1
|
Wu H, Fujioka Y, Sakaguchi S, Suzuki Y, Nakano T. Electron Tomography as a Tool to Study SARS-CoV-2 Morphology. Int J Mol Sci 2024; 25:11762. [PMID: 39519314 PMCID: PMC11547116 DOI: 10.3390/ijms252111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel betacoronavirus, is the causative agent of COVID-19, which has caused economic and social disruption worldwide. To date, many drugs and vaccines have been developed for the treatment and prevention of COVID-19 and have effectively controlled the global epidemic of SARS-CoV-2. However, SARS-CoV-2 is highly mutable, leading to the emergence of new variants that may counteract current therapeutic measures. Electron microscopy (EM) is a valuable technique for obtaining ultrastructural information about the intracellular process of virus replication. In particular, EM allows us to visualize the morphological and subcellular changes during virion formation, which would provide a promising avenue for the development of antiviral agents effective against new SARS-CoV-2 variants. In this review, we present our recent findings using transmission electron microscopy (TEM) combined with electron tomography (ET) to reveal the morphologically distinct types of SARS-CoV-2 particles, demonstrating that TEM and ET are valuable tools for visually understanding the maturation status of SARS-CoV-2 in infected cells. This review also discusses the application of EM analysis to the evaluation of genetically engineered RNA viruses.
Collapse
Affiliation(s)
- Hong Wu
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka 565-0871, Japan; (Y.F.); (S.S.); (T.N.)
| | | | | | - Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka 565-0871, Japan; (Y.F.); (S.S.); (T.N.)
| | | |
Collapse
|
2
|
Wu C, Meuser ME, Rey JS, Meshkin H, Yang R, Devarkar SC, Freniere C, Shi J, Aiken C, Perilla JR, Xiong Y. Structural insights into inhibitor mechanisms on immature HIV-1 Gag lattice revealed by high-resolution in situ single-particle cryo-EM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617473. [PMID: 39416065 PMCID: PMC11483028 DOI: 10.1101/2024.10.09.617473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
HIV-1 inhibitors, such as Bevirimat (BVM) and Lenacapavir (LEN), block the production and maturation of infectious virions. However, their mechanisms remain unclear due to the absence of high-resolution structures for BVM complexes and LEN's structural data being limited to the mature capsid. Utilizing perforated virus-like particles (VLPs) produced from mammalian cells, we developed an approach to determine in situ cryo-electron microscopy (cryo-EM) structures of HIV-1 with inhibitors. This allowed for the first structural determination of the native immature HIV-1 particle with BVM and LEN bound inside the VLPs at high resolutions. Our findings offer a more accurate model of BVM engaging the Gag lattice and, importantly, demonstrate that LEN not only binds the mature capsid but also targets the immature lattice in a distinct manner. The binding of LEN induces a conformational change in the capsid protein (CA) region and alters the architecture of the Gag lattice, which may affect the maturation process. These insights expand our understanding of the inhibitory mechanisms of BVM and LEN on HIV-1 and provide valuable clues for the design of future inhibitors.
Collapse
Affiliation(s)
- Chunxiang Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Megan E. Meuser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Juan S. Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Hamed Meshkin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Rachel Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | | | - Christian Freniere
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jiong Shi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Juan R. Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Sharma N, van Oijen AM, Spenkelink LM, Mueller SH. Insight into Single-Molecule Imaging Techniques for the Study of Prokaryotic Genome Maintenance. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:595-614. [PMID: 39328428 PMCID: PMC11423410 DOI: 10.1021/cbmi.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 09/28/2024]
Abstract
Genome maintenance comprises a group of complex and interrelated processes crucial for preserving and safeguarding genetic information within all organisms. Key aspects of genome maintenance involve DNA replication, transcription, recombination, and repair. Improper regulation of these processes could cause genetic changes, potentially leading to antibiotic resistance in bacterial populations. Due to the complexity of these processes, ensemble averaging studies may not provide the level of detail required to capture the full spectrum of molecular behaviors and dynamics of each individual biomolecule. Therefore, researchers have increasingly turned to single-molecule approaches, as these techniques allow for the direct observation and manipulation of individual biomolecules, and offer a level of detail that is unattainable with traditional ensemble methods. In this review, we provide an overview of recent in vitro and in vivo single-molecule imaging approaches employed to study the complex processes involved in prokaryotic genome maintenance. We will first highlight the principles of imaging techniques such as total internal reflection fluorescence microscopy and atomic force microscopy, primarily used for in vitro studies, and highly inclined and laminated optical sheet and super-resolution microscopy, mainly employed in in vivo studies. We then demonstrate how applying these single-molecule techniques has enabled the direct visualization of biological processes such as replication, transcription, DNA repair, and recombination in real time. Finally, we will showcase the results obtained from super-resolution microscopy approaches, which have provided unprecedented insights into the spatial organization of different biomolecules within bacterial organisms.
Collapse
Affiliation(s)
- Nischal Sharma
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Stefan H Mueller
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
4
|
Kleinpeter A, Mallery DL, Renner N, Albecka A, Klarhof JO, Freed EO, James LC. HIV-1 adapts to lost IP6 coordination through second-site mutations that restore conical capsid assembly. Nat Commun 2024; 15:8017. [PMID: 39271696 PMCID: PMC11399258 DOI: 10.1038/s41467-024-51971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The HIV-1 capsid is composed of capsid (CA) protein hexamers and pentamers (capsomers) that contain a central pore hypothesised to regulate capsid assembly and facilitate nucleotide import early during post-infection. These pore functions are mediated by two positively charged rings created by CA Arg-18 (R18) and Lys-25 (K25). Here we describe the forced evolution of viruses containing mutations in R18 and K25. Whilst R18 mutants fail to replicate, K25A viruses acquire compensating mutations that restore nearly wild-type replication fitness. These compensating mutations, which rescue reverse transcription and infection without reintroducing lost pore charges, map to three adaptation hot-spots located within and between capsomers. The second-site suppressor mutations act by restoring the formation of pentamers lost upon K25 mutation, enabling closed conical capsid assembly both in vitro and inside virions. These results indicate that there is no intrinsic requirement for K25 in either nucleotide import or capsid assembly. We propose that whilst HIV-1 must maintain a precise hexamer:pentamer equilibrium for proper capsid assembly, compensatory mutations can tune this equilibrium to restore fitness lost by mutation of the central pore.
Collapse
Affiliation(s)
- Alex Kleinpeter
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, USA.
| | - Donna L Mallery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Nadine Renner
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Anna Albecka
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - J Ole Klarhof
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, USA.
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
5
|
Osega CE, Bustos FJ, Arriagada G. From Entry to the Nucleus: How Retroviruses Commute. Annu Rev Virol 2024; 11:89-104. [PMID: 38848600 DOI: 10.1146/annurev-virology-100422-023502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Once inside host cells, retroviruses generate a double-stranded DNA copy of their RNA genomes via reverse transcription inside a viral core, and this viral DNA is subsequently integrated into the genome of the host cell. Before integration can occur, the core must cross the cell cortex, be transported through the cytoplasm, and enter the nucleus. Retroviruses have evolved different mechanisms to accomplish this journey. This review examines the various mechanisms retroviruses, especially HIV-1, have evolved to commute throughout the cell. Retroviruses cross the cell cortex while modulating actin dynamics and use microtubules as roads while connecting with microtubule-associated proteins and motors to reach the nucleus. Although a clearer picture exists for HIV-1 compared with other retroviruses, there is still much to learn about how retroviruses accomplish their commute.
Collapse
Affiliation(s)
- Camila E Osega
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile;
| | - Fernando J Bustos
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile;
| | - Gloria Arriagada
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile;
| |
Collapse
|
6
|
Govender S, David M, Naicker T. Is the Complement System Dysregulated in Preeclampsia Comorbid with HIV Infection? Int J Mol Sci 2024; 25:6232. [PMID: 38892429 PMCID: PMC11172754 DOI: 10.3390/ijms25116232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
South Africa is the epicentre of the global HIV pandemic, with 13.9% of its population infected. Preeclampsia (PE), a hypertensive disorder of pregnancy, is often comorbid with HIV infection, leading to multi-organ dysfunction and convulsions. The exact pathophysiology of preeclampsia is triggered by an altered maternal immune response or defective development of maternal tolerance to the semi-allogenic foetus via the complement system. The complement system plays a vital role in the innate immune system, generating inflammation, mediating the clearance of microbes and injured tissue materials, and a mediator of adaptive immunity. Moreover, the complement system has a dual effect, of protecting the host against HIV infection and enhancing HIV infectivity. An upregulation of regulatory proteins has been implicated as an adaptive phenomenon in response to elevated complement-mediated cell lysis in HIV infection, further aggravated by preeclamptic complement activation. In light of the high prevalence of HIV infection and preeclampsia in South Africa, this review discusses the association of complement proteins and their role in the synergy of HIV infection and preeclampsia in South Africa. It aims to identify women at elevated risk, leading to early diagnosis and better management with targeted drug therapy, thereby improving the understanding of immunological dysregulation.
Collapse
Affiliation(s)
| | | | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (S.G.); (M.D.)
| |
Collapse
|
7
|
Sumner RP, Blest H, Lin M, Maluquer de Motes C, Towers GJ. HIV-1 with gag processing defects activates cGAS sensing. Retrovirology 2024; 21:10. [PMID: 38778414 PMCID: PMC11112816 DOI: 10.1186/s12977-024-00643-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Detection of viruses by host pattern recognition receptors induces the expression of type I interferon (IFN) and IFN-stimulated genes (ISGs), which suppress viral replication. Numerous studies have described HIV-1 as a poor activator of innate immunity in vitro. The exact role that the viral capsid plays in this immune evasion is not fully understood. RESULTS To better understand the role of the HIV-1 capsid in sensing we tested the effect of making HIV-1 by co-expressing a truncated Gag that encodes the first 107 amino acids of capsid fused with luciferase or GFP, alongside wild type Gag-pol. We found that unlike wild type HIV-1, viral particles produced with a mixture of wild type and truncated Gag fused to luciferase or GFP induced a potent IFN response in THP-1 cells and macrophages. Innate immune activation by Gag-fusion HIV-1 was dependent on reverse transcription and DNA sensor cGAS, suggesting activation of an IFN response by viral DNA. Further investigation revealed incorporation of the Gag-luciferase/GFP fusion proteins into viral particles that correlated with subtle defects in wild type Gag cleavage and a diminished capacity to saturate restriction factor TRIM5α, likely due to aberrant particle formation. We propose that expression of the Gag fusion protein disturbs the correct cleavage and maturation of wild type Gag, yielding viral particles that are unable to effectively shield viral DNA from detection by innate sensors including cGAS. CONCLUSIONS These data highlight the crucial role of capsid in innate evasion and support growing literature that disruption of Gag cleavage and capsid formation induces a viral DNA- and cGAS-dependent innate immune response. Together these data demonstrate a protective role for capsid and suggest that antiviral activity of capsid-targeting antivirals may benefit from enhanced innate and adaptive immunity in vivo.
