the understanding of evolutionary relationships and metabolic pathways in R. glutinis X-20, while heterologous construction of carotenoid pathway has facilitated its industrial application.
Collapse
|
24
|
Cao M, Tran VG, Qin J, Olson A, Mishra S, Schultz JC, Huang C, Xie D, Zhao H. Metabolic engineering of oleaginous yeast Rhodotorula toruloides for overproduction of triacetic acid lactone. Biotechnol Bioeng 2022; 119:2529-2540. [PMID: 35701887 PMCID: PMC9540541 DOI: 10.1002/bit.28159] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/16/2022] [Accepted: 06/12/2022] [Indexed: 12/19/2022]
Abstract
The plant‐sourced polyketide triacetic acid lactone (TAL) has been recognized as a promising platform chemical for the biorefinery industry. However, its practical application was rather limited due to low natural abundance and inefficient cell factories for biosynthesis. Here, we report the metabolic engineering of oleaginous yeast Rhodotorula toruloides for TAL overproduction. We first introduced a 2‐pyrone synthase gene from Gerbera hybrida (GhPS) into R. toruloides and investigated the effects of different carbon sources on TAL production. We then systematically employed a variety of metabolic engineering strategies to increase the flux of acetyl‐CoA by enhancing its biosynthetic pathways and disrupting its competing pathways. We found that overexpression of ATP‐citrate lyase (ACL1) improved TAL production by 45% compared to the GhPS overexpressing strain, and additional overexpression of acetyl‐CoA carboxylase (ACC1) further increased TAL production by 29%. Finally, we characterized the resulting strain I12‐ACL1‐ACC1 using fed‐batch bioreactor fermentation in glucose or oilcane juice medium with acetate supplementation and achieved a titer of 28 or 23 g/L TAL, respectively. This study demonstrates that R. toruloides is a promising host for the production of TAL and other acetyl‐CoA‐derived polyketides from low‐cost carbon sources.
Collapse
Affiliation(s)
- Mingfeng Cao
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Vinh G Tran
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jiansong Qin
- Department of Chemical Engineering, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | - Andrew Olson
- Department of Chemical Engineering, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | - Shekhar Mishra
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - John C Schultz
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Chunshuai Huang
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
25
|
Schultz JC, Mishra S, Gaither E, Mejia A, Dinh H, Maranas C, Zhao H. Metabolic engineering of Rhodotorula toruloides IFO0880 improves C16 and C18 fatty alcohol production from synthetic media. Microb Cell Fact 2022; 21:26. [PMID: 35183175 PMCID: PMC8858515 DOI: 10.1186/s12934-022-01750-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background The oleaginous, carotenogenic yeast Rhodotorula toruloides has been increasingly explored as a platform organism for the production of terpenoids and fatty acid derivatives. Fatty alcohols, a fatty acid derivative widely used in the production of detergents and surfactants, can be produced microbially with the expression of a heterologous fatty acyl-CoA reductase. Due to its high lipid production, R. toruloides has high potential for fatty alcohol production, and in this study several metabolic engineering approaches were investigated to improve the titer of this product. Results Fatty acyl-CoA reductase from Marinobacter aqueolei was co-expressed with SpCas9 in R. toruloides IFO0880 and a panel of gene overexpressions and Cas9-mediated gene deletions were explored to increase the fatty alcohol production. Two overexpression targets (ACL1 and ACC1, improving cytosolic acetyl-CoA and malonyl-CoA production, respectively) and two deletion targets (the acyltransferases DGA1 and LRO1) resulted in significant (1.8 to 4.4-fold) increases to the fatty alcohol titer in culture tubes. Combinatorial exploration of these modifications in bioreactor fermentation culminated in a 3.7 g/L fatty alcohol titer in the LRO1Δ mutant. As LRO1 deletion was not found to be beneficial for fatty alcohol production in other yeasts, a lipidomic comparison of the DGA1 and LRO1 knockout mutants was performed, finding that DGA1 is the primary acyltransferase responsible for triacylglyceride production in R. toruloides, while LRO1 disruption simultaneously improved fatty alcohol production, increased diacylglyceride and triacylglyceride production, and increased glucose consumption. Conclusions The fatty alcohol titer of fatty acyl-CoA reductase-expressing R. toruloides was significantly improved through the deletion of LRO1, or the deletion of DGA1 combined with overexpression of ACC1 and ACL1. Disruption of LRO1 surprisingly increased both lipid and fatty alcohol production, creating a possible avenue for future study of the lipid metabolism of this yeast. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01750-3.
Collapse
|
26
|
Abrams MB, Chuong JN, AlZaben F, Dubin CA, Skerker JM, Brem RB. Barcoded reciprocal hemizygosity analysis via sequencing illuminates the complex genetic basis of yeast thermotolerance. G3 GENES|GENOMES|GENETICS 2022; 12:6456302. [PMID: 34878132 PMCID: PMC9210320 DOI: 10.1093/g3journal/jkab412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/04/2021] [Indexed: 11/12/2022]
Abstract
Decades of successes in statistical genetics have revealed the molecular underpinnings of traits as they vary across individuals of a given species. But standard methods in the field cannot be applied to divergences between reproductively isolated taxa. Genome-wide reciprocal hemizygosity mapping (RH-seq), a mutagenesis screen in an interspecies hybrid background, holds promise as a method to accelerate the progress of interspecies genetics research. Here, we describe an improvement to RH-seq in which mutants harbor barcodes for cheap and straightforward sequencing after selection in a condition of interest. As a proof of concept for the new tool, we carried out genetic dissection of the difference in thermotolerance between two reproductively isolated budding yeast species. Experimental screening identified dozens of candidate loci at which variation between the species contributed to the thermotolerance trait. Hits were enriched for mitosis genes and other housekeeping factors, and among them were multiple loci with robust sequence signatures of positive selection. Together, these results shed new light on the mechanisms by which evolution solved the problems of cell survival and division at high temperature in the yeast clade, and they illustrate the power of the barcoded RH-seq approach.
