1
|
Flierman NA, Koay SA, van Hoogstraten WS, Ruigrok TJH, Roelfsema P, Badura A, De Zeeuw CI. Encoding of cerebellar dentate neuron activity during visual attention in rhesus macaques. eLife 2025; 13:RP99696. [PMID: 39819496 PMCID: PMC11737872 DOI: 10.7554/elife.99696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
The role of cerebellum in controlling eye movements is well established, but its contribution to more complex forms of visual behavior has remained elusive. To study cerebellar activity during visual attention we recorded extracellular activity of dentate nucleus (DN) neurons in two non-human primates (NHPs). NHPs were trained to read the direction indicated by a peripheral visual stimulus while maintaining fixation at the center, and report the direction of the cue by performing a saccadic eye movement into the same direction following a delay. We found that single-unit DN neurons modulated spiking activity over the entire time course of the task, and that their activity often bridged temporally separated intra-trial events, yet in a heterogeneous manner. To better understand the heterogeneous relationship between task structure, behavioral performance, and neural dynamics, we constructed a behavioral, an encoding, and a decoding model. Both NHPs showed different behavioral strategies, which influenced the performance. Activity of the DN neurons reflected the unique strategies, with the direction of the visual stimulus frequently being encoded long before an upcoming saccade. Moreover, the latency of the ramping activity of DN neurons following presentation of the visual stimulus was shorter in the better performing NHP. Labeling with the retrograde tracer Cholera Toxin B in the recording location in the DN indicated that these neurons predominantly receive inputs from Purkinje cells in the D1 and D2 zones of the lateral cerebellum as well as neurons of the principal olive and medial pons, all regions known to connect with neurons in the prefrontal cortex contributing to planning of saccades. Together, our results highlight that DN neurons can dynamically modulate their activity during a visual attention task, comprising not only sensorimotor but also cognitive attentional components.
Collapse
Affiliation(s)
- Nico A Flierman
- Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Neuroscience, Erasmus MCRotterdamNetherlands
| | - Sue Ann Koay
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Tom JH Ruigrok
- Department of Neuroscience, Erasmus MCRotterdamNetherlands
| | - Pieter Roelfsema
- Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Integrative Neurophysiology, VU UniversityAmsterdamNetherlands
- Department of Psychiatry, Academic Medical CentreAmsterdamNetherlands
| | | | - Chris I De Zeeuw
- Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Neuroscience, Erasmus MCRotterdamNetherlands
| |
Collapse
|
2
|
Cao R, Bright IM, Howard MW. Ramping cells in the rodent medial prefrontal cortex encode time to past and future events via real Laplace transform. Proc Natl Acad Sci U S A 2024; 121:e2404169121. [PMID: 39254998 PMCID: PMC11420195 DOI: 10.1073/pnas.2404169121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
In interval reproduction tasks, animals must remember the event starting the interval and anticipate the time of the planned response to terminate the interval. The interval reproduction task thus allows for studying both memory for the past and anticipation of the future. We analyzed previously published recordings from the rodent medial prefrontal cortex [J. Henke et al., eLife10, e71612 (2021)] during an interval reproduction task and identified two cell groups by modeling their temporal receptive fields using hierarchical Bayesian models. The firing in the "past cells" group peaked at the start of the interval and relaxed exponentially back to baseline. The firing in the "future cells" group increased exponentially and peaked right before the planned action at the end of the interval. Contrary to the previous assumption that timing information in the brain has one or two time scales for a given interval, we found strong evidence for a continuous distribution of the exponential rate constants for both past and future cell populations. The real Laplace transformation of time predicts exponential firing with a continuous distribution of rate constants across the population. Therefore, the firing pattern of the past cells can be identified with the Laplace transform of time since the past event while the firing pattern of the future cells can be identified with the Laplace transform of time until the planned future event.
Collapse
Affiliation(s)
- Rui Cao
- Department of Psychological and Brain Sciences, Boston University, Boston, MA02215
| | - Ian M. Bright
- Department of Psychological and Brain Sciences, Boston University, Boston, MA02215
| | - Marc W. Howard
- Department of Psychological and Brain Sciences, Boston University, Boston, MA02215
| |
Collapse
|
3
|
Yang Z, Inagaki M, Gerfen CR, Fontolan L, Inagaki HK. Integrator dynamics in the cortico-basal ganglia loop underlie flexible motor timing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.29.601348. [PMID: 39005437 PMCID: PMC11244898 DOI: 10.1101/2024.06.29.601348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Flexible control of motor timing is crucial for behavior. Before volitional movement begins, the frontal cortex and striatum exhibit ramping spiking activity, with variable ramp slopes anticipating movement onsets. This activity in the cortico-basal ganglia loop may function as an adjustable 'timer,' triggering actions at the desired timing. However, because the frontal cortex and striatum share similar ramping dynamics and are both necessary for timing behaviors, distinguishing their individual roles in this timer function remains challenging. To address this, we conducted perturbation experiments combined with multi-regional electrophysiology in mice performing a flexible lick-timing task. Following transient silencing of the frontal cortex, cortical and striatal activity swiftly returned to pre-silencing levels and resumed ramping, leading to a shift in lick timing close to the silencing duration. Conversely, briefly inhibiting the striatum caused a gradual decrease in ramping activity in both regions, with ramping resuming from post-inhibition levels, shifting lick timing beyond the inhibition duration. Thus, inhibiting the frontal cortex and striatum effectively paused and rewound the timer, respectively. These findings suggest the striatum is a part of the network that temporally integrates input from the frontal cortex and generates ramping activity that regulates motor timing.
Collapse
|
4
|
Chae S, Sohn JW, Kim SP. Differential Formation of Motor Cortical Dynamics during Movement Preparation According to the Predictability of Go Timing. J Neurosci 2024; 44:e1353232024. [PMID: 38233217 PMCID: PMC10883619 DOI: 10.1523/jneurosci.1353-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/10/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024] Open
Abstract
The motor cortex not only executes but also prepares movement, as motor cortical neurons exhibit preparatory activity that predicts upcoming movements. In movement preparation, animals adopt different strategies in response to uncertainties existing in nature such as the unknown timing of when a predator will attack-an environmental cue informing "go." However, how motor cortical neurons cope with such uncertainties is less understood. In this study, we aim to investigate whether and how preparatory activity is altered depending on the predictability of "go" timing. We analyze firing activities of the anterior lateral motor cortex in male mice during two auditory delayed-response tasks each with predictable or unpredictable go timing. When go timing is unpredictable, preparatory activities immediately reach and stay in a neural state capable of producing movement anytime to a sudden go cue. When go timing is predictable, preparation activity reaches the movement-producible state more gradually, to secure more accurate decisions. Surprisingly, this preparation process entails a longer reaction time. We find that as preparatory activity increases in accuracy, it takes longer for a neural state to transition from the end of preparation to the start of movement. Our results suggest that the motor cortex fine-tunes preparatory activity for more accurate movement using the predictability of go timing.
Collapse
Affiliation(s)
- Soyoung Chae
- Ulsan National Institute of Science and Technology, Ulsan 44929, South Korea
| | - Jeong-Woo Sohn
- Catholic Kwandong University, Gangwon-do 25601, South Korea
| | - Sung-Phil Kim
- Ulsan National Institute of Science and Technology, Ulsan 44929, South Korea
| |
Collapse
|
5
|
Sánchez-Moncada I, Concha L, Merchant H. Pre-supplementary Motor Cortex Mediates Learning Transfer from Perceptual to Motor Timing. J Neurosci 2024; 44:e3191202023. [PMID: 38123361 PMCID: PMC10883661 DOI: 10.1523/jneurosci.3191-20.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 09/30/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
When we intensively train a timing skill, such as learning to play the piano, we not only produce brain changes associated with task-specific learning but also improve our performance in other temporal behaviors that depend on these tuned neural resources. Since the neural basis of time learning and generalization is still unknown, we measured the changes in neural activity associated with the transfer of learning from perceptual to motor timing in a large sample of subjects (n = 65; 39 women). We found that intense training in an interval discrimination task increased the acuity of time perception in a group of subjects that also exhibited learning transfer, expressed as a reduction in inter-tap interval variability during an internally driven periodic motor task. In addition, we found subjects with no learning and/or generalization effects. Notably, functional imaging showed an increase in pre-supplementary motor area and caudate-putamen activity between the post- and pre-training sessions of the tapping task. This increase was specific to the subjects that generalized their timing acuity from the perceptual to the motor context. These results emphasize the central role of the cortico-basal ganglia circuit in the generalization of timing abilities between tasks.
Collapse
Affiliation(s)
| | - Luis Concha
- Instituto de Neurobiología, Querétaro 76230, México
- International Laboratory for Brain, Music and Sound (BRAMS), Montreal, Québec H2V 2S9, Canada
| | | |
Collapse
|
6
|
Cao R, Bright IM, Howard MW. Ramping cells in rodent mPFC encode time to past and future events via real Laplace transform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580170. [PMID: 38405896 PMCID: PMC10888827 DOI: 10.1101/2024.02.13.580170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In interval reproduction tasks, animals must remember the event starting the interval and anticipate the time of the planned response to terminate the interval. The interval reproduction task thus allows for studying both memory for the past and anticipation of the future. We analyzed previously published recordings from rodent mPFC (Henke et al., 2021) during an interval reproduction task and identified two cell groups by modeling their temporal receptive fields using hierarchical Bayesian models. The firing in the "past cells" group peaked at the start of the interval and relaxed exponentially back to baseline. The firing in the "future cells" group increased exponentially and peaked right before the planned action at the end of the interval. Contrary to the previous assumption that timing information in the brain has one or two time scales for a given interval, we found strong evidence for a continuous distribution of the exponential rate constants for both past and future cell populations. The real Laplace transformation of time predicts exponential firing with a continuous distribution of rate constants across the population. Therefore, the firing pattern of the past cells can be identified with the Laplace transform of time since the past event while the firing pattern of the future cells can be identified with the Laplace transform of time until the planned future event.
