1
|
North AJ, Sharma VP, Pyrgaki C, S Y JL, Atwal S, Saharat K, Wright GD, Salje J. A comparison of super-resolution microscopy techniques for imaging tightly packed microcolonies of an obligate intracellular bacterium. J Microsc 2024. [PMID: 39651611 DOI: 10.1111/jmi.13376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024]
Abstract
Conventional optical microscopy imaging of obligate intracellular bacteria is hampered by the small size of bacterial cells, tight clustering exhibited by some bacterial species and challenges relating to labelling such as background from host cells, a lack of validated reagents, and a lack of tools for genetic manipulation. In this study, we imaged intracellular bacteria from the species Orientia tsutsugamushi (Ot) using five different fluorescence microscopy techniques: standard confocal, Airyscan confocal, instant Structured Illumination Microscopy (iSIM), three-dimensional Structured Illumination Microscopy (3D-SIM) and Stimulated Emission Depletion Microscopy (STED). We compared the ability of each to resolve bacterial cells in intracellular clumps in the lateral (xy) axis, using full width half-maximum (FWHM) measurements of a labelled outer membrane protein (ScaA) and the ability to detect small, outer membrane vesicles external to the cells. Comparing the techniques readily available to us (above), 3D-SIM microscopy, in combination with the shortest-wavelength dyes, was found overall to give the best lateral resolution. We next compared the ability of each technique to sufficiently resolve bacteria in the axial (z) direction and found 3D-STED to be the most successful method for this. We then combined this 3D-STED approach with a custom 3D cell segmentation and analysis pipeline using the open-source, deep learning software, Cellpose to segment the cells and subsequently the commercial software Imaris to analyse their 3D shape and size. Using this combination, we demonstrated differences in bacterial shape, but not their size, when grown in different mammalian cell lines. Overall, we compare the advantages and disadvantages of different super-resolution microscopy techniques for imaging this cytoplasmic obligate intracellular bacterium based on the specific research question being addressed.
Collapse
Affiliation(s)
- Alison J North
- Bio-Imaging Resource Center, The Rockefeller University, New York, New York, USA
| | - Ved P Sharma
- Bio-Imaging Resource Center, The Rockefeller University, New York, New York, USA
| | - Christina Pyrgaki
- Bio-Imaging Resource Center, The Rockefeller University, New York, New York, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, USA
| | - John Lim S Y
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology & Research (A*STAR), Singapore, Singapore
| | | | - Kittirat Saharat
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Graham D Wright
- Research Support Centre (RSC), Agency for Science, Technology & Research (A*STAR), Singapore, Singapore
| | - Jeanne Salje
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Shi H, Nguyen J, Gitai Z, Shaevitz J, Bratton BP, Gopinathan A, Grason G, Huang KC. Sensing the shape of a surface by intracellular filaments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624198. [PMID: 39605553 PMCID: PMC11601562 DOI: 10.1101/2024.11.18.624198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Understanding the mechanisms that dictate the localization of cytoskeletal filaments is crucial for elucidating cell shape regulation in prokaryotes. The actin homolog MreB plays a pivotal role in maintaining the shape of many rod-shaped bacteria such as Escherichia coli by directing cell-wall synthesis according to local curvature cues. However, the basis of MreB's curvature-dependent localization has remained elusive. Here, we develop a biophysical model for the energetics of filament binding to a surface that integrates the complex interplay between filament twist and bending and the two-dimensional surface geometry. Our model predicts that the spatial localization of a filament like MreB with substantial intrinsic twist is governed by both the mean and Gaussian curvatures of the cell envelope, which strongly covary in rod-shaped cells. Using molecular dynamics simulations to estimate the mechanical properties of MreB filaments, we show that their thermodynamic preference for regions with lower mean and Gaussian curvatures matches experimental observations for physiologically relevant filament lengths of ∼50 nm. We find that the experimentally measured statistical curvature preference is maintained in the absence of filament motion and after a cycle of depolymerization, repolymerization, and membrane rebinding, indicating that equilibrium energetics can explain MreB localization. These findings provide critical insights into the physical principles underlying cytoskeletal filament localization, and suggest new design principles for synthetic shape sensing nanomaterials. Significance statement The protein MreB, a homolog of eukaryotic actin, regulates the shape of bacteria like Escherichia coli by guiding new cell-wall insertion based on local curvature cues. However, the mechanism by which a nanometer-scale MreB filament "senses" the micron-scale curvature of the cell wall has remained a mystery. We introduce a biophysical model of the energetics of twisted and bent filaments bound to curved surfaces, which predicts that localization of filaments like MreB is sensitive to both mean and Gaussian curvature. The model captures experimentally measured curvature enrichment patterns and explains how MreB naturally localizes to saddle-shaped regions without energy-consuming processes. Beyond cell shape regulation, our work suggests design principles for synthetic systems that can sense and respond to surface shape.
Collapse
|
3
|
Gilman MS, Shlosman I, Guerra DDS, Domecillo M, Fivenson EM, Bourett C, Bernhardt TG, Polizzi NF, Loparo JJ, Kruse AC. MreC-MreD structure reveals a multifaceted interface that controls MreC conformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617240. [PMID: 39416049 PMCID: PMC11482812 DOI: 10.1101/2024.10.08.617240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The peptidoglycan (PG) cell wall is critical for bacterial growth and survival and is a primary antibiotic target. MreD is an essential accessory factor of the Rod complex, which carries out PG synthesis during elongation, yet little is known about how MreD facilitates this process. Here, we present the cryo-electron microscopy structure of Thermus thermophilus MreD in complex with another essential Rod complex component, MreC. The structure reveals that a periplasmic-facing pocket of MreD interacts with multiple membrane-proximal regions of MreC. We use single-molecule FRET to show that MreD controls the conformation of MreC through these contacts, inducing a state primed for Rod complex activation. Using E. coli as a model, we demonstrate that disrupting these interactions abolishes Rod complex activity in vivo. Our findings reveal the role of MreD in bacterial cell shape determination and highlight its potential as an antibiotic target.
Collapse
Affiliation(s)
- Morgan S.A. Gilman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Irina Shlosman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Daniel D. Samé Guerra
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Masy Domecillo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Dana Farber Cancer Institute, Harvard Medical School Boston, Massachusetts 02115, USA
| | - Elayne M. Fivenson
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Claire Bourett
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Thomas G. Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nicholas F. Polizzi
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Dana Farber Cancer Institute, Harvard Medical School Boston, Massachusetts 02115, USA
| | - Joseph J. Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Andrew C. Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
4
|
Curtis Z, Escudeiro P, Mallon J, Leland O, Rados T, Dodge A, Andre K, Kwak J, Yun K, Isaac B, Martinez Pastor M, Schmid AK, Pohlschroder M, Alva V, Bisson A. Halofilins as emerging bactofilin families of archaeal cell shape plasticity orchestrators. Proc Natl Acad Sci U S A 2024; 121:e2401583121. [PMID: 39320913 PMCID: PMC11459167 DOI: 10.1073/pnas.2401583121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
Bactofilins are rigid, nonpolar bacterial cytoskeletal filaments that link cellular processes to specific curvatures of the cytoplasmic membrane. Although homologs of bactofilins have been identified in archaea and eukaryotes, functional studies have remained confined to bacterial systems. Here, we characterize representatives of two families of archaeal bactofilins from the pleomorphic archaeon Haloferax volcanii, halofilin A (HalA) and halofilin B (HalB). HalA and HalB polymerize in vitro, assembling into straight bundles. HalA polymers are highly dynamic and accumulate at positive membrane curvatures in vivo, whereas HalB forms more static foci that localize in areas of local negative curvatures on the outer cell surface. Gene deletions and live-cell imaging show that halofilins are critical in maintaining morphological integrity during shape transition from disk (sessile) to rod (motile). Morphological defects in ΔhalA result in accumulation of highly positive curvatures in rods but not in disks. Conversely, disk-shaped cells are exclusively affected by halB deletion, resulting in flatter cells. Furthermore, while ΔhalA and ΔhalB cells imprecisely determine the future division plane, defects arise predominantly during the disk-to-rod shape remodeling. The deletion of halA in the haloarchaeon Halobacterium salinarum, whose cells are consistently rod-shaped, impacted morphogenesis but not cell division. Increased levels of halofilins enforced drastic deformations in cells devoid of the S-layer, suggesting that HalB polymers are more stable at defective S-layer lattice regions. Our results suggest that halofilins might play a significant mechanical scaffolding role in addition to possibly directing envelope synthesis.
Collapse
Affiliation(s)
- Zachary Curtis
- Department of Biology, Brandeis University, Waltham, MA02453
| | - Pedro Escudeiro
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen72076, Germany
| | - John Mallon
- Department of Biology, Brandeis University, Waltham, MA02453
| | - Olivia Leland
- Department of Biology, Brandeis University, Waltham, MA02453
| | - Theopi Rados
- Department of Biology, Brandeis University, Waltham, MA02453
| | - Ashley Dodge
- Department of Biology, Brandeis University, Waltham, MA02453
| | - Katherine Andre
- Department of Biology, Brandeis University, Waltham, MA02453
| | - Jasmin Kwak
- Department of Biology, Brandeis University, Waltham, MA02453
| | - Kun Yun
- Department of Biology, University of Pennsylvania, Philadelphia, PA19104
| | - Berith Isaac
- Department of Biology, Brandeis University, Waltham, MA02453
| | | | - Amy K. Schmid
- Biology Department, Duke University, Durham, NC27708
| | | | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen72076, Germany
| | - Alex Bisson
- Department of Biology, Brandeis University, Waltham, MA02453
| |
Collapse
|
5
|
Ramirez Carbo CA, Faromiki OG, Nan B. A lytic transglycosylase connects bacterial focal adhesion complexes to the peptidoglycan cell wall. eLife 2024; 13:RP99273. [PMID: 39352247 PMCID: PMC11444678 DOI: 10.7554/elife.99273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
The Gram-negative bacterium Myxococcus xanthus glides on solid surfaces. Dynamic bacterial focal adhesion complexes (bFACs) convert proton motive force from the inner membrane into mechanical propulsion on the cell surface. It is unclear how the mechanical force transmits across the rigid peptidoglycan (PG) cell wall. Here, we show that AgmT, a highly abundant lytic PG transglycosylase homologous to Escherichia coli MltG, couples bFACs to PG. Coprecipitation assay and single-particle microscopy reveal that the gliding motors fail to connect to PG and thus are unable to assemble into bFACs in the absence of an active AgmT. Heterologous expression of E. coli MltG restores the connection between PG and bFACs and thus rescues gliding motility in the M. xanthus cells that lack AgmT. Our results indicate that bFACs anchor to AgmT-modified PG to transmit mechanical force across the PG cell wall.