Collapse
Affiliation(s)
- Melanie B Abrams
- Department of Plant and Microbial Biology, University of California, Berkeley , Berkeley, CA 94720, USA
| | - Julie N Chuong
- Department of Plant and Microbial Biology, University of California, Berkeley , Berkeley, CA 94720, USA
- PhD Program in Biology, New York University , New York, NY 10003, USA
| | - Faisal AlZaben
- Department of Plant and Microbial Biology, University of California, Berkeley , Berkeley, CA 94720, USA
| | - Claire A Dubin
- Department of Plant and Microbial Biology, University of California, Berkeley , Berkeley, CA 94720, USA
| | - Jeffrey M Skerker
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory , Berkeley, CA 94720, USA
| | - Rachel B Brem
- Department of Plant and Microbial Biology, University of California, Berkeley , Berkeley, CA 94720, USA
- Buck Institute for Research on Aging , Novato, CA 94945, USA
| |
Collapse
|
27
|
Michel AH, Kornmann B. SAturated Transposon Analysis in Yeast (SATAY) for Deep Functional Mapping of Yeast Genomes. Methods Mol Biol 2022; 2477:349-379. [PMID: 35524127 DOI: 10.1007/978-1-0716-2257-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Genome-wide transposon mutagenesis followed by deep sequencing allows the genome-wide mapping of growth-affecting loci in a straightforward and time-efficient way.SAturated Transposon Analysis in Yeast (SATAY) takes advantage of a modified maize transposon that is highly mobilizable in S. cerevisiae. SATAY allows not only the genome-wide mapping of genes required for growth in select conditions (such as genetic interactions or drug sensitivity/resistance), but also of protein sub-domains, as well as the creation of gain- and separation-of-function alleles. From strain preparation to the mapping of sequencing reads, we detail all the steps for the making and analysis of SATAY libraries in any S. cerevisiae lab, requiring only ordinary equipment and access to a Next-Gen sequencing platform.
Collapse
Affiliation(s)
- Agnès H Michel
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Benoît Kornmann
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
28
|
Impairment of carotenoid biosynthesis through CAR1 gene mutation results in CoQ 10, sterols, and phytoene accumulation in Rhodotorula mucilaginosa. Appl Microbiol Biotechnol 2021; 106:317-327. [PMID: 34910239 DOI: 10.1007/s00253-021-11673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
Red yeasts, mainly included in the genera Rhodotorula, Rhodosporidiobolus, and Sporobolomyces, are renowned biocatalysts for the production of a wide range of secondary metabolites of commercial interest, among which lipids, carotenoids, and other isoprenoids. The production of all these compounds is tightly interrelated as they share acetyl-CoA and the mevalonate pathway as common intermediates. Here, T-DNA insertional mutagenesis was applied to the wild type strain C2.5t1 of Rhodotorula mucilaginosa for the isolation of albino mutants with impaired carotenoids biosynthesis. The rationale behind this approach was that a blockage in carotenoid biosynthetic pathway could divert carbon flux toward the production of lipids and/or other molecules deriving from terpenoid precursors. One characterized albino mutant, namely, strain W4, carries a T-DNA insertion in the CAR1 gene coding for phytoene desaturase. When cultured in glycerol-containing medium, W4 strain showed significant decreases in cell density and fatty acids content in respect to the wild type strain. Conversely, it reached significantly higher productions of phytoene, CoQ10, and sterols. These were supported by an increased expression of CAR2 gene that codes for phytoene synthase/lycopene cyclase. Thus, in accordance with the starting hypothesis, the impairment of carotenoids biosynthesis can be explored to pursue the biotechnological exploitation of red yeasts for enhanced production of secondary metabolites with several commercial applications. KEY POINTS: • The production of lipids, carotenoids, and other isoprenoids is tightly interrelated. • CAR1 gene mutation results in the overproduction of phytoene, CoQ10, and sterols. • Albino mutants are promising tools for the production of secondary metabolites.
Collapse
|
29
|
Schultz JC, Cao M, Mejia A, Zhao H. CUT&RUN Identifies Centromeric DNA Regions of Rhodotorula toruloides IFO0880. FEMS Yeast Res 2021; 21:6460484. [PMID: 34902017 DOI: 10.1093/femsyr/foab066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/10/2021] [Indexed: 11/14/2022] Open
Abstract
Rhodotorula toruloides has been increasingly explored as a host for bioproduction of lipids, fatty acid derivatives, and terpenoids. Various genetic tools have been developed, but neither a centromere nor an autonomously replicating sequence (ARS), both necessary elements for stable episomal plasmid maintenance, have yet been reported. In this study, Cleavage Under Targets and Release Using Nuclease (CUT&RUN), a method used for genome-wide mapping DNA-protein interactions, was used to identify R. toruloides IFO0880 genomic regions associated with the centromeric histone H3 protein Cse4, a marker of centromeric DNA. Fifteen putative centromeres ranging from 8 to 19 kb in length were identified and analyzed, and four were tested for, but did not show, ARS activity. These centromeric sequences contained below average GC content, corresponded to transcriptional cold-spots, were primarily nonrepetitive, and shared some vestigial transposon-related sequences but otherwise did not show significant sequence conservation. Future efforts to identify an ARS in this yeast can utilize these centromeric DNA sequences to improve the stability of episomal plasmids derived from putative ARS elements.
Collapse
Affiliation(s)
- J Carl Schultz
- Department of Chemical and Biomolecular Engineering, U.S. Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Mingfeng Cao
- Department of Chemical and Biomolecular Engineering, U.S. Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Andrea Mejia
- Department of Chemical and Biomolecular Engineering, U.S. Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, U.S. Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.,Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| |
Collapse
|
30
|
Zhao Y, Song B, Li J, Zhang J. Rhodotorula toruloides: an ideal microbial cell factory to produce oleochemicals, carotenoids, and other products. World J Microbiol Biotechnol 2021; 38:13. [PMID: 34873661 DOI: 10.1007/s11274-021-03201-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022]
Abstract
Requirement of clean energy sources urges us to find substitutes for fossil fuels. Microorganisms provide an option to produce feedstock for biofuel production by utilizing inexpensive, renewable biomass. Rhodotorula toruloides (Rhodosporidium toruloides), a non-conventional oleaginous yeast, can accumulate intracellular lipids (single cell oil, SCO) more than 70% of its cell dry weight. At present, the SCO-based biodiesel is not a price-competitive fuel to the petroleum diesel. Many efforts are made to cut the cost of SCO by strengthening the performance of genetically modified R. toruloides strains and by valorization of low-cost biomass, including crude glycerol, lignocellulosic hydrolysates, food and agro waste, wastewater, and volatile fatty acids. Besides, optimization of fermentation and SCO recovery processes are carefully studied as well. Recently, new R. toruloides strains are developed via metabolic engineering and synthetic biology methods to produce value-added chemicals, such as sesquiterpenes, fatty acid esters, fatty alcohols, carotenoids, and building block chemicals. This review summarizes recent advances in the main aspects of R. toruloides studies, namely, construction of strains with new traits, valorization of low-cost biomass, process detection and optimization, and product recovery. In general, R. toruloides is a promising microbial cell factory for production of biochemicals.