Collapse
Affiliation(s)
- Rui Cao
- Department of Psychological and Brain Sciences, Boston University
| | - Ian M Bright
- Department of Psychological and Brain Sciences, Boston University
| | - Marc W Howard
- Department of Psychological and Brain Sciences, Boston University
| |
Collapse
|
7
|
de Lafuente V, Jazayeri M, Merchant H, García-Garibay O, Cadena-Valencia J, Malagón AM. Keeping time and rhythm by internal simulation of sensory stimuli and behavioral actions. SCIENCE ADVANCES 2024; 10:eadh8185. [PMID: 38198556 PMCID: PMC10780886 DOI: 10.1126/sciadv.adh8185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
Effective behavior often requires synchronizing our actions with changes in the environment. Rhythmic changes in the environment are easy to predict, and we can readily time our actions to them. Yet, how the brain encodes and maintains rhythms is not known. Here, we trained primates to internally maintain rhythms of different tempos and performed large-scale recordings of neuronal activity across the sensory-motor hierarchy. Results show that maintaining rhythms engages multiple brain areas, including visual, parietal, premotor, prefrontal, and hippocampal regions. Each recorded area displayed oscillations in firing rates and oscillations in broadband local field potential power that reflected the temporal and spatial characteristics of an internal metronome, which flexibly encoded fast, medium, and slow tempos. The presence of widespread metronome-related activity, in the absence of stimuli and motor activity, suggests that internal simulation of stimuli and actions underlies timekeeping and rhythm maintenance.
Collapse
Affiliation(s)
- Victor de Lafuente
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
| | - Mehrdad Jazayeri
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hugo Merchant
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
| | - Otto García-Garibay
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
| | - Jaime Cadena-Valencia
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
- Faculty of Science and Medicine, Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg 1700, Switzerland
- Cognitive Neuroscience Laboratory, German Primate Center—Leibniz Institute for Primate Research, Göttingen 37077, Germany
| | - Ana M. Malagón
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
| |
Collapse
|
8
|
Merchant H, de Lafuente V. A Second Introduction to the Neurobiology of Interval Timing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:3-23. [PMID: 38918343 DOI: 10.1007/978-3-031-60183-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Time is a critical variable that organisms must be able to measure in order to survive in a constantly changing environment. Initially, this paper describes the myriad of contexts where time is estimated or predicted and suggests that timing is not a single process and probably depends on a set of different neural mechanisms. Consistent with this hypothesis, the explosion of neurophysiological and imaging studies in the last 10 years suggests that different brain circuits and neural mechanisms are involved in the ability to tell and use time to control behavior across contexts. Then, we develop a conceptual framework that defines time as a family of different phenomena and propose a taxonomy with sensory, perceptual, motor, and sensorimotor timing as the pillars of temporal processing in the range of hundreds of milliseconds.
Collapse
Affiliation(s)
- Hugo Merchant
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, Mexico.
| | - Victor de Lafuente
- Institute of Neurobiology National Autonomous University of Mexico, Querétaro, Mexico
| |
Collapse
|
9
|
Rueda-Orozco PE, Hidalgo-Balbuena AE, González-Pereyra P, Martinez-Montalvo MG, Báez-Cordero AS. The Interactions of Temporal and Sensory Representations in the Basal Ganglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:141-158. [PMID: 38918350 DOI: 10.1007/978-3-031-60183-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
In rodents and primates, interval estimation has been associated with a complex network of cortical and subcortical structures where the dorsal striatum plays a paramount role. Diverse evidence ranging from individual neurons to population activity has demonstrated that this area hosts temporal-related neural representations that may be instrumental for the perception and production of time intervals. However, little is known about how temporal representations interact with other well-known striatal representations, such as kinematic parameters of movements or somatosensory representations. An attractive hypothesis suggests that somatosensory representations may serve as the scaffold for complex representations such as elapsed time. Alternatively, these representations may coexist as independent streams of information that could be integrated into downstream nuclei, such as the substantia nigra or the globus pallidus. In this review, we will revise the available information suggesting an instrumental role of sensory representations in the construction of temporal representations at population and single-neuron levels throughout the basal ganglia.
Collapse
Affiliation(s)
- Pavel E Rueda-Orozco
- Institute of Neurobiology, National Autonomous University of México, Querétaro, Mexico.
| | | | | | | | - Ana S Báez-Cordero
- Institute of Neurobiology, National Autonomous University of México, Querétaro, Mexico
| |
Collapse
|
10
|
Merchant H, Mendoza G, Pérez O, Betancourt A, García-Saldivar P, Prado L. Diverse Time Encoding Strategies Within the Medial Premotor Areas of the Primate. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:117-140. [PMID: 38918349 DOI: 10.1007/978-3-031-60183-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The measurement of time in the subsecond scale is critical for many sophisticated behaviors, yet its neural underpinnings are largely unknown. Recent neurophysiological experiments from our laboratory have shown that the neural activity in the medial premotor areas (MPC) of macaques can represent different aspects of temporal processing. During single interval categorization, we found that preSMA encodes a subjective category limit by reaching a peak of activity at a time that divides the set of test intervals into short and long. We also observed neural signals associated with the category selected by the subjects and the reward outcomes of the perceptual decision. On the other hand, we have studied the behavioral and neurophysiological basis of rhythmic timing. First, we have shown in different tapping tasks that macaques are able to produce predictively and accurately intervals that are cued by auditory or visual metronomes or when intervals are produced internally without sensory guidance. In addition, we found that the rhythmic timing mechanism in MPC is governed by different layers of neural clocks. Next, the instantaneous activity of single cells shows ramping activity that encodes the elapsed or remaining time for a tapping movement. In addition, we found MPC neurons that build neural sequences, forming dynamic patterns of activation that flexibly cover all the produced interval depending on the tapping tempo. This rhythmic neural clock resets on every interval providing an internal representation of pulse. Furthermore, the MPC cells show mixed selectivity, encoding not only elapsed time, but also the tempo of the tapping and the serial order element in the rhythmic sequence. Hence, MPC can map different task parameters, including the passage of time, using different cell populations. Finally, the projection of the time varying activity of MPC hundreds of cells into a low dimensional state space showed circular neural trajectories whose geometry represented the internal pulse and the tapping tempo. Overall, these findings support the notion that MPC is part of the core timing mechanism for both single interval and rhythmic timing, using neural clocks with different encoding principles, probably to flexibly encode and mix the timing representation with other task parameters.
Collapse
Affiliation(s)
- Hugo Merchant
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, Mexico.
| | - Germán Mendoza
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, Mexico
| | - Oswaldo Pérez
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, Mexico
| | | | | | - Luis Prado
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, Mexico
| |
Collapse
|
11
|
Tanaka M, Kameda M, Okada KI. Temporal Information Processing in the Cerebellum and Basal Ganglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:95-116. [PMID: 38918348 DOI: 10.1007/978-3-031-60183-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Temporal information processing in the range of a few hundred milliseconds to seconds involves the cerebellum and basal ganglia. In this chapter, we present recent studies on nonhuman primates. In the studies presented in the first half of the chapter, monkeys were trained to make eye movements when a certain amount of time had elapsed since the onset of the visual cue (time production task). The animals had to report time lapses ranging from several hundred milliseconds to a few seconds based on the color of the fixation point. In this task, the saccade latency varied with the time length to be measured and showed stochastic variability from one trial to the other. Trial-to-trial variability under the same conditions correlated well with pupil diameter and the preparatory activity in the deep cerebellar nuclei and the motor thalamus. Inactivation of these brain regions delayed saccades when asked to report subsecond intervals. These results suggest that the internal state, which changes with each trial, may cause fluctuations in cerebellar neuronal activity, thereby producing variations in self-timing. When measuring different time intervals, the preparatory activity in the cerebellum always begins approximately 500 ms before movements, regardless of the length of the time interval being measured. However, the preparatory activity in the striatum persists throughout the mandatory delay period, which can be up to 2 s, with different rate of increasing activity. Furthermore, in the striatum, the visual response and low-frequency oscillatory activity immediately before time measurement were altered by the length of the intended time interval. These results indicate that the state of the network, including the striatum, changes with the intended timing, which lead to different time courses of preparatory activity. Thus, the basal ganglia appear to be responsible for measuring time in the range of several hundred milliseconds to seconds, whereas the cerebellum is responsible for regulating self-timing variability in the subsecond range. The second half of this chapter presents studies related to periodic timing. During eye movements synchronized with alternating targets at regular intervals, different neurons in the cerebellar nuclei exhibit activity related to movement timing, predicted stimulus timing, and the temporal error of synchronization. Among these, the activity associated with target appearance is particularly enhanced during synchronized movements and may represent an internal model of the temporal structure of stimulus sequence. We also considered neural mechanism underlying the perception of periodic timing in the absence of movement. During perception of rhythm, we predict the timing of the next stimulus and focus our attention on that moment. In the missing oddball paradigm, the subjects had to detect the omission of a regularly repeated stimulus. When employed in humans, the results show that the fastest temporal limit for predicting each stimulus timing is about 0.25 s (4 Hz). In monkeys performing this task, neurons in the cerebellar nuclei, striatum, and motor thalamus exhibit periodic activity, with different time courses depending on the brain region. Since electrical stimulation or inactivation of recording sites changes the reaction time to stimulus omission, these neuronal activities must be involved in periodic temporal processing. Future research is needed to elucidate the mechanism of rhythm perception, which appears to be processed by both cortico-cerebellar and cortico-basal ganglia pathways.
Collapse
Affiliation(s)
- Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan.
| | - Masashi Kameda
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
| | - Ken-Ichi Okada
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
| |
Collapse
|
12
|
Zhu J, Hasanbegović H, Liu LD, Gao Z, Li N. Activity map of a cortico-cerebellar loop underlying motor planning. Nat Neurosci 2023; 26:1916-1928. [PMID: 37814026 PMCID: PMC10620095 DOI: 10.1038/s41593-023-01453-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
The neocortex and cerebellum interact to mediate cognitive functions. It remains unknown how the two structures organize into functional networks to mediate specific behaviors. Here we delineate activity supporting motor planning in relation to the mesoscale cortico-cerebellar connectome. In mice planning directional licking based on short-term memory, preparatory activity instructing future movement depends on the anterior lateral motor cortex (ALM) and the cerebellum. Transneuronal tracing revealed divergent and largely open-loop connectivity between the ALM and distributed regions of the cerebellum. A cerebellum-wide survey of neuronal activity revealed enriched preparatory activity in hotspot regions with conjunctive input-output connectivity to the ALM. Perturbation experiments show that the conjunction regions were required for maintaining preparatory activity and correct subsequent movement. Other cerebellar regions contributed little to motor planning despite input or output connectivity to the ALM. These results identify a functional cortico-cerebellar loop and suggest the cerebellar cortex selectively establishes reciprocal cortico-cerebellar communications to orchestrate motor planning.