Collapse
Affiliation(s)
- Carlos A Ramirez Carbo
- Department of Biology, Texas A&M University, College Station, United States
- The Genetics and Genomics Interdisciplinary Program, Texas A&M University, College Station, United States
| | | | - Beiyan Nan
- Department of Biology, Texas A&M University, College Station, United States
| |
Collapse
|
6
|
Perkins A, Mounange-Badimi MS, Margolin W. Role of the antiparallel double-stranded filament form of FtsA in activating the Escherichia coli divisome. mBio 2024; 15:e0168724. [PMID: 39041810 PMCID: PMC11323482 DOI: 10.1128/mbio.01687-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024] Open
Abstract
The actin-like FtsA protein is essential for function of the cell division machinery, or divisome, in many bacteria including Escherichia coli. Previous in vitro studies demonstrated that purified wild-type FtsA assembles into closed mini-rings on lipid membranes, but oligomeric variants of FtsA such as FtsAR286W and FtsAG50E can bypass certain divisome defects and form arc and double-stranded (DS) oligomeric states, respectively, which may reflect conversion of an inactive to an active form of FtsA. However, it remains unproven which oligomeric forms of FtsA are responsible for assembling and activating the divisome. Here, we used an in vivo crosslinking assay for FtsA DS filaments to show that they largely depend on proper divisome assembly and are prevalent at later stages of cell division. We also used a previously reported variant that fails to assemble DS filaments, FtsAM96E R153D, to investigate the roles of FtsA oligomeric states in divisome assembly and activation. We show that FtsAM96E R153D cannot form DS filaments in vivo, fails to replace native FtsA, and confers a dominant negative phenotype, underscoring the importance of the DS filament stage for FtsA function. Surprisingly, however, activation of the divisome through the ftsL* or ftsW* superfission alleles suppressed the dominant negative phenotype and rescued the functionality of FtsAM96E R153D. Our results suggest that FtsA DS filaments are needed for divisome activation once it is assembled, but they are not essential for divisome assembly or guiding septum synthesis.IMPORTANCECell division is fundamental for cellular duplication. In simple cells like Escherichia coli bacteria, the actin homolog FtsA is essential for cell division and assembles into a variety of protein filaments at the cytoplasmic membrane. These filaments not only help tether polymers of the tubulin-like FtsZ to the membrane at early stages of cell division but also play crucial roles in recruiting other cell division proteins to a complex called the divisome. Once assembled, the E. coli divisome subsequently activates synthesis of the division septum that splits the cell in two. One recently discovered oligomeric conformation of FtsA is an antiparallel double-stranded filament. Using a combination of in vivo crosslinking and genetics, we provide evidence suggesting that these FtsA double filaments have a crucial role in activating the septum synthesis enzymes.
Collapse
Affiliation(s)
- Abbigale Perkins
- Department of Microbiology and Molecular Genetics, UTHealth Houston McGovern Medical School, Houston, Texas, USA
| | - Mwidy Sava Mounange-Badimi
- Department of Microbiology and Molecular Genetics, UTHealth Houston McGovern Medical School, Houston, Texas, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, UTHealth Houston McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
7
|
North AJ, Sharma VP, Pyrgaki C, Lim S Y J, Atwal S, Saharat K, Wright GD, Salje J. A comparison of super-resolution microscopy techniques for imaging tightly packed microcolonies of an obligate intracellular bacterium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607698. [PMID: 39211076 PMCID: PMC11361006 DOI: 10.1101/2024.08.12.607698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Conventional optical microscopy imaging of obligate intracellular bacteria is hampered by the small size of bacterial cells, tight clustering exhibited by some bacterial species and challenges relating to labelling such as background from host cells, a lack of validated reagents, and a lack of tools for genetic manipulation. In this study we imaged intracellular bacteria from the species Orientia tsutsugamushi (Ot) using five different fluorescence microscopy techniques: standard confocal, Airyscan confocal, instant Structured Illumination Microscopy (iSIM), three-dimensional Structured Illumination Microscopy (3D-SIM) and Stimulated Emission Depletion Microscopy (STED). We compared the ability of each to resolve bacterial cells in intracellular clumps in the lateral (xy) axis, using full width half maximum (FWHM) measurements of a labelled outer membrane protein (ScaA) and the ability to detect small, outer membrane vesicles external to the cells. We next compared the ability of each technique to sufficiently resolve bacteria in the axial (z) direction and found 3D-STED to be the most successful method for this. We then combined this approach with a custom 3D cell segmentation and analysis pipeline using the open-source, deep learning software, Cellpose to segment the cells and subsequently the commercial software Imaris to analyze their 3D shape and size. Using this combination, we demonstrated differences in bacterial shape, but not their size, when grown in different mammalian cell lines. Overall, we compare the advantages and disadvantages of different super-resolution microscopy techniques for imaging this cytoplasmic obligate intracellular bacterium based on the specific research question being addressed.
Collapse
|
8
|
Ramírez Carbó CA, Faromiki OG, Nan B. A lytic transglycosylase connects bacterial focal adhesion complexes to the peptidoglycan cell wall. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588103. [PMID: 38617213 PMCID: PMC11014575 DOI: 10.1101/2024.04.04.588103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The Gram-negative bacterium Myxococcus xanthus glides on solid surfaces. Dynamic bacterial focal adhesion complexes (bFACs) convert proton motive force from the inner membrane into mechanical propulsion on the cell surface. It is unclear how the mechanical force transmits across the rigid peptidoglycan (PG) cell wall. Here we show that AgmT, a highly abundant lytic PG transglycosylase homologous to Escherichia coli MltG, couples bFACs to PG. Coprecipitation assay and single-particle microscopy reveal that the gliding motors fail to connect to PG and thus are unable to assemble into bFACs in the absence of an active AgmT. Heterologous expression of E. coli MltG restores the connection between PG and bFACs and thus rescues gliding motility in the M. xanthus cells that lack AgmT. Our results indicate that bFACs anchor to AgmT-modified PG to transmit mechanical force across the PG cell wall.
Collapse
Affiliation(s)
- Carlos A. Ramírez Carbó
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- The Genetics and Genomics Interdisciplinary Program, Texas A&M University, College Station, TX 77843, USA
- C. A. R. C. and O. G. F. contribute equally to this work
| | - Olalekan G. Faromiki
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- C. A. R. C. and O. G. F. contribute equally to this work
| | - Beiyan Nan
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
9
|
Vanhille-Campos C, Whitley KD, Radler P, Loose M, Holden S, Šarić A. Self-organization of mortal filaments and its role in bacterial division ring formation. NATURE PHYSICS 2024; 20:1670-1678. [PMID: 39416851 PMCID: PMC11473364 DOI: 10.1038/s41567-024-02597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/27/2024] [Indexed: 10/19/2024]
Abstract
Filaments in the cell commonly treadmill. Driven by energy consumption, they grow on one end while shrinking on the other, causing filaments to appear motile even though individual proteins remain static. This process is characteristic of cytoskeletal filaments and leads to collective filament self-organization. Here we show that treadmilling drives filament nematic ordering by dissolving misaligned filaments. Taking the bacterial FtsZ protein involved in cell division as an example, we show that this mechanism aligns FtsZ filaments in vitro and drives the organization of the division ring in living Bacillus subtilis cells. We find that ordering via local dissolution also allows the system to quickly respond to chemical and geometrical biases in the cell, enabling us to quantitatively explain the ring formation dynamics in vivo. Beyond FtsZ and other cytoskeletal filaments, our study identifies a mechanism for self-organization via constant birth and death of energy-consuming filaments.
Collapse
Affiliation(s)
- Christian Vanhille-Campos
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, UK
| | - Kevin D. Whitley
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Philipp Radler
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Archaea Biology and Ecogenomics Unit, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Martin Loose
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Séamus Holden
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - Anđela Šarić
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
10
|
Mukherjee A, Huang Y, Oh S, Sanchez C, Chang YF, Liu X, Bradshaw GA, Benites NC, Paulsson J, Kirschner MW, Sung Y, Elgeti J, Basan M. Homeostasis of cytoplasmic crowding by cell wall fluidization and ribosomal counterions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.31.555748. [PMID: 37808635 PMCID: PMC10557573 DOI: 10.1101/2023.08.31.555748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
In bacteria, algae, fungi, and plant cells, the wall must expand in concert with cytoplasmic biomass production, otherwise cells would experience toxic molecular crowding1,2or lyse. But how cells achieve expansion of this complex biomaterial in coordination with biosynthesis of macromolecules in the cytoplasm remains unexplained3, although recent works have revealed that these processes are indeed coupled4,5. Here, we report a striking increase of turgor pressure with growth rate in E. coli, suggesting that the speed of cell wall expansion is controlled via turgor. Remarkably, despite this increase in turgor pressure, cellular biomass density remains constant across a wide range of growth rates. By contrast, perturbations of turgor pressure that deviate from this scaling directly alter biomass density. A mathematical model based on cell wall fluidization by cell wall endopeptidases not only explains these apparently confounding observations but makes surprising quantitative predictions that we validated experimentally. The picture that emerges is that turgor pressure is directly controlled via counterions of ribosomal RNA. Elegantly, the coupling between rRNA and turgor pressure simultaneously coordinates cell wall expansion across a wide range of growth rates and exerts homeostatic feedback control on biomass density. This mechanism may regulate cell wall biosynthesis from microbes to plants and has important implications for the mechanism of action of antibiotics6.
Collapse
|
11
|
Velle KB, Swafford AJM, Garner E, Fritz-Laylin LK. Actin network evolution as a key driver of eukaryotic diversification. J Cell Sci 2024; 137:jcs261660. [PMID: 39120594 DOI: 10.1242/jcs.261660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Eukaryotic cells have been evolving for billions of years, giving rise to wildly diverse cell forms and functions. Despite their variability, all eukaryotic cells share key hallmarks, including membrane-bound organelles, heavily regulated cytoskeletal networks and complex signaling cascades. Because the actin cytoskeleton interfaces with each of these features, understanding how it evolved and diversified across eukaryotic phyla is essential to understanding the evolution and diversification of eukaryotic cells themselves. Here, we discuss what we know about the origin and diversity of actin networks in terms of their compositions, structures and regulation, and how actin evolution contributes to the diversity of eukaryotic form and function.
Collapse
Affiliation(s)
- Katrina B Velle
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | | | - Ethan Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
12
|
Perkins A, Mounange-Badimi MS, Margolin W. Role of the antiparallel double-stranded filament form of FtsA in activating the Escherichia coli divisome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600433. [PMID: 38979378 PMCID: PMC11230281 DOI: 10.1101/2024.06.24.600433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The actin-like FtsA protein is essential for function of the cell division machinery, or divisome, in many bacteria including Escherichia coli. Previous in vitro studies demonstrated that purified wild-type FtsA assembles into closed mini-rings on lipid membranes, but oligomeric variants of FtsA such as FtsAR286W and FtsAG50E can bypass certain divisome defects and form arc and double-stranded (DS) oligomeric states, respectively, which may reflect conversion of an inactive to an active form of FtsA. Yet, it remains unproven which oligomeric forms of FtsA are responsible for assembling and activating the divisome. Here we used an in vivo crosslinking assay for FtsA DS filaments to show that they largely depend on proper divisome assembly and are prevalent at later stages of cell division. We also used a previously reported variant that fails to assemble DS filaments, FtsAM96E R153D, to investigate the roles of FtsA oligomeric states in divisome assembly and activation. We show that FtsAM96E R153D cannot form DS filaments in vivo, fails to replace native FtsA, and confers a dominant negative phenotype, underscoring the importance of the DS filament stage for FtsA function. Surprisingly, however, activation of the divisome through the ftsL* or ftsW* superfission alleles suppressed the dominant negative phenotype and rescued the functionallity of FtsAM96E R153D. Our results suggest that FtsA DS filaments are needed for divisome activation once it is assembled, but they are not essential for divisome assembly or guiding septum synthesis.