Collapse
Affiliation(s)
- Yu Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.,Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Baocai Song
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.,Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Jing Li
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China. .,Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.,Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| |
Collapse
|
31
|
Martín-Hernández GC, Müller B, Chmielarz M, Brandt C, Hölzer M, Viehweger A, Passoth V. Chromosome-level genome assembly and transcriptome-based annotation of the oleaginous yeast Rhodotorula toruloides CBS 14. Genomics 2021; 113:4022-4027. [PMID: 34648882 DOI: 10.1016/j.ygeno.2021.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/26/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022]
Abstract
Rhodotorula toruloides is an oleaginous yeast with high biotechnological potential. In order to understand the molecular physiology of lipid synthesis in R. toruloides and to advance metabolic engineering, a high-resolution genome is required. We constructed a genome draft of R. toruloides CBS 14, using a hybrid assembly approach, consisting of short and long reads generated by Illumina and Nanopore sequencing, respectively. The genome draft consists of 23 contigs and 3 scaffolds, with a N50 length of 1,529,952 bp, thus largely representing chromosomal organization. The total size of the genome is 20,534,857 bp and the overall GC content is 61.83%. Transcriptomic data from different growth conditions was used to aid species-specific gene annotation. We annotated 9464 genes and identified 11,691 transcripts. Furthermore, we demonstrated the presence of a potential plasmid, an extrachromosomal circular structure of about 11 kb with a copy number about three times as high as the other chromosomes.
Collapse
Affiliation(s)
| | - Bettina Müller
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mikołaj Chmielarz
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Christian Brandt
- nanozoo GmbH, Leipzig, Germany; Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Martin Hölzer
- nanozoo GmbH, Leipzig, Germany; RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany
| | - Adrian Viehweger
- nanozoo GmbH, Leipzig, Germany; Department of Medical Microbiology, University Hospital Leipzig, Germany
| | - Volkmar Passoth
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
32
|
Jagtap SS, Deewan A, Liu JJ, Walukiewicz HE, Yun EJ, Jin YS, Rao CV. Integrating transcriptomic and metabolomic analysis of the oleaginous yeast Rhodosporidium toruloides IFO0880 during growth under different carbon sources. Appl Microbiol Biotechnol 2021; 105:7411-7425. [PMID: 34491401 DOI: 10.1007/s00253-021-11549-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 12/31/2022]
Abstract
Rhodosporidium toruloides is an oleaginous yeast capable of producing a variety of biofuels and bioproducts from diverse carbon sources. Despite numerous studies showing its promise as a platform microorganism, little is known about its metabolism and physiology. In this work, we investigated the central carbon metabolism in R. toruloides IFO0880 using transcriptomics and metabolomics during growth on glucose, xylose, acetate, or soybean oil. These substrates were chosen because they can be derived from plants. Significant changes in gene expression and metabolite concentrations were observed during growth on these four substrates. We mapped these changes onto the governing metabolic pathways to better understand how R. toruloides reprograms its metabolism to enable growth on these substrates. One notable finding concerns xylose metabolism, where poor expression of xylulokinase induces a bypass leading to arabitol production. Collectively, these results further our understanding of central carbon metabolism in R. toruloides during growth on different substrates. They may also help guide the metabolic engineering and development of better models of metabolism for R. toruloides.Key points• Gene expression and metabolite concentrations were significantly changed.• Reduced expression of xylulokinase induces a bypass leading to arabitol production.• R. toruloides reprograms its metabolism to allow growth on different substrates.
Collapse
Affiliation(s)
- Sujit Sadashiv Jagtap
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois At Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois At Urbana-Champaign, Urbana, IL, USA
| | - Anshu Deewan
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois At Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois At Urbana-Champaign, Urbana, IL, USA
| | - Jing-Jing Liu
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois At Urbana-Champaign, Urbana, IL, USA
| | - Hanna E Walukiewicz
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois At Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois At Urbana-Champaign, Urbana, IL, USA
| | - Eun Ju Yun
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois At Urbana-Champaign, Urbana, IL, USA
- Department of Biotechnology, Graduate School, Korea University, Seoul, Republic of Korea
| | - Yong-Su Jin
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois At Urbana-Champaign, Urbana, IL, USA
- Department of Food Science and Human Nutrition, University of Illinois At Urbana-Champaign, Urbana, IL, USA
| | - Christopher V Rao
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois At Urbana-Champaign, Urbana, IL, USA.
- Department of Chemical and Biomolecular Engineering, University of Illinois At Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
33
|
Developing Functional Genomics Platforms for Fungi. mSystems 2021; 6:e0073021. [PMID: 34427501 PMCID: PMC8407244 DOI: 10.1128/msystems.00730-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungi are responsible for diseases that result in the deaths of over a million individuals each year and devastating crop infestations that threaten global food supplies. However, outside of a select few model organisms, the majority of fungal genes are uncharacterized. The roles of these genes in the biology of the organism, pathogenesis, and mediating interactions with the environment and other microbes are unknown. Historically, fungal gene characterization has primarily relied on classical genetic screens. However, advances in sequencing technology have enabled more rapid methods of gene functional characterization. Large-scale transcriptional profiling projects are one solution to generating hypotheses about fungal gene function. Together with other 'omics techniques and newer tools that enable massively parallel mutant screens, knowledge of fungal gene function will be substantially improved. Understanding the function of fungal genes will be instrumental in increasing global food security, protecting ecosystems, and improving health outcomes.