Collapse
Affiliation(s)
- Jia Zhu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Liu D Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
13
|
Betancourt A, Pérez O, Gámez J, Mendoza G, Merchant H. Amodal population clock in the primate medial premotor system for rhythmic tapping. Cell Rep 2023; 42:113234. [PMID: 37838944 DOI: 10.1016/j.celrep.2023.113234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 08/09/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023] Open
Abstract
The neural substrate for beat extraction and response entrainment to rhythms is not fully understood. Here we analyze the activity of medial premotor neurons in monkeys performing isochronous tapping guided by brief flashing stimuli or auditory tones. The population dynamics shared the following properties across modalities: the circular dynamics of the neural trajectories form a regenerating loop for every produced interval; the trajectories converge in similar state space at tapping times resetting the clock; and the tempo of the synchronized tapping is encoded in the trajectories by a combination of amplitude modulation and temporal scaling. Notably, the modality induces displacement in the neural trajectories in the auditory and visual subspaces without greatly altering the time-keeping mechanism. These results suggest that the interaction between the medial premotor cortex's amodal internal representation of pulse and a modality-specific external input generates a neural rhythmic clock whose dynamics govern rhythmic tapping execution across senses.
Collapse
Affiliation(s)
- Abraham Betancourt
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Boulevard Juriquilla No. 3001, Querétaro, Qro 76230, México
| | - Oswaldo Pérez
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, UNAM, Boulevard Juriquilla No. 3001, Querétaro, Qro 76230, México
| | - Jorge Gámez
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Boulevard Juriquilla No. 3001, Querétaro, Qro 76230, México
| | - Germán Mendoza
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Boulevard Juriquilla No. 3001, Querétaro, Qro 76230, México
| | - Hugo Merchant
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Boulevard Juriquilla No. 3001, Querétaro, Qro 76230, México.
| |
Collapse
|
14
|
Kameda M, Niikawa K, Uematsu A, Tanaka M. Sensory and motor representations of internalized rhythms in the cerebellum and basal ganglia. Proc Natl Acad Sci U S A 2023; 120:e2221641120. [PMID: 37276394 PMCID: PMC10268275 DOI: 10.1073/pnas.2221641120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Both the cerebellum and basal ganglia are involved in rhythm processing, but their specific roles remain unclear. During rhythm perception, these areas may be processing purely sensory information, or they may be involved in motor preparation, as periodic stimuli often induce synchronized movements. Previous studies have shown that neurons in the cerebellar dentate nucleus and the caudate nucleus exhibit periodic activity when the animals prepare to respond to the random omission of regularly repeated visual stimuli. To detect stimulus omission, the animals need to learn the stimulus tempo and predict the timing of the next stimulus. The present study demonstrates that neuronal activity in the cerebellum is modulated by the location of the repeated stimulus and that in the striatum (STR) by the direction of planned movement. However, in both brain regions, neuronal activity during movement and the effect of electrical stimulation immediately before stimulus omission were largely dependent on the direction of movement. These results suggest that, during rhythm processing, the cerebellum is involved in multiple stages from sensory prediction to motor control, while the STR consistently plays a role in motor preparation. Thus, internalized rhythms without movement are maintained as periodic neuronal activity, with the cerebellum and STR preferring sensory and motor representations, respectively.
Collapse
Affiliation(s)
- Masashi Kameda
- Department of Physiology, Hokkaido University School of Medicine, Sapporo060-8638, Japan
| | - Koichiro Niikawa
- Department of Physiology, Hokkaido University School of Medicine, Sapporo060-8638, Japan
| | - Akiko Uematsu
- Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki444-8585, Japan
| | - Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo060-8638, Japan
| |
Collapse
|
15
|
Chiarenza GA. The psychophysiology of "covert" goal-directed behavior. PROGRESS IN BRAIN RESEARCH 2023; 280:17-42. [PMID: 37714571 DOI: 10.1016/bs.pbr.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Covert behavior is defined as behavior that is not directly visible and is thus comparable to a type of behavioral silence that requires modern psychophysiological techniques to reveal. Goal-directed behavior is teleologically purposive. Fundamentally, there are two approaches to accounting for purposeful behavior. One is the cybernetic approach, which views behavior as homeostatic and largely reflexive. The other one views behavior as a cognitive process that involves an interaction between neural events representing the previous experience, the present state of the individual, and the occurrence of particular features in the environment. This review, based on published data, presents a non-invasive psychophysiological method for investigating the electrical brain activity associated with those "silent" behaviors such as intention, evaluation of results, and memorization. Movement-related potentials (MRPs) are ideal for studying these processes. The MRPs are recorded during the execution of the skilled performance task (SPT). This task requires the execution of fast ballistic movements with the thumbs of both hands, learning a precise and short time interval between the two thumb presses, and scoring the highest number of target performances. The subject receives real-time feedback about the results of his performance. The MRPs associated with this task and present during covert behavior are the Bereitschaftspotential (BP) present before the onset of movement and the Skilled Performance Positivity (SPP) after movement, which coincides with the subject's awareness of the success or failure of his performance. These potentials show a maturational trend, reaching the adult form around the age of 10 when formal and abstract thinking progress. SPT and MRPs are particularly suitable to study neurodevelopmental disorders. Children with developmental dyslexia show abnormal MRPs, both in latency and amplitude, in different brain areas.
Collapse
|
16
|
Zhou S, Buonomano DV. Neural population clocks: Encoding time in dynamic patterns of neural activity. Behav Neurosci 2022; 136:374-382. [PMID: 35446093 PMCID: PMC9561006 DOI: 10.1037/bne0000515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ability to predict and prepare for near- and far-future events is among the most fundamental computations the brain performs. Because of the importance of time for prediction and sensorimotor processing, the brain has evolved multiple mechanisms to tell and encode time across scales ranging from microseconds to days and beyond. Converging experimental and computational data indicate that, on the scale of seconds, timing relies on diverse neural mechanisms distributed across different brain areas. Among the different encoding mechanisms on the scale of seconds, we distinguish between neural population clocks and ramping activity as distinct strategies to encode time. One instance of neural population clocks, neural sequences, represents in some ways an optimal and flexible dynamic regime for the encoding of time. Specifically, neural sequences comprise a high-dimensional representation that can be used by downstream areas to flexibly generate arbitrarily simple and complex output patterns using biologically plausible learning rules. We propose that high-level integration areas may use high-dimensional dynamics such as neural sequences to encode time, providing downstream areas information to build low-dimensional ramp-like activity that can drive movements and temporal expectation. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
- Shanglin Zhou
- Department of Neurobiology, University of California, Los Angeles, CA 90095, USA
| | - Dean V. Buonomano
- Department of Neurobiology, University of California, Los Angeles, CA 90095, USA
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Tsao A, Yousefzadeh SA, Meck WH, Moser MB, Moser EI. The neural bases for timing of durations. Nat Rev Neurosci 2022; 23:646-665. [PMID: 36097049 DOI: 10.1038/s41583-022-00623-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 11/10/2022]
Abstract
Durations are defined by a beginning and an end, and a major distinction is drawn between durations that start in the present and end in the future ('prospective timing') and durations that start in the past and end either in the past or the present ('retrospective timing'). Different psychological processes are thought to be engaged in each of these cases. The former is thought to engage a clock-like mechanism that accurately tracks the continuing passage of time, whereas the latter is thought to engage a reconstructive process that utilizes both temporal and non-temporal information from the memory of past events. We propose that, from a biological perspective, these two forms of duration 'estimation' are supported by computational processes that are both reliant on population state dynamics but are nevertheless distinct. Prospective timing is effectively carried out in a single step where the ongoing dynamics of population activity directly serve as the computation of duration, whereas retrospective timing is carried out in two steps: the initial generation of population state dynamics through the process of event segmentation and the subsequent computation of duration utilizing the memory of those dynamics.
Collapse
Affiliation(s)
- Albert Tsao
- Department of Biology, Stanford University, Stanford, CA, USA.
| | | | - Warren H Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - May-Britt Moser
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Edvard I Moser
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
18
|
Isham EA, Lomayesva S, Teng J. Time estimation and passage of time judgment predict eating behaviors during COVID-19 lockdown. Front Psychol 2022; 13:961092. [PMID: 36081727 PMCID: PMC9444799 DOI: 10.3389/fpsyg.2022.961092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Poor eating habits often lead to health concerns. While mental health conditions such as stress and anxiety have been linked as predictors for eating behaviors, cognitive factors may also contribute to eating practices during the early stages of the mandatory COVID-19 lockdown. In the current study, participants responded to a survey that asked them to judge the passing of time (PoTJ) and to produce short intervals (via a time production task) as an index of the internal clock speed. Additionally, they responded to questions about snacking frequency and the tendency to overeat during lockdown. We observed that those who judged time to pass slowly also reported a greater tendency to snack and overeat during the pandemic. Additional analysis also revealed that the effect of PoTJ on snacking is moderated by the internal clock speed such that those who felt time was passing by slowly, and in combination with a faster internal clock (as indexed by shorter duration production), had a greater tendency to snack. The results suggest that different aspects of temporal cognition play potential roles in influencing different types of eating behaviors. Our findings therefore have implications for eating disorders, along with the potential of time-based intervention or behavioral modification approaches.
Collapse
|
19
|
Inagaki HK, Chen S, Daie K, Finkelstein A, Fontolan L, Romani S, Svoboda K. Neural Algorithms and Circuits for Motor Planning. Annu Rev Neurosci 2022; 45:249-271. [PMID: 35316610 DOI: 10.1146/annurev-neuro-092021-121730] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The brain plans and executes volitional movements. The underlying patterns of neural population activity have been explored in the context of movements of the eyes, limbs, tongue, and head in nonhuman primates and rodents. How do networks of neurons produce the slow neural dynamics that prepare specific movements and the fast dynamics that ultimately initiate these movements? Recent work exploits rapid and calibrated perturbations of neural activity to test specific dynamical systems models that are capable of producing the observed neural activity. These joint experimental and computational studies show that cortical dynamics during motor planning reflect fixed points of neural activity (attractors). Subcortical control signals reshape and move attractors over multiple timescales, causing commitment to specific actions and rapid transitions to movement execution. Experiments in rodents are beginning to reveal how these algorithms are implemented at the level of brain-wide neural circuits.