Collapse
Affiliation(s)
- Abbigale Perkins
- Microbiology and Molecular Genetics, UTHealth McGovern Medical School, 6431 Fannin Street, Houston, TX 77030
| | - Mwidy Sava Mounange-Badimi
- Microbiology and Molecular Genetics, UTHealth McGovern Medical School, 6431 Fannin Street, Houston, TX 77030
| | - William Margolin
- Microbiology and Molecular Genetics, UTHealth McGovern Medical School, 6431 Fannin Street, Houston, TX 77030
| |
Collapse
|
13
|
Middlemiss S, Blandenet M, Roberts DM, McMahon A, Grimshaw J, Edwards JM, Sun Z, Whitley KD, Blu T, Strahl H, Holden S. Molecular motor tug-of-war regulates elongasome cell wall synthesis dynamics in Bacillus subtilis. Nat Commun 2024; 15:5411. [PMID: 38926336 PMCID: PMC11208587 DOI: 10.1038/s41467-024-49785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Most rod-shaped bacteria elongate by inserting new cell wall material into the inner surface of the cell sidewall. This is performed by class A penicillin binding proteins (PBPs) and a highly conserved protein complex, the elongasome, which moves processively around the cell circumference and inserts long glycan strands that act as barrel-hoop-like reinforcing structures, thereby giving rise to a rod-shaped cell. However, it remains unclear how elongasome synthesis dynamics and termination events are regulated to determine the length of these critical cell-reinforcing structures. To address this, we developed a method to track individual elongasome complexes around the entire circumference of Bacillus subtilis cells for minutes-long periods using single-molecule fluorescence microscopy. We found that the B. subtilis elongasome is highly processive and that processive synthesis events are frequently terminated by rapid reversal or extended pauses. We found that cellular levels of RodA regulate elongasome processivity, reversal and pausing. Our single-molecule data, together with stochastic simulations, show that elongasome dynamics and processivity are regulated by molecular motor tug-of-war competition between several, likely two, oppositely oriented peptidoglycan synthesis complexes associated with the MreB filament. Altogether these results demonstrate that molecular motor tug-of-war is a key regulator of elongasome dynamics in B. subtilis, which likely also regulates the cell shape via modulation of elongasome processivity.
Collapse
Affiliation(s)
- Stuart Middlemiss
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Matthieu Blandenet
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - David M Roberts
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, UK
| | - Andrew McMahon
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, UK
| | - James Grimshaw
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Joshua M Edwards
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, UK
| | - Zikai Sun
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin D Whitley
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Thierry Blu
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China
- Dept of Electrical Engineering, National Taiwan University, Taipei City, Taiwan
| | - Henrik Strahl
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Séamus Holden
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, UK.
| |
Collapse
|
14
|
Perez AJ, Lamanna MM, Bruce KE, Touraev MA, Page JE, Shaw SL, Tsui HCT, Winkler ME. Elongasome core proteins and class A PBP1a display zonal, processive movement at the midcell of Streptococcus pneumoniae. Proc Natl Acad Sci U S A 2024; 121:e2401831121. [PMID: 38875147 PMCID: PMC11194595 DOI: 10.1073/pnas.2401831121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/16/2024] Open
Abstract
Ovoid-shaped bacteria, such as Streptococcus pneumoniae (pneumococcus), have two spatially separated peptidoglycan (PG) synthase nanomachines that locate zonally to the midcell of dividing cells. The septal PG synthase bPBP2x:FtsW closes the septum of dividing pneumococcal cells, whereas the elongasome located on the outer edge of the septal annulus synthesizes peripheral PG outward. We showed previously by sm-TIRFm that the septal PG synthase moves circumferentially at midcell, driven by PG synthesis and not by FtsZ treadmilling. The pneumococcal elongasome consists of the PG synthase bPBP2b:RodA, regulators MreC, MreD, and RodZ, but not MreB, and genetically associated proteins Class A aPBP1a and muramidase MpgA. Given its zonal location separate from FtsZ, it was of considerable interest to determine the dynamics of proteins in the pneumococcal elongasome. We found that bPBP2b, RodA, and MreC move circumferentially with the same velocities and durations at midcell, driven by PG synthesis. However, outside of the midcell zone, the majority of these elongasome proteins move diffusively over the entire surface of cells. Depletion of MreC resulted in loss of circumferential movement of bPBP2b, and bPBP2b and RodA require each other for localization and circumferential movement. Notably, a fraction of aPBP1a molecules also moved circumferentially at midcell with velocities similar to those of components of the core elongasome, but for shorter durations. Other aPBP1a molecules were static at midcell or diffusing over cell bodies. Last, MpgA displayed nonprocessive, subdiffusive motion that was largely confined to the midcell region and less frequently detected over the cell body.
Collapse
Affiliation(s)
- Amilcar J. Perez
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| | - Melissa M. Lamanna
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| | - Kevin E. Bruce
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| | - Marc A. Touraev
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| | - Julia E. Page
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Sidney L. Shaw
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| | | | - Malcolm E. Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| |
Collapse
|
15
|
Perez AJ, Lamanna MM, Bruce KE, Touraev MA, Page JE, Shaw SL, Tsui HCT, Winkler ME. Elongasome core proteins and class A PBP1a display zonal, processive movement at the midcell of Streptococcus pneumoniae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575112. [PMID: 38328058 PMCID: PMC10849506 DOI: 10.1101/2024.01.10.575112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Ovoid-shaped bacteria, such as Streptococcus pneumoniae (pneumococcus), have two spatially separated peptidoglycan (PG) synthase nanomachines that locate zonally to the midcell of dividing cells. The septal PG synthase bPBP2x:FtsW closes the septum of dividing pneumococcal cells, whereas the elongasome located on the outer edge of the septal annulus synthesizes peripheral PG outward. We showed previously by sm-TIRFm that the septal PG synthase moves circumferentially at midcell, driven by PG synthesis and not by FtsZ treadmilling. The pneumococcal elongasome consists of the PG synthase bPBP2b:RodA, regulators MreC, MreD, and RodZ, but not MreB, and genetically associated proteins Class A aPBP1a and muramidase MpgA. Given its zonal location separate from FtsZ, it was of considerable interest to determine the dynamics of proteins in the pneumococcal elongasome. We found that bPBP2b, RodA, and MreC move circumferentially with the same velocities and durations at midcell, driven by PG synthesis. However, outside of the midcell zone, the majority of these elongasome proteins move diffusively over the entire surface of cells. Depletion of MreC resulted in loss of circumferential movement of bPBP2b, and bPBP2b and RodA require each other for localization and circumferential movement. Notably, a fraction of aPBP1a molecules also moved circumferentially at midcell with velocities similar to those of components of the core elongasome, but for shorter durations. Other aPBP1a molecules were static at midcell or diffusing over cell bodies. Last, MpgA displayed non-processive, subdiffusive motion that was largely confined to the midcell region and less frequently detected over the cell body.
Collapse
|
16
|
Basan M, Mukherjee A, Huang Y, Oh S, Sanchez C, Chang YF, Liu X, Bradshaw G, Benites N, Paulsson J, Kirschner M, Sung Y, Elgeti J. Homeostasis of cytoplasmic crowding by cell wall fluidization and ribosomal counterions. RESEARCH SQUARE 2024:rs.3.rs-4138690. [PMID: 38699329 PMCID: PMC11065075 DOI: 10.21203/rs.3.rs-4138690/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
In bacteria, algae, fungi, and plant cells, the wall must expand in concert with cytoplasmic biomass production, otherwise cells would experience toxic molecular crowding1,2 or lyse. But how cells achieve expansion of this complex biomaterial in coordination with biosynthesis of macromolecules in the cytoplasm remains unexplained3, although recent works have revealed that these processes are indeed coupled4,5. Here, we report a striking increase of turgor pressure with growth rate in E. coli, suggesting that the speed of cell wall expansion is controlled via turgor. Remarkably, despite this increase in turgor pressure, cellular biomass density remains constant across a wide range of growth rates. By contrast, perturbations of turgor pressure that deviate from this scaling directly alter biomass density. A mathematical model based on cell wall fluidization by cell wall endopeptidases not only explains these apparently confounding observations but makes surprising quantitative predictions that we validated experimentally. The picture that emerges is that turgor pressure is directly controlled via counterions of ribosomal RNA. Elegantly, the coupling between rRNA and turgor pressure simultaneously coordinates cell wall expansion across a wide range of growth rates and exerts homeostatic feedback control on biomass density. This mechanism may regulate cell wall biosynthesis from microbes to plants and has important implications for the mechanism of action of antibiotics6.
Collapse
|
17
|
Schiller H, Hong Y, Kouassi J, Rados T, Kwak J, DiLucido A, Safer D, Marchfelder A, Pfeiffer F, Bisson A, Schulze S, Pohlschroder M. Identification of structural and regulatory cell-shape determinants in Haloferax volcanii. Nat Commun 2024; 15:1414. [PMID: 38360755 PMCID: PMC10869688 DOI: 10.1038/s41467-024-45196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Archaea play indispensable roles in global biogeochemical cycles, yet many crucial cellular processes, including cell-shape determination, are poorly understood. Haloferax volcanii, a model haloarchaeon, forms rods and disks, depending on growth conditions. Here, we used a combination of iterative proteomics, genetics, and live-cell imaging to identify mutants that only form rods or disks. We compared the proteomes of the mutants with wild-type cells across growth phases, thereby distinguishing between protein abundance changes specific to cell shape and those related to growth phases. The results identified a diverse set of proteins, including predicted transporters, transducers, signaling components, and transcriptional regulators, as important for cell-shape determination. Through phenotypic characterization of deletion strains, we established that rod-determining factor A (RdfA) and disk-determining factor A (DdfA) are required for the formation of rods and disks, respectively. We also identified structural proteins, including an actin homolog that plays a role in disk-shape morphogenesis, which we named volactin. Using live-cell imaging, we determined volactin's cellular localization and showed its dynamic polymerization and depolymerization. Our results provide insights into archaeal cell-shape determination, with possible implications for understanding the evolution of cell morphology regulation across domains.
Collapse
Affiliation(s)
- Heather Schiller
- University of Pennsylvania, Department of Biology, Philadelphia, PA, 19104, USA
| | - Yirui Hong
- University of Pennsylvania, Department of Biology, Philadelphia, PA, 19104, USA
| | - Joshua Kouassi
- University of Pennsylvania, Department of Biology, Philadelphia, PA, 19104, USA
| | - Theopi Rados
- Brandeis University, Department of Biology, Waltham, MA, 02453, USA
| | - Jasmin Kwak
- Brandeis University, Department of Biology, Waltham, MA, 02453, USA
| | - Anthony DiLucido
- University of Pennsylvania, Department of Biology, Philadelphia, PA, 19104, USA
| | - Daniel Safer
- University of Pennsylvania, Department of Physiology, Philadelphia, PA, 19104, USA
| | | | - Friedhelm Pfeiffer
- Biology II, Ulm University, 89069, Ulm, Germany
- Computational Biology Group, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Alexandre Bisson
- Brandeis University, Department of Biology, Waltham, MA, 02453, USA.
| | - Stefan Schulze
- University of Pennsylvania, Department of Biology, Philadelphia, PA, 19104, USA.
