1
|
Hanson G, Adams J, Kepgang DIB, Zondagh LS, Tem Bueh L, Asante A, Shirolkar SA, Kisaakye M, Bondarwad H, Awe OI. Machine learning and molecular docking prediction of potential inhibitors against dengue virus. Front Chem 2024; 12:1510029. [PMID: 39776767 PMCID: PMC11703810 DOI: 10.3389/fchem.2024.1510029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction Dengue Fever continues to pose a global threat due to the widespread distribution of its vector mosquitoes, Aedes aegypti and Aedes albopictus. While the WHO-approved vaccine, Dengvaxia, and antiviral treatments like Balapiravir and Celgosivir are available, challenges such as drug resistance, reduced efficacy, and high treatment costs persist. This study aims to identify novel potential inhibitors of the Dengue virus (DENV) using an integrative drug discovery approach encompassing machine learning and molecular docking techniques. Method Utilizing a dataset of 21,250 bioactive compounds from PubChem (AID: 651640), alongside a total of 1,444 descriptors generated using PaDEL, we trained various models such as Support Vector Machine, Random Forest, k-nearest neighbors, Logistic Regression, and Gaussian Naïve Bayes. The top-performing model was used to predict active compounds, followed by molecular docking performed using AutoDock Vina. The detailed interactions, toxicity, stability, and conformational changes of selected compounds were assessed through protein-ligand interaction studies, molecular dynamics (MD) simulations, and binding free energy calculations. Results We implemented a robust three-dataset splitting strategy, employing the Logistic Regression algorithm, which achieved an accuracy of 94%. The model successfully predicted 18 known DENV inhibitors, with 11 identified as active, paving the way for further exploration of 2683 new compounds from the ZINC and EANPDB databases. Subsequent molecular docking studies were performed on the NS2B/NS3 protease, an enzyme essential in viral replication. ZINC95485940, ZINC38628344, 2',4'-dihydroxychalcone and ZINC14441502 demonstrated a high binding affinity of -8.1, -8.5, -8.6, and -8.0 kcal/mol, respectively, exhibiting stable interactions with His51, Ser135, Leu128, Pro132, Ser131, Tyr161, and Asp75 within the active site, which are critical residues involved in inhibition. Molecular dynamics simulations coupled with MMPBSA further elucidated the stability, making it a promising candidate for drug development. Conclusion Overall, this integrative approach, combining machine learning, molecular docking, and dynamics simulations, highlights the strength and utility of computational tools in drug discovery. It suggests a promising pathway for the rapid identification and development of novel antiviral drugs against DENV. These in silico findings provide a strong foundation for future experimental validations and in-vitro studies aimed at fighting DENV.
Collapse
Affiliation(s)
- George Hanson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Accra, Ghana
| | - Joseph Adams
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Accra, Ghana
| | - Daveson I. B. Kepgang
- Department of Biochemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Luke S. Zondagh
- Pharmaceutical Chemistry, School of Pharmacy, University of Western Cape Town, Cape Town, South Africa
| | - Lewis Tem Bueh
- Department of Computer Engineering, Faculty of Engineering and Technology, University of Buea, Buea, Cameroon
| | - Andy Asante
- Department of Immunology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Accra, Ghana
| | - Soham A. Shirolkar
- College of Engineering, University of South Florida, Florida, United States
| | - Maureen Kisaakye
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Hem Bondarwad
- Department of Biotechnology and Bioinformatics, Deogiri College, Dr. Babasaheb Ambedkar Marathwada University, Sambhajinagar, India
| | - Olaitan I. Awe
- African Society for Bioinformatics and Computational Biology, Cape Town, South Africa
| |
Collapse
|
2
|
Liu HY, Li Z, Reindl T, He Z, Qiu X, Golden RP, Donovan KA, Bailey A, Fischer ES, Zhang T, Gray NS, Yang PL. Broad-spectrum activity against mosquito-borne flaviviruses achieved by a targeted protein degradation mechanism. Nat Commun 2024; 15:5179. [PMID: 38898037 PMCID: PMC11187112 DOI: 10.1038/s41467-024-49161-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Viral genetic diversity presents significant challenges in developing antivirals with broad-spectrum activity and high barriers to resistance. Here we report development of proteolysis targeting chimeras (PROTACs) targeting the dengue virus envelope (E) protein through coupling of known E fusion inhibitors to ligands of the CRL4CRBN E3 ubiquitin ligase. The resulting small molecules block viral entry through inhibition of E-mediated membrane fusion and interfere with viral particle production by depleting intracellular E in infected Huh 7.5 cells. This activity is retained in the presence of point mutations previously shown to confer partial resistance to the parental inhibitors due to decreased inhibitor-binding. The E PROTACs also exhibit broadened spectrum of activity compared to the parental E inhibitors against a panel of mosquito-borne flaviviruses. These findings encourage further exploration of targeted protein degradation as a differentiated and potentially advantageous modality for development of broad-spectrum direct-acting antivirals.