Collapse
Affiliation(s)
| | - Susu Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Kayvon Daie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA.,Allen Institute for Neural Dynamics, Seattle, Washington, USA;
| | - Arseny Finkelstein
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Lorenzo Fontolan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Sandro Romani
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA.,Allen Institute for Neural Dynamics, Seattle, Washington, USA;
| |
Collapse
|
20
|
Gopalakrishnan R, Cunningham DA, Hogue O, Schroedel M, Campbell BA, Plow EB, Baker KB, Machado AG. Cortico-Cerebellar Connectivity Underlying Motor Control in Chronic Poststroke Individuals. J Neurosci 2022; 42:5186-5197. [PMID: 35610051 PMCID: PMC9236286 DOI: 10.1523/jneurosci.2443-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 12/31/2022] Open
Abstract
The robust, reciprocal anatomic connections between the cerebellum and contralateral sensorimotor cerebral hemisphere underscore the strong physiological interdependence between these two regions in relation to human behavior. Previous studies have shown that damage to sensorimotor cortex can result in a lasting reduction of cerebellar metabolism, the magnitude of which has been linked to poor rehabilitative outcomes. A better understanding of movement-related cerebellar physiology as well as cortico-cerebellar coherence (CCC) in the chronic, poststroke state may be key to developing novel neuromodulatory techniques that promote upper limb motor rehabilitation. As a part of the first in-human phase I trial investigating the effects of deep brain stimulation of the cerebellar dentate nucleus (DN) on chronic poststroke motor rehabilitation, we collected invasive recordings from DN and scalp EEG in participants (both sexes) with middle cerebral artery stroke during a visuo-motor tracking task. We investigated the excitability of ipsilesional cortex, DN, and their interaction as a function of motor impairment and performance. Our results indicate the following: (1) event-related oscillations in the ipsilesional cortex and DN were significantly correlated at movement onset in the low beta band, with moderately and severely impaired participants showing desynchronization and synchronization, respectively; and (2) significant CCC was observed during the isometric hold period in the low beta band, which was critical for maintaining task accuracy. Our findings support a strong coupling between ipsilesional cortex and DN in the low beta band during motor control across all impairment levels, which encourages the exploitation of the cerebello-thalamo-cortical pathway as a neuromodulation target to promote rehabilitation.SIGNIFICANCE STATEMENT Cerebral infarct because of stroke can lead to lasting reduction in cerebellar metabolism, resulting in poor rehabilitative outcomes. Thorough investigation of the cerebellar electrophysiology, as well as cortico-cerebellar connectivity in humans that could provide key insights to facilitate the development of novel neuromodulatory technologies, has been lacking. As a part of the first in-human phase I trial investigating deep brain stimulation of the cerebellar dentate nucleus (DN) for chronic, poststroke motor rehabilitation, we collected invasive recordings from DN and scalp EEG while stroke survivors performed a motor task. Our data indicate strong coupling between ipsilesional sensorimotor cortex and DN in the low beta band across all impairment levels encouraging the exploration of electrical stimulation of the DN.
Collapse
Affiliation(s)
- Raghavan Gopalakrishnan
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - David A Cunningham
- Physical Medicine and Rehabilitation, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44195
- Physical Medicine and Rehabilitation, MetroHealth Center for Rehabilitation Research, Cleveland, Ohio 44109
| | - Olivia Hogue
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Madeleine Schroedel
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Brett A Campbell
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44195
| | - Ela B Plow
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic, Cleveland OH 44195
| | - Kenneth B Baker
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Andre G Machado
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
21
|
Neural signals regulating motor synchronization in the primate deep cerebellar nuclei. Nat Commun 2022; 13:2504. [PMID: 35523898 PMCID: PMC9076601 DOI: 10.1038/s41467-022-30246-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/21/2022] [Indexed: 11/09/2022] Open
Abstract
Movements synchronized with external rhythms are ubiquitous in our daily lives. Despite the involvement of the cerebellum, the underlying mechanism remains unclear. In monkeys performing synchronized saccades to periodically alternating visual stimuli, we found that neuronal activity in the cerebellar dentate nucleus correlated with the timing of the next saccade and the current temporal error. One-third of the neurons were active regardless of saccade direction and showed greater activity for synchronized than for reactive saccades. During the transition from reactive to predictive saccades in each trial, the activity of these neurons coincided with target onset, representing an internal model of rhythmic structure rather than a specific motor command. The behavioural changes induced by electrical stimulation were explained by activating different groups of neurons at various strengths, suggesting that the lateral cerebellum contains multiple functional modules for the acquisition of internal rhythms, predictive motor control, and error detection during synchronized movements.
Collapse
|
22
|
Avila E, Flierman NA, Holland PJ, Roelfsema PR, Frens MA, Badura A, De Zeeuw CI. Purkinje Cell Activity in the Medial and Lateral Cerebellum During Suppression of Voluntary Eye Movements in Rhesus Macaques. Front Cell Neurosci 2022; 16:863181. [PMID: 35573834 PMCID: PMC9096024 DOI: 10.3389/fncel.2022.863181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
Volitional suppression of responses to distracting external stimuli enables us to achieve our goals. This volitional inhibition of a specific behavior is supposed to be mainly mediated by the cerebral cortex. However, recent evidence supports the involvement of the cerebellum in this process. It is currently not known whether different parts of the cerebellar cortex play differential or synergistic roles in the planning and execution of this behavior. Here, we measured Purkinje cell (PC) responses in the medial and lateral cerebellum in two rhesus macaques during pro- and anti-saccade tasks. During an antisaccade trial, non-human primates (NHPs) were instructed to make a saccadic eye movement away from a target, rather than toward it, as in prosaccade trials. Our data show that the cerebellum plays an important role not only during the execution of the saccades but also during the volitional inhibition of eye movements toward the target. Simple spike (SS) modulation during the instruction and execution periods of pro- and anti-saccades was prominent in PCs of both the medial and lateral cerebellum. However, only the SS activity in the lateral cerebellar cortex contained information about stimulus identity and showed a strong reciprocal interaction with complex spikes (CSs). Moreover, the SS activity of different PC groups modulated bidirectionally in both of regions, but the PCs that showed facilitating and suppressive activity were predominantly associated with instruction and execution, respectively. These findings show that different cerebellar regions and PC groups contribute to goal-directed behavior and volitional inhibition, but with different propensities, highlighting the rich repertoire of the cerebellar control in executive functions.
Collapse
Affiliation(s)
- Eric Avila
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Nico A. Flierman
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Peter J. Holland
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Pieter R. Roelfsema
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, VU University, Amsterdam, Netherlands
- Department of Psychiatry, Academic Medical Centre, Amsterdam, Netherlands
| | | | - Aleksandra Badura
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- *Correspondence: Aleksandra Badura,
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Chris I. De Zeeuw,
| |
Collapse
|
23
|
Subthalamic nucleus stabilizes movements by reducing neural spike variability in monkey basal ganglia. Nat Commun 2022; 13:2233. [PMID: 35468893 PMCID: PMC9038919 DOI: 10.1038/s41467-022-29750-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 03/22/2022] [Indexed: 02/02/2023] Open
Abstract
The subthalamic nucleus projects to the external and internal pallidum, the modulatory and output nuclei of the basal ganglia, respectively, and plays an indispensable role in controlling voluntary movements. However, the precise mechanism by which the subthalamic nucleus controls pallidal activity and movements remains elusive. Here, we utilize chemogenetics to reversibly reduce neural activity of the motor subregion of the subthalamic nucleus in three macaque monkeys (Macaca fuscata, both sexes) during a reaching task. Systemic administration of chemogenetic ligands prolongs movement time and increases spike train variability in the pallidum, but only slightly affects firing rate modulations. Across-trial analyses reveal that the irregular discharges in the pallidum coincides with prolonged movement time. Reduction of subthalamic activity also induces excessive abnormal movements in the contralateral forelimb, which are preceded by subthalamic and pallidal phasic activity changes. Our results suggest that the subthalamic nucleus stabilizes pallidal spike trains and achieves stable movements. Chemogenetic inactivation of the subthalamic nucleus in monkeys increases spike train variability in the pallidum and prolongs movement time, suggesting its role in stabilizing pallidal spike trains to achieve stable motor control.
Collapse
|
24
|
Gaffield MA, Sauerbrei BA, Christie JM. Cerebellum encodes and influences the initiation, performance, and termination of discontinuous movements in mice. eLife 2022; 11:e71464. [PMID: 35451957 PMCID: PMC9075950 DOI: 10.7554/elife.71464] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 04/21/2022] [Indexed: 11/23/2022] Open
Abstract
The cerebellum is hypothesized to represent timing information important for organizing salient motor events during periodically performed discontinuous movements. To provide functional evidence validating this idea, we measured and manipulated Purkinje cell (PC) activity in the lateral cerebellum of mice trained to volitionally perform periodic bouts of licking for regularly allocated water rewards. Overall, PC simple spiking modulated during task performance, mapping phasic tongue protrusions and retractions, as well as ramping prior to both lick-bout initiation and termination, two important motor events delimiting movement cycles. The ramping onset occurred earlier for the initiation of uncued exploratory licking that anticipated water availability relative to licking that was reactive to water allocation, suggesting that the cerebellum is engaged differently depending on the movement context. In a subpopulation of PCs, climbing-fiber-evoked responses also increased during lick-bout initiation, but not termination, highlighting differences in how cerebellar input pathways represent task-related information. Optogenetic perturbation of PC activity disrupted the behavior by degrading lick-bout rhythmicity in addition to initiating and terminating licking bouts confirming a causative role in movement organization. Together, these results substantiate that the cerebellum contributes to the initiation and timing of repeated motor actions.