Collapse
Affiliation(s)
- Rebecca P Sumner
- Division of Infection and Immunity, University College London, 90 Gower Street, London, WC1E 6BT, UK.
- Department of Microbial Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| | - Henry Blest
- Division of Infection and Immunity, University College London, 90 Gower Street, London, WC1E 6BT, UK
| | - Meiyin Lin
- Division of Infection and Immunity, University College London, 90 Gower Street, London, WC1E 6BT, UK
| | | | - Greg J Towers
- Division of Infection and Immunity, University College London, 90 Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
8
|
Garza CM, Holcomb M, Santos-Martins D, Torbett BE, Forli S. IP6 and PF74 affect HIV-1 Capsid Stability through Modulation of Hexamer-Hexamer Tilt Angle Preference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584513. [PMID: 38559213 PMCID: PMC10979974 DOI: 10.1101/2024.03.11.584513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The HIV-1 capsid is an irregularly shaped complex of about 1200 protein chains containing the viral genome and several viral proteins. Together, these components are the key to unlocking passage into the nucleus, allowing for permanent integration of the viral genome into the host cell genome. Recent interest into the role of the capsid in viral replication has been driven by the approval of the first-in-class drug lenacapavir, which marks the first drug approved to target a non-enzymatic HIV-1 viral protein. In addition to lenacapavir, other small molecules such as the drug-like compound PF74, and the anionic sugar inositolhexakisphosphate (IP6), are known to impact capsid stability, and although this is widely accepted as a therapeutic effect, the mechanisms through which they do so remain unknown. In this study, we employed a systematic atomistic simulation approach to study the impact of molecules bound to hexamers at the central pore (IP6) and the FG-binding site (PF74) on capsid oligomer dynamics, compared to apo hexamers and pentamers. We found that neither small molecule had a sizeable impact on the free energy of binding of the interface between neighboring hexamers but that both had impacts on the free energy profiles of performing angular deformations to the pair of oligomers akin to the variations in curvature along the irregular surface of the capsid. The IP6 cofactor, on one hand, stabilizes a pair of neighboring hexamers in their flattest configurations, whereas without IP6, the hexamers prefer a high tilt angle between them. On the other hand, having PF74 bound introduces a strong preference for intermediate tilt angles. These results suggest that structural instability is a natural feature of the HIV-1 capsid which is modulated by molecules bound in either the central pore or the FG-binding site. Such modulators, despite sharing many of the same effects on non-bonded interactions at the various protein-protein interfaces, have decidedly different effects on the flexibility of the complex. This study provides a detailed model of the HIV-1 capsid and its interactions with small molecules, informing structure-based drug design, as well as experimental design and interpretation.
Collapse
|
9
|
Faysal KMR, Walsh JC, Renner N, Márquez CL, Shah VB, Tuckwell AJ, Christie MP, Parker MW, Turville SG, Towers GJ, James LC, Jacques DA, Böcking T. Pharmacologic hyperstabilisation of the HIV-1 capsid lattice induces capsid failure. eLife 2024; 13:e83605. [PMID: 38347802 PMCID: PMC10863983 DOI: 10.7554/elife.83605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
The HIV-1 capsid has emerged as a tractable target for antiretroviral therapy. Lenacapavir, developed by Gilead Sciences, is the first capsid-targeting drug approved for medical use. Here, we investigate the effect of lenacapavir on HIV capsid stability and uncoating. We employ a single particle approach that simultaneously measures capsid content release and lattice persistence. We demonstrate that lenacapavir's potent antiviral activity is predominantly due to lethal hyperstabilisation of the capsid lattice and resultant loss of compartmentalisation. This study highlights that disrupting capsid metastability is a powerful strategy for the development of novel antivirals.
Collapse
Affiliation(s)
- KM Rifat Faysal
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - James C Walsh
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Nadine Renner
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Chantal L Márquez
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Vaibhav B Shah
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Andrew J Tuckwell
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Michelle P Christie
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourneAustralia
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourneAustralia
- Structural Biology Unit, St. Vincent’s Institute of Medical ResearchFitzroyAustralia
| | | | - Greg J Towers
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Leo C James
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - David A Jacques
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| |
Collapse
|
10
|
Dickson CF, Hertel S, Tuckwell AJ, Li N, Ruan J, Al-Izzi SC, Ariotti N, Sierecki E, Gambin Y, Morris RG, Towers GJ, Böcking T, Jacques DA. The HIV capsid mimics karyopherin engagement of FG-nucleoporins. Nature 2024; 626:836-842. [PMID: 38267582 PMCID: PMC10881392 DOI: 10.1038/s41586-023-06969-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
HIV can infect non-dividing cells because the viral capsid can overcome the selective barrier of the nuclear pore complex and deliver the genome directly into the nucleus1,2. Remarkably, the intact HIV capsid is more than 1,000 times larger than the size limit prescribed by the diffusion barrier of the nuclear pore3. This barrier in the central channel of the nuclear pore is composed of intrinsically disordered nucleoporin domains enriched in phenylalanine-glycine (FG) dipeptides. Through multivalent FG interactions, cellular karyopherins and their bound cargoes solubilize in this phase to drive nucleocytoplasmic transport4. By performing an in vitro dissection of the nuclear pore complex, we show that a pocket on the surface of the HIV capsid similarly interacts with FG motifs from multiple nucleoporins and that this interaction licences capsids to penetrate FG-nucleoporin condensates. This karyopherin mimicry model addresses a key conceptual challenge for the role of the HIV capsid in nuclear entry and offers an explanation as to how an exogenous entity much larger than any known cellular cargo may be able to non-destructively breach the nuclear envelope.
Collapse
Affiliation(s)
- C F Dickson
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - S Hertel
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - A J Tuckwell
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - N Li
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - J Ruan
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - S C Al-Izzi
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- School of Physics, University of New South Wales, Sydney, New South Wales, Australia
| | - N Ariotti
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - E Sierecki
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Y Gambin
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - R G Morris
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- School of Physics, University of New South Wales, Sydney, New South Wales, Australia
| | - G J Towers
- Infection and Immunity, University College London, London, UK
| | - T Böcking
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - D A Jacques
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia.
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
11
|
Gifford LB, Melikyan GB. HIV-1 Capsid Uncoating Is a Multistep Process That Proceeds through Defect Formation Followed by Disassembly of the Capsid Lattice. ACS NANO 2024; 18:2928-2947. [PMID: 38241476 PMCID: PMC10832047 DOI: 10.1021/acsnano.3c07678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
The HIV-1 core consists of a cone-shaped capsid shell made of capsid protein (CA) hexamers and pentamers encapsulating the viral genome. HIV-1 capsid disassembly, referred to as uncoating, is important for productive infection; however, the location, timing, and regulation of uncoating remain controversial. Here, we employ amber codon suppression to directly label CA. In addition, a fluid phase fluorescent probe is incorporated into the viral core to detect small defects in the capsid lattice. This double-labeling strategy enables the visualization of uncoating of single cores in vitro and in living cells, which we found to always proceed through at least two distinct steps─the formation of a defect in the capsid lattice that initiates gradual loss of CA below a detectable level. Importantly, intact cores containing the fluid phase and CA fluorescent markers enter and uncoat in the nucleus, as evidenced by a sequential loss of both markers, prior to establishing productive infection. This two-step uncoating process is observed in different cells, including a macrophage line. Notably, the lag between the release of fluid phase marker and terminal loss of CA appears to be independent of the cell type or reverse transcription and is much longer (>5-fold) for nuclear capsids compared to cell-free cores or cores in the cytosol, suggesting that the capsid lattice is stabilized by capsid-binding nuclear factors. Our results imply that intact HIV-1 cores enter the cell nucleus and that uncoating is initiated through a localized defect in the capsid lattice prior to a global loss of CA.
Collapse
Affiliation(s)
- Levi B. Gifford
- Department
of Pediatrics, Emory University School of
Medicine, Atlanta, Georgia 30322, United States
| | - Gregory B. Melikyan
- Department
of Pediatrics, Emory University School of
Medicine, Atlanta, Georgia 30322, United States
- Children’s
Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| |
Collapse
|
12
|
Hudait A, Voth GA. HIV-1 capsid shape, orientation, and entropic elasticity regulate translocation into the nuclear pore complex. Proc Natl Acad Sci U S A 2024; 121:e2313737121. [PMID: 38241438 PMCID: PMC10823262 DOI: 10.1073/pnas.2313737121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/06/2023] [Indexed: 01/21/2024] Open
Abstract
Nuclear import and uncoating of the viral capsid are critical steps in the HIV-1 life cycle that serve to transport and release genomic material into the nucleus. Viral core import involves translocating the HIV-1 capsid at the nuclear pore complex (NPC). Notably, the central channel of the NPC appears to often accommodate and allow passage of intact HIV-1 capsid, though mechanistic details of the process remain to be fully understood. Here, we investigate the molecular interactions that operate in concert between the HIV-1 capsid and the NPC that regulate capsid translocation through the central channel. To this end, we develop a "bottom-up" coarse-grained (CG) model of the human NPC from recently released cryo-electron tomography structure and then construct composite membrane-embedded CG NPC models. We find that successful translocation from the cytoplasmic side to the NPC central channel is contingent on the compatibility of the capsid morphology and channel dimension and the proper orientation of the capsid approach to the channel from the cytoplasmic side. The translocation dynamics is driven by maximizing the contacts between phenylalanine-glycine nucleoporins at the central channel and the capsid. For the docked intact capsids, structural analysis reveals correlated striated patterns of lattice disorder likely related to the intrinsic capsid elasticity. Uncondensed genomic material inside the docked capsid augments the overall lattice disorder of the capsid. Our results suggest that the intrinsic "elasticity" can also aid the capsid to adapt to the stress and remain structurally intact during translocation.
Collapse
Affiliation(s)
- Arpa Hudait
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL60637
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL60637
| |
Collapse
|
13
|
Artcibasova A, Wang L, Anchisi S, Yamauchi Y, Schmolke M, Matthias P, Stelling J. A quantitative model for virus uncoating predicts influenza A infectivity. Cell Rep 2023; 42:113558. [PMID: 38103200 DOI: 10.1016/j.celrep.2023.113558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/13/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
For virus infection of new host cells, the disassembly of the protective outer protein shell (capsid) is a critical step, but the mechanisms and host-virus interactions underlying the dynamic, active, and regulated uncoating process are largely unknown. Here, we develop an experimentally supported, multiscale kinetics model that elucidates mechanisms of influenza A virus (IAV) uncoating in cells. Biophysical modeling demonstrates that interactions between capsid M1 proteins, host histone deacetylase 6 (HDAC6), and molecular motors can physically break the capsid in a tug-of-war mechanism. Biochemical analysis and biochemical-biophysical modeling identify unanchored ubiquitin chains as essential and allow robust prediction of uncoating efficiency in cells. Remarkably, the different infectivity of two clinical strains can be ascribed to a single amino acid variation in M1 that affects binding to HDAC6. By identifying crucial modules of viral infection kinetics, the mechanisms and models presented here could help formulate novel strategies for broad-range antiviral treatment.
