1
|
Wu T, Dong Q, Tang X, Zhu X, Deng D, Ding Y, Ahmad S, Zhang W, Mao Z, Zhao X, Ge L. CYP303A1 regulates molting and metamorphosis through 20E signaling in Nilaparvata lugens Stål (Hemiptera: Delphacidae). Int J Biol Macromol 2024; 281:136234. [PMID: 39366602 DOI: 10.1016/j.ijbiomac.2024.136234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Cytochrome P450s play a crucial role in the breakdown of external substances and perform important activities in the hormone system of insects. It has been understood that P450s were essential in the metabolism of ecdysteroids. CYP303A1 is a highly conserved CYP in most insects, but its specific physiological functions remain poorly understood in Nilaparvata lugens Stål. In this study, NlCYP303A1 was identified and highly expressed in the pre-molt stages, predominantly in the cuticle-producing tissues. Silencing of NlCYP303A1 caused a lethal phenotype with a molting defect. Moreover, the 20E titers, the expression levels of Halloween genes, and critical genes associated with the 20E signaling pathway in N. lugens nymphs were significantly decreased with the silencing NlCYP303A1. We further performed additional backfilling of 20E to rescue the RNAi effects on NlCYP303A1. The gene expression levels that were previously reduced caused by silencing NlCYP303A1 were significantly elevated. However, the molting defects of nymphs were not effectively improved. The results demonstrated NlCYP303A1 plays a crucial role in the molting and metamorphosis of N. lugens by regulating the 20E signaling pathway and cuticular formation, enhances the understanding of the functional role of CYP 2 clans, and identifies candidate gene for RNAi-based control of N. lugens.
Collapse
Affiliation(s)
- Tao Wu
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; College of Horticulture and Landscape Architecture, Yangzhou University, 225009 Yangzhou, Jiangsu Province, PR China
| | - Qiaoqiao Dong
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Xingyu Tang
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Xuhui Zhu
- College of Horticulture and Landscape Architecture, Yangzhou University, 225009 Yangzhou, Jiangsu Province, PR China
| | - Di Deng
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Yuting Ding
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Sheraz Ahmad
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Wen Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Ziyue Mao
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Xudong Zhao
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China.
| | - Linquan Ge
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China.
| |
Collapse
|
2
|
Popecki MS, Rogers RL, Archer-Hartmann SA, Wares JP, Stanger-Hall KF. The role of pigments in light color variation of the firefly Photinus pyralis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614534. [PMID: 39386434 PMCID: PMC11463521 DOI: 10.1101/2024.09.23.614534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Fireflies use bioluminescent signals to communicate with their mates. Luciferase has been thought to be the sole contributor to light color; however, populations of the Photinus pyralis firefly display variation in the color of their emitted signals yet have identical luciferase sequences. Here, we examined whether pigments could be present in the light organs of the twilight-active species P. pyralis and contribute to this variation. We detected patterns of expression that suggest ommochrome and pterin screening pigments are expressed in P. pyralis light organs and could filter light emitted by luciferase and play a role in signal tuning. There were no significant differences between the pigment gene expression of P. pyralis individuals with yellower and greener signals. Our study provides alternative mechanisms that could influence pigments in P. pyralis light organs that could also play a role in modifying signal color.
Collapse
|
3
|
Koken M, Gastineau R. Genomics investigation of the potentially invasive firefly Photinus signaticollis Blanchard 1845: Complete mitochondrial genome, multigene phylogenies and obtention of the luciferase and luciferin-regenerating genes. ARTHROPOD STRUCTURE & DEVELOPMENT 2024; 82:101384. [PMID: 39288692 DOI: 10.1016/j.asd.2024.101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
A genomic investigation of the potentially invasive firefly Photinus signaticollis Blanchard1845 has been performed and led to the obtention of its complete 16,411 bp long mitochondrial genome. The mitogenome encodes 13 protein-coding genes, 22 tRNA genes and 2 rRNA genes. With other species of the Photinus complex it shares several premature terminations of some protein-coding genes and also an overlap between cox1 and tRNA-Tyr. By data-mining, the complete luciferase and luciferin-regenerating genes were also identified from the contigs file and compared with existing data, in addition to WG and CAD, two genes used in pioneering phylogenetic studies on fireflies. Three maximum likelihood phylogenies were derived from all these data. The multigene phylogeny based on all mitochondrial protein-coding genes strongly associates P. signaticollis with Photinus pyralis Linnaeus, 1758 and the lantern-less daily "winter firefly", Photinus corruscus Linnaeus, 1767. A second phylogeny based on concatenated sequences of the cox1, WG and CAD genes positions P. signaticollis as a sister clade to a large cluster of species containing the 7 sub-groups previously evidenced among the North American species of the Photinus complex. A third phylogeny based on the amino-acid sequence of the luciferase protein associates P. signaticollis to Photinus scintillans. The analysis presented here will most certainly help to come to a better understanding of the very complex inter-relationships in the very large Photinus genus.