Collapse
Affiliation(s)
| | | | - Jason M Christie
- Max Planck Florida Institute for NeuroscienceJupiterUnited States
| |
Collapse
|
25
|
Encoding time in neural dynamic regimes with distinct computational tradeoffs. PLoS Comput Biol 2022; 18:e1009271. [PMID: 35239644 PMCID: PMC8893702 DOI: 10.1371/journal.pcbi.1009271] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/08/2022] [Indexed: 11/19/2022] Open
Abstract
Converging evidence suggests the brain encodes time in dynamic patterns of neural activity, including neural sequences, ramping activity, and complex dynamics. Most temporal tasks, however, require more than just encoding time, and can have distinct computational requirements including the need to exhibit temporal scaling, generalize to novel contexts, or robustness to noise. It is not known how neural circuits can encode time and satisfy distinct computational requirements, nor is it known whether similar patterns of neural activity at the population level can exhibit dramatically different computational or generalization properties. To begin to answer these questions, we trained RNNs on two timing tasks based on behavioral studies. The tasks had different input structures but required producing identically timed output patterns. Using a novel framework we quantified whether RNNs encoded two intervals using either of three different timing strategies: scaling, absolute, or stimulus-specific dynamics. We found that similar neural dynamic patterns at the level of single intervals, could exhibit fundamentally different properties, including, generalization, the connectivity structure of the trained networks, and the contribution of excitatory and inhibitory neurons. Critically, depending on the task structure RNNs were better suited for generalization or robustness to noise. Further analysis revealed different connection patterns underlying the different regimes. Our results predict that apparently similar neural dynamic patterns at the population level (e.g., neural sequences) can exhibit fundamentally different computational properties in regards to their ability to generalize to novel stimuli and their robustness to noise—and that these differences are associated with differences in network connectivity and distinct contributions of excitatory and inhibitory neurons. We also predict that the task structure used in different experimental studies accounts for some of the experimentally observed variability in how networks encode time. The ability to tell time and anticipate when external events will occur are among the most fundamental computations the brain performs. Converging evidence suggests the brain encodes time through changing patterns of neural activity. Different temporal tasks, however, have distinct computational requirements, such as the need to flexibly scale temporal patterns or generalize to novel inputs. To understand how networks can encode time and satisfy different computational requirements we trained recurrent neural networks (RNNs) on two timing tasks that have previously been used in behavioral studies. Both tasks required producing identically timed output patterns. Using a novel framework to quantify how networks encode different intervals, we found that similar patterns of neural activity—neural sequences—were associated with fundamentally different underlying mechanisms, including the connectivity patterns of the RNNs. Critically, depending on the task the RNNs were trained on, they were better suited for generalization or robustness to noise. Our results predict that similar patterns of neural activity can be produced by distinct RNN configurations, which in turn have fundamentally different computational tradeoffs. Our results also predict that differences in task structure account for some of the experimentally observed variability in how networks encode time.
Collapse
|
26
|
Martinez MC, Zold CL, Coletti MA, Murer MG, Belluscio MA. Dorsal striatum coding for the timely execution of action sequences. eLife 2022; 11:74929. [PMID: 36426715 PMCID: PMC9699698 DOI: 10.7554/elife.74929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/27/2022] [Indexed: 11/27/2022] Open
Abstract
The automatic initiation of actions can be highly functional. But occasionally these actions cannot be withheld and are released at inappropriate times, impulsively. Striatal activity has been shown to participate in the timing of action sequence initiation and it has been linked to impulsivity. Using a self-initiated task, we trained adult male rats to withhold a rewarded action sequence until a waiting time interval has elapsed. By analyzing neuronal activity we show that the striatal response preceding the initiation of the learned sequence is strongly modulated by the time subjects wait before eliciting the sequence. Interestingly, the modulation is steeper in adolescent rats, which show a strong prevalence of impulsive responses compared to adults. We hypothesize this anticipatory striatal activity reflects the animals’ subjective reward expectation, based on the elapsed waiting time, while the steeper waiting modulation in adolescence reflects age-related differences in temporal discounting, internal urgency states, or explore–exploit balance.
Collapse
Affiliation(s)
- Maria Cecilia Martinez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular “Dr. Héctor Maldonado”Buenos AiresArgentina,Universidad de Buenos Aires - CONICET, Instituto de Fisiología y Biofísica “Dr. Bernardo Houssay” (IFIBIO-Houssay), Grupo de Neurociencia de SistemasBuenos AiresArgentina
| | - Camila Lidia Zold
- Universidad de Buenos Aires - CONICET, Instituto de Fisiología y Biofísica “Dr. Bernardo Houssay” (IFIBIO-Houssay), Grupo de Neurociencia de SistemasBuenos AiresArgentina,Universidad de Buenos Aires, Facultad de Ciencias Médicas, Departamento de FisiologíaBuenos AiresArgentina
| | - Marcos Antonio Coletti
- Universidad de Buenos Aires - CONICET, Instituto de Fisiología y Biofísica “Dr. Bernardo Houssay” (IFIBIO-Houssay), Grupo de Neurociencia de SistemasBuenos AiresArgentina,Universidad de Buenos Aires, Facultad de Ciencias Médicas, Departamento de FisiologíaBuenos AiresArgentina
| | - Mario Gustavo Murer
- Universidad de Buenos Aires - CONICET, Instituto de Fisiología y Biofísica “Dr. Bernardo Houssay” (IFIBIO-Houssay), Grupo de Neurociencia de SistemasBuenos AiresArgentina,Universidad de Buenos Aires, Facultad de Ciencias Médicas, Departamento de FisiologíaBuenos AiresArgentina
| | - Mariano Andrés Belluscio
- Universidad de Buenos Aires - CONICET, Instituto de Fisiología y Biofísica “Dr. Bernardo Houssay” (IFIBIO-Houssay), Grupo de Neurociencia de SistemasBuenos AiresArgentina,Universidad de Buenos Aires, Facultad de Ciencias Médicas, Departamento de FisiologíaBuenos AiresArgentina
| |
Collapse
|
27
|
Osborne KJ, Damme KS, Gupta T, Dean DJ, Bernard JA, Mittal VA. Timing dysfunction and cerebellar resting state functional connectivity abnormalities in youth at clinical high-risk for psychosis. Psychol Med 2021; 51:1289-1298. [PMID: 32008594 PMCID: PMC9754787 DOI: 10.1017/s0033291719004161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Consistent with pathophysiological models of psychosis, temporal disturbances in schizophrenia spectrum populations may reflect abnormal cortical (e.g. prefrontal cortex) and subcortical (e.g. striatum) cerebellar connectivity. However, few studies have examined associations between cerebellar connectivity and timing dysfunction in psychosis populations, and none have been conducted in youth at clinical high-risk (CHR) for psychosis. Thus, it is currently unknown if impairments in temporal processes are present in CHR youth or how they may be associated with cerebellar connectivity and worsening of symptoms. METHODS A total of 108 (56 CHR/52 controls) youth were administered an auditory temporal bisection task along with a resting state imaging scan to examine cerebellar resting state connectivity. Positive and negative symptoms at baseline and 12 months later were also quantified. RESULTS Controlling for alcohol and cannabis use, CHR youth exhibited poorer temporal accuracy compared to controls, and temporal accuracy deficits were associated with abnormal connectivity between the bilateral anterior cerebellum and a right caudate/nucleus accumbens striatal cluster. Poor temporal accuracy accounted for 11% of the variance in worsening of negative symptoms over 12 months. CONCLUSIONS Behavioral findings suggest CHR youth perceive durations of auditory tones as shortened compared to objective time, which may indicate a slower internal clock. Poorer temporal accuracy in CHR youth was associated with abnormalities in brain regions involved in an important cerebellar network implicated in prominent pathophysiological models of psychosis. Lastly, temporal accuracy was associated with worsening of negative symptoms across 12 months, suggesting temporal dysfunction may be sensitive to illness progression.
Collapse
Affiliation(s)
- K. Juston Osborne
- Northwestern University, Department of Psychology, Evanston, IL, USA
| | | | - Tina Gupta
- Northwestern University, Department of Psychology, Evanston, IL, USA
| | - Derek J. Dean
- University of Colorado Boulder, Department of Psychology, Boulder, CO, USA
| | - Jessica A. Bernard
- Texas A & M University, Department of Psychology, College Station, TX, USA
| | - Vijay A. Mittal
- Northwestern University, Department of Psychology, Department of Psychiatry, Institute for Policy Research, Department of Medical Social Sciences, Institute for Innovations in Developmental Sciences (DevSci), Evanston, Chicago, IL, USA
| |
Collapse
|
28
|
Tanaka M, Kunimatsu J, Suzuki TW, Kameda M, Ohmae S, Uematsu A, Takeya R. Roles of the Cerebellum in Motor Preparation and Prediction of Timing. Neuroscience 2021; 462:220-234. [DOI: 10.1016/j.neuroscience.2020.04.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/10/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022]
|
29
|
Takeya R, Nakamura S, Tanaka M. Spontaneous grouping of saccade timing in the presence of task-irrelevant objects. PLoS One 2021; 16:e0248530. [PMID: 33724997 PMCID: PMC7963089 DOI: 10.1371/journal.pone.0248530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/27/2021] [Indexed: 11/26/2022] Open
Abstract
Sequential movements are often grouped into several chunks, as evidenced by the modulation of the timing of each elemental movement. Even during synchronized tapping with a metronome, we sometimes feel subjective accent for every few taps. To examine whether motor segmentation emerges during synchronized movements, we trained monkeys to generate a series of predictive saccades synchronized with visual stimuli which sequentially appeared for a fixed interval (400 or 600 ms) at six circularly arranged landmark locations. We found two types of motor segmentations that featured periodic modulation of saccade timing. First, the intersaccadic interval (ISI) depended on the target location and saccade direction, indicating that particular combinations of saccades were integrated into motor chunks. Second, when a task-irrelevant rectangular contour surrounding three landmarks ("inducer") was presented, the ISI significantly modulated depending on the relative target location to the inducer. All patterns of individual differences seen in monkeys were also observed in humans. Importantly, the effects of the inducer greatly decreased or disappeared when the animals were trained to generate only reactive saccades (latency >100 ms), indicating that the motor segmentation may depend on the internal rhythms. Thus, our results demonstrate two types of motor segmentation during synchronized movements: one is related to the hierarchical organization of sequential movements and the other is related to the spontaneous grouping of rhythmic events. This experimental paradigm can be used to investigate the underlying neural mechanism of temporal grouping during rhythm production.