Collapse
Affiliation(s)
- Han-Yuan Liu
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhengnian Li
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Theresia Reindl
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhixiang He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xueer Qiu
- Department of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan P Golden
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Adam Bailey
- Department of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Priscilla L Yang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
3
|
Tian C, Huang H, Zheng Y, He X, Yan L, Shi L, Yang T, Chen X, Yang J, Lu Z, Cao H, Zhao W, Qin Z, Yu J, Tang Q, Tong X, Liu J, Yu L. Identification of an effective fraction from Ampelopsis Radix with anti-dengue virus activities in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116339. [PMID: 36870463 DOI: 10.1016/j.jep.2023.116339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/25/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dengue virus (DENV) infection is a global public health issue without effective therapeutic interventions. Chinese medicine with heat-clearing and detoxifying properties has been frequently used in the treatment of viral infection. Ampelopsis Radix (AR) is a traditional Chinese medicine for clearing heat and detoxification that has been widely used in the prevention and treatment of infectious diseases. However, no studies on the effects of AR against viral infection have been reported, thus far. AIM OF THE STUDY To explore the anti-DENV activities of the fraction (AR-1) obtained from AR both in vitro and in vivo. MATERIALS AND METHODS The chemical composition of AR-1 was identified by liquid chromatography-tandem MS (LC‒MS/MS). The antiviral activities of AR-1 were studied in baby hamster kidney fibroblast BHK-21 cells, ICR suckling mice and induction of interferon α/β (IFN-α/β) and IFN-γ R-/- (AG129) mice. RESULTS Based on LC‒MS/MS analysis, 60 compounds (including flavonoids, phenols, anthraquinones, alkaloids and other types) were tentatively characterized from AR-1. AR-1 inhibited the cytopathic effect, the production of progeny virus and the synthesis of viral RNA and proteins by blocking DENV-2 binding to BHK-21 cells. Moreover, AR-1 significantly attenuated weight loss, decreased clinical scores and prolonged the survival of DENV-infected ICR suckling mice. Critically, the viral load in blood, brain and kidney tissues and the pathological changes in brain were remarkably alleviated after AR-1 treatment. Further study on AG129 mice showed that AR-1 obviously improved the clinical manifestations and survival rate, reduced viremia, attenuated gastric distension and relieved the pathological lesions caused by DENV. CONCLUSIONS In summary, this is the first report that AR-1 exhibits anti-DENV effects both in vitro and in vivo, which suggests that AR-1 may be developed as a therapeutic candidate against DENV infection.
Collapse
Affiliation(s)
- Chunyang Tian
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Hefei Huang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Yuanru Zheng
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Xuemei He
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Lijun Yan
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Lingzhu Shi
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Tangjia Yang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Xi Chen
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Jiabin Yang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Zibin Lu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Huihui Cao
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Zhiran Qin
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Jianhai Yu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Qingfa Tang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, PR China
| | - Xiankun Tong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Junshan Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, PR China; Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, PR China.