Collapse
Affiliation(s)
- Marcel Koken
- LABOCEA R&D - CNRS, 120 Avenue Alexis de Rochon, 29280, Plouzané, France.
| | - Romain Gastineau
- Institute of Marine and Environmental Sciences, University of Szczecin, Szczecin, Poland.
| |
Collapse
|
4
|
Li X, Mank JE, Ban L. The grasshopper genome reveals long-term gene content conservation of the X Chromosome and temporal variation in X Chromosome evolution. Genome Res 2024; 34:997-1007. [PMID: 39103228 PMCID: PMC11368200 DOI: 10.1101/gr.278794.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/02/2024] [Indexed: 08/07/2024]
Abstract
We present the first chromosome-level genome assembly of the grasshopper, Locusta migratoria, one of the largest insect genomes. We use coverage differences between females (XX) and males (X0) to identify the X Chromosome gene content, and find that the X Chromosome shows both complete dosage compensation in somatic tissues and an underrepresentation of testis-expressed genes. X-linked gene content from L. migratoria is highly conserved across seven insect orders, namely Orthoptera, Odonata, Phasmatodea, Hemiptera, Neuroptera, Coleoptera, and Diptera, and the 800 Mb grasshopper X Chromosome is homologous to the fly ancestral X Chromosome despite 400 million years of divergence, suggesting either repeated origin of sex chromosomes with highly similar gene content, or long-term conservation of the X Chromosome. We use this broad conservation of the X Chromosome to test for temporal dynamics to Fast-X evolution, and find evidence of a recent burst evolution for new X-linked genes in contrast to slow evolution of X-conserved genes.
Collapse
Affiliation(s)
- Xinghua Li
- Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Liping Ban
- Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
5
|
Catalán A, Gygax D, Rodríguez-Montes L, Hinzke T, Hoff KJ, Duchen P. Two novel genomes of fireflies with different degrees of sexual dimorphism reveal insights into sex-biased gene expression and dosage compensation. Commun Biol 2024; 7:906. [PMID: 39068254 PMCID: PMC11283472 DOI: 10.1038/s42003-024-06550-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Sexual dimorphism arises because of divergent fitness optima between the sexes. Phenotypic divergence between sexes can range from mild to extreme. Fireflies, bioluminescent beetles, present various degrees of sexual dimorphism, with species showing very mild sexual dimorphism to species presenting female-specific neoteny, posing a unique framework to investigate the evolution of sexually dimorphic traits across species. In this work, we present novel assembled genomes of two firefly species, Lamprohiza splendidula and Luciola italica, species with different degrees of sexual dimorphism. We uncover high synteny conservation of the X-chromosome across ~ 180 Mya and find full X-chromosome dosage compensation in our two fireflies, hinting at common mechanism upregulating the single male X-chromosome. Different degrees of sex-biased expressed genes were found across two body parts showing different proportions of expression conservation between species. Interestingly, we do not find X-chromosome enrichment of sex-biased genes, but retrieve autosomal enrichment of sex-biased genes. We further uncover higher nucleotide diversity in the intronic regions of sex-biased genes, hinting at a maintenance of heterozygosity through sexual selection. We identify different levels of sex-biased gene expression divergence including a set of genes showing conserved sex-biased gene expression between species. Divergent and conserved sex-biased genes are good candidates to test their role in the maintenance of sexually dimorphic traits.
Collapse
Affiliation(s)
- Ana Catalán
- Ludwig-Maximilians-Universität Munich, Division of Evolutionary Biology, Großhaderner Straße 2, Planegg-Martinsried, Bavaria, 82152, Germany.
| | - Daniel Gygax
- Ludwig-Maximilians-Universität Munich, Division of Evolutionary Biology, Großhaderner Straße 2, Planegg-Martinsried, Bavaria, 82152, Germany
- Helmholtz Center Munich, Helmholtz Pioneer Campus, Ingolstädter Landstraße 1, Munich, Oberschleißheim, 85764, Germany
| | - Leticia Rodríguez-Montes
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120, Heidelberg, Germany
| | - Tjorven Hinzke
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
- Department of Pathogen Evolution, Helmholtz Institute for One Health, Greifswald, Germany
| | - Katharina J Hoff
- University of Greifswald, Institute for Mathematics and Computer Science, Walther-Rathenau-Str. 47, 17489, Greifswald, Germany
| | - Pablo Duchen
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany
| |
Collapse
|
6
|
Zhu C, Lu X, Cai T, Zhu K, Shi L, Chen Y, Wang T, Yang Y, Tu D, Fu Q, Huang J, Zhen Y. Firefly toxin lucibufagins evolved after the origin of bioluminescence. PNAS NEXUS 2024; 3:pgae215. [PMID: 38919269 PMCID: PMC11197309 DOI: 10.1093/pnasnexus/pgae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Fireflies were believed to originally evolve their novel bioluminescence as warning signals to advertise their toxicity to predators, which was later adopted in adult mating. Although the evolution of bioluminescence has been investigated extensively, the warning signal hypothesis of its origin has not been tested. In this study, we test this hypothesis by systematically determining the presence or absence of firefly toxin lucibufagins (LBGs) across firefly species and inferring the time of origin of LBGs. We confirm the presence of LBGs in the subfamily Lampyrinae, but more importantly, we reveal the absence of LBGs in other lineages, including the subfamilies of Luciolinae, Ototretinae, and Psilocladinae, two incertae sedis lineages, and the Rhagophthalmidae family. Ancestral state reconstructions for LBGs based on firefly phylogeny constructed using genomic data suggest that the presence of LBGs in the common ancestor of the Lampyrinae subfamily is highly supported but unsupported in more ancient nodes, including firefly common ancestors. Our results suggest that firefly LBGs probably evolved much later than the evolution of bioluminescence. We thus conclude that firefly bioluminescence did not originally evolve as direct warning signals for toxic LBGs and advise that future studies should focus on other hypotheses. Moreover, LBG toxins are known to directly target and inhibit the α subunit of Na+, K+-ATPase (ATPα). We further examine the effects of amino acid substitutions in firefly ATPα on its interactions with LBGs. We find that ATPα in LBG-containing fireflies is relatively insensitive to LBGs, which suggests that target-site insensitivity contributes to LBG-containing fireflies' ability to deal with their own toxins.