Collapse
Affiliation(s)
- Ryuji Takeya
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
- * E-mail: (RT); (MT)
| | - Shuntaro Nakamura
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
| | - Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
- * E-mail: (RT); (MT)
| |
Collapse
|
30
|
Wang J, Hosseini E, Meirhaeghe N, Akkad A, Jazayeri M. Reinforcement regulates timing variability in thalamus. eLife 2020; 9:55872. [PMID: 33258769 PMCID: PMC7707818 DOI: 10.7554/elife.55872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 11/06/2020] [Indexed: 01/19/2023] Open
Abstract
Learning reduces variability but variability can facilitate learning. This paradoxical relationship has made it challenging to tease apart sources of variability that degrade performance from those that improve it. We tackled this question in a context-dependent timing task requiring humans and monkeys to flexibly produce different time intervals with different effectors. We identified two opposing factors contributing to timing variability: slow memory fluctuation that degrades performance and reward-dependent exploratory behavior that improves performance. Signatures of these opposing factors were evident across populations of neurons in the dorsomedial frontal cortex (DMFC), DMFC-projecting neurons in the ventrolateral thalamus, and putative target of DMFC in the caudate. However, only in the thalamus were the performance-optimizing regulation of variability aligned to the slow performance-degrading memory fluctuations. These findings reveal how variability caused by exploratory behavior might help to mitigate other undesirable sources of variability and highlight a potential role for thalamocortical projections in this process.
Collapse
Affiliation(s)
- Jing Wang
- Department of Bioengineering, University of Missouri, Columbia, United States.,McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Eghbal Hosseini
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Nicolas Meirhaeghe
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, United States
| | - Adam Akkad
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Mehrdad Jazayeri
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
31
|
Li N, Mrsic-Flogel TD. Cortico-cerebellar interactions during goal-directed behavior. Curr Opin Neurobiol 2020; 65:27-37. [PMID: 32979846 PMCID: PMC7770085 DOI: 10.1016/j.conb.2020.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
Preparatory activity is observed across multiple interconnected brain regions before goal-directed movement. Preparatory activity reflects discrete activity states representing specific future actions. It is unclear how this activity is mediated by multi-regional interactions. Recent evidence suggests that the cerebellum, classically associated with fine motor control, contributes to preparatory activity in the neocortex. We review recent advances and offer perspective on the function of cortico-cerebellar interactions during goal-directed behavior. We propose that the cerebellum learns to facilitate transitions between neocortical activity states. Transitions between activity states enable flexible and appropriately timed behavioral responses.
Collapse
Affiliation(s)
- Nuo Li
- Department of Neuroscience, Baylor College of Medicine, United States.
| | - Thomas D Mrsic-Flogel
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, United Kingdom.
| |
Collapse
|
32
|
Breska A, Ivry RB. Context-specific control over the neural dynamics of temporal attention by the human cerebellum. SCIENCE ADVANCES 2020; 6:6/49/eabb1141. [PMID: 33268365 PMCID: PMC7821877 DOI: 10.1126/sciadv.abb1141] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
Physiological methods have identified a number of signatures of temporal prediction, a core component of attention. While the underlying neural dynamics have been linked to activity within cortico-striatal networks, recent work has shown that the behavioral benefits of temporal prediction rely on the cerebellum. Here, we examine the involvement of the human cerebellum in the generation and/or temporal adjustment of anticipatory neural dynamics, measuring scalp electroencephalography in individuals with cerebellar degeneration. When the temporal prediction relied on an interval representation, duration-dependent adjustments were impaired in the cerebellar group compared to matched controls. This impairment was evident in ramping activity, beta-band power, and phase locking of delta-band activity. These same neural adjustments were preserved when the prediction relied on a rhythmic stream. Thus, the cerebellum has a context-specific causal role in the adjustment of anticipatory neural dynamics of temporal prediction, providing the requisite modulation to optimize behavior.
Collapse
Affiliation(s)
- Assaf Breska
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, USA.
| | - Richard B Ivry
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, USA
| |
Collapse
|
33
|
Kawabata M, Soma S, Saiki-Ishikawa A, Nonomura S, Yoshida J, Ríos A, Sakai Y, Isomura Y. A spike analysis method for characterizing neurons based on phase locking and scaling to the interval between two behavioral events. J Neurophysiol 2020; 124:1923-1941. [PMID: 33085554 DOI: 10.1152/jn.00200.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Standard analysis of neuronal functions assesses the temporal correlation between animal behaviors and neuronal activity by aligning spike trains with the timing of a specific behavioral event, e.g., visual cue. However, spike activity is often involved in information processing dependent on a relative phase between two consecutive events rather than a single event. Nevertheless, less attention has so far been paid to such temporal features of spike activity in relation to two behavioral events. Here, we propose "Phase-Scaling analysis" to simultaneously evaluate the phase locking and scaling to the interval between two events in task-related spike activity of individual neurons. This analysis method can discriminate conceptual "scaled"-type neurons from "nonscaled"-type neurons using an activity variation map that combines phase locking with scaling to the interval. Its robustness was validated by spike simulation using different spike properties. Furthermore, we applied it to analyzing actual spike data from task-related neurons in the primary visual cortex (V1), posterior parietal cortex (PPC), primary motor cortex (M1), and secondary motor cortex (M2) of behaving rats. After hierarchical clustering of all neurons using their activity variation maps, we divided them objectively into four clusters corresponding to nonscaled-type sensory and motor neurons and scaled-type neurons including sustained and ramping activities, etc. Cluster/subcluster compositions for V1 differed from those of PPC, M1, and M2. The V1 neurons showed the fastest functional activities among those areas. Our method was also applicable to determine temporal "forms" and the latency of spike activity changes. These findings demonstrate its utility for characterizing neurons.NEW & NOTEWORTHY Phase-Scaling analysis is a novel technique to unbiasedly characterize the temporal dependency of functional neuron activity on two behavioral events and objectively determine the latency and form of the activity change. This powerful analysis can uncover several classes of latently functioning neurons that have thus far been overlooked, which may participate differently in intermediate processes of a brain function. The Phase-Scaling analysis will yield profound insights into neural mechanisms for processing internal information.
Collapse
Affiliation(s)
- Masanori Kawabata
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Graduate School of Brain Sciences, Tamagawa University, Tokyo, Japan
| | - Shogo Soma
- Brain Science Institute, Tamagawa University, Tokyo, Japan.,Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akiko Saiki-Ishikawa
- Brain Science Institute, Tamagawa University, Tokyo, Japan.,Department of Neurobiology, Northwestern University, Evanston, Illinois
| | - Satoshi Nonomura
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Brain Science Institute, Tamagawa University, Tokyo, Japan.,Systems Neuroscience Section, Primate Research Institute, Kyoto University, Aichi, Japan
| | - Junichi Yoshida
- Brain Science Institute, Tamagawa University, Tokyo, Japan.,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York
| | - Alain Ríos
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Graduate School of Brain Sciences, Tamagawa University, Tokyo, Japan
| | - Yutaka Sakai
- Graduate School of Brain Sciences, Tamagawa University, Tokyo, Japan.,Brain Science Institute, Tamagawa University, Tokyo, Japan
| | - Yoshikazu Isomura
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Graduate School of Brain Sciences, Tamagawa University, Tokyo, Japan.,Brain Science Institute, Tamagawa University, Tokyo, Japan
| |
Collapse
|
34
|
Xin Z, Chen X, Zhang Q, Wang J, Xi Y, Liu J, Li B, Dong X, Lin Y, Zhang W, Chen J, Luo W. Alteration in topological properties of brain functional network after 2-year high altitude exposure: A panel study. Brain Behav 2020; 10:e01656. [PMID: 32909397 PMCID: PMC7559604 DOI: 10.1002/brb3.1656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION High altitude (HA) exposure leads to cognitive impairment while the underlying mechanism is still unclear. Brain functional network is crucial for advanced functions, and its alteration is implicated in cognitive decline in multiple diseases. The aim of current study was to investigate the topological changes in HA-exposed brain functional network. METHODS Based on Shaanxi-Tibet immigrant cohort, neuropsychological tests and resting-state functional MRI were applied to evaluate the participants' cognitive function and functional connection (FC) changes, respectively. GRETNA toolbox was used to construct the brain functional network. The gray matter was parcellated into 116 anatomically defined regions according to Automated Anatomical Labeling atlas. Subsequently, the mean time series for each of the 116 regions were extracted and computed for Pearson's correlation coefficients. The relation matrix was further processed and seen as brain functional network. Correlation between functional network changes and neuropsychological results was also examined. RESULTS The cognitive performance was impaired by HA exposure as indicated by neuropsychological test. HA exposure led to alterations of degree centrality and nodal efficiency in multiple brain regions. Moreover, two subnetworks were extracted in which the FCs significantly decreased after exposure. In addition, the alterations in FCs within above two subnetworks were significantly correlated with changes of memory and reaction time. CONCLUSIONS Our results suggest that HA exposure modulates the topological property of functional network and FCs of some important regions, which may impair the attention, perception, memory, motion ignition, and modulation processes, finally decreasing cognitive performance in neuropsychological tests.
Collapse
Affiliation(s)
- Zhenlong Xin
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Xiaoming Chen
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Qian Zhang
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Jiye Wang
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Yibin Xi
- Department of Radiology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jian Liu
- Network Center, Air Force Medical University, Xi'an, China
| | - Baojuan Li
- School of Biomedical Engineering, Air Force Medical University, Xi'an, China
| | - Xiaoru Dong
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Yiwen Lin
- School of Basic Medical Science, Peking University, Beijing, China
| | - Wenbin Zhang
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Jingyuan Chen
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Wenjing Luo
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| |
Collapse
|
35
|
Kawato M, Ohmae S, Hoang H, Sanger T. 50 Years Since the Marr, Ito, and Albus Models of the Cerebellum. Neuroscience 2020; 462:151-174. [PMID: 32599123 DOI: 10.1016/j.neuroscience.2020.06.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Abstract
Fifty years have passed since David Marr, Masao Ito, and James Albus proposed seminal models of cerebellar functions. These models share the essential concept that parallel-fiber-Purkinje-cell synapses undergo plastic changes, guided by climbing-fiber activities during sensorimotor learning. However, they differ in several important respects, including holistic versus complementary roles of the cerebellum, pattern recognition versus control as computational objectives, potentiation versus depression of synaptic plasticity, teaching signals versus error signals transmitted by climbing-fibers, sparse expansion coding by granule cells, and cerebellar internal models. In this review, we evaluate different features of the three models based on recent computational and experimental studies. While acknowledging that the three models have greatly advanced our understanding of cerebellar control mechanisms in eye movements and classical conditioning, we propose a new direction for computational frameworks of the cerebellum, that is, hierarchical reinforcement learning with multiple internal models.