| | - Linzhong Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
4
|
Sengar A, Cervantes M, Bondalapati ST, Hess T, Kasson PM. Single-Virus Fusion Measurements Reveal Multiple Mechanistically Equivalent Pathways for SARS-CoV-2 Entry. J Virol 2023; 97:e0199222. [PMID: 37133381 PMCID: PMC10231210 DOI: 10.1128/jvi.01992-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to cell surface receptors and is activated for membrane fusion and cell entry via proteolytic cleavage. Phenomenological data have shown that SARS-CoV-2 can be activated for entry at either the cell surface or in endosomes, but the relative roles in different cell types and mechanisms of entry have been debated. Here, we used single-virus fusion experiments and exogenously controlled proteases to probe activation directly. We found that plasma membrane and an appropriate protease are sufficient to support SARS-CoV-2 pseudovirus fusion. Furthermore, fusion kinetics of SARS-CoV-2 pseudoviruses are indistinguishable no matter which of a broad range of proteases is used to activate the virus. This suggests that the fusion mechanism is insensitive to protease identity or even whether activation occurs before or after receptor binding. These data support a model for opportunistic fusion by SARS-CoV-2 in which the subcellular location of entry likely depends on the differential activity of airway, cellsurface, and endosomal proteases, but all support infection. Inhibition of any single host protease may thus reduce infection in some cells but may be less clinically robust. IMPORTANCE SARS-CoV-2 can use multiple pathways to infect cells, as demonstrated recently when new viral variants switched dominant infection pathways. Here, we used single-virus fusion experiments together with biochemical reconstitution to show that these multiple pathways coexist simultaneously and specifically that the virus can be activated by different proteases in different cellular compartments with mechanistically identical effects. The consequences of this are that the virus is evolutionarily plastic and that therapies targeting viral entry should address multiple pathways at once to achieve optimal clinical effects.
Collapse
Affiliation(s)
- Anjali Sengar
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Marcos Cervantes
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Sai T. Bondalapati
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Tobin Hess
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Peter M. Kasson
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Abstract
Viral fusion glycoproteins catalyze membrane fusion during viral entry. Unlike most enzymes, however, they lack a conventional active site in which formation or scission of a specific covalent bond is catalyzed. Instead, they drive the membrane fusion reaction by cojoining highly regulated changes in conformation to membrane deformation. Despite the challenges in applying inhibitor design approaches to these proteins, recent advances in knowledge of the structures and mechanisms of viral fusogens have enabled the development of small-molecule inhibitors of both class I and class II viral fusion proteins. Here, we review well-validated inhibitors, including their discovery, targets, and mechanism(s) of action, while highlighting mechanistic similarities and differences. Together, these examples make a compelling case for small-molecule inhibitors as tools for probing the mechanisms of viral glycoprotein-mediated fusion and for viral glycoproteins as druggable targets.
Collapse
Affiliation(s)
- Han-Yuan Liu
- Department of Microbiology and Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Current affiliation: Department of Microbiology and Immunology, Stanford University School of Medicine, Palo Alto, California 94305, USA;
| | - Priscilla L Yang
- Department of Microbiology and Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Current affiliation: Department of Microbiology and Immunology, Stanford University School of Medicine, Palo Alto, California 94305, USA;
| |
Collapse
|
6
|
Rissanen I, Stass R, Krumm SA, Seow J, Hulswit RJG, Paesen GC, Hepojoki J, Vapalahti O, Lundkvist Å, Reynard O, Volchkov V, Doores KJ, Huiskonen JT, Bowden TA. Molecular rationale for antibody-mediated targeting of the hantavirus fusion glycoprotein. eLife 2020; 9:e58242. [PMID: 33349334 PMCID: PMC7755396 DOI: 10.7554/elife.58242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/26/2020] [Indexed: 01/22/2023] Open
Abstract
The intricate lattice of Gn and Gc glycoprotein spike complexes on the hantavirus envelope facilitates host-cell entry and is the primary target of the neutralizing antibody-mediated immune response. Through study of a neutralizing monoclonal antibody termed mAb P-4G2, which neutralizes the zoonotic pathogen Puumala virus (PUUV), we provide a molecular-level basis for antibody-mediated targeting of the hantaviral glycoprotein lattice. Crystallographic analysis demonstrates that P-4G2 binds to a multi-domain site on PUUV Gc and may preclude fusogenic rearrangements of the glycoprotein that are required for host-cell entry. Furthermore, cryo-electron microscopy of PUUV-like particles in the presence of P-4G2 reveals a lattice-independent configuration of the Gc, demonstrating that P-4G2 perturbs the (Gn-Gc)4 lattice. This work provides a structure-based blueprint for rationalizing antibody-mediated targeting of hantaviruses.