Collapse
Affiliation(s)
- Alina Artcibasova
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, 4058 Basel, Switzerland
| | - Longlong Wang
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| | - Stephanie Anchisi
- Department of Microbiology and Molecular Medicine and Geneva Center of Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Yohei Yamauchi
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine and Geneva Center of Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4031 Basel, Switzerland.
| | - Jörg Stelling
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, 4058 Basel, Switzerland.
| |
Collapse
|
14
|
Jang S, Engelman AN. Capsid-host interactions for HIV-1 ingress. Microbiol Mol Biol Rev 2023; 87:e0004822. [PMID: 37750702 PMCID: PMC10732038 DOI: 10.1128/mmbr.00048-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
The HIV-1 capsid, composed of approximately 1,200 copies of the capsid protein, encases genomic RNA alongside viral nucleocapsid, reverse transcriptase, and integrase proteins. After cell entry, the capsid interacts with a myriad of host factors to traverse the cell cytoplasm, pass through the nuclear pore complex (NPC), and then traffic to chromosomal sites for viral DNA integration. Integration may very well require the dissolution of the capsid, but where and when this uncoating event occurs remains hotly debated. Based on size constraints, a long-prevailing view was that uncoating preceded nuclear transport, but recent research has indicated that the capsid may remain largely intact during nuclear import, with perhaps some structural remodeling required for NPC traversal. Completion of reverse transcription in the nucleus may further aid capsid uncoating. One canonical type of host factor, typified by CPSF6, leverages a Phe-Gly (FG) motif to bind capsid. Recent research has shown these peptides reside amid prion-like domains (PrLDs), which are stretches of protein sequence devoid of charged residues. Intermolecular PrLD interactions along the exterior of the capsid shell impart avid host factor binding for productive HIV-1 infection. Herein we overview capsid-host interactions implicated in HIV-1 ingress and discuss important research questions moving forward. Highlighting clinical relevance, the long-acting ultrapotent inhibitor lenacapavir, which engages the same capsid binding pocket as FG host factors, was recently approved to treat people living with HIV.
Collapse
Affiliation(s)
- Sooin Jang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Badieyan S, Lichon D, Andreas MP, Gillies JP, Peng W, Shi J, DeSantis ME, Aiken CR, Böcking T, Giessen TW, Campbell EM, Cianfrocco MA. HIV-1 binds dynein directly to hijack microtubule transport machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555335. [PMID: 37693451 PMCID: PMC10491134 DOI: 10.1101/2023.08.29.555335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Viruses exploit host cytoskeletal elements and motor proteins for trafficking through the dense cytoplasm. Yet the molecular mechanism that describes how viruses connect to the motor machinery is unknown. Here, we demonstrate the first example of viral microtubule trafficking from purified components: HIV-1 hijacking microtubule transport machinery. We discover that HIV-1 directly binds to the retrograde microtubule-associated motor, dynein, and not via a cargo adaptor, as previously suggested. Moreover, we show that HIV-1 motility is supported by multiple, diverse dynein cargo adaptors as HIV-1 binds to dynein light and intermediate chains on dynein's tail. Further, we demonstrate that multiple dynein motors tethered to rigid cargoes, like HIV-1 capsids, display reduced motility, distinct from the behavior of multiple motors on membranous cargoes. Our results introduce a new model of viral trafficking wherein a pathogen opportunistically 'hijacks' the microtubule transport machinery for motility, enabling multiple transport pathways through the host cytoplasm.
Collapse
Affiliation(s)
| | - Drew Lichon
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, IL, USA
| | - Michael P Andreas
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - John P Gillies
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, MI USA
| | - Wang Peng
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jiong Shi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Morgan E DeSantis
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, MI USA
| | - Christopher R Aiken
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Tobias W Giessen
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Edward M Campbell
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, IL, USA
| | - Michael A Cianfrocco
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Guo S, Saha I, Saffarian S, Johnson ME. Structure of the HIV immature lattice allows for essential lattice remodeling within budded virions. eLife 2023; 12:e84881. [PMID: 37435945 PMCID: PMC10361719 DOI: 10.7554/elife.84881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 07/12/2023] [Indexed: 07/13/2023] Open
Abstract
For HIV virions to become infectious, the immature lattice of Gag polyproteins attached to the virion membrane must be cleaved. Cleavage cannot initiate without the protease formed by the homo-dimerization of domains linked to Gag. However, only 5% of the Gag polyproteins, termed Gag-Pol, carry this protease domain, and they are embedded within the structured lattice. The mechanism of Gag-Pol dimerization is unknown. Here, we use spatial stochastic computer simulations of the immature Gag lattice as derived from experimental structures, showing that dynamics of the lattice on the membrane is unavoidable due to the missing 1/3 of the spherical protein coat. These dynamics allow for Gag-Pol molecules carrying the protease domains to detach and reattach at new places within the lattice. Surprisingly, dimerization timescales of minutes or less are achievable for realistic binding energies and rates despite retaining most of the large-scale lattice structure. We derive a formula allowing extrapolation of timescales as a function of interaction free energy and binding rate, thus predicting how additional stabilization of the lattice would impact dimerization times. We further show that during assembly, dimerization of Gag-Pol is highly likely and therefore must be actively suppressed to prevent early activation. By direct comparison to recent biochemical measurements within budded virions, we find that only moderately stable hexamer contacts (-12kBT<∆G<-8kBT) retain both the dynamics and lattice structures that are consistent with experiment. These dynamics are likely essential for proper maturation, and our models quantify and predict lattice dynamics and protease dimerization timescales that define a key step in understanding formation of infectious viruses.
Collapse
Affiliation(s)
- Sikao Guo
- TC Jenkins Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Ipsita Saha
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of HealthFrederickUnited States
| | - Saveez Saffarian
- Center for Cell and Genome Science, University of UtahSalt Lake CityUnited States
- Department of Physics and Astronomy, University of UtahSalt Lake CityUnited States
- School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | - Margaret E Johnson
- TC Jenkins Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
17
|
Papa G, Albecka A, Mallery D, Vaysburd M, Renner N, James LC. IP6-stabilised HIV capsids evade cGAS/STING-mediated host immune sensing. EMBO Rep 2023; 24:e56275. [PMID: 36970882 PMCID: PMC10157305 DOI: 10.15252/embr.202256275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
HIV-1 uses inositol hexakisphosphate (IP6) to build a metastable capsid capable of delivering its genome into the host nucleus. Here, we show that viruses that are unable to package IP6 lack capsid protection and are detected by innate immunity, resulting in the activation of an antiviral state that inhibits infection. Disrupting IP6 enrichment results in defective capsids that trigger cytokine and chemokine responses during infection of both primary macrophages and T-cell lines. Restoring IP6 enrichment with a single mutation rescues the ability of HIV-1 to infect cells without being detected. Using a combination of capsid mutants and CRISPR-derived knockout cell lines for RNA and DNA sensors, we show that immune sensing is dependent upon the cGAS-STING axis and independent of capsid detection. Sensing requires the synthesis of viral DNA and is prevented by reverse transcriptase inhibitors or reverse transcriptase active-site mutation. These results demonstrate that IP6 is required to build capsids that can successfully transit the cell and avoid host innate immune sensing.
Collapse
Affiliation(s)
- Guido Papa
- MRC Laboratory of Molecular Biology, Protein & Nucleic Acid DivisionCambridgeUK
| | - Anna Albecka
- MRC Laboratory of Molecular Biology, Protein & Nucleic Acid DivisionCambridgeUK
| | - Donna Mallery
- MRC Laboratory of Molecular Biology, Protein & Nucleic Acid DivisionCambridgeUK
| | - Marina Vaysburd
- MRC Laboratory of Molecular Biology, Protein & Nucleic Acid DivisionCambridgeUK
| | - Nadine Renner
- MRC Laboratory of Molecular Biology, Protein & Nucleic Acid DivisionCambridgeUK
| | - Leo C James
- MRC Laboratory of Molecular Biology, Protein & Nucleic Acid DivisionCambridgeUK
| |
Collapse
|
18
|
Renner N, Kleinpeter A, Mallery DL, Albecka A, Rifat Faysal KM, Böcking T, Saiardi A, Freed EO, James LC. HIV-1 is dependent on its immature lattice to recruit IP6 for mature capsid assembly. Nat Struct Mol Biol 2023; 30:370-382. [PMID: 36624347 PMCID: PMC7614341 DOI: 10.1038/s41594-022-00887-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 11/03/2022] [Indexed: 01/11/2023]
Abstract
HIV-1 Gag metamorphoses inside each virion, from an immature lattice that forms during viral production to a mature capsid that drives infection. Here we show that the immature lattice is required to concentrate the cellular metabolite inositol hexakisphosphate (IP6) into virions to catalyze mature capsid assembly. Disabling the ability of HIV-1 to enrich IP6 does not prevent immature lattice formation or production of the virus. However, without sufficient IP6 molecules inside each virion, HIV-1 can no longer build a stable capsid and fails to become infectious. IP6 cannot be replaced by other inositol phosphate (IP) molecules, as substitution with other IPs profoundly slows mature assembly kinetics and results in virions with gross morphological defects. Our results demonstrate that while HIV-1 can become independent of IP6 for immature assembly, it remains dependent upon the metabolite for mature capsid formation.