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, 14623, USA.
| | | |
Collapse
|
18
|
Pöhl S, Osorio-Valeriano M, Cserti E, Harberding J, Hernandez-Tamayo R, Biboy J, Sobetzko P, Vollmer W, Graumann PL, Thanbichler M. A dynamic bactofilin cytoskeleton cooperates with an M23 endopeptidase to control bacterial morphogenesis. eLife 2024; 12:RP86577. [PMID: 38294932 PMCID: PMC10945521 DOI: 10.7554/elife.86577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Bactofilins have emerged as a widespread family of cytoskeletal proteins with important roles in bacterial morphogenesis, but their precise mode of action is still incompletely understood. In this study, we identify the bactofilin cytoskeleton as a key regulator of cell growth in the stalked budding alphaproteobacterium Hyphomonas neptunium. We show that, in this species, bactofilin polymers localize dynamically to the stalk base and the bud neck, with their absence leading to unconstrained growth of the stalk and bud compartments, indicating a central role in the spatial regulation of cell wall biosynthesis. Database searches reveal that bactofilin genes are often clustered with genes for cell wall hydrolases of the M23 peptidase family, suggesting a functional connection between these two types of proteins. In support of this notion, we find that the H. neptunium M23 peptidase homolog LmdC interacts directly with bactofilin in vitro and is required for proper cell shape in vivo. Complementary studies in the spiral-shaped alphaproteobacterium Rhodospirillum rubrum again reveal a close association of its bactofilin and LmdC homologs, which co-localize at the inner curve of the cell, modulating the degree of cell curvature. Collectively, these findings demonstrate that bactofilins and M23 peptidases form a conserved functional module that promotes local changes in the mode of cell wall biosynthesis, thereby driving cell shape determination in morphologically complex bacteria.
Collapse
Affiliation(s)
- Sebastian Pöhl
- Department of Biology, University of Marburg, Marburg, GermanyMarburgGermany
| | - Manuel Osorio-Valeriano
- Department of Biology, University of Marburg, Marburg, GermanyMarburgGermany
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Emöke Cserti
- Department of Biology, University of Marburg, Marburg, GermanyMarburgGermany
| | - Jannik Harberding
- Department of Biology, University of Marburg, Marburg, GermanyMarburgGermany
| | - Rogelio Hernandez-Tamayo
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
- Department of Chemistry, University of MarburgMarburgGermany
- Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | | | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle UniversityNewcastle upon TyneUnited Kingdom
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - Peter L Graumann
- Department of Chemistry, University of MarburgMarburgGermany
- Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, Marburg, GermanyMarburgGermany
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| |
Collapse
|
19
|
Cylke A, Serbanescu D, Banerjee S. Energy allocation theory for bacterial growth control in and out of steady state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574890. [PMID: 38260684 PMCID: PMC10802433 DOI: 10.1101/2024.01.09.574890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Efficient allocation of energy resources to key physiological functions allows living organisms to grow and thrive in diverse environments and adapt to a wide range of perturbations. To quantitatively understand how unicellular organisms utilize their energy resources in response to changes in growth environment, we introduce a theory of dynamic energy allocation which describes cellular growth dynamics based on partitioning of metabolizable energy into key physiological functions: growth, division, cell shape regulation, energy storage and loss through dissipation. By optimizing the energy flux for growth, we develop the equations governing the time evolution of cell morphology and growth rate in diverse environments. The resulting model accurately captures experimentally observed dependencies of bacterial cell size on growth rate, superlinear scaling of metabolic rate with cell size, and predicts nutrient-dependent trade-offs between energy expended for growth, division, and shape maintenance. By calibrating model parameters with available experimental data for the model organism E. coli, our model is capable of describing bacterial growth control in dynamic conditions, particularly during nutrient shifts and osmotic shocks. The model captures these perturbations with minimal added complexity and our unified approach predicts the driving factors behind a wide range of observed morphological and growth phenomena.
Collapse
Affiliation(s)
- Arianna Cylke
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Diana Serbanescu
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
20
|
Cameron TA, Margolin W. Insights into the assembly and regulation of the bacterial divisome. Nat Rev Microbiol 2024; 22:33-45. [PMID: 37524757 PMCID: PMC11102604 DOI: 10.1038/s41579-023-00942-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/02/2023]
Abstract
The ability to split one cell into two is fundamental to all life, and many bacteria can accomplish this feat several times per hour with high accuracy. Most bacteria call on an ancient homologue of tubulin, called FtsZ, to localize and organize the cell division machinery, the divisome, into a ring-like structure at the cell midpoint. The divisome includes numerous other proteins, often including an actin homologue (FtsA), that interact with each other at the cytoplasmic membrane. Once assembled, the protein complexes that comprise the dynamic divisome coordinate membrane constriction with synthesis of a division septum, but only after overcoming checkpoints mediated by specialized protein-protein interactions. In this Review, we summarize the most recent evidence showing how the divisome proteins of Escherichia coli assemble at the cell midpoint, interact with each other and regulate activation of septum synthesis. We also briefly discuss the potential of divisome proteins as novel antibiotic targets.
Collapse
Affiliation(s)
- Todd A Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
21
|
Zheng J, Mallon J, Lammers A, Rados T, Litschel T, Moody ERR, Ramirez-Diaz DA, Schmid A, Williams TA, Bisson-Filho AW, Garner E. Salactin, a dynamically unstable actin homolog in Haloarchaea. mBio 2023; 14:e0227223. [PMID: 37966230 PMCID: PMC10746226 DOI: 10.1128/mbio.02272-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/05/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE Protein filaments play important roles in many biological processes. We discovered an actin homolog in halophilic archaea, which we call Salactin. Just like the filaments that segregate DNA in eukaryotes, Salactin grows out of the cell poles towards the middle, and then quickly depolymerizes, a behavior known as dynamic instability. Furthermore, we see that Salactin affects the distribution of DNA in daughter cells when cells are grown in low-phosphate media, suggesting Salactin filaments might be involved in segregating DNA when the cell has only a few copies of the chromosome.
Collapse
Affiliation(s)
- Jenny Zheng
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - John Mallon
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Alex Lammers
- Physiology Course, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
- Department of Biomedical Engineering, The Biological Design Center, Boston University, Boston, Massachusetts, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Theopi Rados
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Thomas Litschel
- Physiology Course, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Edmund R. R. Moody
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Diego A. Ramirez-Diaz
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Amy Schmid
- Department of Biology, Duke University, Durham, North Carolina, USA
- Center for Genomics and Computational Biology, Duke University, Durham, North Carolina, USA
| | - Tom A. Williams
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Alexandre W. Bisson-Filho
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Ethan Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
22
|
Kamal El-Sagheir AM, Abdelmesseh Nekhala I, Abd El-Gaber MK, Aboraia AS, Persson J, Schäfer AB, Wenzel M, Omar FA. Rational design, synthesis, molecular modeling, biological activity, and mechanism of action of polypharmacological norfloxacin hydroxamic acid derivatives. RSC Med Chem 2023; 14:2593-2610. [PMID: 38099058 PMCID: PMC10718593 DOI: 10.1039/d3md00309d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/11/2023] [Indexed: 12/17/2023] Open
Abstract
Fluoroquinolones are broad-spectrum antibiotics that target gyrase and topoisomerase IV, involved in DNA compaction and segregation. We synthesized 28 novel norfloxacin hydroxamic acid derivatives with additional metal-chelating and hydrophobic pharmacophores, designed to enable interactions with additional drug targets. Several compounds showed equal or better activity than norfloxacin against Gram-positive, Gram-negative, and mycobacteria, with MICs as low as 0.18 μM. The most interesting derivatives were selected for in silico, in vitro, and in vivo mode of action studies. Molecular docking, enzyme inhibition, and bacterial cytological profiling confirmed inhibition of gyrase and topoisomerase IV for all except two tested derivatives (10f and 11f). Further phenotypic analysis revealed polypharmacological effects on peptidoglycan synthesis for four derivatives (16a, 17a, 17b, 20b). Interestingly, compounds 17a, 17b, and 20b, showed never seen before effects on cell wall synthetic enzymes, including MreB, MurG, and PonA, suggesting a novel mechanism of action, possibly impairing the lipid II cycle.
Collapse
Affiliation(s)
| | - Ireny Abdelmesseh Nekhala
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology 412 96 Gothenburg Sweden
| | | | - Ahmed S Aboraia
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Jonatan Persson
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology 412 96 Gothenburg Sweden
- Center for Antibiotic Resistance Research in Gothenburg (CARe) Gothenburg Sweden
| | - Ann-Britt Schäfer
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology 412 96 Gothenburg Sweden
- Center for Antibiotic Resistance Research in Gothenburg (CARe) Gothenburg Sweden
| | - Michaela Wenzel
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology 412 96 Gothenburg Sweden
- Center for Antibiotic Resistance Research in Gothenburg (CARe) Gothenburg Sweden
| | - Farghaly A Omar
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| |
Collapse
|
23
|
Bapat M, Pande V, Gayathri P. Getting bacterial cells into shape. eLife 2023; 12:e93719. [PMID: 38088194 PMCID: PMC10718527 DOI: 10.7554/elife.93719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
The conformational state of a structural protein in bacteria can vary, depending on the concentration level of potassium ions or the nucleotide bound to it.
Collapse
Affiliation(s)
- Mrinmayee Bapat
- Biology Division, Indian Institute of Science Education and ResearchPuneIndia
| | - Vani Pande
- Biology Division, Indian Institute of Science Education and ResearchPuneIndia
| | - Pananghat Gayathri
- Biology Division, Indian Institute of Science Education and ResearchPuneIndia
| |
Collapse
|
24
|
Wilson SA, Tank RKJ, Hobbs JK, Foster SJ, Garner EC. An exhaustive multiple knockout approach to understanding cell wall hydrolase function in Bacillus subtilis. mBio 2023; 14:e0176023. [PMID: 37768080 PMCID: PMC10653849 DOI: 10.1128/mbio.01760-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/03/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE In order to grow, bacterial cells must both create and break down their cell wall. The enzymes that are responsible for these processes are the target of some of our best antibiotics. Our understanding of the proteins that break down the wall- cell wall hydrolases-has been limited by redundancy among the large number of hydrolases many bacteria contain. To solve this problem, we identified 42 cell wall hydrolases in Bacillus subtilis and created a strain lacking 40 of them. We show that cells can survive using only a single cell wall hydrolase; this means that to understand the growth of B. subtilis in standard laboratory conditions, it is only necessary to study a very limited number of proteins, simplifying the problem substantially. We additionally show that the ∆40 strain is a research tool to characterize hydrolases, using it to identify three "helper" hydrolases that act in certain stress conditions.
Collapse
Affiliation(s)
- Sean A. Wilson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
- Center for Systems Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Raveen K. J. Tank
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Jamie K. Hobbs
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Simon J. Foster
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Ethan C. Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
- Center for Systems Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
25
|
Goudin A, Ferat JL, Possoz C, Barre FX, Galli E. Recovery of Vibrio cholerae polarized cellular organization after exit from a non-proliferating spheroplast state. PLoS One 2023; 18:e0293276. [PMID: 37883451 PMCID: PMC10602287 DOI: 10.1371/journal.pone.0293276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Vibrio cholerae, the causative agent of cholera epidemics, is a rod-shaped bacterium with a highly polarized cellular organization. It can survive harmful growth conditions by entering a non-proliferating spheroplast state, which involves loss of the cell envelope and polarity. How polarized rod organization cells are formed when the spheroplasts exit the non-proliferating state remains largely uncharacterized. To address this question, we investigated how L-arabinose-induced V. cholerae spheroplasts return to growth. We found that de novo morphogenesis started with the elimination of an excess of periplasm, which was immediately followed by cell elongation and the formation of cell branches with a diameter similar to that of normal V. cholerae cells. Periplasm elimination was driven by bifunctional peptidoglycan synthases involved in cell-wall maintenance, the aPBPs. Elongation and branching relied on the MreB-associated monofunctional peptidoglycan synthase PBP2. The cell division monofunctional peptidoglycan synthase FtsI was not involved in any of these processes. However, the FtsK cell division protein specifically targeted the sites of vesicle extrusion. Genetic material was amplified by synchronous waves of DNA replication as periplasmic elimination began. The HubP polarity factor targeted the tip of the branches as they began to form. However, HubP-mediated polarization was not involved in the efficiency of the recovery process. Finally, our results suggest that the positioning of HubP and the activities of the replication terminus organizer of the two V. cholerae chromosomes, MatP, are independent of cell division. Taken together, these results confirm the interest of L-arabinose-induced V. cholerae spheroplasts to study how cell shape is generated and shed light on the de novo establishment of the intracellular organization and cell polarization in V. cholerae.