Collapse
Affiliation(s)
- Ilona Rissanen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
- Helsinki Institute of Life Science HiLIFE, University of HelsinkiHelsinkiFinland
- Molecular and Integrative Biosciences Research Programme, The Faculty of Biological and Environmental Sciences, University of HelsinkiHelsinkiFinland
| | - Robert Stass
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Stefanie A Krumm
- Department of Infectious Diseases, King's College London, Guy's HospitalLondonUnited Kingdom
| | - Jeffrey Seow
- Department of Infectious Diseases, King's College London, Guy's HospitalLondonUnited Kingdom
| | - Ruben JG Hulswit
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Guido C Paesen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Jussi Hepojoki
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of ZürichZürichSwitzerland
- Department of Virology, Medicum, Faculty of Medicine, University of HelsinkiHelsinkiFinland
| | - Olli Vapalahti
- Departments of Virology and Veterinary Biosciences, University of Helsinki and HUSLAB, Helsinki University HospitalHelsinkiFinland
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala UniversityUppsalaSweden
| | - Olivier Reynard
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Université LyonLyonFrance
| | - Viktor Volchkov
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Université LyonLyonFrance
| | - Katie J Doores
- Department of Infectious Diseases, King's College London, Guy's HospitalLondonUnited Kingdom
| | - Juha T Huiskonen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
- Helsinki Institute of Life Science HiLIFE, University of HelsinkiHelsinkiFinland
- Molecular and Integrative Biosciences Research Programme, The Faculty of Biological and Environmental Sciences, University of HelsinkiHelsinkiFinland
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
7
|
Park A, Graceffa O, Rawle RJ. Kinetic Modeling of West Nile Virus Fusion Indicates an Off-Pathway State. ACS Infect Dis 2020; 6:3260-3268. [PMID: 33201665 DOI: 10.1021/acsinfecdis.0c00637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
West Nile virus (WNV) is a prominent mosquito-borne flavivirus that causes febrile illness in humans. To infect host cells, WNV virions first bind to plasma membrane receptors, then initiate membrane fusion following endocytosis. The viral transmembrane E protein, triggered by endosomal pH, catalyzes fusion while undergoing a dimer-to-trimer transition. Previously, single-particle WNV fusion data was interrogated with a stochastic cellular automaton simulation, which modeled the E proteins during the fusion process. The results supported a linear fusion mechanism, with E protein trimerization being rate-limiting. Here, we present corrections to the previous simulation, and apply them to the WNV fusion data. We observe that a linear mechanism is no longer sufficient to fit the data. Instead, an off-pathway state is necessary; these results are corroborated by per virus chemical kinetics modeling. When compared with a similar Zika virus fusion model, this suggests that off-pathway fusion mechanisms may characterize flaviviruses more broadly.
Collapse
Affiliation(s)
- Abraham Park
- Department of Chemistry, Williams College, Williamstown, Massachusetts 01267, United States
| | - Olivia Graceffa
- Department of Chemistry, Williams College, Williamstown, Massachusetts 01267, United States
| | - Robert J. Rawle
- Department of Chemistry, Williams College, Williamstown, Massachusetts 01267, United States
| |
Collapse
|
8
|
Kumar YN, Jeyakodi G, Kumar NP, Gunasekaran K, Jambulingam P. Molecular modelling analysis of T219A mutant envelope protein revealed novel virulence enhancing factors in Dengue virus isolated from Kerala state, India. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 195:105481. [PMID: 32497770 DOI: 10.1016/j.cmpb.2020.105481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/11/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Dengue virus (DENV) is an emerging health threat and its envelope glycoprotein E, is involved in the anchoring and fusion mechanisms. Anchoring followed by conformational changes of E-protein are responsible for the fusion and entry of DENV into host. The variation in the conformation of the E-protein due to mutations, results in its altered binding with antibodies (Abs) and also its receptors. This leads to failure of neutralization of DENV and enhance the infection. In our earlier studies we have identified T219A mutation in the E-protein of DENV and the present study is focused on the impact of this mutation on the conformation of E-protein and also its binding variation with Abs and Fc-γ receptor. A comparative molecular modelling studies of wild type and T219A mutant E-proteins revealed that, the mutation induced several conformational variations in the E-protein and resulted in the variable binding orientation with altered affinities. Further, the mutation was also observed to enhance the fusion mechanism by Fc-γ receptors that mediate the efficient entry of DENV into host cell through altered membrane fusion mechanism. Such conformational variations of E-protein could be the responsible factors for enhanced virulence of DENV infections.