Collapse
Affiliation(s)
- Nadine Renner
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Alex Kleinpeter
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Donna L Mallery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Anna Albecka
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - K M Rifat Faysal
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Adolfo Saiardi
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
| |
Collapse
|
19
|
Zhang DW, Xie L, Xu XS, Li Y, Xu X. A Broad-Spectrum Antiviral Molecule, Protoporphyrin IX, Acts as a Moderator of HIV-1 Capsid Assembly by Targeting the Capsid Hexamer. Microbiol Spectr 2023; 11:e0266322. [PMID: 36475726 PMCID: PMC9927277 DOI: 10.1128/spectrum.02663-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The capsid protein (CA), an essential component of human immunodeficiency virus type 1 (HIV-1), represents an appealing target for antivirals. Small molecules targeting the CAI-binding cavity in the C-terminal domain of HIV-1 CA (CA CTD) confer potent antiviral activities. In this study, we report that a small molecule, protoporphyrin IX (PPIX), targets the HIV-1 CA by binding to this pocket. PPIX was identified via in vitro drug screening, using a homogeneous and time-resolved fluorescence-based assay. CA multimerization and a biolayer interferometry (BLI) assay showed that PPIX promoted CA multimerization and bound directly to CA. The binding model of PPIX to CA CTD revealed that PPIX forms hydrogen bonds with the L211and E212 residues in the CA CTD. Moreover, the BLI assay demonstrated that this compound preferentially binds to the CA hexamer versus the monomer. The superposition of the CAI CTD-PPIX complex and the hexameric CA structure suggests that PPIX binds to the interface formed by the NTD and the CTD between adjacent protomers in the CA hexamer via the T72 and E212 residues, serving as a glue to enhance the multimerization of CA. Taken together, our studies demonstrate that PPIX, a hexamer-targeted CA assembly enhancer, should be a new chemical probe for the discovery of modulators of the HIV-1 capsid assembly. IMPORTANCE CA and its assembled viral core play essential roles in distinct steps during HIV-1 replication, including reverse transcription, integration, nuclear entry, virus assembly, and maturation through CA-CA or CA-host factor interactions. These functions of CA are fundamental for HIV-1 pathogenesis, making it an appealing target for antiviral therapy. In the present study, we identified protoporphyrin IX (PPIX) as a candidate CA modulator that can promote CA assembly and prefers binding the CA hexamer versus the monomer. PPIX, like a glue, bound at the interfaces between CA subunits to accelerate CA multimerization. Therefore, PPIX could be used as a new lead for a CA modulator, and it holds potential research applications.
Collapse
Affiliation(s)
- Da-Wei Zhang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Liangxu Xie
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Xiao-Shuang Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Yimin Li
- College of Pharmacy and Key Laboratory for Research and Development of “Qin Medicine” of Shaanxi Administration of Chinese Medicine, Shaanxi University of Chinese Medicine, Xixian New District, China
| | - Xiaojun Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| |
Collapse
|
20
|
Zuliani-Alvarez L, Govasli ML, Rasaiyaah J, Monit C, Perry SO, Sumner RP, McAlpine-Scott S, Dickson C, Rifat Faysal KM, Hilditch L, Miles RJ, Bibollet-Ruche F, Hahn BH, Boecking T, Pinotsis N, James LC, Jacques DA, Towers GJ. Evasion of cGAS and TRIM5 defines pandemic HIV. Nat Microbiol 2022; 7:1762-1776. [PMID: 36289397 PMCID: PMC9613477 DOI: 10.1038/s41564-022-01247-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022]
Abstract
Of the 13 known independent zoonoses of simian immunodeficiency viruses to humans, only one, leading to human immunodeficiency virus (HIV) type 1(M) has become pandemic, causing over 80 million human infections. To understand the specific features associated with pandemic human-to-human HIV spread, we compared replication of HIV-1(M) with non-pandemic HIV-(O) and HIV-2 strains in myeloid cell models. We found that non-pandemic HIV lineages replicate less well than HIV-1(M) owing to activation of cGAS and TRIM5-mediated antiviral responses. We applied phylogenetic and X-ray crystallography structural analyses to identify differences between pandemic and non-pandemic HIV capsids. We found that genetic reversal of two specific amino acid adaptations in HIV-1(M) enables activation of TRIM5, cGAS and innate immune responses. We propose a model in which the parental lineage of pandemic HIV-1(M) evolved a capsid that prevents cGAS and TRIM5 triggering, thereby allowing silent replication in myeloid cells. We hypothesize that this capsid adaptation promotes human-to-human spread through avoidance of innate immune response activation.
Collapse
Affiliation(s)
- Lorena Zuliani-Alvarez
- Division of Infection and Immunity, UCL, London, UK
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
| | | | | | - Chris Monit
- Division of Infection and Immunity, UCL, London, UK
- Carnall Farrar, London, UK
| | - Stephen O Perry
- Division of Infection and Immunity, UCL, London, UK
- Quell Therapeutics Ltd, Translation & Innovation Hub, London, UK
| | | | | | - Claire Dickson
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - K M Rifat Faysal
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Laura Hilditch
- Division of Infection and Immunity, UCL, London, UK
- Nucleus Global, London, UK
| | | | - Frederic Bibollet-Ruche
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Till Boecking
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | - Leo C James
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - David A Jacques
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia.
| | - Greg J Towers
- Division of Infection and Immunity, UCL, London, UK.
| |
Collapse
|
21
|
Lau D, Márquez CL, Parker MW, Böcking AT. Negative Staining Transmission Electron Microscopy of HIV Viral Particles Permeabilized with PFO and Capsid Stabilized with IP6. Bio Protoc 2022; 12:e4536. [PMID: 36353716 PMCID: PMC9606454 DOI: 10.21769/bioprotoc.4536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/21/2022] [Accepted: 09/12/2022] [Indexed: 12/29/2022] Open
Abstract
The human immunodeficiency virus 1 (HIV-1) consists of a viral membrane surrounding the conical capsid. The capsid is a protein container assembled from approximately 1,500 copies of the viral capsid protein (CA), functioning as a reaction and transport chamber for the viral genome after cell entry. Transmission electron microscopy (TEM) is a widely used technique for characterizing the ultrastructure of isolated viral capsids after removal of the viral membrane, which otherwise hinders negative staining of structures inside the viral particle for TEM. Here, we provide a protocol to permeabilize the membrane of HIV-1 particles using a pore-forming toxin for negative staining of capsids, which are stabilized with inositol hexakisphosphate to prevent premature capsid disassembly. This approach revealed the pleomorphic nature of capsids with a partially intact membrane surrounding them. The permeabilization strategy using pore-forming toxins can be readily applied to visualize the internal architecture of other enveloped viruses using TEM. Graphical abstract.
Collapse
Affiliation(s)
- Derrick Lau
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Chantal L. Márquez
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, University of New South Wales, Sydney, Australia
,
Laboratory of Molecular and Cellular Virology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Michael W. Parker
- St. Vincent’s Institute of Medical Research, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia
| | - And Till Böcking
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, University of New South Wales, Sydney, Australia
,
*For correspondence:
| |
Collapse
|
22
|
McGuinness C, Walsh JC, Bayly-Jones C, Dunstone MA, Christie MP, Morton CJ, Parker MW, Böcking T. Single-molecule analysis of the entire perfringolysin O pore formation pathway. eLife 2022; 11:e74901. [PMID: 36000711 PMCID: PMC9457685 DOI: 10.7554/elife.74901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 08/16/2022] [Indexed: 11/20/2022] Open
Abstract
The cholesterol-dependent cytolysin perfringolysin O (PFO) is secreted by Clostridium perfringens as a bacterial virulence factor able to form giant ring-shaped pores that perforate and ultimately lyse mammalian cell membranes. To resolve the kinetics of all steps in the assembly pathway, we have used single-molecule fluorescence imaging to follow the dynamics of PFO on dye-loaded liposomes that lead to opening of a pore and release of the encapsulated dye. Formation of a long-lived membrane-bound PFO dimer nucleates the growth of an irreversible oligomer. The growing oligomer can insert into the membrane and open a pore at stoichiometries ranging from tetramers to full rings (~35 mers), whereby the rate of insertion increases linearly with the number of subunits. Oligomers that insert before the ring is complete continue to grow by monomer addition post insertion. Overall, our observations suggest that PFO membrane insertion is kinetically controlled.
Collapse
Affiliation(s)
- Conall McGuinness
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South WalesSydneyAustralia
| | - James C Walsh
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South WalesSydneyAustralia
| | - Charles Bayly-Jones
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash UniversityMelbourneAustralia
| | - Michelle A Dunstone
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash UniversityMelbourneAustralia
| | - Michelle P Christie
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of MelbourneVictoriaAustralia
| | - Craig J Morton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of MelbourneVictoriaAustralia
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of MelbourneVictoriaAustralia
- Structural Biology Unit, St. Vincent’s Institute of Medical ResearchVictoriaAustralia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South WalesSydneyAustralia
| |
Collapse
|
23
|
Direct Capsid Labeling of Infectious HIV-1 by Genetic Code Expansion Allows Detection of Largely Complete Nuclear Capsids and Suggests Nuclear Entry of HIV-1 Complexes via Common Routes. mBio 2022; 13:e0195922. [PMID: 35972146 PMCID: PMC9600849 DOI: 10.1128/mbio.01959-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cone-shaped mature HIV-1 capsid is the main orchestrator of early viral replication. After cytosolic entry, it transports the viral replication complex along microtubules toward the nucleus. While it was initially believed that the reverse transcribed genome is released from the capsid in the cytosol, recent observations indicate that a high amount of capsid protein (CA) remains associated with subviral complexes during import through the nuclear pore complex (NPC). Observation of postentry events via microscopic detection of HIV-1 CA is challenging, since epitope shielding limits immunodetection and the genetic fragility of CA hampers direct labeling approaches. Here, we present a minimally invasive strategy based on genetic code expansion and click chemistry that allows for site-directed fluorescent labeling of HIV-1 CA, while retaining virus morphology and infectivity. Thereby, we could directly visualize virions and subviral complexes using advanced microscopy, including nanoscopy and correlative imaging. Quantification of signal intensities of subviral complexes revealed an amount of CA associated with nuclear complexes in HeLa-derived cells and primary T cells consistent with a complete capsid and showed that treatment with the small molecule inhibitor PF74 did not result in capsid dissociation from nuclear complexes. Cone-shaped objects detected in the nucleus by electron tomography were clearly identified as capsid-derived structures by correlative microscopy. High-resolution imaging revealed dose-dependent clustering of nuclear capsids, suggesting that incoming particles may follow common entry routes.