Collapse
|
34
|
Kuanyshev N, Deewan A, Jagtap SS, Liu J, Selvam B, Chen LQ, Shukla D, Rao CV, Jin YS. Identification and analysis of sugar transporters capable of co-transporting glucose and xylose simultaneously. Biotechnol J 2021; 16:e2100238. [PMID: 34418308 DOI: 10.1002/biot.202100238] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 11/09/2022]
Abstract
Simultaneous co-fermentation of glucose and xylose is a key desired trait of engineered Saccharomyces cerevisiae for efficient and rapid production of biofuels and chemicals. However, glucose strongly inhibits xylose transport by endogenous hexose transporters of S. cerevisiae. We identified structurally distant sugar transporters (Lipomyces starkeyi LST1_205437 and Arabidopsis thaliana AtSWEET7) capable of co-transporting glucose and xylose from previously unexplored oleaginous yeasts and plants. Kinetic analysis showed that LST1_205437 had lenient glucose inhibition on xylose transport and AtSWEET7 transported glucose and xylose simultaneously with no inhibition. Modelling studies of LST1_205437 revealed that Ala335 residue at sugar binding site can accommodates both glucose and xylose. Docking studies with AtSWEET7 revealed that Trp59, Trp183, Asn145, and Asn179 residues stabilized the interactions with sugars, allowing both xylose and glucose to be co-transported. In addition, we altered sugar preference of LST1_205437 by single amino acid mutation at Asn365. Our findings provide a new mechanistic insight on glucose and xylose transport mechanism of sugar transporters and the identified sugar transporters can be employed to develop engineered yeast strains for producing cellulosic biofuels and chemicals.
Collapse
Affiliation(s)
- Nurzhan Kuanyshev
- DOE Center for Advanced Bioenergy and Bioproducts Innovation University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Anshu Deewan
- DOE Center for Advanced Bioenergy and Bioproducts Innovation University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sujit Sadashiv Jagtap
- DOE Center for Advanced Bioenergy and Bioproducts Innovation University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jingjing Liu
- DOE Center for Advanced Bioenergy and Bioproducts Innovation University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Balaji Selvam
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Li-Qing Chen
- DOE Center for Advanced Bioenergy and Bioproducts Innovation University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher V Rao
- DOE Center for Advanced Bioenergy and Bioproducts Innovation University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yong-Su Jin
- DOE Center for Advanced Bioenergy and Bioproducts Innovation University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
35
|
Potassium and Sodium Salt Stress Characterization in the Yeasts Saccharomyces cerevisiae, Kluyveromyces marxianus, and Rhodotorula toruloides. Appl Environ Microbiol 2021; 87:e0310020. [PMID: 33893111 DOI: 10.1128/aem.03100-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biotechnology requires efficient microbial cell factories. The budding yeast Saccharomyces cerevisiae is a vital cell factory, but more diverse cell factories are essential for the sustainable use of natural resources. Here, we benchmarked nonconventional yeasts Kluyveromyces marxianus and Rhodotorula toruloides against S. cerevisiae strains CEN.PK and W303 for their responses to potassium and sodium salt stress. We found an inverse relationship between the maximum growth rate and the median cell volume that was responsive to salt stress. The supplementation of K+ to CEN.PK cultures reduced Na+ toxicity and increased the specific growth rate 4-fold. The higher K+ and Na+ concentrations impaired ethanol and acetate metabolism in CEN.PK and acetate metabolism in W303. In R. toruloides cultures, these salt supplementations induced a trade-off between glucose utilization and cellular aggregate formation. Their combined use increased the beta-carotene yield by 60% compared with that of the reference. Neural network-based image analysis of exponential-phase cultures showed that the vacuole-to-cell volume ratio increased with increased cell volume for W303 and K. marxianus but not for CEN.PK and R. toruloides in response to salt stress. Our results provide insights into common salt stress responses in yeasts and will help design efficient bioprocesses. IMPORTANCE Characterization of microbial cell factories under industrially relevant conditions is crucial for designing efficient bioprocesses. Salt stress, typical in industrial bioprocesses, impinges upon cell volume and affects productivity. This study presents an open-source neural network-based analysis method to evaluate volumetric changes using yeast optical microscopy images. It allows quantification of cell and vacuole volumes relevant to cellular physiology. On applying salt stress in yeasts, we found that the combined use of K+ and Na+ improves the cellular fitness of Saccharomyces cerevisiae strain CEN.PK and increases the beta-carotene productivity in Rhodotorula toruloides, a commercially important antioxidant and a valuable additive in foods.
Collapse
|
36
|
Hage H, Rosso MN, Tarrago L. Distribution of methionine sulfoxide reductases in fungi and conservation of the free-methionine-R-sulfoxide reductase in multicellular eukaryotes. Free Radic Biol Med 2021; 169:187-215. [PMID: 33865960 DOI: 10.1016/j.freeradbiomed.2021.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Methionine, either as a free amino acid or included in proteins, can be oxidized into methionine sulfoxide (MetO), which exists as R and S diastereomers. Almost all characterized organisms possess thiol-oxidoreductases named methionine sulfoxide reductase (Msr) enzymes to reduce MetO back to Met. MsrA and MsrB reduce the S and R diastereomers of MetO, respectively, with strict stereospecificity and are found in almost all organisms. Another type of thiol-oxidoreductase, the free-methionine-R-sulfoxide reductase (fRMsr), identified so far in prokaryotes and a few unicellular eukaryotes, reduces the R MetO diastereomer of the free amino acid. Moreover, some bacteria possess molybdenum-containing enzymes that reduce MetO, either in the free or protein-bound forms. All these Msrs play important roles in the protection of organisms against oxidative stress. Fungi are heterotrophic eukaryotes that colonize all niches on Earth and play fundamental functions, in organic matter recycling, as symbionts, or as pathogens of numerous organisms. However, our knowledge on fungal Msrs is still limited. Here, we performed a survey of msr genes in almost 700 genomes across the fungal kingdom. We show that most fungi possess one gene coding for each type of methionine sulfoxide reductase: MsrA, MsrB, and fRMsr. However, several fungi living in anaerobic environments or as obligate intracellular parasites were devoid of msr genes. Sequence inspection and phylogenetic analyses allowed us to identify non-canonical sequences with potentially novel enzymatic properties. Finaly, we identified several ocurences of msr horizontal gene transfer from bacteria to fungi.