Collapse
Affiliation(s)
- Chengqi Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Xiaoli Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Tianlong Cai
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Kangli Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Lina Shi
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yinjuan Chen
- Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Tianyu Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yaoming Yang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Dandan Tu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Qi Fu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Jing Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Ying Zhen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
7
|
DeLeo DM, Bessho-Uehara M, Haddock SH, McFadden CS, Quattrini AM. Evolution of bioluminescence in Anthozoa with emphasis on Octocorallia. Proc Biol Sci 2024; 291:20232626. [PMID: 38654652 PMCID: PMC11040251 DOI: 10.1098/rspb.2023.2626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024] Open
Abstract
Bioluminescence is a widespread phenomenon that has evolved multiple times across the tree of life, converging among diverse fauna and habitat types. The ubiquity of bioluminescence, particularly in marine environments where it is commonly used for communication and defense, highlights the adaptive value of this trait, though the evolutionary origins and timing of emergence remain elusive for a majority of luminous organisms. Anthozoan cnidarians are a diverse group of animals with numerous bioluminescent species found throughout the world's oceans, from shallow waters to the light-limited deep sea where bioluminescence is particularly prominent. This study documents the presence of bioluminescent Anthozoa across depth and explores the diversity and evolutionary origins of bioluminescence among Octocorallia-a major anthozoan group of marine luminous organisms. Using a phylogenomic approach and ancestral state reconstruction, we provide evidence for a single origin of bioluminescence in Octocorallia and infer the age of occurrence to around the Cambrian era, approximately 540 Ma-setting a new record for the earliest timing of emergence of bioluminescence in the marine environment. Our results further suggest this trait was largely maintained in descendants of a deep-water ancestor and bioluminescent capabilities may have facilitated anthozoan diversification in the deep sea.
Collapse
Affiliation(s)
- Danielle M. DeLeo
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, USA
| | - Manabu Bessho-Uehara
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Steven H.D. Haddock
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
- Dept of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | | | - Andrea M. Quattrini
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
8
|
Zou M, Lin A, Wang Y, Yang D, Liu X. The chromosome-level genome assembly of the giant dobsonfly Acanthacorydalis orientalis (McLachlan, 1899). Sci Data 2024; 11:351. [PMID: 38589366 PMCID: PMC11001986 DOI: 10.1038/s41597-024-03194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
Acanthacorydalis orientalis (McLachlan, 1899) (Megaloptera: Corydalidae) is an important freshwater-benthic invertebrate species that serves as an indicator for water-quality biomonitoring and is valuable for conservation from East Asia. Here, a high-quality reference genome for A. orientalis was constructed using Oxford Nanopore sequencing and High throughput Chromosome Conformation Capture (Hi-C) technology. The final genome size is 547.98 Mb, with the N50 values of contig and scaffold being 7.77 Mb and 50.53 Mb, respectively. The longest contig and scaffold are 20.57 Mb and 62.26 Mb in length, respectively. There are 99.75% contigs anchored onto 13 pseudo-chromosomes. Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis showed that the completeness of the genome assembly is 99.01%. There are 10,977 protein-coding genes identified, of which 84.00% are functionally annotated. The genome contains 44.86% repeat sequences. This high-quality genome provides substantial data for future studies on population genetics, aquatic adaptation, and evolution of Megaloptera and other related insect groups.
Collapse
Affiliation(s)
- Mingming Zou
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Aili Lin
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Yuyu Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China.
| | - Ding Yang
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Xingyue Liu
- Department of Entomology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Fukuta K, Kato DI, Maeda J, Tsuruta A, Suzuki H, Nagano Y, Tsukamoto H, Niwa K, Terauchi M, Toyoda A, Fujiyama A, Noguchi H. Genome assembly of Genji firefly (Nipponoluciola cruciata) reveals novel luciferase-like luminescent proteins without peroxisome targeting signal. DNA Res 2024; 31:dsae006. [PMID: 38494174 PMCID: PMC11090084 DOI: 10.1093/dnares/dsae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 01/12/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
The Genji firefly, Nipponoluciola cruciata, is an aquatic firefly endemic to Japan, inhabiting a wide area of the Japanese archipelago. The luminescence of fireflies is a scientifically interesting phenomenon, and many studies have evaluated this species in Japan. In this study, we sequenced the whole genome of male N. cruciata and constructed a high-quality genome assembly of 662 Mb with a BUSCO completeness of 99.1% in the genome mode. Using the detected set of 15,169 protein-coding genes, the genomic structures and genetic background of luminescence-related genes were also investigated. We found four new firefly luciferase-like genes in the genome. The highest bioluminescent activity was observed for LLa2, which originated from ancestral PDGY, a mitochondrial acyl-CoA synthetase. A thioesterase candidate, NcruACOT1, which is involved in d-luciferin biosynthesis, was expressed in the lantern. Two opsins were also detected and the absorption wavelength of the UV-type opsin candidate shifted from UV to blue. These findings provide an important resource for unravelling the adaptive evolution of fireflies in terms of luminescence and vision.