Collapse
|
24
|
Localization and functions of native and eGFP-tagged capsid proteins in HIV-1 particles. PLoS Pathog 2022; 18:e1010754. [PMID: 35951676 PMCID: PMC9426931 DOI: 10.1371/journal.ppat.1010754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/30/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
In infectious HIV-1 particles, the capsid protein (CA) forms a cone-shaped shell called the capsid, which encases the viral ribonucleoprotein complex (vRNP). Following cellular entry, the capsid is disassembled through a poorly understood process referred to as uncoating, which is required to release the reverse transcribed HIV-1 genome for integration into host chromatin. Whereas single virus imaging using indirect CA labeling techniques suggested uncoating to occur in the cytoplasm or at the nuclear pore, a recent study using eGFP-tagged CA reported uncoating in the nucleus. To delineate the HIV-1 uncoating site, we investigated the mechanism of eGFP-tagged CA incorporation into capsids and the utility of this fluorescent marker for visualizing HIV-1 uncoating. We find that virion incorporated eGFP-tagged CA is effectively excluded from the capsid shell, and that a subset of the tagged CA is vRNP associated. These results thus imply that eGFP-tagged CA is not a direct marker for capsid uncoating. We further show that native CA co-immunoprecipitates with vRNP components, providing a basis for retention of eGFP-tagged and untagged CA by sub-viral complexes in the nucleus. Moreover, we find that functional viral replication complexes become accessible to integrase-interacting host factors at the nuclear pore, leading to inhibition of infection and demonstrating capsid permeabilization prior to nuclear import. Finally, we find that HIV-1 cores containing a mixture of wild-type and mutant CA interact differently with cytoplasmic versus nuclear pools of the CA-binding host cofactor CPSF6. Our results suggest that capsid remodeling (including a loss of capsid integrity) is the predominant pathway for HIV-1 nuclear entry and provide new insights into the mechanism of CA retention in the nucleus via interaction with vRNP components. The timing, location and mechanisms of HIV-1 capsid disassembly which is referred to as uncoating remains unclear. Direct labeling of HIV-1 capsids, by incorporating a few green fluorescent proteins (GFP) tagged capsid protein (CA) into virions allows to image the spatio-temporal loss of HIV-1 CA during virus infection. However, the localization and functions of a few virion incorporated eGFP-tagged CA proteins remain unclear, since <50% of virus packaged CA proteins participate to form the conical capsid shell that protects the HIV-1 genome. Here we developed several approaches to test the localization and function of eGFP-tagged CA proteins in virions. We found that eGFP-tagged CA proteins are excluded from the conical capsid shell and that a subset of these proteins is associated with the viral ribonucleoprotein complex (vRNPs), through direct interactions between CA and vRNP components. eGFP-tagged CA is retained in the nucleus by virtue of vRNP association and is unlikely to report on HIV-1 capsid disassembly. We also found that HIV-1 capsids become permeabilized and are remodeled during their transport into the nucleus. Our study provides new insights into the ability of CA to interact with vRNPs for its retention in the nucleus and highlights capsid remodeling as a preferred pathway for HIV-1 entry into the nucleus.
Collapse
|
25
|
Müller TG, Zila V, Müller B, Kräusslich HG. Nuclear Capsid Uncoating and Reverse Transcription of HIV-1. Annu Rev Virol 2022; 9:261-284. [PMID: 35704745 DOI: 10.1146/annurev-virology-020922-110929] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
After cell entry, human immunodeficiency virus type 1 (HIV-1) replication involves reverse transcription of the RNA genome, nuclear import of the subviral complex without nuclear envelope breakdown, and integration of the viral complementary DNA into the host genome. Here, we discuss recent evidence indicating that completion of reverse transcription and viral genome uncoating occur in the nucleus rather than in the cytoplasm, as previously thought, and suggest a testable model for nuclear import and uncoating. Multiple recent studies indicated that the cone-shaped capsid, which encases the genome and replication proteins, not only serves as a reaction container for reverse transcription and as a shield from innate immune sensors but also may constitute the elusive HIV-1 nuclear import factor. Rupture of the capsid may be triggered in the nucleus by completion of reverse transcription, by yet-unknown nuclear factors, or by physical damage, and it appears to occur in close temporal and spatial association with the integration process. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Thorsten G Müller
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany;
| | - Vojtech Zila
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany;
| | - Barbara Müller
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany;
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; .,German Center for Infection Research, Heidelberg, Germany
| |
Collapse
|
26
|
Troyano-Hernáez P, Reinosa R, Holguín Á. HIV Capsid Protein Genetic Diversity Across HIV-1 Variants and Impact on New Capsid-Inhibitor Lenacapavir. Front Microbiol 2022; 13:854974. [PMID: 35495642 PMCID: PMC9039614 DOI: 10.3389/fmicb.2022.854974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/09/2022] [Indexed: 12/17/2022] Open
Abstract
The HIV p24 capsid protein has an essential, structural, and functional role in the viral replication cycle, being an interesting target for vaccine design, diagnostic tests, and new antiretroviral drugs (ARVs). The HIV-1 variability poses a challenge for the accuracy and efficiency of diagnostic and treatment tools. This study analyzes p24 diversity among HIV-1 variants and within its secondary structure in HIV-1 M, O, P, and N groups. All available HIV-1 p24 nucleotide sequences were downloaded from the Los Alamos HIV Sequence Database, selecting 23,671 sequences belonging to groups O, N, P, and M (9 subtypes, 7 sub-sub types, and 109 circulating recombinant forms or CRFs). Using a bioinformatics tool developed in our laboratory (EpiMolBio program), we analyzed the amino acid conservation compared to the HXB2 subtype B reference sequence and the V-markers, or amino acid changes that were specific for each variant with at least 10 available sequences. We inferred the p24 consensus sequence for HIV-1 and for each group to analyze the overall conservation in p24 main structural regions, reporting the percentage of substitutions per variant affecting the capsid assembly and molecule-binding, including those associated with resistance to the new capsid-inhibitor lenacapavir, and the key residues involved in lenacapavir-p24 interaction, according to the bibliography. Although the overall structure of p24 was highly conserved, the conservation in the secondary structure varied between HIV-1 variants and the type of secondary structure. All HIV-1 variants presented >80% amino acid conservation vs. HXB2 reference sequence, except for group M sub-subtype F1 (69.27%). Mutants affecting the capsid assembly or lenacapavir capsid-binding were found in <1% of the p24 consensus sequence. Our study reports the HIV-1 variants carrying 14 unique single V-markers in 9/38 group M variants and the level of p24 conservation in each secondary structure region among the 4 HIV-1 groups and group M variants, revealing no natural resistance to lenacapavir in any HIV-1 variant. We present a thorough analysis of p24 variability among all HIV-1 variants circulating to date. Since p24 genetic variability can impact the viral replication cycle and the efficacy of new p24-based diagnostic, therapeutic, and vaccine strategies, conservation studies must consider all HIV-1 variants circulating worldwide.
Collapse
Affiliation(s)
- Paloma Troyano-Hernáez
- HIV-1 Molecular Epidemiology Laboratory, Department of Microbiology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Red en Investigación Translacional en Infecciones Pediátricas (RITIP), Madrid, Spain
| | - Roberto Reinosa
- HIV-1 Molecular Epidemiology Laboratory, Department of Microbiology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Red en Investigación Translacional en Infecciones Pediátricas (RITIP), Madrid, Spain
| | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Department of Microbiology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Red en Investigación Translacional en Infecciones Pediátricas (RITIP), Madrid, Spain
| |
Collapse
|
27
|
Domínguez-Zotes S, Valbuena A, Mateu MG. Antiviral compounds modulate elasticity, strength and material fatigue of a virus capsid framework. Biophys J 2022; 121:919-931. [PMID: 35151634 PMCID: PMC8943814 DOI: 10.1016/j.bpj.2022.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/18/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022] Open
Abstract
This study investigates whether the biochemical and antiviral effects of organic compounds that bind different sites in the mature human immunodeficiency virus capsid may be related to the modulation of different mechanical properties of the protein lattice from which the capsid is built. Mechanical force was used as a probe to quantify, in atomic force microscopy experiments at physiological pH and ionic strength, ligand-mediated changes in capsid lattice elasticity, breathing, strength against local dislocation by mechanical stress, and resistance to material fatigue. The results indicate that the effects of the tested compounds on assembly or biochemical stability can be linked, from a physics-based perspective, to their interference with the mechanical behavior of the viral capsid framework. The antivirals CAP-1 and CAI-55 increased the intrinsic elasticity and breathing of the capsid protein lattice and may entropically decrease the probability of the capsid protein to assemble into a functionally competent conformation. Antiviral PF74 increased the resistance of the capsid protein lattice to disruption by mechanical stress and material fatigue and may enthalpically strengthen the basal capsid lattice against breakage and disintegration. This study provides proof of concept that the interrogation of the mechanical properties of the nanostructured protein material that makes a virus capsid may provide fundamental insights into the biophysical action of capsid-binding antiviral agents. The implications for drug design by specifically targeting the biomechanics of viruses are discussed.
Collapse
Affiliation(s)
- Santos Domínguez-Zotes
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Alejandro Valbuena
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | - Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| |
Collapse
|
28
|
Zhang MJ, Stear JH, Jacques DA, Böcking T. Insights into HIV uncoating from single-particle imaging techniques. Biophys Rev 2022; 14:23-32. [PMID: 35340594 PMCID: PMC8921429 DOI: 10.1007/s12551-021-00922-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/23/2021] [Indexed: 01/13/2023] Open
Abstract
Human immunodeficiency virus (HIV) is the most extensively researched human pathogen. Despite this massive scientific endeavour, several fundamental viral processes remain enigmatic. One such critical process is uncoating-the event that releases the viral genome from the proteinaceous shell of the capsid during infection. While this process is conceptually simple, the molecular underpinnings, timing, regulation, and cellular location of uncoating remain contentious. This review describes the hurdles that have limited our understanding in this area and presents recently deployed in vitro and in cellulo techniques that have been developed expressly with the aim of directly visualising capsid uncoating at the single-particle level and understanding the mechanics behind this essential aspect of HIV infection.
Collapse
Affiliation(s)
- Margaret J. Zhang
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Jeffrey H. Stear
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - David A. Jacques
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| |
Collapse
|
29
|
Zila V, Müller TG, Müller B, Kräusslich HG. HIV-1 capsid is the key orchestrator of early viral replication. PLoS Pathog 2021; 17:e1010109. [PMID: 34968390 PMCID: PMC8717999 DOI: 10.1371/journal.ppat.1010109] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Vojtech Zila
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
| | - Thorsten G. Müller
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research, Partner Site Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
30
|
Ricaña CL, Dick RA. Inositol Phosphates and Retroviral Assembly: A Cellular Perspective. Viruses 2021; 13:v13122516. [PMID: 34960784 PMCID: PMC8703376 DOI: 10.3390/v13122516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 12/13/2022] Open
Abstract
Understanding the molecular mechanisms of retroviral assembly has been a decades-long endeavor. With the recent discovery of inositol hexakisphosphate (IP6) acting as an assembly co-factor for human immunodeficiency virus (HIV), great strides have been made in retroviral research. In this review, the enzymatic pathways to synthesize and metabolize inositol phosphates (IPs) relevant to retroviral assembly are discussed. The functions of these enzymes and IPs are outlined in the context of the cellular biology important for retroviruses. Lastly, the recent advances in understanding the role of IPs in retroviral biology are surveyed.