Collapse
Affiliation(s)
- Hayat Hage
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Marie-Noëlle Rosso
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Lionel Tarrago
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France.
| |
Collapse
|
37
|
Chattopadhyay A, Maiti MK. Lipid production by oleaginous yeasts. ADVANCES IN APPLIED MICROBIOLOGY 2021; 116:1-98. [PMID: 34353502 DOI: 10.1016/bs.aambs.2021.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microbial lipid production has been studied extensively for years; however, lipid metabolic engineering in many of the extraordinarily high lipid-accumulating yeasts was impeded by inadequate understanding of the metabolic pathways including regulatory mechanisms defining their oleaginicity and the limited genetic tools available. The aim of this review is to highlight the prominent oleaginous yeast genera, emphasizing their oleaginous characteristics, in conjunction with diverse other features such as cheap carbon source utilization, withstanding the effect of inhibitory compounds, commercially favorable fatty acid composition-all supporting their future development as economically viable lipid feedstock. The unique aspects of metabolism attributing to their oleaginicity are accentuated in the pretext of outlining the various strategies successfully implemented to improve the production of lipid and lipid-derived metabolites. A large number of in silico data generated on the lipid accumulation in certain oleaginous yeasts have been carefully curated, as suggestive evidences in line with the exceptional oleaginicity of these organisms. The different genetic elements developed in these yeasts to execute such strategies have been scrupulously inspected, underlining the major types of newly-found and synthetically constructed promoters, transcription terminators, and selection markers. Additionally, there is a plethora of advanced genetic toolboxes and techniques described, which have been successfully used in oleaginous yeasts in the recent years, promoting homologous recombination, genome editing, DNA assembly, and transformation at remarkable efficiencies. They can accelerate and effectively guide the rational designing of system-wide metabolic engineering approaches pinpointing the key targets for developing industrially suitable yeast strains.
Collapse
Affiliation(s)
- Atrayee Chattopadhyay
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
38
|
Sheneman L, Stephanopoulos G, Vasdekis AE. Deep learning classification of lipid droplets in quantitative phase images. PLoS One 2021; 16:e0249196. [PMID: 33819277 PMCID: PMC8021159 DOI: 10.1371/journal.pone.0249196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
We report the application of supervised machine learning to the automated classification of lipid droplets in label-free, quantitative-phase images. By comparing various machine learning methods commonly used in biomedical imaging and remote sensing, we found convolutional neural networks to outperform others, both quantitatively and qualitatively. We describe our imaging approach, all implemented machine learning methods, and their performance with respect to computational efficiency, required training resources, and relative method performance measured across multiple metrics. Overall, our results indicate that quantitative-phase imaging coupled to machine learning enables accurate lipid droplet classification in single living cells. As such, the present paradigm presents an excellent alternative of the more common fluorescent and Raman imaging modalities by enabling label-free, ultra-low phototoxicity, and deeper insight into the thermodynamics of metabolism of single cells.
Collapse
Affiliation(s)
- Luke Sheneman
- Northwest Knowledge Network, University of Idaho, Moscow, Idaho, United States of America
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Andreas E. Vasdekis
- Department of Physics, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
39
|
Liu Y, Koh CMJ, Yap SA, Cai L, Ji L. Understanding and exploiting the fatty acid desaturation system in Rhodotorula toruloides. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:73. [PMID: 33741038 PMCID: PMC7977280 DOI: 10.1186/s13068-021-01924-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/06/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Rhodotorula toruloides is a robust producer of triacylglycerol owing to its fast growth rate and strong metabolic flux under conditions of high cell density fermentation. However, the molecular basis of fatty acid biosynthesis, desaturation and regulation remains elusive. RESULTS We present the molecular characterization of four fatty acid desaturase (FAD) genes in R. toruloides. Biosynthesis of oleic acid (OA) and palmitoleic acid (POA) was conferred by a single-copy ∆9 Fad (Ole1) as targeted deletion of which abolished the biosynthesis of all unsaturated fatty acids. Conversion of OA to linoleic acid (LA) and α-linolenic acid (ALA) was predominantly catalyzed by the bifunctional ∆12/∆15 Fad2. FAD4 was found to encode a trifunctional ∆9/∆12/∆15 FAD, playing important roles in lipid and biomass production as well as stress resistance. Furthermore, an abundantly transcribed OLE1-related gene, OLE2 encoding a 149-aa protein, was shown to regulate Ole1 regioselectivity. Like other fungi, the transcription of FAD genes was controlled by nitrogen levels and fatty acids in the medium. A conserved DNA motif, (T/C)(G/A)TTGCAGA(T/C)CCCAG, was demonstrated to mediate the transcription of OLE1 by POA/OA. The applications of these FAD genes were illustrated by engineering high-level production of OA and γ-linolenic acid (GLA). CONCLUSION Our work has gained novel insights on the transcriptional regulation of FAD genes, evolution of FAD enzymes and their roles in UFA biosynthesis, membrane stress resistance and, cell mass and total fatty acid production. Our findings should illuminate fatty acid metabolic engineering in R. toruloides and beyond.
Collapse
Affiliation(s)
- Yanbin Liu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Chong Mei John Koh
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Sihui Amy Yap
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Lin Cai
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Lianghui Ji
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
40
|
Chattopadhyay A, Mitra M, Maiti MK. Recent advances in lipid metabolic engineering of oleaginous yeasts. Biotechnol Adv 2021; 53:107722. [PMID: 33631187 DOI: 10.1016/j.biotechadv.2021.107722] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 01/12/2023]
Abstract
With the increasing demand to develop a renewable and sustainable biolipid feedstock, several species of non-conventional oleaginous yeasts are being explored. Apart from the platform oleaginous yeast Yarrowia lipolytica, the understanding of metabolic pathway and, therefore, exploiting the engineering prospects of most of the oleaginous species are still in infancy. However, in the past few years, enormous efforts have been invested in Rhodotorula, Rhodosporidium, Lipomyces, Trichosporon, and Candida genera of yeasts among others, with the rapid advancement of engineering strategies, significant improvement in genetic tools and techniques, generation of extensive bioinformatics and omics data. In this review, we have collated these recent progresses to make a detailed and insightful summary of the major developments in metabolic engineering of the prominent oleaginous yeast species. Such a comprehensive overview would be a useful resource for future strain improvement and metabolic engineering studies for enhanced production of lipid and lipid-derived chemicals in oleaginous yeasts.
Collapse
Affiliation(s)
- Atrayee Chattopadhyay
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mohor Mitra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
41
|
Kim J, Coradetti ST, Kim YM, Gao Y, Yaegashi J, Zucker JD, Munoz N, Zink EM, Burnum-Johnson KE, Baker SE, Simmons BA, Skerker JM, Gladden JM, Magnuson JK. Multi-Omics Driven Metabolic Network Reconstruction and Analysis of Lignocellulosic Carbon Utilization in Rhodosporidium toruloides. Front Bioeng Biotechnol 2021; 8:612832. [PMID: 33585414 PMCID: PMC7873862 DOI: 10.3389/fbioe.2020.612832] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/04/2020] [Indexed: 01/11/2023] Open
Abstract
An oleaginous yeast Rhodosporidium toruloides is a promising host for converting lignocellulosic biomass to bioproducts and biofuels. In this work, we performed multi-omics analysis of lignocellulosic carbon utilization in R. toruloides and reconstructed the genome-scale metabolic network of R. toruloides. High-quality metabolic network models for model organisms and orthologous protein mapping were used to build a draft metabolic network reconstruction. The reconstruction was manually curated to build a metabolic model using functional annotation and multi-omics data including transcriptomics, proteomics, metabolomics, and RB-TDNA sequencing. The multi-omics data and metabolic model were used to investigate R. toruloides metabolism including lipid accumulation and lignocellulosic carbon utilization. The developed metabolic model was validated against high-throughput growth phenotyping and gene fitness data, and further refined to resolve the inconsistencies between prediction and data. We believe that this is the most complete and accurate metabolic network model available for R. toruloides to date.