Collapse
Affiliation(s)
- Kentaro Fukuta
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
- Data Analysis Division, Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Dai-ichiro Kato
- Department of Science, Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
| | - Juri Maeda
- Department of Science, Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
| | - Atsuhiro Tsuruta
- Department of Science, Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
| | | | - Yukio Nagano
- Analytical Research Center for Experimental Sciences, Saga University, Saga 840-8502, Japan
| | - Hisao Tsukamoto
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Kazuki Niwa
- Advanced Quantum Measurement Group, Research Institute for Physical Measurement, National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8563, Japan
| | - Makoto Terauchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
- Data Analysis Division, Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Sequencing Division, Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Asao Fujiyama
- Data Analysis Division, Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Comparative Genomics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
- Data Analysis Division, Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
10
|
Xing L, Liu B, Yu D, Tang X, Sun J, Zhang B. A near-complete genome assembly of Monochamus alternatus a major vector beetle of pinewood nematode. Sci Data 2024; 11:312. [PMID: 38531927 DOI: 10.1038/s41597-024-03150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
The Japanese sawyer beetle, Monochamus alternatus, is not only one of the most important wood boring pest itself, but also a major vector of the invasive pinewood nematode (PWN), which is the causal agent of the devastative pine wilt disease (PWD) and threats the global pine forest. Here, we present a near-complete genome of M. alternatus at the chromosome level. The assembled genome was 792.05 Mb with contig N50 length of 55.99 Mb, which is the largest N50 size among the sequenced Coleoptera insects currently. 99.57% of sequence was anchored onto ten pseudochromosomes (one X-chromosome and nine autosomes), and the final genome harbored only 13 gaps. BUSCO evaluation revealed the presence of 99.0% of complete core genes. Thus, our genome assembly represented the highest-contiguity genome assembly as well as high completeness in insects so far. We identified 20,471 protein-coding genes, of which 20,070 (98.04%) were functionally annotated. The genome assembly of M. alternatus provides a valuable resource for exploring the evolution of the symbiosis between PWN and the vector insects.
Collapse
Affiliation(s)
- Longsheng Xing
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Bo Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Dunyang Yu
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Xuan Tang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Jianghua Sun
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Bin Zhang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| |
Collapse
|
11
|
Fu X, Zhu X. Key homeobox transcription factors regulate the development of the firefly's adult light organ and bioluminescence. Nat Commun 2024; 15:1736. [PMID: 38443352 PMCID: PMC10914744 DOI: 10.1038/s41467-024-45559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024] Open
Abstract
Adult fireflies exhibit unique flashing courtship signals, emitted by specialized light organs, which develop mostly independently from larval light organs during the pupal stage. The mechanisms of adult light organ development have not been thoroughly studied until now. Here we show that key homeobox transcription factors AlABD-B and AlUNC-4 regulate the development of adult light organs and bioluminescence in the firefly Aquatica leii. Interference with the expression of AlAbd-B and AlUnc-4 genes results in undeveloped or non-luminescent adult light organs. AlABD-B regulates AlUnc-4, and they interact with each other. AlABD-B and AlUNC-4 activate the expression of the luciferase gene AlLuc1 and some peroxins. Four peroxins are involved in the import of AlLUC1 into peroxisomes. Our study provides key insights into the development of adult light organs and flash signal control in fireflies.
Collapse
Affiliation(s)
- Xinhua Fu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xinlei Zhu
- Firefly Conservation Research Centre, Wuhan, 430070, China
| |
Collapse
|
12
|
Davidson PL, Moczek AP. Genome evolution and divergence in cis-regulatory architecture is associated with condition-responsive development in horned dung beetles. PLoS Genet 2024; 20:e1011165. [PMID: 38442113 PMCID: PMC10942260 DOI: 10.1371/journal.pgen.1011165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/15/2024] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
Phenotypic plasticity is thought to be an important driver of diversification and adaptation to environmental variation, yet the genomic mechanisms mediating plastic trait development and evolution remain poorly understood. The Scarabaeinae, or true dung beetles, are a species-rich clade of insects recognized for their highly diversified nutrition-responsive development including that of cephalic horns-evolutionarily novel, secondary sexual weapons that exhibit remarkable intra- and interspecific variation. Here, we investigate the evolutionary basis for horns as well as other key dung beetle traits via comparative genomic and developmental assays. We begin by presenting chromosome-level genome assemblies of three dung beetle species in the tribe Onthophagini (> 2500 extant species) including Onthophagus taurus, O. sagittarius, and Digitonthophagus gazella. Comparing these assemblies to those of seven other species across the order Coleoptera identifies evolutionary changes in coding sequence associated with metabolic regulation of plasticity and metamorphosis. We then contrast chromatin accessibility in developing head horn tissues of high- and low-nutrition O. taurus males and females and identify distinct cis-regulatory architectures underlying nutrition- compared to sex-responsive development, including a large proportion of recently evolved regulatory elements sensitive to horn morph determination. Binding motifs of known and new candidate transcription factors are enriched in these nutrition-responsive open chromatin regions. Our work highlights the importance of chromatin state regulation in mediating the development and evolution of plastic traits, demonstrates gene networks are highly evolvable transducers of environmental and genetic signals, and provides new reference-quality genomes for three species that will bolster future developmental, ecological, and evolutionary studies of this insect group.