Collapse
Affiliation(s)
- Anthony Goudin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Jean-Luc Ferat
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Christophe Possoz
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - François-Xavier Barre
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Elisa Galli
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| |
Collapse
|
26
|
Mao W, Renner LD, Cornilleau C, Li de la Sierra-Gallay I, Afensiss S, Benlamara S, Ah-Seng Y, Van Tilbeurgh H, Nessler S, Bertin A, Chastanet A, Carballido-Lopez R. On the role of nucleotides and lipids in the polymerization of the actin homolog MreB from a Gram-positive bacterium. eLife 2023; 12:e84505. [PMID: 37818717 PMCID: PMC10718530 DOI: 10.7554/elife.84505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 10/08/2023] [Indexed: 10/12/2023] Open
Abstract
In vivo, bacterial actin MreB assembles into dynamic membrane-associated filamentous structures that exhibit circumferential motion around the cell. Current knowledge of MreB biochemical and polymerization properties in vitro remains limited and is mostly based on MreB proteins from Gram-negative species. In this study, we report the first observation of organized protofilaments by electron microscopy and the first 3D-structure of MreB from a Gram-positive bacterium. We show that Geobacillus stearothermophilus MreB forms straight pairs of protofilaments on lipid surfaces in the presence of ATP or GTP, but not in the presence of ADP, GDP or non-hydrolysable ATP analogs. We demonstrate that membrane anchoring is mediated by two spatially close short hydrophobic sequences while electrostatic interactions also contribute to lipid binding, and show that the population of membrane-bound protofilament doublets is in steady-state. In solution, protofilament doublets were not detected in any condition tested. Instead, MreB formed large sheets regardless of the bound nucleotide, albeit at a higher critical concentration. Altogether, our results indicate that both lipids and ATP are facilitators of MreB polymerization, and are consistent with a dual effect of ATP hydrolysis, in promoting both membrane binding and filaments assembly/disassembly.
Collapse
Affiliation(s)
- Wei Mao
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Lars D Renner
- Leibniz Institute of Polymer Research, and the Max-Bergmann-Center of BiomaterialsDresdenGermany
| | - Charlène Cornilleau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Ines Li de la Sierra-Gallay
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRSGif-sur-YvetteFrance
| | - Sana Afensiss
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Sarah Benlamara
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Yoan Ah-Seng
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Herman Van Tilbeurgh
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRSGif-sur-YvetteFrance
| | - Sylvie Nessler
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRSGif-sur-YvetteFrance
| | - Aurélie Bertin
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Sorbonne Université, 75005ParisFrance
| | - Arnaud Chastanet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Rut Carballido-Lopez
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| |
Collapse
|
27
|
Dunajova Z, Mateu BP, Radler P, Lim K, Brandis D, Velicky P, Danzl JG, Wong RW, Elgeti J, Hannezo E, Loose M. Chiral and nematic phases of flexible active filaments. NATURE PHYSICS 2023; 19:1916-1926. [PMID: 38075437 PMCID: PMC10709145 DOI: 10.1038/s41567-023-02218-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/21/2023] [Indexed: 01/05/2025]
Abstract
The emergence of large-scale order in self-organized systems relies on local interactions between individual components. During bacterial cell division, FtsZ-a prokaryotic homologue of the eukaryotic protein tubulin-polymerizes into treadmilling filaments that further organize into a cytoskeletal ring. In vitro, FtsZ filaments can form dynamic chiral assemblies. However, how the active and passive properties of individual filaments relate to these large-scale self-organized structures remains poorly understood. Here we connect single-filament properties with the mesoscopic scale by combining minimal active matter simulations and biochemical reconstitution experiments. We show that the density and flexibility of active chiral filaments define their global order. At intermediate densities, curved, flexible filaments organize into chiral rings and polar bands. An effectively nematic organization dominates for high densities and for straight, mutant filaments with increased rigidity. Our predicted phase diagram quantitatively captures these features, demonstrating how the flexibility, density and chirality of the active filaments affect their collective behaviour. Our findings shed light on the fundamental properties of active chiral matter and explain how treadmilling FtsZ filaments organize during bacterial cell division.
Collapse
Affiliation(s)
- Zuzana Dunajova
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | - Philipp Radler
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Dörte Brandis
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Philipp Velicky
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Johann Georg Danzl
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Richard W. Wong
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Jens Elgeti
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| | - Edouard Hannezo
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Martin Loose
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| |
Collapse
|
28
|
Zhang H, Venkatesan S, Ng E, Nan B. Coordinated peptidoglycan synthases and hydrolases stabilize the bacterial cell wall. Nat Commun 2023; 14:5357. [PMID: 37660104 PMCID: PMC10475089 DOI: 10.1038/s41467-023-41082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/21/2023] [Indexed: 09/04/2023] Open
Abstract
Peptidoglycan (PG) defines cell shape and protects bacteria against osmotic stress. The growth and integrity of PG require coordinated actions between synthases that insert new PG strands and hydrolases that generate openings to allow the insertion. However, the mechanisms of their coordination remain elusive. Moenomycin that inhibits a family of PG synthases known as Class-A penicillin-binding proteins (aPBPs), collapses rod shape despite aPBPs being non-essential for rod-like morphology in the bacterium Myxococcus xanthus. Here, we demonstrate that inhibited PBP1a2, an aPBP, accelerates the degradation of cell poles by DacB, a hydrolytic PG peptidase. Moenomycin promotes the binding between DacB and PG and thus reduces the mobility of DacB through PBP1a2. Conversely, DacB also regulates the distribution and dynamics of aPBPs. Our findings clarify the action of moenomycin and suggest that disrupting the coordination between PG synthases and hydrolases could be more lethal than eliminating individual enzymes.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Srutha Venkatesan
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Emily Ng
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Beiyan Nan
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
29
|
Fivenson EM, Rohs PDA, Vettiger A, Sardis MF, Torres G, Forchoh A, Bernhardt TG. A role for the Gram-negative outer membrane in bacterial shape determination. Proc Natl Acad Sci U S A 2023; 120:e2301987120. [PMID: 37607228 PMCID: PMC10469335 DOI: 10.1073/pnas.2301987120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/21/2023] [Indexed: 08/24/2023] Open
Abstract
The cell envelope of Gram-negative bacteria consists of three distinct layers: the cytoplasmic membrane, a cell wall made of peptidoglycan (PG), and an asymmetric outer membrane (OM) composed of phospholipid in the inner leaflet and lipopolysaccharide (LPS) glycolipid in the outer leaflet. The PG layer has long been thought to be the major structural component of the envelope protecting cells from osmotic lysis and providing them with their characteristic shape. In recent years, the OM has also been shown to be a load-bearing layer of the cell surface that fortifies cells against internal turgor pressure. However, whether the OM also plays a role in morphogenesis has remained unclear. Here, we report that changes in LPS synthesis or modification predicted to strengthen the OM can suppress the growth and shape defects of Escherichia coli mutants with reduced activity in a conserved PG synthesis machine called the Rod complex (elongasome) that is responsible for cell elongation and shape determination. Evidence is presented that OM fortification in the shape mutants restores the ability of MreB cytoskeletal filaments to properly orient the synthesis of new cell wall material by the Rod complex. Our results are therefore consistent with a role for the OM in the propagation of rod shape during growth in addition to its well-known function as a diffusion barrier promoting the intrinsic antibiotic resistance of Gram-negative bacteria.
Collapse
Affiliation(s)
- Elayne M. Fivenson
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Patricia D. A. Rohs
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Andrea Vettiger
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Marios F. Sardis
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Grasiela Torres
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Alison Forchoh
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Thomas G. Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
30
|
Prindle JR, de Cuba OIC, Gahlmann A. Single-molecule tracking to determine the abundances and stoichiometries of freely-diffusing protein complexes in living cells: Past applications and future prospects. J Chem Phys 2023; 159:071002. [PMID: 37589409 PMCID: PMC10908566 DOI: 10.1063/5.0155638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/06/2023] [Indexed: 08/18/2023] Open
Abstract
Most biological processes in living cells rely on interactions between proteins. Live-cell compatible approaches that can quantify to what extent a given protein participates in homo- and hetero-oligomeric complexes of different size and subunit composition are therefore critical to advance our understanding of how cellular physiology is governed by these molecular interactions. Biomolecular complex formation changes the diffusion coefficient of constituent proteins, and these changes can be measured using fluorescence microscopy-based approaches, such as single-molecule tracking, fluorescence correlation spectroscopy, and fluorescence recovery after photobleaching. In this review, we focus on the use of single-molecule tracking to identify, resolve, and quantify the presence of freely-diffusing proteins and protein complexes in living cells. We compare and contrast different data analysis methods that are currently employed in the field and discuss experimental designs that can aid the interpretation of the obtained results. Comparisons of diffusion rates for different proteins and protein complexes in intracellular aqueous environments reported in the recent literature reveal a clear and systematic deviation from the Stokes-Einstein diffusion theory. While a complete and quantitative theoretical explanation of why such deviations manifest is missing, the available data suggest the possibility of weighing freely-diffusing proteins and protein complexes in living cells by measuring their diffusion coefficients. Mapping individual diffusive states to protein complexes of defined molecular weight, subunit stoichiometry, and structure promises to provide key new insights into how protein-protein interactions regulate protein conformational, translational, and rotational dynamics, and ultimately protein function.
Collapse
Affiliation(s)
- Joshua Robert Prindle
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Olivia Isabella Christiane de Cuba
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
| | | |
Collapse
|
31
|
Stülke J, Grüppen A, Bramkamp M, Pelzer S. Bacillus subtilis, a Swiss Army Knife in Science and Biotechnology. J Bacteriol 2023; 205:e0010223. [PMID: 37140386 PMCID: PMC10210981 DOI: 10.1128/jb.00102-23] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Next to Escherichia coli, Bacillus subtilis is the most studied and best understood organism that also serves as a model for many important pathogens. Due to its ability to form heat-resistant spores that can germinate even after very long periods of time, B. subtilis has attracted much scientific interest. Another feature of B. subtilis is its genetic competence, a developmental state in which B. subtilis actively takes up exogenous DNA. This makes B. subtilis amenable to genetic manipulation and investigation. The bacterium was one of the first with a fully sequenced genome, and it has been subject to a wide variety of genome- and proteome-wide studies that give important insights into many aspects of the biology of B. subtilis. Due to its ability to secrete large amounts of proteins and to produce a wide range of commercially interesting compounds, B. subtilis has become a major workhorse in biotechnology. Here, we review the development of important aspects of the research on B. subtilis with a specific focus on its cell biology and biotechnological and practical applications from vitamin production to concrete healing. The intriguing complexity of the developmental programs of B. subtilis, paired with the availability of sophisticated tools for genetic manipulation, positions it at the leading edge for discovering new biological concepts and deepening our understanding of the organization of bacterial cells.