Collapse
Affiliation(s)
- Joonhoon Kim
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Department of Energy, Joint BioEnergy Institute, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| | - Samuel T Coradetti
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Sandia National Laboratories, Livermore, CA, United States
| | - Young-Mo Kim
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| | - Yuqian Gao
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| | - Junko Yaegashi
- Department of Energy, Joint BioEnergy Institute, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| | - Jeremy D Zucker
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| | - Nathalie Munoz
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| | - Erika M Zink
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Kristin E Burnum-Johnson
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| | - Scott E Baker
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Department of Energy, Joint BioEnergy Institute, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| | - Blake A Simmons
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Department of Energy, Joint BioEnergy Institute, Emeryville, CA, United States.,Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jeffrey M Skerker
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - John M Gladden
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Department of Energy, Joint BioEnergy Institute, Emeryville, CA, United States.,Sandia National Laboratories, Livermore, CA, United States
| | - Jon K Magnuson
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Department of Energy, Joint BioEnergy Institute, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| |
Collapse
|
42
|
Lee JW, Yook S, Koh H, Rao CV, Jin YS. Engineering xylose metabolism in yeasts to produce biofuels and chemicals. Curr Opin Biotechnol 2020; 67:15-25. [PMID: 33246131 DOI: 10.1016/j.copbio.2020.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/18/2020] [Accepted: 10/25/2020] [Indexed: 10/22/2022]
Abstract
Xylose is the second most abundant sugar in lignocellulosic biomass. Efficient and rapid xylose utilization is essential for the economic bioconversion of lignocellulosic biomass into value-added products. Building on previous pathway engineering efforts to enable xylose fermentation in Saccharomyces cerevisiae, recent work has focused on reprogramming regulatory networks to enhance xylose utilization by engineered S. cerevisiae. Also, potential benefits of using xylose for the production of various value-added products have been demonstrated. With increasing needs of lipid-derived bioproducts, activation and enhancement of xylose metabolism in oleaginous yeasts have been attempted. This review highlights recent progress of metabolic engineering to achieve efficient and rapid xylose utilization by S. cerevisiae and oleaginous yeasts, such as Yarrowia lipolytica, Rhodosporidium toruloides, and Lipomyces starkeyi.
Collapse
Affiliation(s)
- Jae Won Lee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sangdo Yook
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hyungi Koh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christopher V Rao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
43
|
Geiselman GM, Kirby J, Landera A, Otoupal P, Papa G, Barcelos C, Sundstrom ER, Das L, Magurudeniya HD, Wehrs M, Rodriguez A, Simmons BA, Magnuson JK, Mukhopadhyay A, Lee TS, George A, Gladden JM. Conversion of poplar biomass into high-energy density tricyclic sesquiterpene jet fuel blendstocks. Microb Cell Fact 2020; 19:208. [PMID: 33183275 PMCID: PMC7659065 DOI: 10.1186/s12934-020-01456-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background In an effort to ensure future energy security, reduce greenhouse gas emissions and create domestic jobs, the US has invested in technologies to develop sustainable biofuels and bioproducts from renewable carbon sources such as lignocellulosic biomass. Bio-derived jet fuel is of particular interest as aviation is less amenable to electrification compared to other modes of transportation and synthetic biology provides the ability to tailor fuel properties to enhance performance. Specific energy and energy density are important properties in determining the attractiveness of potential bio-derived jet fuels. For example, increased energy content can give the industry options such as longer range, higher load or reduced takeoff weight. Energy-dense sesquiterpenes have been identified as potential next-generation jet fuels that can be renewably produced from lignocellulosic biomass. Results We developed a biomass deconstruction and conversion process that enabled the production of two tricyclic sesquiterpenes, epi-isozizaene and prespatane, from the woody biomass poplar using the versatile basidiomycete Rhodosporidium toruloides. We demonstrated terpene production at both bench and bioreactor scales, with prespatane titers reaching 1173.6 mg/L when grown in poplar hydrolysate in a 2 L bioreactor. Additionally, we examined the theoretical fuel properties of prespatane and epi-isozizaene in their hydrogenated states as blending options for jet fuel, and compared them to aviation fuel, Jet A. Conclusion Our findings indicate that prespatane and epi-isozizaene in their hydrogenated states would be attractive blending options in Jet A or other lower density renewable jet fuels as they would improve viscosity and increase their energy density. Saturated epi-isozizaene and saturated prespatane have energy densities that are 16.6 and 18.8% higher than Jet A, respectively. These results highlight the potential of R. toruloides as a production host for the sustainable and scalable production of bio-derived jet fuel blends, and this is the first report of prespatane as an alternative jet fuel.
Collapse
Affiliation(s)
- Gina M Geiselman
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Biomass Science and Conversion Technology Department, Sandia National Laboratories,, Livermore, CA, 94551, USA
| | - James Kirby
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Biomass Science and Conversion Technology Department, Sandia National Laboratories,, Livermore, CA, 94551, USA
| | - Alexander Landera
- Biomass Science and Conversion Technology Department, Sandia National Laboratories,, Livermore, CA, 94551, USA
| | - Peter Otoupal
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Biomass Science and Conversion Technology Department, Sandia National Laboratories,, Livermore, CA, 94551, USA
| | - Gabriella Papa
- Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Carolina Barcelos
- Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Eric R Sundstrom
- Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lalitendu Das
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Biomass Science and Conversion Technology Department, Sandia National Laboratories,, Livermore, CA, 94551, USA
| | - Harsha D Magurudeniya
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Biomass Science and Conversion Technology Department, Sandia National Laboratories,, Livermore, CA, 94551, USA
| | - Maren Wehrs
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alberto Rodriguez
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Biomass Science and Conversion Technology Department, Sandia National Laboratories,, Livermore, CA, 94551, USA
| | - Blake A Simmons
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jon K Magnuson
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Taek Soon Lee
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anthe George
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Biomass Science and Conversion Technology Department, Sandia National Laboratories,, Livermore, CA, 94551, USA
| | - John M Gladden
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.