Collapse
Affiliation(s)
- Phillip L. Davidson
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Armin P. Moczek
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
13
|
Dunuweera AN, Dunuweera SP, Ranganathan K. A Comprehensive Exploration of Bioluminescence Systems, Mechanisms, and Advanced Assays for Versatile Applications. Biochem Res Int 2024; 2024:8273237. [PMID: 38347947 PMCID: PMC10861286 DOI: 10.1155/2024/8273237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 01/21/2024] [Indexed: 02/15/2024] Open
Abstract
Bioluminescence has been a fascinating natural phenomenon of light emission from living creatures. It happens when the enzyme luciferase facilitates the oxidation of luciferin, resulting in the creation of an excited-state species that emits light. Although there are many bioluminescent systems, few have been identified. D-luciferin-dependent systems, coelenterazine-dependent systems, Cypridina luciferin-based systems, tetrapyrrole-based luciferins, bacterial bioluminescent systems, and fungal bioluminescent systems are natural bioluminescent systems. Since different bioluminescence systems, such as various combinations of luciferin-luciferase pair reactions, have different light emission wavelengths, they benefit industrial applications such as drug discovery, protein-protein interactions, in vivo imaging in small animals, and controlling neurons. Due to the expression of luciferase and easy permeation of luciferin into most cells and tissues, bioluminescence assays are applied nowadays with modern technologies in most cell and tissue types. It is a versatile technique in a variety of biomedical research. Furthermore, there are some investigated blue-sky research projects, such as bioluminescent plants and lamps. This review article is mainly based on the theory of diverse bioluminescence systems and their past, present, and future applications.
Collapse
Affiliation(s)
| | | | - K. Ranganathan
- Department of Botany, University of Jaffna, Jaffna 40000, Sri Lanka
| |
Collapse
|
14
|
Fu X, Meyer-Rochow VB, Ballantyne L, Zhu X. An Improved Chromosome-Level Genome Assembly of the Firefly Pyrocoelia pectoralis. INSECTS 2024; 15:43. [PMID: 38249049 PMCID: PMC10816139 DOI: 10.3390/insects15010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
The endemic and endangered Chinese firefly Pyrocoelia pectoralis is a sexually dimorphic, nocturnal species. A previous attempt by this team to assemble a draft genome of P. pectoralis using PacBio and Illumina HiSeq X Ten platforms was limited in its usefulness by high redundancy and contamination. This prompted us to conduct an improved chromosome-level genome assembly of P. pectoralis. Ten chromosomes were further assembled based on Hi-C data to a 532.25 Mb final size with a 52.87 Mb scaffold N50. The total repeat lengths in the genome of P. pectoralis amount to 227.69 Mb; 42.78%. In total, 12,789 genes could be functionally annotated using at least one public database. Phylogenetic inference indicated that P. pectoralis and P. pyralis diverged ~51.41 million years ago. Gene family expansion and contraction analysis of 12 species were performed, and 546 expanded and 2660 contracted gene families were identified in P. pectoralis. We generated a high-quality draft of the P. pectoralis genome. This genome assembly should help promote research on the species' sexual dimorphism and its unique courtship behavior, which involves a combination of pheromonal and bioluminescent signals. It also can serve as a resource for accelerating genome-assisted improvements in the conservation of this species.
Collapse
Affiliation(s)
- Xinhua Fu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Firefly Conservation Research Centre, Wuhan 430070, China;
| | - Victor Benno Meyer-Rochow
- Department of Ecology and Genetics, Oulu University, SF-90140 Oulu, Finland;
- Agricultural Science and Technology Research Institute, Andong National University, Andong 36729, Republic of Korea
| | - Lesley Ballantyne
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, P.O. Box 588, Wagga Wagga 2678, Australia;
| | - Xinlei Zhu
- Firefly Conservation Research Centre, Wuhan 430070, China;
| |
Collapse
|
15
|
He J, Li J, Zhang R, Dong Z, Liu G, Chang Z, Bi W, Ruan Y, Yang Y, Liu H, Qiu L, Zhao R, Wan W, Li Z, Chen L, Li Y, Li X. Multiple Origins of Bioluminescence in Beetles and Evolution of Luciferase Function. Mol Biol Evol 2024; 41:msad287. [PMID: 38174583 PMCID: PMC10798137 DOI: 10.1093/molbev/msad287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Bioluminescence in beetles has long fascinated biologists, with diverse applications in biotechnology. To date, however, our understanding of its evolutionary origin and functional variation mechanisms remains poor. To address these questions, we obtained high-quality reference genomes of luminous and nonluminous beetles in 6 Elateroidea families. We then reconstructed a robust phylogenetic relationship for all luminous families and related nonluminous families. Comparative genomic analyses and biochemical functional experiments suggested that gene evolution within Elateroidea played a crucial role in the origin of bioluminescence, with multiple parallel origins observed in the luminous beetle families. While most luciferase-like proteins exhibited a conserved nonluminous amino acid pattern (TLA346 to 348) in the luciferin-binding sites, luciferases in the different luminous beetle families showed divergent luminous patterns at these sites (TSA/CCA/CSA/LVA). Comparisons of the structural and enzymatic properties of ancestral, extant, and site-directed mutant luciferases further reinforced the important role of these sites in the trade-off between acyl-CoA synthetase and luciferase activities. Furthermore, the evolution of bioluminescent color demonstrated a tendency toward hypsochromic shifts and variations among the luminous families. Taken together, our results revealed multiple parallel origins of bioluminescence and functional divergence within the beetle bioluminescent system.