Collapse
Affiliation(s)
- Y Nanda Kumar
- Biomedical Informatics Centre, Vector Control Research Center, Indian Council of Medical Research, Pondicherry, India, 605006; Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - G Jeyakodi
- Biomedical Informatics Centre, Vector Control Research Center, Indian Council of Medical Research, Pondicherry, India, 605006
| | - N Pradeep Kumar
- Biomedical Informatics Centre, Vector Control Research Center, Indian Council of Medical Research, Pondicherry, India, 605006
| | - K Gunasekaran
- Biomedical Informatics Centre, Vector Control Research Center, Indian Council of Medical Research, Pondicherry, India, 605006
| | - P Jambulingam
- Biomedical Informatics Centre, Vector Control Research Center, Indian Council of Medical Research, Pondicherry, India, 605006
| |
Collapse
|
9
|
Shanmugam A, Ramakrishnan C, Velmurugan D, Gromiha MM. Identification of Potential Inhibitors for Targets Involved in Dengue Fever. Curr Top Med Chem 2020; 20:1742-1760. [PMID: 32552652 DOI: 10.2174/1568026620666200618123026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/05/2019] [Accepted: 01/10/2020] [Indexed: 01/16/2023]
Abstract
Lethality due to dengue infection is a global threat. Nearly 400 million people are affected every year, which approximately costs 500 million dollars for surveillance and vector control itself. Many investigations on the structure-function relationship of proteins expressed by the dengue virus are being made for more than a decade and had come up with many reports on small molecule drug discovery. In this review, we present a detailed note on viral proteins and their functions as well as the inhibitors discovered/designed so far using experimental and computational methods. Further, the phytoconstituents from medicinal plants, specifically the extract of the papaya leaves, neem and bael, which combat dengue infection via dengue protease, helicase, methyl transferase and polymerase are summarized.
Collapse
Affiliation(s)
- Anusuya Shanmugam
- Department of Pharmaceutical Engineering, Vinayaka Mission's Kirupananda Variyar Engineering College, Vinayaka Mission's Research Foundation (Deemed to be University), Salem - 636308, India
| | - Chandrasekaran Ramakrishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai - 600036, India
| | - Devadasan Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai - 600025, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai - 600036, India
| |
Collapse
|
10
|
Lin HH, Huang LM, Wu SC. A quantitative luciferase-based cell-cell fusion assay to measure four-serotype dengue virus E protein-triggered membrane fusion. Hum Vaccin Immunother 2020; 16:2176-2182. [PMID: 32530355 PMCID: PMC7553686 DOI: 10.1080/21645515.2020.1748989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The class II membrane fusion induced by flavivirus E proteins is a unique pH-dependent membrane fusion process differently from the class I or III membrane fusion by other enveloped virus proteins. The fusion peptide on the DII of the flavivirus E proteins can insert into the cell membrane as a cell entry process besides the receptor bindings. A traditional assay using C6/36 mosquito cells infected by dengue viruses has been previously reported but did not provide efficient quantitation to measure the virus-triggered membrane fusion. Here we reported the development of a quantitative cell fusion assay for four serotypes of dengue viruses and the recently emerged Zika viruses. We used a pCI-neo vector encoding the prME genes of dengue and Zika viruses and investigated the cell fusion in transfected 293, Vero and CHO cells. Donor cells were co-transfection of the prME genes of dengue and Zika prME gene and T7 RNA polymerase to react with the indicator cells transfected with the luciferase gene under the control of the T7 promoter. Quantification of the virus-induced cell fusion was determined by the luciferase expression levels under a switch of pH from 7.4 to 5.4 in the co-cultured donor and indicator cells. The quantitative luciferase-based assay was applied to measure the anti-fusion activity by two monoclonal antibodies mAb 4G2 and mAb DB42 against dengue virus infections. This assay could quality as a quantitative bioassay for testing the potency of anti-fusion monoclonal antibodies.