Collapse
|
31
|
HIV-1 CA Inhibitors Are Antagonized by Inositol Phosphate Stabilization of the Viral Capsid in Cells. J Virol 2021; 95:e0144521. [PMID: 34613803 PMCID: PMC8610598 DOI: 10.1128/jvi.01445-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The HIV-1 capsid, composed of the CA protein, is the target of the novel antiretroviral drug lenacapavir (LCV). CA inhibitors block host factor binding and alter capsid stability to prevent nuclear entry and reverse transcription (RTN), respectively. Capsid stability is mediated in vitro by binding to the host cell metabolite inositol hexakisphosphate (IP6). IP6 depletion in target cells has little effect on HIV-1 infection. We hypothesized that capsid-altering concentrations of CA inhibitors might reveal an effect of IP6 depletion on HIV-1 infection in target cells. To test this, we studied the effects of IP6 depletion on inhibition of infection by the CA inhibitors PF74 and LCV. At low doses of either compound that affect HIV-1 nuclear entry, no effect of IP6 depletion on antiviral activity was observed. Increased antiviral activity was observed in IP6-depleted cells at inhibitor concentrations that affect capsid stability, correlating with increased RTN inhibition. Assays of uncoating and endogenous RTN of purified cores in vitro provided additional support. Our results show that inositol phosphates stabilize the HIV-1 capsid in target cells, thereby dampening the antiviral effects of capsid-targeting antiviral compounds. We propose that targeting of the IP6-binding site in conjunction with CA inhibitors will lead to robust antiretroviral therapy (ART). IMPORTANCE HIV-1 infection and subsequent depletion of CD4+ T cells result in AIDS. Antiretroviral therapy treatment of infected individuals prevents progression to AIDS. The HIV-1 capsid has recently become an ART target. Capsid inhibitors block HIV-1 infection at multiple steps, offering advantages over current ART. The cellular metabolite inositol hexakisphosphate (IP6) binds the HIV-1 capsid, stabilizing it in vitro. However, the function of this interaction in target cells is unclear. Our results imply that IP6 stabilizes the incoming HIV-1 capsid in cells, thus limiting the antiviral efficiency of capsid-destabilizing antivirals. We present a model of capsid inhibitor function and propose that targeting of the IP6-binding site in conjunction with capsid inhibitors currently in development will lead to more robust ART.
Collapse
|
32
|
Ni T, Zhu Y, Yang Z, Xu C, Chaban Y, Nesterova T, Ning J, Böcking T, Parker MW, Monnie C, Ahn J, Perilla JR, Zhang P. Structure of native HIV-1 cores and their interactions with IP6 and CypA. SCIENCE ADVANCES 2021; 7:eabj5715. [PMID: 34797722 PMCID: PMC8604400 DOI: 10.1126/sciadv.abj5715] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/01/2021] [Indexed: 05/24/2023]
Abstract
The viral capsid plays essential roles in HIV replication and is a major platform engaging host factors. To overcome challenges in study native capsid structure, we used the perfringolysin O to perforate the membrane of HIV-1 particles, thus allowing host proteins and small molecules to access the native capsid while improving cryo–electron microscopy image quality. Using cryo–electron tomography and subtomogram averaging, we determined the structures of native capsomers in the presence and absence of inositol hexakisphosphate (IP6) and cyclophilin A and constructed an all-atom model of a complete HIV-1 capsid. Our structures reveal two IP6 binding sites and modes of cyclophilin A interactions. Free energy calculations substantiate the two binding sites at R18 and K25 and further show a prohibitive energy barrier for IP6 to pass through the pentamer. Our results demonstrate that perfringolysin O perforation is a valuable tool for structural analyses of enveloped virus capsids and interactions with host cell factors.
Collapse
Affiliation(s)
- Tao Ni
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Yanan Zhu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Zhengyi Yang
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Chaoyi Xu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Yuriy Chaban
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Tanya Nesterova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Jiying Ning
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW, Sydney, Australia
| | - Michael W. Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Christina Monnie
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jinwoo Ahn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Juan R. Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
33
|
Ingram Z, Fischer DK, Ambrose Z. Disassembling the Nature of Capsid: Biochemical, Genetic, and Imaging Approaches to Assess HIV-1 Capsid Functions. Viruses 2021; 13:v13112237. [PMID: 34835043 PMCID: PMC8618418 DOI: 10.3390/v13112237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) capsid and its disassembly, or capsid uncoating, has remained an active area of study over the past several decades. Our understanding of the HIV-1 capsid as solely a protective shell has since shifted with discoveries linking it to other complex replication events. The interplay of the HIV-1 capsid with reverse transcription, nuclear import, and integration has led to an expansion of knowledge of capsid functionality. Coincident with advances in microscopy, cell, and biochemistry assays, several models of capsid disassembly have been proposed, in which it occurs in either the cytoplasmic, nuclear envelope, or nuclear regions of the cell. Here, we discuss how the understanding of the HIV-1 capsid has evolved and the key methods that made these discoveries possible.
Collapse
Affiliation(s)
- Zachary Ingram
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; (Z.I.); (D.K.F.)
- Pittsburgh Center for HIV Protein Interactions, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Douglas K. Fischer
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; (Z.I.); (D.K.F.)
- Pittsburgh Center for HIV Protein Interactions, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Zandrea Ambrose
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; (Z.I.); (D.K.F.)
- Pittsburgh Center for HIV Protein Interactions, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Correspondence:
| |
Collapse
|
34
|
Dynactin 1 negatively regulates HIV-1 infection by sequestering the host cofactor CLIP170. Proc Natl Acad Sci U S A 2021; 118:2102884118. [PMID: 34686593 DOI: 10.1073/pnas.2102884118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2021] [Indexed: 11/18/2022] Open
Abstract
Many viruses directly engage and require the dynein-dynactin motor-adaptor complex in order to transport along microtubules (MTs) to the nucleus and initiate infection. HIV type 1 (HIV-1) exploits dynein, the dynein adaptor BICD2, and core dynactin subunits but unlike several other viruses, does not require dynactin-1 (DCTN1). The underlying reason for HIV-1's variant dynein engagement strategy and independence from DCTN1 remains unknown. Here, we reveal that DCTN1 actually inhibits early HIV-1 infection by interfering with the ability of viral cores to interact with critical host cofactors. Specifically, DCTN1 competes for binding to HIV-1 particles with cytoplasmic linker protein 170 (CLIP170), one of several MT plus-end tracking proteins (+TIPs) that regulate the stability of viral cores after entry into the cell. Outside of its function as a dynactin subunit, DCTN1 also functions as a +TIP that we find sequesters CLIP170 from incoming particles. Deletion of the Zinc knuckle (Zn) domain in CLIP170 that mediates its interactions with several proteins, including DCTN1, increased CLIP170 binding to virus particles but failed to promote infection, further suggesting that DCTN1 blocks a critical proviral function of CLIP170 mediated by its Zn domain. Our findings suggest that the unique manner in which HIV-1 binds and exploits +TIPs to regulate particle stability leaves them vulnerable to the negative effects of DCTN1 on +TIP availability and function, which may in turn have driven HIV-1 to evolve away from DCTN1 in favor of BICD2-based engagement of dynein during early infection.
Collapse
|
35
|
Saito A, Yamashita M. HIV-1 capsid variability: viral exploitation and evasion of capsid-binding molecules. Retrovirology 2021; 18:32. [PMID: 34702294 PMCID: PMC8549334 DOI: 10.1186/s12977-021-00577-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
The HIV-1 capsid, a conical shell encasing viral nucleoprotein complexes, is involved in multiple post-entry processes during viral replication. Many host factors can directly bind to the HIV-1 capsid protein (CA) and either promote or prevent HIV-1 infection. The viral capsid is currently being explored as a novel target for therapeutic interventions. In the past few decades, significant progress has been made in our understanding of the capsid–host interactions and mechanisms of action of capsid-targeting antivirals. At the same time, a large number of different viral capsids, which derive from many HIV-1 mutants, naturally occurring variants, or diverse lentiviruses, have been characterized for their interactions with capsid-binding molecules in great detail utilizing various experimental techniques. This review provides an overview of how sequence variation in CA influences phenotypic properties of HIV-1. We will focus on sequence differences that alter capsid–host interactions and give a brief account of drug resistant mutations in CA and their mutational effects on viral phenotypes. Increased knowledge of the sequence-function relationship of CA helps us deepen our understanding of the adaptive potential of the viral capsid.
Collapse
Affiliation(s)
- Akatsuki Saito
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Miyazaki, Japan.,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Masahiro Yamashita
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
36
|
A Structural Perspective of the Role of IP6 in Immature and Mature Retroviral Assembly. Viruses 2021; 13:v13091853. [PMID: 34578434 PMCID: PMC8473085 DOI: 10.3390/v13091853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 11/17/2022] Open
Abstract
The small cellular molecule inositol hexakisphosphate (IP6) has been known for ~20 years to promote the in vitro assembly of HIV-1 into immature virus-like particles. However, the molecular details underlying this effect have been determined only recently, with the identification of the IP6 binding site in the immature Gag lattice. IP6 also promotes formation of the mature capsid protein (CA) lattice via a second IP6 binding site, and enhances core stability, creating a favorable environment for reverse transcription. IP6 also enhances assembly of other retroviruses, from both the Lentivirus and the Alpharetrovirus genera. These findings suggest that IP6 may have a conserved function throughout the family Retroviridae. Here, we discuss the different steps in the viral life cycle that are influenced by IP6, and describe in detail how IP6 interacts with the immature and mature lattices of different retroviruses.
Collapse
|
37
|
Guedán A, Donaldson CD, Caroe ER, Cosnefroy O, Taylor IA, Bishop KN. HIV-1 requires capsid remodelling at the nuclear pore for nuclear entry and integration. PLoS Pathog 2021; 17:e1009484. [PMID: 34543344 PMCID: PMC8483370 DOI: 10.1371/journal.ppat.1009484] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/30/2021] [Accepted: 09/04/2021] [Indexed: 11/18/2022] Open
Abstract
The capsid (CA) lattice of the HIV-1 core plays a key role during infection. From the moment the core is released into the cytoplasm, it interacts with a range of cellular factors that, ultimately, direct the pre-integration complex to the integration site. For integration to occur, the CA lattice must disassemble. Early uncoating or a failure to do so has detrimental effects on virus infectivity, indicating that an optimal stability of the viral core is crucial for infection. Here, we introduced cysteine residues into HIV-1 CA in order to induce disulphide bond formation and engineer hyper-stable mutants that are slower or unable to uncoat, and then followed their replication. From a panel of mutants, we identified three with increased capsid stability in cells and found that, whilst the M68C/E212C mutant had a 5-fold reduction in reverse transcription, two mutants, A14C/E45C and E180C, were able to reverse transcribe to approximately WT levels in cycling cells. Moreover, these mutants only had a 5-fold reduction in 2-LTR circle production, suggesting that not only could reverse transcription complete in hyper-stable cores, but that the nascent viral cDNA could enter the nuclear compartment. Furthermore, we observed A14C/E45C mutant capsid in nuclear and chromatin-associated fractions implying that the hyper-stable cores themselves entered the nucleus. Immunofluorescence studies revealed that although the A14C/E45C mutant capsid reached the nuclear pore with the same kinetics as wild type capsid, it was then retained at the pore in association with Nup153. Crucially, infection with the hyper-stable mutants did not promote CPSF6 re-localisation to nuclear speckles, despite the mutant capsids being competent for CPSF6 binding. These observations suggest that hyper-stable cores are not able to uncoat, or remodel, enough to pass through or dissociate from the nuclear pore and integrate successfully. This, is turn, highlights the importance of capsid lattice flexibility for nuclear entry. In conclusion, we hypothesise that during a productive infection, a capsid remodelling step takes place at the nuclear pore that releases the core complex from Nup153, and relays it to CPSF6, which then localises it to chromatin ready for integration.