Collapse
Affiliation(s)
- Jörg Stülke
- Department of General Microbiology, Institute for Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | | |
Collapse
|
32
|
Koyano Y, Okajima K, Mihara M, Yamamoto H. Visualization of Wall Teichoic Acid Decoration in Bacillus subtilis. J Bacteriol 2023; 205:e0006623. [PMID: 37010431 PMCID: PMC10127673 DOI: 10.1128/jb.00066-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/16/2023] [Indexed: 04/04/2023] Open
Abstract
Teichoic acids are important for the maintenance of cell shape and growth in Gram-positive bacteria. Bacillus subtilis produces major and minor forms of wall teichoic acid (WTA) and lipoteichoic acid during vegetative growth. We found that newly synthesized WTA attachment to peptidoglycan occurs in a patch-like manner on the sidewall with the fluorescent labeling compound of the concanavalin A lectin. Similarly, WTA biosynthesis enzymes fused to the epitope tags were localized in similar patch-like patterns on the cylindrical part of the cell, and WTA transporter TagH was frequently colocalized with WTA polymerase TagF, WTA ligase TagT, and actin homolog MreB, respectively. Moreover, we found that the nascent cell wall patches, decorated with the newly glucosylated WTA, were colocalized with TagH and WTA ligase TagV. In the cylindrical part, the newly glucosylated WTA patchily inserted into the bottom of the cell wall layer and finally reached the outermost layer of the cell wall after approximately half an hour. Incorporation of newly glucosylated WTA was arrested with the addition of vancomycin but restored with the removal of the antibiotic. These results are consistent with the prevailing model that WTA precursors are attached to newly synthesized peptidoglycan. IMPORTANCE In Gram-positive bacteria, the cell wall is composed of mesh-like peptidoglycan and covalently linked wall teichoic acid (WTA). It is unclear where WTA decorates peptidoglycan to create a cell wall architecture. Here, we demonstrate that nascent WTA decoration occurred in a patch-like manner at the peptidoglycan synthesis sites on the cytoplasmic membrane. The incorporated cell wall with newly glucosylated WTA in the cell wall layer then reached the outermost layer of the cell wall after approximately half an hour. Incorporation of newly glucosylated WTA was arrested with the addition of vancomycin but restored with the removal of the antibiotic. These results are consistent with the prevailing model that WTA precursors are attached to newly synthesized peptidoglycan.
Collapse
Affiliation(s)
- Yutaka Koyano
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Kiyoshirou Okajima
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Mako Mihara
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Hiroki Yamamoto
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| |
Collapse
|
33
|
Wagstaff JM, Planelles-Herrero VJ, Sharov G, Alnami A, Kozielski F, Derivery E, Löwe J. Diverse cytomotive actins and tubulins share a polymerization switch mechanism conferring robust dynamics. SCIENCE ADVANCES 2023; 9:eadf3021. [PMID: 36989372 PMCID: PMC10058229 DOI: 10.1126/sciadv.adf3021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Protein filaments are used in myriads of ways to organize other molecules within cells. Some filament-forming proteins couple the hydrolysis of nucleotides to their polymerization cycle, thus powering the movement of other molecules. These filaments are termed cytomotive. Only members of the actin and tubulin protein superfamilies are known to form cytomotive filaments. We examined the basis of cytomotivity via structural studies of the polymerization cycles of actin and tubulin homologs from across the tree of life. We analyzed published data and performed structural experiments designed to disentangle functional components of these complex filament systems. Our analysis demonstrates the existence of shared subunit polymerization switches among both cytomotive actins and tubulins, i.e., the conformation of subunits switches upon assembly into filaments. These cytomotive switches can explain filament robustness, by enabling the coupling of kinetic and structural polarities required for cytomotive behaviors and by ensuring that single cytomotive filaments do not fall apart.
Collapse
Affiliation(s)
- James Mark Wagstaff
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | - Grigory Sharov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Aisha Alnami
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Frank Kozielski
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Emmanuel Derivery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
34
|
L Pastrana C, Qiu L, Armon S, Gerland U, Amir A. Pressure-induced shape-shifting of helical bacteria. SOFT MATTER 2023; 19:2224-2230. [PMID: 36884021 DOI: 10.1039/d2sm01044e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Many bacterial species are helical in shape, including the widespread pathogen H. pylori. Motivated by recent experiments on H. pylori showing that cell wall synthesis is not uniform [J. A. Taylor, et al., eLife, 2020, 9, e52482], we investigate the possible formation of helical cell shape induced by elastic heterogeneity. We show, experimentally and theoretically, that helical morphogenesis can be produced by pressurizing an elastic cylindrical vessel with helical reinforced lines. The properties of the pressurized helix are highly dependent on the initial helical angle of the reinforced region. We find that steep angles result in crooked helices with, surprisingly, a reduced end-to-end distance upon pressurization. This work helps explain the possible mechanisms for the generation of helical cell morphologies and may inspire the design of novel pressure-controlled helical actuators.
Collapse
Affiliation(s)
- César L Pastrana
- Physics of Complex Biosystems, Technical University of Munich, 85748 Garching, Germany.
| | - Luyi Qiu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
| | - Shahaf Armon
- Department of Physics of Complex Systems, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ulrich Gerland
- Physics of Complex Biosystems, Technical University of Munich, 85748 Garching, Germany.
| | - Ariel Amir
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
- Department of Physics of Complex Systems, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
35
|
Sun Y, Hürlimann S, Garner E. Growth rate is modulated by monitoring cell wall precursors in Bacillus subtilis. Nat Microbiol 2023; 8:469-480. [PMID: 36797487 DOI: 10.1038/s41564-023-01329-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/13/2023] [Indexed: 02/18/2023]
Abstract
How bacteria link their growth rate to external nutrient conditions is unknown. To investigate how Bacillus subtilis cells alter the rate at which they expand their cell walls as they grow, we compared single-cell growth rates of cells grown under agar pads with the density of moving MreB filaments under a variety of growth conditions. MreB filament density increases proportionally with growth rate. We show that both MreB filament density and growth rate depend on the abundance of Lipid II and murAA, the first gene in the biosynthetic pathway creating the cell wall precursor Lipid II. Lipid II is sensed by the serine/threonine kinase PrkC, which phosphorylates RodZ and other proteins. We show that phosphorylated RodZ increases MreB filament density, which in turn increases cell growth rate. We also show that increasing the activity of this pathway in nutrient-poor media results in cells that elongate faster than wild-type cells, which means that B. subtilis contains spare 'growth capacity'. We conclude that PrkC functions as a cellular rheostat, enabling fine-tuning of cell growth rates in response to Lipid II in different nutrient conditions.
Collapse
Affiliation(s)
- Yingjie Sun
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Sylvia Hürlimann
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Ethan Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
36
|
Fivenson EM, Rohs PD, Vettiger A, Sardis MF, Torres G, Forchoh A, Bernhardt TG. A role for the Gram-negative outer membrane in bacterial shape determination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527047. [PMID: 36778245 PMCID: PMC9915748 DOI: 10.1101/2023.02.03.527047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cell envelope of Gram-negative bacteria consists of three distinct layers: the cytoplasmic membrane, a cell wall made of peptidoglycan (PG), and an asymmetric outer membrane (OM) composed of phospholipid in the inner leaflet and lipopolysaccharide (LPS) glycolipid in the outer leaflet. The PG layer has long been thought to be the major structural component of the envelope protecting cells from osmotic lysis and providing them with their characteristic shape. In recent years, the OM has also been shown to be a load-bearing layer of the cell surface that fortifies cells against internal turgor pressure. However, whether the OM also plays a role in morphogenesis has remained unclear. Here, we report that changes in LPS synthesis or modification predicted to strengthen the OM can suppress the growth and shape defects of Escherichia coli mutants with reduced activity in a conserved PG synthesis machine called the Rod system (elongasome) that is responsible for cell elongation and shape determination. Evidence is presented that OM fortification in the shape mutants restores the ability of MreB cytoskeletal filaments to properly orient the synthesis of new cell wall material by the Rod system. Our results are therefore consistent with a role for the OM in the propagation of rod shape during growth in addition to its well-known function as a diffusion barrier promoting the intrinsic antibiotic resistance of Gram-negative bacteria. SIGNIFICANCE The cell wall has traditionally been thought to be the main structural determinant of the bacterial cell envelope that resists internal turgor and determines cell shape. However, the outer membrane (OM) has recently been shown to contribute to the mechanical strength of Gram-negative bacterial envelopes. Here, we demonstrate that changes to OM composition predicted to increase its load bearing capacity rescue the growth and shape defects of Escherichia coli mutants defective in the major cell wall synthesis machinery that determines rod shape. Our results therefore reveal a previously unappreciated role for the OM in bacterial shape determination in addition to its well-known function as a diffusion barrier that protects Gram-negative bacteria from external insults like antibiotics.
Collapse
Affiliation(s)
- Elayne M. Fivenson
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Patricia D.A. Rohs
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Andrea Vettiger
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Marios F. Sardis
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Grasiela Torres
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Alison Forchoh
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Thomas G. Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Boston, United States
| |
Collapse
|
37
|
Construction and Characterization of Functional FtsA Sandwich Fusions for Studies of FtsA Localization and Dynamics during Escherichia coli Cell Division. J Bacteriol 2023; 205:e0037322. [PMID: 36622232 PMCID: PMC9879108 DOI: 10.1128/jb.00373-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
FtsA, a homolog of actin, is essential for cell division of Escherichia coli and is widely conserved among many bacteria. FtsA helps to tether polymers of the bacterial tubulin homolog FtsZ to the cytoplasmic membrane as part of the cytokinetic Z ring. GFP fusions to FtsA have illuminated FtsA's localization in live E. coli, but these fusions have not been fully functional and required the presence of the native FtsA. Here, we characterize "sandwich" fusions of E. coli FtsA to either mCherry or msfGFP that are functional for cell division and exhibit fluorescent rings at midcell that persist throughout constriction until cell separation. FtsA within the Z ring moved circumferentially like FtsZ, and FtsA outside the rings formed highly dynamic patches at the membrane. Notably, both FtsA-mCherrysw and FtsA-msfGFPsw acted as mild hypermorphs, as they were not toxic when overproduced, bypassed the essential cell division protein ZipA, and suppressed several thermosensitive fts alleles, although not as effectively as the prototypical hypermorph FtsA*. Overall, our results indicate that fluorescent FtsA sandwich fusions can be used as the sole FtsA in E. coli and thus should shed new light on FtsA dynamics during the cell division cycle in this model system. IMPORTANCE FtsA is a key conserved cell division protein, and E. coli is the most well studied model system for bacterial cell division. One obstacle to full understanding of this process is the lack of a fully functional fluorescent reporter for FtsA in vivo. Here, we describe a fluorescent fusion to E. coli FtsA that promotes efficient cell division in the absence of the native FtsA and can be used to monitor FtsA dynamics during cell division.