| |
Collapse
|
44
|
Fenster JA, Eckert CA. High-Throughput Functional Genomics for Energy Production. Curr Opin Biotechnol 2020; 67:7-14. [PMID: 33152605 DOI: 10.1016/j.copbio.2020.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Functional genomics remains a foundational field for establishing genotype-phenotype relationships that enable strain engineering. High-throughput (HTP) methods accelerate the Design-Build-Test-Learn cycle that currently drives synthetic biology towards a forward engineering future. Trackable mutagenesis techniques including transposon insertion sequencing and CRISPR-Cas-mediated genome editing allow for rapid fitness profiling of a collection, or library, of mutants to discover beneficial mutations. Due to the relative speed of these experiments compared to adaptive evolution experiments, iterative rounds of mutagenesis can be implemented for next-generation metabolic engineering efforts to design complex production and tolerance phenotypes. Additionally, the expansion of these mutagenesis techniques to novel bacteria are opening up industrial microbes that show promise for establishing a bio-based economy.
Collapse
Affiliation(s)
- Jacob A Fenster
- Chemical and Biological Engineering, University of Colorado, Boulder CO, United States; Renewable and Sustainable Energy Institute, University of Colorado, Boulder CO, United States
| | - Carrie A Eckert
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder CO, United States; National Renewable Energy Laboratory, Golden CO, United States.
| |
Collapse
|
45
|
Suthers PF, Dinh HV, Fatma Z, Shen Y, Chan SHJ, Rabinowitz JD, Zhao H, Maranas CD. Genome-scale metabolic reconstruction of the non-model yeast Issatchenkia orientalis SD108 and its application to organic acids production. Metab Eng Commun 2020; 11:e00148. [PMID: 33134082 PMCID: PMC7586132 DOI: 10.1016/j.mec.2020.e00148] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
Many platform chemicals can be produced from renewable biomass by microorganisms, with organic acids making up a large fraction. Intolerance to the resulting low pH growth conditions, however, remains a challenge for the industrial production of organic acids by microorganisms. Issatchenkia orientalis SD108 is a promising host for industrial production because it is tolerant to acidic conditions as low as pH 2.0. With the goal to systematically assess the metabolic capabilities of this non-model yeast, we developed a genome-scale metabolic model for I. orientalis SD108 spanning 850 genes, 1826 reactions, and 1702 metabolites. In order to improve the model’s quantitative predictions, organism-specific macromolecular composition and ATP maintenance requirements were determined experimentally and implemented. We examined its network topology, including essential genes and flux coupling analysis and drew comparisons with the Yeast 8.3 model for Saccharomyces cerevisiae. We explored the carbon substrate utilization and examined the organism’s production potential for the industrially-relevant succinic acid, making use of the OptKnock framework to identify gene knockouts which couple production of the targeted chemical to biomass production. The genome-scale metabolic model iIsor850 is a data-supported curated model which can inform genetic interventions for overproduction. Genome-scale metabolic model iIsor850 describes metabolism of I. orientalis SD108. Customized biomass reaction highlights differences with S. cerevisiae. Chemostat data elucidate growth-associated ATP maintenance. Substrate utilization and CRISPR/Cas9 gene knockout phenotypes validate model. Model pinpoints candidate gene deletions coupling succinic acid production to growth.
Collapse
Affiliation(s)
- Patrick F Suthers
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hoang V Dinh
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zia Fatma
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yihui Shen
- Department of Chemistry, Princeton University, Princeton, NJ, USA.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Siu Hung Joshua Chan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, USA.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champagne, Urbana, IL, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
46
|
Salo VT, Hölttä-Vuori M, Ikonen E. Seipin-Mediated Contacts as Gatekeepers of Lipid Flux at the Endoplasmic Reticulum–Lipid Droplet Nexus. ACTA ACUST UNITED AC 2020. [DOI: 10.1177/2515256420945820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lipid droplets (LDs) are dynamic cellular hubs of lipid metabolism. While LDs contact a plethora of organelles, they have the most intimate relationship with the endoplasmic reticulum (ER). Indeed, LDs are initially assembled at specialized ER subdomains, and recent work has unraveled an increasing array of proteins regulating ER-LD contacts. Among these, seipin, a highly conserved lipodystrophy protein critical for LD growth and adipogenesis, deserves special attention. Here, we review recent insights into the role of seipin in LD biogenesis and as a regulator of ER-LD contacts. These studies have also highlighted the evolving concept of ER and LDs as a functional continuum for lipid partitioning and pinpointed a role for seipin at the ER-LD nexus in controlling lipid flux between these compartments.
Collapse
Affiliation(s)
- Veijo T. Salo
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Maarit Hölttä-Vuori
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| |
Collapse
|
47
|
Zhou R, Zhu Z, Zhang S, Zhao ZK. The complete mitochondrial genome of the lipid-producing yeast Rhodotorula toruloides. FEMS Yeast Res 2020; 20:5892098. [PMID: 32789504 DOI: 10.1093/femsyr/foaa048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are semi-autonomous organelles with their own genome and crucial to cellular material and energy metabolism. Here, we report the complete mitochondrial genome of a lipid-producing basidiomycetous yeast Rhodotorula toruloides NP11. The mitochondrial genome of R. toruloides NP11 was assembled into a circular DNA molecule of 125937bp, encoding 15 proteins, 28 transfer RNAs, 2 ribosomal RNA subunits and 10 open reading frames with unknown function. The G + C content (41%) of the mitochondrial genome is substantially lower than that of the nuclear genome (62%) of R. toruloides NP11. Further reanalysis of the transcriptome data confirmed the transcription of four mitochondrial genes. The comparison of the mitochondrial genomes of R. toruloides NP11 and NBRC0880 revealed a significant genetic divergence. These data can complement our understanding of the genetic background of R. toruloides and provide fundamental information for further genetic engineering of this strain.