Collapse
Affiliation(s)
- Jinwu He
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Jun Li
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ru Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Zhiwei Dong
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Guichun Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Zhou Chang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Wenxuan Bi
- Room 401, No. 2, Lane 155, Lianhua South Road, Shanghai 201100, China
| | - Yongying Ruan
- Plant Protection Research Center, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Yuxia Yang
- Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Haoyu Liu
- Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Lu Qiu
- Engineering Research Center for Forest and Grassland Disaster Prevention and Reduction, Mianyang Normal University, 621000 Mianyang, China
| | - Ruoping Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Wenting Wan
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Zihe Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Lei Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Xueyan Li
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
16
|
Yang L, Borne F, Betz A, Aardema ML, Zhen Y, Peng J, Visconti R, Wu M, Roland BP, Talsma AD, Palladino MJ, Petschenka G, Andolfatto P. Predatory fireflies and their toxic firefly prey have evolved distinct toxin resistance strategies. Curr Biol 2023; 33:5160-5168.e7. [PMID: 37989309 PMCID: PMC10872512 DOI: 10.1016/j.cub.2023.10.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/04/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023]
Abstract
Toxic cardiotonic steroids (CTSs) act as a defense mechanism in many firefly species (Lampyridae) by inhibiting a crucial enzyme called Na+,K+-ATPase (NKA). Although most fireflies produce these toxins internally, species of the genus Photuris acquire them from a surprising source: predation on other fireflies. The contrasting physiology of toxin exposure and sequestration between Photuris and other firefly genera suggests that distinct strategies may be required to prevent self-intoxication. Our study demonstrates that both Photuris and their firefly prey have evolved highly resistant NKAs. Using an evolutionary analysis of the specific target of CTS (ATPα) in fireflies and gene editing in Drosophila, we find that the initial steps toward resistance were shared among Photuris and other firefly lineages. However, the Photuris lineage subsequently underwent multiple rounds of gene duplication and neofunctionalization, resulting in the development of ATPα paralogs that are differentially expressed and exhibit increasing resistance to CTS. By contrast, other firefly species have maintained a single copy. Our results implicate gene duplication as a facilitator in the transition of Photuris to its distinct ecological role as a predator of toxic firefly prey.
Collapse
Affiliation(s)
- Lu Yang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Flora Borne
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Anja Betz
- Department of Applied Entomology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Matthew L Aardema
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA; Department of Biology, Montclair State University, Montclair, NJ 07043, USA
| | - Ying Zhen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA; School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Julie Peng
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Regina Visconti
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Mariana Wu
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Bartholomew P Roland
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Aaron D Talsma
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Michael J Palladino
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Georg Petschenka
- Department of Applied Entomology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
17
|
Yang L, Borne F, Betz A, Aardema ML, Zhen Y, Peng J, Visconti R, Wu M, Roland BP, Talsma AD, Palladino MJ, Petschenka G, Andolfatto P. Predatory fireflies and their toxic firefly prey have evolved distinct toxin resistance strategies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531760. [PMID: 36945443 PMCID: PMC10028858 DOI: 10.1101/2023.03.08.531760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Toxic cardiotonic steroids (CTS) act as a defense mechanism in many firefly species (Lampyridae) by inhibiting a crucial enzyme called Na+,K+-ATPase (NKA). While most fireflies produce these toxins internally, species of the genus Photuris acquire them from a surprising source: predation on other fireflies. The contrasting physiology of toxin exposure and sequestration between Photuris and other firefly genera suggests that distinct strategies may be required to prevent self-intoxication. Our study demonstrates that both Photuris and their firefly prey have evolved highly-resistant NKAs. Using an evolutionary analysis of the specific target of CTS (ATPα) in fireflies, and gene-editing in Drosophila, we find that the initial steps towards resistance were shared among Photuris and other firefly lineages. However, the Photuris lineage subsequently underwent multiple rounds of gene duplication and neofunctionalization, resulting in the development of ATPα paralogs that are differentially expressed and exhibit increasing resistance to CTS. In contrast, other firefly species have maintained a single copy. Our results implicate gene duplication as a facilitator in the transition of Photuris to its distinct ecological role as predator of toxic firefly prey.
Collapse
Affiliation(s)
- Lu Yang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, USA
| | - Flora Borne
- Department of Biological Sciences, Columbia University, New York, USA
| | - Anja Betz
- Department of Applied Entomology, University of Hohenheim, Stuttgart, Germany
| | - Matthew L Aardema
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, USA
- Department of Biology, Montclair State University, Montclair, USA
| | - Ying Zhen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, USA
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Julie Peng
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, USA
| | - Regina Visconti
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, USA
| | - Mariana Wu
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, USA
| | - Bartholomew P Roland
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Aaron D Talsma
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Mike J Palladino
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Georg Petschenka
- Department of Applied Entomology, University of Hohenheim, Stuttgart, Germany
| | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, New York, USA
| |
Collapse
|
18
|
Mohammad I, Liebmann KL, Miller SC. Firefly luciferin methyl ester illuminates the activity of multiple serine hydrolases. Chem Commun (Camb) 2023; 59:8552-8555. [PMID: 37337906 PMCID: PMC10347678 DOI: 10.1039/d3cc02540c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Firefly luciferin methyl ester is hydrolyzed by monoacylglycerol lipase MAGL, amidase FAAH, poorly-characterized hydrolase ABHD11, and hydrolases known for S-depalmitoylation (LYPLA1/2), not just esterase CES1. This enables activity-based bioluminescent assays for serine hydrolases and suggests that the 'esterase activity' responsible for hydrolyzing ester prodrugs is more diverse than previously supposed.