Collapse
|
38
|
Cytoskeletal components can turn wall-less spherical bacteria into kinking helices. Nat Commun 2022; 13:6930. [PMID: 36376306 PMCID: PMC9663586 DOI: 10.1038/s41467-022-34478-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial cell shape is generally determined through an interplay between the peptidoglycan cell wall and cytoplasmic filaments made of polymerized MreB. Indeed, some bacteria (e.g., Mycoplasma) that lack both a cell wall and mreB genes consist of non-motile cells that are spherical or pleomorphic. However, other members of the same class Mollicutes (e.g., Spiroplasma, also lacking a cell wall) display a helical cell shape and kink-based motility, which is thought to rely on the presence of five MreB isoforms and a specific fibril protein. Here, we show that heterologous expression of Spiroplasma fibril and MreB proteins confers helical shape and kinking ability to Mycoplasma capricolum cells. Isoform MreB5 is sufficient to confer helicity and kink propagation to mycoplasma cells. Cryoelectron microscopy confirms the association of cytoplasmic MreB filaments with the plasma membrane, suggesting a direct effect on membrane curvature. However, in our experiments, the heterologous expression of MreBs and fibril did not result in efficient motility in culture broth, indicating that additional, unknown Spiroplasma components are required for swimming.
Collapse
|
39
|
Herianto S, Chien PJ, Ho JAA, Tu HL. Liposome-based artificial cells: From gene expression to reconstitution of cellular functions and phenotypes. BIOMATERIALS ADVANCES 2022; 142:213156. [PMID: 36302330 DOI: 10.1016/j.bioadv.2022.213156] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Bottom-up approaches in creating artificial cells that can mimic natural cells have significant implications for both basic research and translational application. Among various artificial cell models, liposome is one of the most sophisticated systems. By encapsulating proteins and associated biomolecules, they can functionally reconstitute foundational features of biological cells, such as the ability to divide, communicate, and undergo shape deformation. Yet constructing liposome artificial cells from the genetic level, which is central to generate self-sustained systems remains highly challenging. Indeed, many studies have successfully established the expression of gene-coded proteins inside liposomes. Further, recent endeavors to build a direct integration of gene-expressed proteins for reconstituting molecular functions and phenotypes in liposomes have also significantly increased. Thus, this review presents the development of liposome-based artificial cells to demonstrate the process of gene-expressed proteins and their reconstitution to perform desired molecular and cell-like functions. The molecular and cellular phenotypes discussed here include the self-production of membrane phospholipids, division, shape deformation, self-DNA/RNA replication, fusion, and intercellular communication. Together, this review gives a comprehensive overview of gene-expressing liposomes that can stimulate further research of this technology and achieve artificial cells with superior properties in the future.
Collapse
Affiliation(s)
- Samuel Herianto
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan; Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Po-Jen Chien
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Ja-An Annie Ho
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan; BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
40
|
van Wolferen M, Pulschen AA, Baum B, Gribaldo S, Albers SV. The cell biology of archaea. Nat Microbiol 2022; 7:1744-1755. [PMID: 36253512 PMCID: PMC7613921 DOI: 10.1038/s41564-022-01215-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
The past decade has revealed the diversity and ubiquity of archaea in nature, with a growing number of studies highlighting their importance in ecology, biotechnology and even human health. Myriad lineages have been discovered, which expanded the phylogenetic breadth of archaea and revealed their central role in the evolutionary origins of eukaryotes. These discoveries, coupled with advances that enable the culturing and live imaging of archaeal cells under extreme environments, have underpinned a better understanding of their biology. In this Review we focus on the shape, internal organization and surface structures that are characteristic of archaeal cells as well as membrane remodelling, cell growth and division. We also highlight some of the technical challenges faced and discuss how new and improved technologies will help address many of the key unanswered questions.
Collapse
Affiliation(s)
- Marleen van Wolferen
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Buzz Baum
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Simonetta Gribaldo
- Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institute Pasteur, Paris, France.
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
41
|
Akhuli D, Dhar A, Viji AS, Bhojappa B, Palani S. ALIBY: ALFA Nanobody-Based Toolkit for Imaging and Biochemistry in Yeast. mSphere 2022; 7:e0033322. [PMID: 36190134 PMCID: PMC9599267 DOI: 10.1128/msphere.00333-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Specialized epitope tags continue to be integral components of various biochemical and cell biological applications such as fluorescence microscopy, immunoblotting, immunoprecipitation, and protein purification. However, until recently, no single tag could offer this complete set of functionalities on its own. Here, we present a plasmid-based toolkit named ALIBY (ALFA toolkit for imaging and biochemistry in yeast) that provides a universal workflow to adopt the versatile ALFA tag/NbALFA system within the well-established model organism Saccharomyces cerevisiae. The kit comprises tagging plasmids for labeling a protein of interest with the ALFA tag and detection plasmids encoding fluorescent-protein-tagged NbALFA for live-cell imaging purposes. We demonstrate the suitability of ALIBY for visualizing the spatiotemporal localization of yeast proteins (i.e., the cytoskeleton, nucleus, centrosome, mitochondria, vacuole, endoplasmic reticulum, exocyst, and divisome) in live cells. Our approach has yielded an excellent signal-to-noise ratio without off-target effects or any effect on cell growth. In summary, our yeast-specific toolkit aims to simplify and further advance the live-cell imaging of differentially abundant yeast proteins while also being suitable for biochemical applications. IMPORTANCE In yeast research, conventional fluorescent protein tags and small epitope tags are widely used to study the spatiotemporal dynamics and activity of proteins. Although proven to be efficient, these tags lack the versatility for use across different cell biological and biochemical studies of a given protein of interest. Therefore, there is an urgent need for a unified platform for visualization and biochemical and functional analyses of proteins of interest in yeast. Here, we have engineered ALIBY, a plasmid-based toolkit that expands the benefits of the recently developed ALFA tag/NbALFA system to studies in the well-established model organism Saccharomyces cerevisiae. We demonstrate that ALIBY provides a simple and versatile strain construction workflow for long-duration live-cell imaging and biochemical applications in yeast.
Collapse
Affiliation(s)
- Dipayan Akhuli
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Anubhav Dhar
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Aileen Sara Viji
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Bindu Bhojappa
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Saravanan Palani
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| |
Collapse
|
42
|
Feedback linking cell envelope stiffness, curvature, and synthesis enables robust rod-shaped bacterial growth. Proc Natl Acad Sci U S A 2022; 119:e2200728119. [PMID: 36191183 PMCID: PMC9564212 DOI: 10.1073/pnas.2200728119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial growth is remarkably robust to environmental fluctuations, yet the mechanisms of growth-rate homeostasis are poorly understood. Here, we combine theory and experiment to infer mechanisms by which Escherichia coli adapts its growth rate in response to changes in osmolarity, a fundamental physicochemical property of the environment. The central tenet of our theoretical model is that cell-envelope expansion is only sensitive to local information, such as enzyme concentrations, cell-envelope curvature, and mechanical strain in the envelope. We constrained this model with quantitative measurements of the dynamics of E. coli elongation rate and cell width after hyperosmotic shock. Our analysis demonstrated that adaptive cell-envelope softening is a key process underlying growth-rate homeostasis. Furthermore, our model correctly predicted that softening does not occur above a critical hyperosmotic shock magnitude and precisely recapitulated the elongation-rate dynamics in response to shocks with magnitude larger than this threshold. Finally, we found that, to coordinately achieve growth-rate and cell-width homeostasis, cells employ direct feedback between cell-envelope curvature and envelope expansion. In sum, our analysis points to cellular mechanisms of bacterial growth-rate homeostasis and provides a practical theoretical framework for understanding this process.
Collapse
|
43
|
Knapp BD, Ward MD, Bowman GR, Shi H, Huang KC. Multiple conserved states characterize the twist landscape of the bacterial actin homolog MreB. Comput Struct Biotechnol J 2022; 20:5838-5846. [PMID: 36382191 PMCID: PMC9627593 DOI: 10.1016/j.csbj.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 12/01/2022] Open
Abstract
Filament formation by cytoskeletal proteins is critical to their involvement in myriad cellular processes. The bacterial actin homolog MreB, which is essential for cell-shape determination in many rod-shaped bacteria, has served as a model system for studying the mechanics of cytoskeletal filaments. Previous molecular dynamics (MD) simulations revealed that the twist of MreB double protofilaments is dependent on the bound nucleotide, as well as binding to the membrane or the accessory protein RodZ, and MreB mutations that modulate twist also affect MreB spatial organization and cell shape. Here, we show that MreB double protofilaments can adopt multiple twist states during microsecond-scale MD simulations. A deep learning algorithm trained only on high- and low-twist states robustly identified all twist conformations across most perturbations of ATP-bound MreB, suggesting the existence of a conserved set of states whose occupancy is affected by each perturbation to MreB. Simulations replacing ATP with ADP indicated that twist states were generally stable after hydrolysis. These findings suggest a rich twist landscape that could provide the capacity to tune MreB activity and therefore its effects on cell shape.
Collapse
Affiliation(s)
| | - Michael D. Ward
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63130, USA
- Center for the Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Gregory R. Bowman
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63130, USA
- Center for the Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Handuo Shi
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kerwyn Casey Huang
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
44
|
Nierhaus T, McLaughlin SH, Bürmann F, Kureisaite-Ciziene D, Maslen SL, Skehel JM, Yu CWH, Freund SMV, Funke LFH, Chin JW, Löwe J. Bacterial divisome protein FtsA forms curved antiparallel double filaments when binding to FtsN. Nat Microbiol 2022; 7:1686-1701. [PMID: 36123441 PMCID: PMC7613929 DOI: 10.1038/s41564-022-01206-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/19/2022] [Indexed: 11/08/2022]
Abstract
During bacterial cell division, filaments of tubulin-like FtsZ form the Z-ring, which is the cytoplasmic scaffold for divisome assembly. In Escherichia coli, the actin homologue FtsA anchors the Z-ring to the membrane and recruits divisome components, including bitopic FtsN. FtsN regulates the periplasmic peptidoglycan synthase FtsWI. To characterize how FtsA regulates FtsN, we applied electron microscopy to show that E. coli FtsA forms antiparallel double filaments on lipid monolayers when bound to the cytoplasmic tail of FtsN. Using X-ray crystallography, we demonstrate that Vibrio maritimus FtsA crystallizes as an equivalent double filament. We identified an FtsA-FtsN interaction site in the IA-IC interdomain cleft of FtsA using X-ray crystallography and confirmed that FtsA forms double filaments in vivo by site-specific cysteine cross-linking. FtsA-FtsN double filaments reconstituted in or on liposomes prefer negative Gaussian curvature, like those of MreB, the actin-like protein of the elongasome. We propose that curved antiparallel FtsA double filaments together with treadmilling FtsZ filaments organize septal peptidoglycan synthesis in the division plane.