Collapse
Affiliation(s)
- Hsiao-Han Lin
- Institute of Biotechnology, National Tsing Hua University , Hsinchu, Taiwan
| | - Li-Min Huang
- Department of Pediatrics, National Taiwan University Children's Hospital , Taipei, Taiwan
| | - Suh-Chin Wu
- Institute of Biotechnology, National Tsing Hua University , Hsinchu, Taiwan.,Department of Medical Science, National Tsing Hua University , Hsinchu, Taiwan
| |
Collapse
|
11
|
Delaveris CS, Webster ER, Banik SM, Boxer SG, Bertozzi CR. Membrane-tethered mucin-like polypeptides sterically inhibit binding and slow fusion kinetics of influenza A virus. Proc Natl Acad Sci U S A 2020; 117:12643-12650. [PMID: 32457151 PMCID: PMC7293601 DOI: 10.1073/pnas.1921962117] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The mechanism(s) by which cell-tethered mucins modulate infection by influenza A viruses (IAVs) remain an open question. Mucins form both a protective barrier that can block virus binding and recruit IAVs to bind cells via the sialic acids of cell-tethered mucins. To elucidate the molecular role of mucins in flu pathogenesis, we constructed a synthetic glycocalyx to investigate membrane-tethered mucins in the context of IAV binding and fusion. We designed and synthesized lipid-tethered glycopolypeptide mimics of mucins and added them to lipid bilayers, allowing chemical control of length, glycosylation, and surface density of a model glycocalyx. We observed that the mucin mimics undergo a conformational change at high surface densities from a compact to an extended architecture. At high surface densities, asialo mucin mimics inhibited IAV binding to underlying glycolipid receptors, and this density correlated to the mucin mimic's conformational transition. Using a single virus fusion assay, we observed that while fusion of virions bound to vesicles coated with sialylated mucin mimics was possible, the kinetics of fusion was slowed in a mucin density-dependent manner. These data provide a molecular model for a protective mechanism by mucins in IAV infection, and therefore this synthetic glycocalyx provides a useful reductionist model for studying the complex interface of host-pathogen interactions.
Collapse
Affiliation(s)
| | | | - Steven M Banik
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, CA 94305;
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA 94305;
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| |
Collapse
|
12
|
Pierson TC, Diamond MS. The continued threat of emerging flaviviruses. Nat Microbiol 2020; 5:796-812. [PMID: 32367055 DOI: 10.1038/s41564-020-0714-0] [Citation(s) in RCA: 575] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
Abstract
Flaviviruses are vector-borne RNA viruses that can emerge unexpectedly in human populations and cause a spectrum of potentially severe diseases including hepatitis, vascular shock syndrome, encephalitis, acute flaccid paralysis, congenital abnormalities and fetal death. This epidemiological pattern has occurred numerous times during the last 70 years, including epidemics of dengue virus and West Nile virus, and the most recent explosive epidemic of Zika virus in the Americas. Flaviviruses are now globally distributed and infect up to 400 million people annually. Of significant concern, outbreaks of other less well-characterized flaviviruses have been reported in humans and animals in different regions of the world. The potential for these viruses to sustain epidemic transmission among humans is poorly understood. In this Review, we discuss the basic biology of flaviviruses, their infectious cycles, the diseases they cause and underlying host immune responses to infection. We describe flaviviruses that represent an established ongoing threat to global health and those that have recently emerged in new populations to cause significant disease. We also provide examples of lesser-known flaviviruses that circulate in restricted areas of the world but have the potential to emerge more broadly in human populations. Finally, we discuss how an understanding of the epidemiology, biology, structure and immunity of flaviviruses can inform the rapid development of countermeasures to treat or prevent human infections as they emerge.
Collapse
Affiliation(s)
- Theodore C Pierson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD, USA.