Collapse
Affiliation(s)
- Anabel Guedán
- Retroviral Replication Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Callum D. Donaldson
- Retroviral Replication Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Eve R. Caroe
- Retroviral Replication Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ophélie Cosnefroy
- Retroviral Replication Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ian A. Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Kate N. Bishop
- Retroviral Replication Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
38
|
Abstract
Here, we used a fluorescent protein that is free in solution and is trapped in nuclear HIV-1 capsids to demonstrate that the capsids retain integrity and prevent mixing of macromolecules within the viral core and the cellular environment until just before integration. We also found that capsid integrity is maintained until just minutes before disassembly in the nucleus, revealing that uncoating proceeds rapidly after integrity loss. These valuable insights into the early stage of HIV-1 replication indicate that intact HIV-1 capsids are imported through nuclear pores, that reverse transcription is mostly completed within intact capsids, and that preintegration complex-host interactions facilitating integration and target site selection must occur within a short time frame between capsid disassembly and integration. We recently reported that HIV-1 cores that retained >94% of their capsid (CA) protein entered the nucleus and disassembled (uncoated) near their integration site <1.5 h before integration. However, whether the nuclear capsids lost their integrity by rupturing or a small loss of CA before capsid disassembly was unclear. Here, we utilized a previously reported vector in which green fluorescent protein is inserted in HIV-1 Gag (iGFP); proteolytic processing efficiently releases GFP, some of which remains trapped inside capsids and serves as a fluid phase content marker that is released when the capsids lose their integrity. We found that nuclear capsids retained their integrity until shortly before integration and lost their GFP content marker ∼1 to 3 min before loss of capsid-associated mRuby-tagged cleavage and polyadenylation specificity factor 6 (mRuby-CPSF6). In contrast, loss of GFP fused to CA and mRuby-CPSF6 occurred simultaneously, indicating that viral cores retain their integrity until just minutes before uncoating. Our results indicate that HIV-1 evolved to retain its capsid integrity and maintain a separation between macromolecules in the viral core and the nuclear environment until uncoating occurs just before integration. These observations imply that intact HIV-1 capsids are imported through nuclear pores; that reverse transcription occurs in an intact capsid; and that interactions between the preintegration complex and LEDGF/p75, and possibly other host factors that facilitate integration, must occur during the short time period between loss of capsid integrity and integration.
Collapse
|
39
|
Ingram Z, Matheney H, Wise E, Weatherford C, Hulme AE. Overlap Intensity: An ImageJ Macro for Analyzing the HIV-1 In Situ Uncoating Assay. Viruses 2021; 13:v13081604. [PMID: 34452469 PMCID: PMC8402712 DOI: 10.3390/v13081604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Capsid uncoating is at the crossroads of early steps in HIV-1 replication. In recent years, the development of novel assays has expanded how HIV-1 uncoating can be studied. In the in situ uncoating assay, dual fluorescently labelled virus allows for the identification of fused viral cores. Antibody staining then detects the amount of capsid associated with each viral core at different times post-infection. Following fixed cell imaging, manual counting can be used to assess the fusion state and capsid signal for each viral core, but this method can introduce bias with increased time of analysis. To address these limitations, we developed the Overlap Intensity macro in ImageJ. This macro automates the detection of viral cores and quantification of overlapping fusion and capsid signals. We demonstrated the high accuracy of the macro by comparing core detection to manual methods. Analysis of an in situ uncoating assay further verified the macro by detecting progressive uncoating as expected. Therefore, this macro improves the accessibility of the in situ uncoating assay by replacing time-consuming manual methods or the need for expensive data analysis software. Beyond the described assay, the Overlap Intensity macro includes adjustable settings for use in other methods requiring quantification of overlapping fluorescent signals.
Collapse
|
40
|
Naghavi MH. HIV-1 capsid exploitation of the host microtubule cytoskeleton during early infection. Retrovirology 2021; 18:19. [PMID: 34229718 PMCID: PMC8259435 DOI: 10.1186/s12977-021-00563-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/29/2021] [Indexed: 01/07/2023] Open
Abstract
Microtubules (MTs) form a filamentous array that provide both structural support and a coordinated system for the movement and organization of macromolecular cargos within the cell. As such, they play a critical role in regulating a wide range of cellular processes, from cell shape and motility to cell polarization and division. The array is radial with filament minus-ends anchored at perinuclear MT-organizing centers and filament plus-ends continuously growing and shrinking to explore and adapt to the intracellular environment. In response to environmental cues, a small subset of these highly dynamic MTs can become stabilized, acquire post-translational modifications and act as specialized tracks for cargo trafficking. MT dynamics and stability are regulated by a subset of highly specialized MT plus-end tracking proteins, known as +TIPs. Central to this is the end-binding (EB) family of proteins which specifically recognize and track growing MT plus-ends to both regulate MT polymerization directly and to mediate the accumulation of a diverse array of other +TIPs at MT ends. Moreover, interaction of EB1 and +TIPs with actin-MT cross-linking factors coordinate changes in actin and MT dynamics at the cell periphery, as well as during the transition of cargos from one network to the other. The inherent structural polarity of MTs is sensed by specialized motor proteins. In general, dynein directs trafficking of cargos towards the minus-end while most kinesins direct movement toward the plus-end. As a pathogenic cargo, HIV-1 uses the actin cytoskeleton for short-range transport most frequently at the cell periphery during entry before transiting to MTs for long-range transport to reach the nucleus. While the fundamental importance of MT networks to HIV-1 replication has long been known, recent work has begun to reveal the underlying mechanistic details by which HIV-1 engages MTs after entry into the cell. This includes mimicry of EB1 by capsid (CA) and adaptor-mediated engagement of dynein and kinesin motors to elegantly coordinate early steps in infection that include MT stabilization, uncoating (conical CA disassembly) and virus transport toward the nucleus. This review discusses recent advances in our understanding of how MT regulators and their associated motors are exploited by incoming HIV-1 capsid during early stages of infection.
Collapse
Affiliation(s)
- Mojgan H Naghavi
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
41
|
AlBurtamani N, Paul A, Fassati A. The Role of Capsid in the Early Steps of HIV-1 Infection: New Insights into the Core of the Matter. Viruses 2021; 13:v13061161. [PMID: 34204384 PMCID: PMC8234406 DOI: 10.3390/v13061161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 01/27/2023] Open
Abstract
In recent years, major advances in research and experimental approaches have significantly increased our knowledge on the role of the HIV-1 capsid in the virus life cycle, from reverse transcription to integration and gene expression. This makes the capsid protein a good pharmacological target to inhibit HIV-1 replication. This review covers our current understanding of the role of the viral capsid in the HIV-1 life cycle and its interaction with different host factors that enable reverse transcription, trafficking towards the nucleus, nuclear import and integration into host chromosomes. It also describes different promising small molecules, some of them in clinical trials, as potential targets for HIV-1 therapy.
Collapse
|
42
|
Babu M, Favretto F, de Opakua AI, Rankovic M, Becker S, Zweckstetter M. Proline/arginine dipeptide repeat polymers derail protein folding in amyotrophic lateral sclerosis. Nat Commun 2021; 12:3396. [PMID: 34099711 PMCID: PMC8184751 DOI: 10.1038/s41467-021-23691-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 05/12/2021] [Indexed: 12/26/2022] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia are two neurodegenerative diseases with overlapping clinical features and the pathological hallmark of cytoplasmic deposits of misfolded proteins. The most frequent cause of familial forms of these diseases is a hexanucleotide repeat expansion in the non-coding region of the C9ORF72 gene that is translated into dipeptide repeat polymers. Here we show that proline/arginine repeat polymers derail protein folding by sequestering molecular chaperones. We demonstrate that proline/arginine repeat polymers inhibit the folding catalyst activity of PPIA, an abundant molecular chaperone and prolyl isomerase in the brain that is altered in amyotrophic lateral sclerosis. NMR spectroscopy reveals that proline/arginine repeat polymers bind to the active site of PPIA. X-ray crystallography determines the atomic structure of a proline/arginine repeat polymer in complex with the prolyl isomerase and defines the molecular basis for the specificity of disease-associated proline/arginine polymer interactions. The combined data establish a toxic mechanism that is specific for proline/arginine dipeptide repeat polymers and leads to derailed protein homeostasis in C9orf72-associated neurodegenerative diseases. The most frequent cause of familial Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are hexanucleotide repeat expansions in the non-coding region of the C9ORF72 gene that are translated into five dipeptide repeat (DPR) proteins. Here, the authors show that proline/arginine (PR) DPRs inhibit the prolyl isomerase PPIA and reveal the molecular mechanism of the impaired protein folding activity of PPIA by performing NMR measurements and determining a PR DPR bound PPIA crystal structure.
Collapse
Affiliation(s)
- Maria Babu
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Filippo Favretto
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | | | - Marija Rankovic
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany. .,Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
43
|
Ros U, Pedrera L, Garcia-Saez AJ. Techniques for studying membrane pores. Curr Opin Struct Biol 2021; 69:108-116. [PMID: 33945958 DOI: 10.1016/j.sbi.2021.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 01/30/2023]
Abstract
Pore-forming proteins (PFPs) are of special interest because of the association of their activity with the disruption of the membrane impermeability barrier and cell death. They generally convert from a monomeric, soluble form into transmembrane oligomers that induce the opening of membrane pores. The study of pore formation in membranes with molecular detail remains a challenging endeavor because of its highly dynamic and complex nature, usually involving diverse oligomeric structures with different functionalities. Here we discuss current methods applied for the structural and functional characterization of PFPs at the individual vesicle and cell level. We highlight how the development of high-resolution and single-molecule imaging techniques allows the analysis of the structural organization of protein oligomers and pore entities in lipid membranes.