Collapse
Affiliation(s)
- Innus Mohammad
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation St., Worcester, MA 01605, USA.
| | - Kate L Liebmann
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation St., Worcester, MA 01605, USA.
| | - Stephen C Miller
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation St., Worcester, MA 01605, USA.
| |
Collapse
|
19
|
Bracewell RR, Stillman JH, Dahlhoff EP, Smeds E, Chatla K, Bachtrog D, Williams C, Rank NE. A chromosome-scale genome assembly and evaluation of mtDNA variation in the willow leaf beetle Chrysomela aeneicollis. G3 (BETHESDA, MD.) 2023; 13:jkad106. [PMID: 37178174 PMCID: PMC10320752 DOI: 10.1093/g3journal/jkad106] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/08/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
The leaf beetle Chrysomela aeneicollis has a broad geographic range across Western North America but is restricted to cool habitats at high elevations along the west coast. Central California populations occur only at high altitudes (2,700-3,500 m) where they are limited by reduced oxygen supply and recent drought conditions that are associated with climate change. Here, we report a chromosome-scale genome assembly alongside a complete mitochondrial genome and characterize differences among mitochondrial genomes along a latitudinal gradient over which beetles show substantial population structure and adaptation to fluctuating temperatures. Our scaffolded genome assembly consists of 21 linkage groups; one of which we identified as the X chromosome based on female/male whole genome sequencing coverage and orthology with Tribolium castaneum. We identified repetitive sequences in the genome and found them to be broadly distributed across all linkage groups. Using a reference transcriptome, we annotated a total of 12,586 protein-coding genes. We also describe differences in putative secondary structures of mitochondrial RNA molecules, which may generate functional differences important in adaptation to harsh abiotic conditions. We document substitutions at mitochondrial tRNA molecules and substitutions and insertions in the 16S rRNA region that could affect intermolecular interactions with products from the nuclear genome. This first chromosome-level reference genome will enable genomic research in this important model organism for understanding the biological impacts of climate change on montane insects.
Collapse
Affiliation(s)
- Ryan R Bracewell
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jonathon H Stillman
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | | | - Elliott Smeds
- Department of Biology, Sonoma State University, Rohnert Park, CA 94928, USA
| | - Kamalakar Chatla
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Doris Bachtrog
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Caroline Williams
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nathan E Rank
- Department of Biology, Sonoma State University, Rohnert Park, CA 94928, USA
| |
Collapse
|
20
|
Adams ST, Zephyr J, Bohn MF, Schiffer CA, Miller SC. FruitFire: a luciferase based on a fruit fly metabolic enzyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547126. [PMID: 37425765 PMCID: PMC10327219 DOI: 10.1101/2023.06.30.547126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Firefly luciferase is homologous to fatty acyl-CoA synthetases from insects that are not bioluminescent. Here, we determined the crystal structure of the fruit fly fatty acyl-CoA synthetase CG6178 to 2.5 Å. Based on this structure, we mutated a steric protrusion in the active site to create the artificial luciferase FruitFire, which prefers the synthetic luciferin CycLuc2 to d-luciferin by >1000-fold. FruitFire enabled in vivo bioluminescence imaging in the brains of mice using the pro-luciferin CycLuc2-amide. The conversion of a fruit fly enzyme into a luciferase capable of in vivo imaging underscores the potential for bioluminescence with a range of adenylating enzymes from nonluminescent organisms, and the possibilities for application-focused design of enzyme-substrate pairs.
Collapse
Affiliation(s)
- Spencer T. Adams
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation St, Worcester, MA 01605
| | - Jacqueto Zephyr
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation St, Worcester, MA 01605
| | - Markus F. Bohn
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation St, Worcester, MA 01605
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation St, Worcester, MA 01605
| | - Stephen C. Miller
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation St, Worcester, MA 01605
| |
Collapse
|
21
|
Catto MA, Labadie PE, Jacobson AL, Kennedy GG, Srinivasan R, Hunt BG. Pest status, molecular evolution, and epigenetic factors derived from the genome assembly of Frankliniella fusca, a thysanopteran phytovirus vector. BMC Genomics 2023; 24:343. [PMID: 37344773 DOI: 10.1186/s12864-023-09375-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/13/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND The tobacco thrips (Frankliniella fusca Hinds; family Thripidae; order Thysanoptera) is an important pest that can transmit viruses such as the tomato spotted wilt orthotospovirus to numerous economically important agricultural row crops and vegetables. The structural and functional genomics within the order Thysanoptera has only begun to be explored. Within the > 7000 known thysanopteran species, the melon thrips (Thrips palmi Karny) and the western flower thrips (Frankliniella occidentalis Pergrande) are the only two thysanopteran species with assembled genomes. RESULTS A genome of F. fusca was assembled by long-read sequencing of DNA from an inbred line. The final assembly size was 370 Mb with a single copy ortholog completeness of ~ 99% with respect to Insecta. The annotated genome of F. fusca was compared with the genome of its congener, F. occidentalis. Results revealed many instances of lineage-specific differences in gene content. Analyses of sequence divergence between the two Frankliniella species' genomes revealed substitution patterns consistent with positive selection in ~ 5% of the protein-coding genes with 1:1 orthologs. Further, gene content related to its pest status, such as xenobiotic detoxification and response to an ambisense-tripartite RNA virus (orthotospovirus) infection was compared with F. occidentalis. Several F. fusca genes related to virus infection possessed signatures of positive selection. Estimation of CpG depletion, a mutational consequence of DNA methylation, revealed that F. fusca genes that were downregulated and alternatively spliced in response to virus infection were preferentially targeted by DNA methylation. As in many other insects, DNA methylation was enriched in exons in Frankliniella, but gene copies with homology to DNA methyltransferase 3 were numerous and fragmented. This phenomenon seems to be relatively unique to thrips among other insect groups. CONCLUSIONS The F. fusca genome assembly provides an important resource for comparative genomic analyses of thysanopterans. This genomic foundation allows for insights into molecular evolution, gene regulation, and loci important to agricultural pest status.