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
13
|
Target Identification Using Homopharma and Network-Based Methods for Predicting Compounds Against Dengue Virus-Infected Cells. Molecules 2020; 25:molecules25081883. [PMID: 32325755 PMCID: PMC7221756 DOI: 10.3390/molecules25081883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/28/2022] Open
Abstract
Drug target prediction is an important method for drug discovery and design, can disclose the potential inhibitory effect of active compounds, and is particularly relevant to many diseases that have the potential to kill, such as dengue, but lack any healing agent. An antiviral drug is urgently required for dengue treatment. Some potential antiviral agents are still in the process of drug discovery, but the development of more effective active molecules is in critical demand. Herein, we aimed to provide an efficient technique for target prediction using homopharma and network-based methods, which is reliable and expeditious to hunt for the possible human targets of three phenolic lipids (anarcardic acid, cardol, and cardanol) related to dengue viral (DENV) infection as a case study. Using several databases, the similarity search and network-based analyses were applied on the three phenolic lipids resulting in the identification of seven possible targets as follows. Based on protein annotation, three phenolic lipids may interrupt or disturb the human proteins, namely KAT5, GAPDH, ACTB, and HSP90AA1, whose biological functions have been previously reported to be involved with viruses in the family Flaviviridae. In addition, these phenolic lipids might inhibit the mechanism of the viral proteins: NS3, NS5, and E proteins. The DENV and human proteins obtained from this study could be potential targets for further molecular optimization on compounds with a phenolic lipid core structure in anti-dengue drug discovery. As such, this pipeline could be a valuable tool to identify possible targets of active compounds.
Collapse
|
14
|
Faheem M, Barbosa Lima JC, Jamal SB, Silva PA, Barbosa JARG. An insight into dengue virus proteins as potential drug/vaccine targets. Future Virol 2019. [DOI: 10.2217/fvl-2019-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dengue virus (DENV) is an arbovirus that belongs to family flaviviridae. Its genome is composed of a single stranded RNA molecule that encodes a single polyprotein. The polyprotein is processed by viral and cellular proteases to generate ten viral proteins. There are four antigenically distinct serotypes of DENV (DENV1, DENV2, DENV3 and DENV4), which are genetically related. Although protein variability is a major problem in dengue treatment, the functional and structural studies of individual proteins are equally important in treatment development. The data accumulated on dengue proteins are significant to provide detailed understanding of viral infection, replication, host-immune evasion and pathogenesis. In this review, we summarized the detailed current knowledge about DENV proteins.
Collapse
Affiliation(s)
- Muhammad Faheem
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| | - Jônatas Cunha Barbosa Lima
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, The Mall road, Rawalpindi, Punjab 46000, Pakistan
| | - Paula Andreia Silva
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| | - João Alexandre Ribeiro Gonçalves Barbosa
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| |
Collapse
|
15
|
Abstract
The process of entry into a host cell is a key step in the life cycle of most viruses. In recent years, there has been a significant increase in our understanding of the routes and mechanisms of entry for a number of these viruses. This has led to the development of novel broad-spectrum antiviral approaches that target host cell proteins and pathways, in addition to strategies focused on individual viruses or virus families. Here we consider a number of these approaches and their broad-spectrum potential.
Collapse
Affiliation(s)
- Michela Mazzon
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
16
|
Azevedo BP, Farias PCS, Pastor AF, Davi CCM, Neco HVPDC, Lima RED, Acioli-Santos B. AAIDO1Variant Genotype (G2431A, rs3739319) Is Associated with Severe Dengue Risk Development in a DEN-3 Brazilian Cohort. Viral Immunol 2019; 32:296-301. [DOI: 10.1089/vim.2018.0149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
| | - Pablo Cantalice S. Farias
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ). Recife/PE, Brazil
| | - André Filipe Pastor
- Institute of Education, Science, and Technology of Sertão Pernambucano (IFSertão-PE), Floresta, Pernambuco, Brazil
| | | | | | - Raul Emídio de Lima
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ). Recife/PE, Brazil
| | - Bartolomeu Acioli-Santos
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ). Recife/PE, Brazil
| |
Collapse
|