Collapse
Affiliation(s)
- Mitsuo Kawato
- Brain Information Communication Research Group, Advanced Telecommunications Research Institutes International (ATR), Hikaridai 2-2-2, "Keihanna Science City", Kyoto 619-0288, Japan; Center for Advanced Intelligence Project (AIP), RIKEN, Nihonbashi Mitsui Building, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.
| | - Shogo Ohmae
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Huu Hoang
- Brain Information Communication Research Group, Advanced Telecommunications Research Institutes International (ATR), Hikaridai 2-2-2, "Keihanna Science City", Kyoto 619-0288, Japan
| | - Terry Sanger
- Department of Electrical Engineering, University of California, Irvine, 4207 Engineering Hall, Irvine CA 92697-2625, USA; Children's Hospital of Orange County, 1201 W La Veta Ave, Orange, CA 92868, USA.
| |
Collapse
|
36
|
Velocity storage mechanism drives a cerebellar clock for predictive eye velocity control. Sci Rep 2020; 10:6944. [PMID: 32332917 PMCID: PMC7181809 DOI: 10.1038/s41598-020-63641-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/30/2020] [Indexed: 01/07/2023] Open
Abstract
Predictive motor control is ubiquitously employed in animal kingdom to achieve rapid and precise motor action. In most vertebrates large, moving visual scenes induce an optokinetic response (OKR) control of eye movements to stabilize vision. In goldfish, the OKR was found to be predictive after a prolonged exposure to temporally periodic visual motion. A recent study showed the cerebellum necessary to acquire this predictive OKR (pOKR), but it remained unclear as to whether the cerebellum alone was sufficient. Herein we examined different fish species known to share the basic architecture of cerebellar neuronal circuitry for their ability to acquire pOKR. Carps were shown to acquire pOKR like goldfish while zebrafish and medaka did not, demonstrating the cerebellum alone not to be sufficient. Interestingly, those fish that acquired pOKR were found to exhibit long-lasting optokinetic after nystagmus (OKAN) as opposed to those that didn’t. To directly manipulate OKAN vestibular-neurectomy was performed in goldfish that severely shortened OKAN, but pOKR was acquired comparable to normal animals. These results suggest that the neuronal circuitry producing OKAN, known as the velocity storage mechanism (VSM), is required to acquire pOKR irrespective of OKAN duration. Taken together, we conclude that pOKR is acquired through recurrent cerebellum-brainstem parallel loops in which the cerebellum adjusts VSM signal flow and, in turn, receives appropriately timed eye velocity information to clock visual world motion.
Collapse
|
37
|
Cerebellar Neurodynamics Predict Decision Timing and Outcome on the Single-Trial Level. Cell 2020; 180:536-551.e17. [PMID: 31955849 DOI: 10.1016/j.cell.2019.12.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 10/28/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022]
Abstract
Goal-directed behavior requires the interaction of multiple brain regions. How these regions and their interactions with brain-wide activity drive action selection is less understood. We have investigated this question by combining whole-brain volumetric calcium imaging using light-field microscopy and an operant-conditioning task in larval zebrafish. We find global, recurring dynamics of brain states to exhibit pre-motor bifurcations toward mutually exclusive decision outcomes. These dynamics arise from a distributed network displaying trial-by-trial functional connectivity changes, especially between cerebellum and habenula, which correlate with decision outcome. Within this network the cerebellum shows particularly strong and predictive pre-motor activity (>10 s before movement initiation), mainly within the granule cells. Turn directions are determined by the difference neuroactivity between the ipsilateral and contralateral hemispheres, while the rate of bi-hemispheric population ramping quantitatively predicts decision time on the trial-by-trial level. Our results highlight a cognitive role of the cerebellum and its importance in motor planning.
Collapse
|
38
|
Yousefzadeh SA, Hesslow G, Shumyatsky GP, Meck WH. Internal Clocks, mGluR7 and Microtubules: A Primer for the Molecular Encoding of Target Durations in Cerebellar Purkinje Cells and Striatal Medium Spiny Neurons. Front Mol Neurosci 2020; 12:321. [PMID: 31998074 PMCID: PMC6965020 DOI: 10.3389/fnmol.2019.00321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
The majority of studies in the field of timing and time perception have generally focused on sub- and supra-second time scales, specific behavioral processes, and/or discrete neuronal circuits. In an attempt to find common elements of interval timing from a broader perspective, we review the literature and highlight the need for cell and molecular studies that can delineate the neural mechanisms underlying temporal processing. Moreover, given the recent attention to the function of microtubule proteins and their potential contributions to learning and memory consolidation/re-consolidation, we propose that these proteins play key roles in coding temporal information in cerebellar Purkinje cells (PCs) and striatal medium spiny neurons (MSNs). The presence of microtubules at relevant neuronal sites, as well as their adaptability, dynamic structure, and longevity, makes them a suitable candidate for neural plasticity at both intra- and inter-cellular levels. As a consequence, microtubules appear capable of maintaining a temporal code or engram and thereby regulate the firing patterns of PCs and MSNs known to be involved in interval timing. This proposed mechanism would control the storage of temporal information triggered by postsynaptic activation of mGluR7. This, in turn, leads to alterations in microtubule dynamics through a "read-write" memory process involving alterations in microtubule dynamics and their hexagonal lattice structures involved in the molecular basis of temporal memory.
Collapse
Affiliation(s)
- S. Aryana Yousefzadeh
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Germund Hesslow
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Gleb P. Shumyatsky
- Department of Genetics, Rutgers University, Piscataway, NJ, United States
| | - Warren H. Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| |
Collapse
|
39
|
Miterko LN, Baker KB, Beckinghausen J, Bradnam LV, Cheng MY, Cooperrider J, DeLong MR, Gornati SV, Hallett M, Heck DH, Hoebeek FE, Kouzani AZ, Kuo SH, Louis ED, Machado A, Manto M, McCambridge AB, Nitsche MA, Taib NOB, Popa T, Tanaka M, Timmann D, Steinberg GK, Wang EH, Wichmann T, Xie T, Sillitoe RV. Consensus Paper: Experimental Neurostimulation of the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1064-1097. [PMID: 31165428 PMCID: PMC6867990 DOI: 10.1007/s12311-019-01041-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cerebellum is best known for its role in controlling motor behaviors. However, recent work supports the view that it also influences non-motor behaviors. The contribution of the cerebellum towards different brain functions is underscored by its involvement in a diverse and increasing number of neurological and neuropsychiatric conditions including ataxia, dystonia, essential tremor, Parkinson's disease (PD), epilepsy, stroke, multiple sclerosis, autism spectrum disorders, dyslexia, attention deficit hyperactivity disorder (ADHD), and schizophrenia. Although there are no cures for these conditions, cerebellar stimulation is quickly gaining attention for symptomatic alleviation, as cerebellar circuitry has arisen as a promising target for invasive and non-invasive neuromodulation. This consensus paper brings together experts from the fields of neurophysiology, neurology, and neurosurgery to discuss recent efforts in using the cerebellum as a therapeutic intervention. We report on the most advanced techniques for manipulating cerebellar circuits in humans and animal models and define key hurdles and questions for moving forward.
Collapse
Affiliation(s)
- Lauren N Miterko
- Department of Pathology and Immunology, Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Kenneth B Baker
- Neurological Institute, Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Jaclyn Beckinghausen
- Department of Pathology and Immunology, Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Lynley V Bradnam
- Department of Exercise Science, Faculty of Science, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Michelle Y Cheng
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P352, Stanford, CA, 94305-5487, USA
| | - Jessica Cooperrider
- Neurological Institute, Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Mahlon R DeLong
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - Simona V Gornati
- Department of Neuroscience, Erasmus Medical Center, 3015 AA, Rotterdam, Netherlands
| | - Mark Hallett
- Human Motor Control Section, NINDS, NIH, Building 10, Room 7D37, 10 Center Dr MSC 1428, Bethesda, MD, 20892-1428, USA
| | - Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Ave, Memphis, TN, 38163, USA
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus Medical Center, 3015 AA, Rotterdam, Netherlands
- NIDOD Department, Wilhelmina Children's Hospital, University Medical Center Utrecht Brain Center, Utrecht, Netherlands
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, VIC, 3216, Australia
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Department of Chronic Disease Epidemiology, Yale School of Public Health, Center for Neuroepidemiology and Clinical Research, Yale School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Andre Machado
- Neurological Institute, Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Mario Manto
- Service de Neurologie, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, Université de Mons, 7000, Mons, Belgium
| | - Alana B McCambridge
- Graduate School of Health, Physiotherapy, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW, 2007, Australia
| | - Michael A Nitsche
- Department of Psychology and Neurosiences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | | | - Traian Popa
- Human Motor Control Section, NINDS, NIH, Building 10, Room 7D37, 10 Center Dr MSC 1428, Bethesda, MD, 20892-1428, USA
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Ecole Polytechnique Federale de Lausanne (EPFL), Sion, Switzerland
| | - Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan
| | - Dagmar Timmann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P352, Stanford, CA, 94305-5487, USA
- R281 Department of Neurosurgery, Stanfod University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Eric H Wang
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P352, Stanford, CA, 94305-5487, USA
| | - Thomas Wichmann
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30322, USA
| | - Tao Xie
- Department of Neurology, University of Chicago, 5841 S. Maryland Avenue, MC 2030, Chicago, IL, 60637-1470, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.
| |
Collapse
|
40
|
Internal models of sensorimotor integration regulate cortical dynamics. Nat Neurosci 2019; 22:1871-1882. [PMID: 31591558 PMCID: PMC6903408 DOI: 10.1038/s41593-019-0500-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/16/2019] [Indexed: 01/20/2023]
Abstract
Sensorimotor control during overt movements is characterized in terms of three building blocks: a controller, a simulator, and a state estimator. We asked whether the same framework could explain the control of internal states in the absence of movements. Recently, it was shown that the brain controls the timing of future movements by adjusting an internal speed command. We trained monkeys in a novel task in which the speed command had to be controlled dynamically based on the timing of a sequence of flashes. Recordings from the frontal cortex provided evidence that the brain updates the internal speed command after each flash based on the error between the timing of the flash and the anticipated timing of the flash derived from a simulated motor plan. These findings suggest that cognitive control of internal states may be understood in terms of the same computational principles as motor control.