Collapse
Affiliation(s)
- Tim Nierhaus
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | - Sarah L Maslen
- MRC Laboratory of Molecular Biology, Cambridge, UK
- The Francis Crick Institute, London, UK
| | - J Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge, UK
- The Francis Crick Institute, London, UK
| | - Conny W H Yu
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Jason W Chin
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
45
|
Lamanna MM, Manzoor I, Joseph M, Ye ZA, Benedet M, Zanardi A, Ren Z, Wang X, Massidda O, Tsui HT, Winkler ME. Roles of RodZ and class A PBP1b in the assembly and regulation of the peripheral peptidoglycan elongasome in ovoid-shaped cells of Streptococcus pneumoniae D39. Mol Microbiol 2022; 118:336-368. [PMID: 36001060 PMCID: PMC9804626 DOI: 10.1111/mmi.14969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 01/17/2023]
Abstract
RodZ of rod-shaped bacteria functions to link MreB filaments to the Rod peptidoglycan (PG) synthase complex that moves circumferentially perpendicular to the long cell axis, creating hoop-like sidewall PG. Ovoid-shaped bacteria, such as Streptococcus pneumoniae (pneumococcus; Spn) that lack MreB, use a different modality for peripheral PG elongation that emanates from the midcell of dividing cells. Yet, S. pneumoniae encodes a RodZ homolog similar to RodZ in rod-shaped bacteria. We show here that the helix-turn-helix and transmembrane domains of RodZ(Spn) are essential for growth at 37°C. ΔrodZ mutations are suppressed by Δpbp1a, mpgA(Y488D), and ΔkhpA mutations that suppress ΔmreC, but not ΔcozE. Consistent with a role in PG elongation, RodZ(Spn) co-localizes with MreC and aPBP1a throughout the cell cycle and forms complexes and interacts with PG elongasome proteins and regulators. Depletion of RodZ(Spn) results in aberrantly shaped, non-growing cells and mislocalization of elongasome proteins MreC, PBP2b, and RodA. Moreover, Tn-seq reveals that RodZ(Spn), but not MreCD(Spn), displays a specific synthetic-viable genetic relationship with aPBP1b, whose function is unknown. We conclude that RodZ(Spn) acts as a scaffolding protein required for elongasome assembly and function and that aPBP1b, like aPBP1a, plays a role in elongasome regulation and possibly peripheral PG synthesis.
Collapse
Affiliation(s)
- Melissa M. Lamanna
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Irfan Manzoor
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Merrin Joseph
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Ziyun A. Ye
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Mattia Benedet
- Department of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Alessia Zanardi
- Department of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Zhongqing Ren
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Xindan Wang
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Orietta Massidda
- Department of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Ho‐Ching T. Tsui
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Malcolm E. Winkler
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| |
Collapse
|
46
|
Cail RC, Drubin DG. Membrane curvature as a signal to ensure robustness of diverse cellular processes. Trends Cell Biol 2022; 33:427-441. [PMID: 36244874 DOI: 10.1016/j.tcb.2022.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022]
Abstract
An increasing corpus of research has demonstrated that membrane shape, generated either by the external environment of the cell or by intrinsic mechanisms such as cytokinesis and vesicle or organelle formation, is an important parameter in the control of diverse cellular processes. In this review we discuss recent findings that demonstrate how membrane curvature (from nanometer to micron length-scales) alters protein function. We describe an expanding toolkit for experimentally modulating membrane curvature to reveal effects on protein function, and discuss how membrane curvature - far from being a passive consequence of the physical environment and the internal protein activity of a cell - is an important signal that controls protein affinity and enzymatic activity to ensure robust forward progression of key processes within the cell.
Collapse
|
47
|
Navarro PP, Vettiger A, Ananda VY, Llopis PM, Allolio C, Bernhardt TG, Chao LH. Cell wall synthesis and remodelling dynamics determine division site architecture and cell shape in Escherichia coli. Nat Microbiol 2022; 7:1621-1634. [PMID: 36097171 PMCID: PMC9519445 DOI: 10.1038/s41564-022-01210-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 07/21/2022] [Indexed: 01/19/2023]
Abstract
The bacterial division apparatus catalyses the synthesis and remodelling of septal peptidoglycan (sPG) to build the cell wall layer that fortifies the daughter cell poles. Understanding of this essential process has been limited by the lack of native three-dimensional views of developing septa. Here, we apply state-of-the-art cryogenic electron tomography (cryo-ET) and fluorescence microscopy to visualize the division site architecture and sPG biogenesis dynamics of the Gram-negative bacterium Escherichia coli. We identify a wedge-like sPG structure that fortifies the ingrowing septum. Experiments with strains defective in sPG biogenesis revealed that the septal architecture and mode of division can be modified to more closely resemble that of other Gram-negative (Caulobacter crescentus) or Gram-positive (Staphylococcus aureus) bacteria, suggesting that a conserved mechanism underlies the formation of different septal morphologies. Finally, analysis of mutants impaired in amidase activation (ΔenvC ΔnlpD) showed that cell wall remodelling affects the placement and stability of the cytokinetic ring. Taken together, our results support a model in which competition between the cell elongation and division machineries determines the shape of cell constrictions and the poles they form. They also highlight how the activity of the division system can be modulated to help generate the diverse array of shapes observed in the bacterial domain.
Collapse
Affiliation(s)
- Paula P Navarro
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Andrea Vettiger
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Virly Y Ananda
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Christoph Allolio
- Faculty of Mathematics and Physics, Mathematical Institute, Charles University, Prague, Czech Republic
| | - Thomas G Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| | - Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
48
|
Hatano T, Lim TC, Billault-Chaumartin I, Dhar A, Gu Y, Massam-Wu T, Scott W, Adishesha S, Chapa-y-Lazo B, Springall L, Sivashanmugam L, Mishima M, Martin SG, Oliferenko S, Palani S, Balasubramanian MK. mNG-tagged fusion proteins and nanobodies to visualize tropomyosins in yeast and mammalian cells. J Cell Sci 2022; 135:jcs260288. [PMID: 36148799 PMCID: PMC9592052 DOI: 10.1242/jcs.260288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Tropomyosins are structurally conserved α-helical coiled-coil proteins that bind along the length of filamentous actin (F-actin) in fungi and animals. Tropomyosins play essential roles in the stability of actin filaments and in regulating myosin II contractility. Despite the crucial role of tropomyosin in actin cytoskeletal regulation, in vivo investigations of tropomyosin are limited, mainly due to the suboptimal live-cell imaging tools currently available. Here, we report on an mNeonGreen (mNG)-tagged tropomyosin, with native promoter and linker length configuration, that clearly reports tropomyosin dynamics in Schizosaccharomyces pombe (Cdc8), Schizosaccharomyces japonicus (Cdc8) and Saccharomyces cerevisiae (Tpm1 and Tpm2). We also describe a fluorescent probe to visualize mammalian tropomyosin (TPM2 isoform). Finally, we generated a camelid nanobody against S. pombe Cdc8, which mimics the localization of mNG-Cdc8 in vivo. Using these tools, we report the presence of tropomyosin in previously unappreciated patch-like structures in fission and budding yeasts, show flow of tropomyosin (F-actin) cables to the cytokinetic actomyosin ring and identify rearrangements of the actin cytoskeleton during mating. These powerful tools and strategies will aid better analyses of tropomyosin and F-actin cables in vivo.
Collapse
Affiliation(s)
- Tomoyuki Hatano
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Tzer Chyn Lim
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Ingrid Billault-Chaumartin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Anubhav Dhar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ying Gu
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, SE1 1UL, UK
| | - Teresa Massam-Wu
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - William Scott
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Sushmitha Adishesha
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Bernardo Chapa-y-Lazo
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Luke Springall
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Lavanya Sivashanmugam
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Masanori Mishima
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Sophie G. Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, SE1 1UL, UK
| | - Saravanan Palani
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mohan K. Balasubramanian
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| |
Collapse
|
49
|
Ouellette SP, Fisher-Marvin LA, Harpring M, Lee J, Rucks EA, Cox JV. Localized cardiolipin synthesis is required for the assembly of MreB during the polarized cell division of Chlamydia trachomatis. PLoS Pathog 2022; 18:e1010836. [PMID: 36095021 PMCID: PMC9499288 DOI: 10.1371/journal.ppat.1010836] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 09/22/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
Pathogenic Chlamydia species are coccoid bacteria that use the rod-shape determining protein MreB to direct septal peptidoglycan synthesis during their polarized cell division process. How the site of polarized budding is determined in this bacterium, where contextual features like membrane curvature are seemingly identical, is unclear. We hypothesized that the accumulation of the phospholipid, cardiolipin (CL), in specific regions of the cell membrane induces localized membrane changes that trigger the recruitment of MreB to the site where the bud will arise. To test this, we ectopically expressed cardiolipin synthase (Cls) and observed a polar distribution for this enzyme in Chlamydia trachomatis. In early division intermediates, Cls was restricted to the bud site where MreB is localized and peptidoglycan synthesis is initiated. The localization profile of 6xHis tagged Cls (Cls_6xH) throughout division mimicked the distribution of lipids that stain with NAO, a dye that labels CL. Treatment of Chlamydia with 3’,6-dinonylneamine (diNN), an antibiotic targeting CL-containing membrane domains, resulted in redistribution of Cls_6xH and NAO-staining phospholipids. In addition, 6xHis tagged MreB localization was altered by diNN treatment, suggesting an upstream regulatory role for CL-containing membranes in directing the assembly of MreB. This hypothesis is consistent with the observation that the clustered localization of Cls_6xH is not dependent upon MreB function or peptidoglycan synthesis. Furthermore, expression of a CL-binding protein at the inner membrane of C. trachomatis dramatically inhibited bacterial growth supporting the importance of CL in the division process. Our findings implicate a critical role for localized CL synthesis in driving MreB assembly at the bud site during the polarized cell division of Chlamydia.
Collapse
Affiliation(s)
- Scot P. Ouellette
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska
- * E-mail: (SPO); (JVC)
| | - Laura A. Fisher-Marvin
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska
| | - McKenna Harpring
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Junghoon Lee
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska
| | - Elizabeth A. Rucks
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska
| | - John V. Cox
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee
- * E-mail: (SPO); (JVC)
| |
Collapse
|
50
|
Kitahara Y, Oldewurtel ER, Wilson S, Sun Y, Altabe S, de Mendoza D, Garner EC, van Teeffelen S. The role of cell-envelope synthesis for envelope growth and cytoplasmic density in Bacillus subtilis. PNAS NEXUS 2022; 1:pgac134. [PMID: 36082236 PMCID: PMC9437589 DOI: 10.1093/pnasnexus/pgac134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/21/2022] [Indexed: 01/29/2023]
Abstract
All cells must increase their volumes in response to biomass growth to maintain intracellular mass density within physiologically permissive bounds. Here, we investigate the regulation of volume growth in the Gram-positive bacterium Bacillus subtilis. To increase volume, bacteria enzymatically expand their cell envelopes and insert new envelope material. First, we demonstrate that cell-volume growth is determined indirectly, by expanding their envelopes in proportion to mass growth, similarly to the Gram-negative Escherichia coli, despite their fundamentally different envelope structures. Next, we studied, which pathways might be responsible for robust surface-to-mass coupling: We found that both peptidoglycan synthesis and membrane synthesis are required for proper surface-to-mass coupling. However, surprisingly, neither pathway is solely rate-limiting, contrary to wide-spread belief, since envelope growth continues at a reduced rate upon complete inhibition of either process. To arrest cell-envelope growth completely, the simultaneous inhibition of both envelope-synthesis processes is required. Thus, we suggest that multiple envelope-synthesis pathways collectively confer an important aspect of volume regulation, the coordination between surface growth, and biomass growth.
Collapse
Affiliation(s)
- Yuki Kitahara
- Département de Microbiologie, Infectiologie, et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada,Université de Paris, Paris, France,Microbial Morphogenesis and Growth Lab, Institut Pasteur, Paris, France
| | - Enno R Oldewurtel
- Microbial Morphogenesis and Growth Lab, Institut Pasteur, Paris, France
| | - Sean Wilson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, USA,Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | - Yingjie Sun
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, USA,Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | - Silvia Altabe
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Conicet- and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Conicet- and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, USA,Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | | |
Collapse
|