Collapse
Affiliation(s)
- Renhui Zhou
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Zhiwei Zhu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Sufang Zhang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
| | - Zongbao Kent Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
| |
Collapse
|
48
|
Pinheiro MJ, Bonturi N, Belouah I, Miranda EA, Lahtvee PJ. Xylose Metabolism and the Effect of Oxidative Stress on Lipid and Carotenoid Production in Rhodotorula toruloides: Insights for Future Biorefinery. Front Bioeng Biotechnol 2020; 8:1008. [PMID: 32974324 PMCID: PMC7466555 DOI: 10.3389/fbioe.2020.01008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/31/2020] [Indexed: 12/04/2022] Open
Abstract
The use of cell factories to convert sugars from lignocellulosic biomass into chemicals in which oleochemicals and food additives, such as carotenoids, is essential for the shift toward sustainable processes. Rhodotorula toruloides is a yeast that naturally metabolises a wide range of substrates, including lignocellulosic hydrolysates, and converts them into lipids and carotenoids. In this study, xylose, the main component of hemicellulose, was used as the sole substrate for R. toruloides, and a detailed physiology characterisation combined with absolute proteomics and genome-scale metabolic models was carried out to understand the regulation of lipid and carotenoid production. To improve these productions, oxidative stress was induced by hydrogen peroxide and light irradiation and further enhanced by adaptive laboratory evolution. Based on the online measurements of growth and CO2 excretion, three distinct growth phases were identified during batch cultivations. Majority of the intracellular flux estimations showed similar trends with the measured protein levels and demonstrated improved NADPH regeneration, phosphoketolase activity and reduced β-oxidation, correlating with increasing lipid yields. Light irradiation resulted in 70% higher carotenoid and 40% higher lipid content compared to the optimal growth conditions. The presence of hydrogen peroxide did not affect the carotenoid production but culminated in the highest lipid content of 0.65 g/gDCW. The adapted strain showed improved fitness and 2.3-fold higher carotenoid content than the parental strain. This work presents a holistic view of xylose conversion into microbial oil and carotenoids by R. toruloides, in a process toward renewable and cost-effective production of these molecules.
Collapse
Affiliation(s)
- Marina Julio Pinheiro
- Institute of Technology, University of Tartu, Tartu, Estonia
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas, Campinas, Brazil
| | | | - Isma Belouah
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Everson Alves Miranda
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas, Campinas, Brazil
| | | |
Collapse
|
49
|
Wehrs M, Thompson MG, Banerjee D, Prahl JP, Morella NM, Barcelos CA, Moon J, Costello Z, Keasling JD, Shih PM, Tanjore D, Mukhopadhyay A. Investigation of Bar-seq as a method to study population dynamics of Saccharomyces cerevisiae deletion library during bioreactor cultivation. Microb Cell Fact 2020; 19:167. [PMID: 32811554 PMCID: PMC7437010 DOI: 10.1186/s12934-020-01423-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background Despite the latest advancements in metabolic engineering for genome editing and characterization of host performance, the successful development of robust cell factories used for industrial bioprocesses and accurate prediction of the behavior of microbial systems, especially when shifting from laboratory-scale to industrial conditions, remains challenging. To increase the probability of success of a scale-up process, data obtained from thoroughly performed studies mirroring cellular responses to typical large-scale stimuli may be used to derive crucial information to better understand potential implications of large-scale cultivation on strain performance. This study assesses the feasibility to employ a barcoded yeast deletion library to assess genome-wide strain fitness across a simulated industrial fermentation regime and aims to understand the genetic basis of changes in strain physiology during industrial fermentation, and the corresponding roles these genes play in strain performance. Results We find that mutant population diversity is maintained through multiple seed trains, enabling large scale fermentation selective pressures to act upon the community. We identify specific deletion mutants that were enriched in all processes tested in this study, independent of the cultivation conditions, which include MCK1, RIM11, MRK1, and YGK3 that all encode homologues of mammalian glycogen synthase kinase 3 (GSK-3). Ecological analysis of beta diversity between all samples revealed significant population divergence over time and showed feed specific consequences of population structure. Further, we show that significant changes in the population diversity during fed-batch cultivations reflect the presence of significant stresses. Our observations indicate that, for this yeast deletion collection, the selection of the feeding scheme which affects the accumulation of the fermentative by-product ethanol impacts the diversity of the mutant pool to a higher degree as compared to the pH of the culture broth. The mutants that were lost during the time of most extreme population selection suggest that specific biological processes may be required to cope with these specific stresses. Conclusions Our results demonstrate the feasibility of Bar-seq to assess fermentation associated stresses in yeast populations under industrial conditions and to understand critical stages of a scale-up process where variability emerges, and selection pressure gets imposed. Overall our work highlights a promising avenue to identify genetic loci and biological stress responses required for fitness under industrial conditions.
Collapse
Affiliation(s)
- Maren Wehrs
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Mitchell G Thompson
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Deepanwita Banerjee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Jan-Philip Prahl
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Norma M Morella
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Carolina A Barcelos
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Jadie Moon
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Zak Costello
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Department of Energy Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Jay D Keasling
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK 2970, Horsholm, Denmark.,Synthetic Biochemistry Center, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Patrick M Shih
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Plant Biology, University of California-Davis, Davis, CA, 95616, USA
| | - Deepti Tanjore
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA. .,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
50
|
Rajakumar S, Suriyagandhi V, Nachiappan V. Impairment of MET transcriptional activators, MET4 and MET31 induced lipid accumulation in Saccharomyces cerevisiae. FEMS Yeast Res 2020; 20:5869667. [PMID: 32648914 DOI: 10.1093/femsyr/foaa039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/08/2020] [Indexed: 11/13/2022] Open
Abstract
The genes involved in the methionine pathway are closely associated with phospholipid homeostasis in yeast. The impact of the deletion of methionine (MET) transcriptional activators (MET31, MET32 and MET4) in lipid homeostasis is studied. Our lipid profiling data showed that aberrant phospholipid and neutral lipid accumulation occurred in met31∆ and met4∆ strains with low Met. The expression pattern of phospholipid biosynthetic genes such as CHO2, OPI3 and triacylglycerol (TAG) biosynthetic gene, DGA1 were upregulated in met31∆, and met4∆ strains when compared to wild type (WT). The accumulation of triacylglycerol and sterol esters (SE) content supports the concomitant increase in lipid droplets in met31∆ and met4∆ strains. However, excessive supplies of methionine (1 mM) in the cells lacking the MET transcriptional activators MET31 and MET4 ameliorates the abnormal lipogenesis and causes aberrant lipid accumulation. These findings implicate the methionine accessibility plays a pivotal role in lipid metabolism in the yeast model.
Collapse
Affiliation(s)
- Selvaraj Rajakumar
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| | - Vennila Suriyagandhi
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| | - Vasanthi Nachiappan
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| |
Collapse
|