Collapse
|
41
|
Kameda M, Ohmae S, Tanaka M. Entrained neuronal activity to periodic visual stimuli in the primate striatum compared with the cerebellum. eLife 2019; 8:48702. [PMID: 31490120 PMCID: PMC6748823 DOI: 10.7554/elife.48702] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/05/2019] [Indexed: 11/13/2022] Open
Abstract
Rhythmic events recruit neuronal activity in the basal ganglia and cerebellum, but their roles remain elusive. In monkeys attempting to detect a single omission of isochronous visual stimulus, we found that neurons in the caudate nucleus showed increased activity for each stimulus in sequence, while those in the cerebellar dentate nucleus showed decreased activity. Firing modulation in the majority of caudate neurons and all cerebellar neurons was proportional to the stimulus interval, but a quarter of caudate neurons displayed a clear duration tuning. Furthermore, the time course of population activity in the cerebellum well predicted stimulus timing, whereas that in the caudate reflected stochastic variation of response latency. Electrical stimulation to the respective recording sites confirmed a causal role in the detection of stimulus omission. These results suggest that striatal neurons might represent periodic response preparation while cerebellar nuclear neurons may play a role in temporal prediction of periodic events.
Collapse
Affiliation(s)
- Masashi Kameda
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
| | - Shogo Ohmae
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
| |
Collapse
|
42
|
Chabrol FP, Blot A, Mrsic-Flogel TD. Cerebellar Contribution to Preparatory Activity in Motor Neocortex. Neuron 2019; 103:506-519.e4. [PMID: 31201123 PMCID: PMC6693889 DOI: 10.1016/j.neuron.2019.05.022] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 03/07/2019] [Accepted: 05/12/2019] [Indexed: 12/24/2022]
Abstract
In motor neocortex, preparatory activity predictive of specific movements is maintained by a positive feedback loop with the thalamus. Motor thalamus receives excitatory input from the cerebellum, which learns to generate predictive signals for motor control. The contribution of this pathway to neocortical preparatory signals remains poorly understood. Here, we show that, in a virtual reality conditioning task, cerebellar output neurons in the dentate nucleus exhibit preparatory activity similar to that in anterolateral motor cortex prior to reward acquisition. Silencing activity in dentate nucleus by photoactivating inhibitory Purkinje cells in the cerebellar cortex caused robust, short-latency suppression of preparatory activity in anterolateral motor cortex. Our results suggest that preparatory activity is controlled by a learned decrease of Purkinje cell firing in advance of reward under supervision of climbing fiber inputs signaling reward delivery. Thus, cerebellar computations exert a powerful influence on preparatory activity in motor neocortex. Similar activity in dentate nucleus (DN) and ALM cortex prior to reward acquisition Silencing DN activity selectively suppresses preparatory activity in ALM Preparatory activity likely controlled by learned decrease in Purkinje cell firing Dynamics of preparatory activity imply reward time prediction from external cues
Collapse
Affiliation(s)
- Francois P Chabrol
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland; Sainsbury Wellcome Center, University College London, 25 Howland Street, London W1T 4JG, UK
| | - Antonin Blot
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland; Sainsbury Wellcome Center, University College London, 25 Howland Street, London W1T 4JG, UK
| | - Thomas D Mrsic-Flogel
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland; Sainsbury Wellcome Center, University College London, 25 Howland Street, London W1T 4JG, UK.
| |
Collapse
|
43
|
Temporal signals underlying a cognitive process in the dorsal premotor cortex. Proc Natl Acad Sci U S A 2019; 116:7523-7532. [PMID: 30918128 DOI: 10.1073/pnas.1820474116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During discrimination between two sequential vibrotactile stimulus patterns, the primate dorsal premotor cortex (DPC) neurons exhibit a complex repertoire of coding dynamics associated with the working memory, comparison, and decision components of this task. In addition, these neurons and neurons with no coding responses show complex strong fluctuations in their firing rate associated with the temporal sequence of task events. Here, to make sense of this temporal complexity, we extracted the temporal signals that were latent in the population. We found a strong link between the individual and population response, suggesting a common neural substrate. Notably, in contrast to coding dynamics, these time-dependent responses were unaffected during error trials. However, in a nondemanding task in which monkeys did not require discrimination for reward, these time-dependent signals were largely reduced and changed. These results suggest that temporal dynamics in DPC reflect the underlying cognitive processes of this task.
Collapse
|
44
|
Suzuki TW, Tanaka M. Neural oscillations in the primate caudate nucleus correlate with different preparatory states for temporal production. Commun Biol 2019; 2:102. [PMID: 30886911 PMCID: PMC6418172 DOI: 10.1038/s42003-019-0345-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/08/2019] [Indexed: 01/22/2023] Open
Abstract
When measuring time, neuronal activity in the cortico-basal ganglia pathways has been shown to be temporally scaled according to the interval, suggesting that signal transmission within the pathways is flexibly controlled. Here we show that, in the caudate nuclei of monkeys performing a time production task with three different intervals, the magnitude of visually-evoked potentials at the beginning of an interval differed depending on the conditions. Prior to this response, the power of low frequency components (6–20 Hz) significantly changed, showing inverse correlation with the visual response gain. Although these components later exhibited time-dependent modification during self-timed period, the changes in spectral power for interval conditions qualitatively and quantitatively differed from those associated with the reward amount. These results suggest that alteration of network state in the cortico-basal ganglia pathways indexed by the low frequency oscillations may be crucial for the regulation of signal transmission and subsequent timing behavior. Tomoki Suzuki and Masaki Tanaka measured local field potentials in the caudate nucleus of monkeys performing a time production task and showed that the length of the time interval modified the magnitude of visually-evoked potentials and the spectral power at low frequencies. These changes suggest that neural oscillations within the cortico-basal ganglia pathways regulate timing behavior.
Collapse
Affiliation(s)
- Tomoki W Suzuki
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan.
| | - Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan.
| |
Collapse
|
45
|
Yc K, Prado L, Merchant H. The scalar property during isochronous tapping is disrupted by a D2-like agonist in the nonhuman primate. J Neurophysiol 2019; 121:940-949. [DOI: 10.1152/jn.00804.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dopamine, and specifically the D2 system, has been implicated in timing tasks where the absolute duration of individual time intervals is encoded discretely, yet the role of D2 during beat perception and entrainment remains largely unknown. In this type of timing, a beat is perceived as the pulse that marks equally spaced points in time and, once extracted, produces the tendency in humans to entrain or synchronize their movements to it. Hence, beat-based timing is crucial for musical execution. In this study we investigated the effects of systemic injections of quinpirole (0.005–0.05 mg/kg), a D2-like agonist, on the isochronous rhythmic tapping of rhesus monkeys, a classical task for the study of beat entrainment. We compared the rhythmic timing accuracy, precision, and the asynchronies of the monkeys with or without the effects of quinpirole, as well as their reaction times in a control serial reaction time task (SRTT). The results showed a dose-dependent disruption in the scalar property of rhythmic timing due to quinpirole administration. Specifically, we found similar temporal variabilities as a function of the metronome tempo at the largest dose, instead of the increase in variability across durations that is characteristic of the timing Weber law. Notably, these effects were not due to alterations in the basic sensorimotor mechanism for tapping to a sequence of flashing stimuli, because quinpirole did not change the reaction time of the monkeys during SRTT. These findings support the notion of a key role of the D2 system in the rhythmic timing mechanism, especially in the control of temporal precision. NEW & NOTEWORTHY Perceiving and moving to the beat of music is a fundamental trait of musical cognition. We measured the effect of quinpirole, a D2-like agonist, on the precision and accuracy of rhythmic tapping to a metronome in two rhesus monkeys. Quinpirole produced a flattening of the temporal variability as a function of tempo duration, instead of the increase in variability across durations that is characteristic of the scalar property, a hallmark property of timing.
Collapse
Affiliation(s)
- Karyna Yc
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Luis Prado
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Hugo Merchant
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| |
Collapse
|
46
|
Contributions of the Cerebellum for Predictive and Instructional Control of Movement. CURRENT OPINION IN PHYSIOLOGY 2019; 8:146-151. [PMID: 30944888 DOI: 10.1016/j.cophys.2019.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cerebellum with its layered structure and stereotyped and conserved connectivity has long puzzled neurobiologists. While it is well established that the cerebellum functions in regulating balance, motor coordination and motor learning, how it achieves these end results has not been very clear. Recent technical advances have made it possible to tease apart the contributions of cerebellar cell types to movement in behaving animals. We review these studies focusing on the three major cerebellar cell types, namely: granule cells, Purkinje neurons and the cells of the deep cerebellar nuclei. Further, we also review our current understanding of cortico-cerebellar and basal ganglia-cerebellar interactions that play vital roles in motor planning and motor learning.
Collapse
|
47
|
Remington ED, Egger SW, Narain D, Wang J, Jazayeri M. A Dynamical Systems Perspective on Flexible Motor Timing. Trends Cogn Sci 2018; 22:938-952. [PMID: 30266152 PMCID: PMC6166486 DOI: 10.1016/j.tics.2018.07.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022]
Abstract
A hallmark of higher brain function is the ability to rapidly and flexibly adjust behavioral responses based on internal and external cues. Here, we examine the computational principles that allow decisions and actions to unfold flexibly in time. We adopt a dynamical systems perspective and outline how temporal flexibility in such a system can be achieved through manipulations of inputs and initial conditions. We then review evidence from experiments in nonhuman primates that support this interpretation. Finally, we explore the broader utility and limitations of the dynamical systems perspective as a general framework for addressing open questions related to the temporal control of movements, as well as in the domains of learning and sequence generation.
Collapse
Affiliation(s)
- Evan D Remington
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; These authors contributed equally to this work
| | - Seth W Egger
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; These authors contributed equally to this work
| | - Devika Narain
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Netherlands Institute for Neuroscience, Amsterdam, BA 1105, The Netherlands; Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jing Wang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Bioengineering, University of Missouri, Columbia, MO 65201, USA
| | - Mehrdad Jazayeri
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|