Collapse
Affiliation(s)
- Uris Ros
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Lohans Pedrera
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Ana J Garcia-Saez
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany.
| |
Collapse
|
44
|
Lev S, Bowring B, Desmarini D, Djordjevic JT. Inositol polyphosphate-protein interactions: Implications for microbial pathogenicity. Cell Microbiol 2021; 23:e13325. [PMID: 33721399 PMCID: PMC9286782 DOI: 10.1111/cmi.13325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 11/29/2022]
Abstract
Inositol polyphosphates (IPs) and inositol pyrophosphates (PP-IPs) regulate diverse cellular processes in eukaryotic cells. IPs and PP-IPs are highly negatively charged and exert their biological effects by interacting with specific protein targets. Studies performed predominantly in mammalian cells and model yeasts have shown that IPs and PP-IPs modulate target function through allosteric regulation, by promoting intra- and intermolecular stabilization and, in the case of PP-IPs, by donating a phosphate from their pyrophosphate (PP) group to the target protein. Technological advances in genetics have extended studies of IP function to microbial pathogens and demonstrated that disrupting PP-IP biosynthesis and PP-IP-protein interaction has a profound impact on pathogenicity. This review summarises the complexity of IP-mediated regulation in eukaryotes, including microbial pathogens. It also highlights examples of poor conservation of IP-protein interaction outcome despite the presence of conserved IP-binding domains in eukaryotic proteomes.
Collapse
Affiliation(s)
- Sophie Lev
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Sydney Medical School-Westmead, University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| | - Bethany Bowring
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Sydney Medical School-Westmead, University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| | - Desmarini Desmarini
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Sydney Medical School-Westmead, University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| | - Julianne Teresa Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Sydney Medical School-Westmead, University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
45
|
Zhuang S, Torbett BE. Interactions of HIV-1 Capsid with Host Factors and Their Implications for Developing Novel Therapeutics. Viruses 2021; 13:417. [PMID: 33807824 PMCID: PMC8001122 DOI: 10.3390/v13030417] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
The Human Immunodeficiency Virus type 1 (HIV-1) virion contains a conical shell, termed capsid, encasing the viral RNA genome. After cellular entry of the virion, the capsid is released and ensures the protection and delivery of the HIV-1 genome to the host nucleus for integration. The capsid relies on many virus-host factor interactions which are regulated spatiotemporally throughout the course of infection. In this paper, we will review the current understanding of the highly dynamic HIV-1 capsid-host interplay during the early stages of viral replication, namely intracellular capsid trafficking after viral fusion, nuclear import, uncoating, and integration of the viral genome into host chromatin. Conventional anti-retroviral therapies primarily target HIV-1 enzymes. Insights of capsid structure have resulted in a first-in-class, long-acting capsid-targeting inhibitor, GS-6207 (Lenacapavir). This inhibitor binds at the interface between capsid protein subunits, a site known to bind host factors, interferes with capsid nuclear import, HIV particle assembly, and ordered assembly. Our review will highlight capsid structure, the host factors that interact with capsid, and high-throughput screening techniques, specifically genomic and proteomic approaches, that have been and can be used to identify host factors that interact with capsid. Better structural and mechanistic insights into the capsid-host factor interactions will significantly inform the understanding of HIV-1 pathogenesis and the development of capsid-centric antiretroviral therapeutics.
Collapse
Affiliation(s)
- Shentian Zhuang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA;
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Bruce E. Torbett
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA;
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA
| |
Collapse
|
46
|
Lau D, Walsh JC, Dickson CF, Tuckwell A, Stear JH, Hunter DJB, Bhumkar A, Shah V, Turville SG, Sierecki E, Gambin Y, Böcking T, Jacques DA. Rapid HIV-1 Capsid Interaction Screening Using Fluorescence Fluctuation Spectroscopy. Anal Chem 2021; 93:3786-3793. [PMID: 33593049 DOI: 10.1021/acs.analchem.0c04250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The HIV capsid is a multifunctional protein capsule that mediates the delivery of the viral genetic material into the nucleus of the target cell. Host cell proteins bind to a number of repeating binding sites on the capsid to regulate steps in the replication cycle. Here, we develop a fluorescence fluctuation spectroscopy method using self-assembled capsid particles as the bait to screen for fluorescence-labeled capsid-binding analytes ("prey" molecules) in solution. The assay capitalizes on the property of the HIV capsid as a multivalent interaction platform, facilitating high sensitivity detection of multiple prey molecules that have accumulated onto capsids as spikes in fluorescence intensity traces. By using a scanning stage, we reduced the measurement time to 10 s without compromising on sensitivity, providing a rapid binding assay for screening libraries of potential capsid interactors. The assay can also identify interfaces for host molecule binding by using capsids with defects in known interaction interfaces. Two-color coincidence detection using the fluorescent capsid as the bait further allows the quantification of binding levels and determination of binding affinities. Overall, the assay provides new tools for the discovery and characterization of molecules used by the HIV capsid to orchestrate infection. The measurement principle can be extended for the development of sensitive interaction assays, utilizing natural or synthetic multivalent scaffolds as analyte-binding platforms.
Collapse
Affiliation(s)
- Derrick Lau
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - James C Walsh
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Claire F Dickson
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Andrew Tuckwell
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Jeffrey H Stear
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Dominic J B Hunter
- The Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Akshay Bhumkar
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Vaibhav Shah
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Stuart G Turville
- The Kirby Institute, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - David A Jacques
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| |
Collapse
|
47
|
Mallery DL, Kleinpeter AB, Renner N, Faysal KMR, Novikova M, Kiss L, Wilson MSC, Ahsan B, Ke Z, Briggs JAG, Saiardi A, Böcking T, Freed EO, James LC. A stable immature lattice packages IP 6 for HIV capsid maturation. SCIENCE ADVANCES 2021; 7:7/11/eabe4716. [PMID: 33692109 PMCID: PMC7946374 DOI: 10.1126/sciadv.abe4716] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/21/2021] [Indexed: 05/05/2023]
Abstract
HIV virion assembly begins with the construction of an immature lattice consisting of Gag hexamers. Upon virion release, protease-mediated Gag cleavage leads to a maturation event in which the immature lattice disassembles and the mature capsid assembles. The cellular metabolite inositiol hexakisphosphate (IP6) and maturation inhibitors (MIs) both bind and stabilize immature Gag hexamers, but whereas IP6 promotes virus maturation, MIs inhibit it. Here we show that HIV is evolutionarily constrained to maintain an immature lattice stability that ensures IP6 packaging without preventing maturation. Replication-deficient mutant viruses with reduced IP6 recruitment display increased infectivity upon treatment with the MI PF46396 (PF96) or the acquisition of second-site compensatory mutations. Both PF96 and second-site mutations stabilise the immature lattice and restore IP6 incorporation, suggesting that immature lattice stability and IP6 binding are interdependent. This IP6 dependence suggests that modifying MIs to compete with IP6 for Gag hexamer binding could substantially improve MI antiviral potency.
Collapse
Affiliation(s)
- Donna L Mallery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Alex B Kleinpeter
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Nadine Renner
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - K M Rifat Faysal
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Mariia Novikova
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Leo Kiss
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Miranda S C Wilson
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Bilal Ahsan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Zunlong Ke
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - John A G Briggs
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Adolfo Saiardi
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
48
|
A New Generation of Functional Tagged Proteins for HIV Fluorescence Imaging. Viruses 2021; 13:v13030386. [PMID: 33670986 PMCID: PMC7997544 DOI: 10.3390/v13030386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
During the last decade, there was a marked increase in the development of tools and techniques to study the molecular mechanisms of the HIV replication cycle by using fluorescence microscopy. Researchers often apply the fusion of tags and fluorophores to viral proteins, surrogate proteins, or dyes to follow individual virus particles while they progress throughout infection. The inclusion of such fusion motifs or surrogates frequently disrupts viral infectivity or results in a change of the wild-type phenotype. Here, we detail the construction and functional characterization of two new constructs where we fused fluorescent proteins to the N-terminus of HIV-1 Integrase. In the first, IN is recruited into assembling particles via a codon optimized Gag to complement other viral constructs, while the second is fused to a Gag-Pol expression vector fully capable of integration. Our data shows that N-terminal tagged IN is functional for integration by both recovery of integration of catalytically inactive IN and by the successful infectivity of viruses carrying only labeled IN. These tools will be important to study the individual behavior of viral particles and associate such behavior to infectivity.
Collapse
|
49
|
Application of Advanced Light Microscopy to the Study of HIV and Its Interactions with the Host. Viruses 2021; 13:v13020223. [PMID: 33535486 PMCID: PMC7912744 DOI: 10.3390/v13020223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/24/2022] Open
Abstract
This review highlights the significant observations of human immunodeficiency virus (HIV) assembly, release and maturation made possible with advanced light microscopy techniques. The advances in technology which now enables these light microscopy measurements are discussed with special emphasis on live imaging approaches including Total Internal Reflection Fluorescence (TIRF), high-resolution light microscopy techniques including PALM and STORM and single molecule measurements, including Fluorescence Resonance Energy Transfer (FRET). The review concludes with a discussion on what new insights and understanding can be expected from these measurements.
Collapse
|
50
|
Renner N, Mallery DL, Faysal KMR, Peng W, Jacques DA, Böcking T, James LC. A lysine ring in HIV capsid pores coordinates IP6 to drive mature capsid assembly. PLoS Pathog 2021; 17:e1009164. [PMID: 33524070 PMCID: PMC7850482 DOI: 10.1371/journal.ppat.1009164] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
The HIV capsid self-assembles a protective conical shell that simultaneously prevents host sensing whilst permitting the import of nucleotides to drive DNA synthesis. This is accomplished through the construction of dynamic, highly charged pores at the centre of each capsid multimer. The clustering of charges required for dNTP import is strongly destabilising and it is proposed that HIV uses the metabolite IP6 to coordinate the pore during assembly. Here we have investigated the role of inositol phosphates in coordinating a ring of positively charged lysine residues (K25) that forms at the base of the capsid pore. We show that whilst IP5, which can functionally replace IP6, engages an arginine ring (R18) at the top of the pore, the lysine ring simultaneously binds a second IP5 molecule. Dose dependent removal of K25 from the pore severely inhibits HIV infection and concomitantly prevents DNA synthesis. Cryo-tomography reveals that K25A virions have a severe assembly defect that inhibits the formation of mature capsid cones. Monitoring both the kinetics and morphology of capsids assembled in vitro reveals that while mutation K25A can still form tubes, the ability of IP6 to drive assembly of capsid cones has been lost. Finally, in single molecule TIRF microscopy experiments, capsid lattices in permeabilised K25 mutant virions are rapidly lost and cannot be stabilised by IP6. These results suggest that the coordination of IP6 by a second charged ring in mature hexamers drives the assembly of conical capsids capable of reverse transcription and infection.
Collapse
Affiliation(s)
- Nadine Renner
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - K. M. Rifat Faysal
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Australia
| | - Wang Peng
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Australia
| | - David A. Jacques
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Australia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Australia
| | - Leo C. James
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|