Collapse
Affiliation(s)
- Michael A Catto
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA
| | - Paul E Labadie
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Alana L Jacobson
- Department of Entomology and Plant Pathology, Auburn University College of Agriculture, Auburn, AL, 36849, USA
| | - George G Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | | | - Brendan G Hunt
- Department of Entomology, University of Georgia, Griffin, GA, 30223, USA.
| |
Collapse
|
22
|
Takatsu H, Minami M, Oba Y. Flickering flash signals and mate recognition in the Asian firefly, Aquatica lateralis. Sci Rep 2023; 13:2415. [PMID: 36765165 PMCID: PMC9918520 DOI: 10.1038/s41598-023-29552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Nocturnal fireflies sometimes use intricate bioluminescent signal systems for sexual communication. In this study, we examined flash signals and mate recognition in the Asian firefly, Aquatica lateralis, under natural field conditions. We found that the flash pattern of females changes after copulation, from simple short flashes to flashes with longer duration and flickering. To understand the functions of flickering, we video-recorded and analyzed the flashes of sedentary males, receptive females, and mated females. The results showed that the flashes of these three adult phases can be discriminated from each other by two parameters, flash duration and flicker intensity, with little overlap. Male attraction experiments using an artificial LED device termed 'e-firefly' confirmed that flying and sedentary males are attracted to flashes with shorter durations and lower flicker intensities. The range of attraction success was much wider for flying males and narrower for sedentary males, and the latter was close to the range of receptive female's flashes. These findings suggest that in addition to flash duration, flicker intensity is a flash signal parameter of mate recognition in A. lateralis males.
Collapse
Affiliation(s)
- Hideo Takatsu
- , 5-58 Takayokosuka-machi, Tokai, Aichi, 477-0037, Japan
- Department Environmental Biology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Mihoko Minami
- Department of Mathematics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Yuichi Oba
- Department Environmental Biology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan.
| |
Collapse
|
23
|
Liu K, Chen Q, Huang GH. An Efficient Feature Selection Algorithm for Gene Families Using NMF and ReliefF. Genes (Basel) 2023; 14:421. [PMID: 36833348 PMCID: PMC9957060 DOI: 10.3390/genes14020421] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
Gene families, which are parts of a genome's information storage hierarchy, play a significant role in the development and diversity of multicellular organisms. Several studies have focused on the characteristics of gene families, such as function, homology, or phenotype. However, statistical and correlation analyses on the distribution of gene family members in the genome have yet to be conducted. Here, a novel framework incorporating gene family analysis and genome selection based on NMF-ReliefF is reported. Specifically, the proposed method starts by obtaining gene families from the TreeFam database and determining the number of gene families within the feature matrix. Then, NMF-ReliefF is used to select features from the gene feature matrix, which is a new feature selection algorithm that overcomes the inefficiencies of traditional methods. Finally, a support vector machine is utilized to classify the acquired features. The results show that the framework achieved an accuracy of 89.1% and an AUC of 0.919 on the insect genome test set. We also employed four microarray gene data sets to evaluate the performance of the NMF-ReliefF algorithm. The outcomes show that the proposed method may strike a delicate balance between robustness and discrimination. Additionally, the proposed method's categorization is superior to state-of-the-art feature selection approaches.
Collapse
Affiliation(s)
- Kai Liu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road, Furong District, Changsha 410128, China
- College of Information and Intelligence, Hunan Agricultural University, Changsha 410128, China
| | - Qi Chen
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road, Furong District, Changsha 410128, China
| | - Guo-Hua Huang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road, Furong District, Changsha 410128, China
| |
Collapse
|
24
|
Deppisch P, Kirsch V, Helfrich-Förster C, Senthilan PR. Contribution of cryptochromes and photolyases for insect life under sunlight. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:373-389. [PMID: 36609567 PMCID: PMC10102093 DOI: 10.1007/s00359-022-01607-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023]
Abstract
The cryptochrome/photolyase (CRY/PL) family is essential for life under sunlight because photolyases repair UV-damaged DNA and cryptochromes are normally part of the circadian clock that controls the activity-sleep cycle within the 24-h day. In this study, we aim to understand how the lineage and habitat of an insect affects its CRY/PL composition. To this end, we searched the large number of annotated protein sequences of 340 insect species already available in databases for CRY/PLs. Using phylogenetic tree and motif analyses, we identified four frequent CRY/PLs in insects: the photolyases 6-4 PL and CPDII PL, as well as the mammalian-type cryptochrome (MCRY) and Drosophila-type cryptochrome (DCRY). Assignment of CRY/PLs to the corresponding insects confirmed that light-exposed insects tend to have more CRY/PLs than insects with little light exposure. Nevertheless, even insects with greatly reduced CRY/PLs still possess MCRY, which can be regarded as the major insect cryptochrome. Only flies of the genus Schizophora, which includes Drosophila melanogaster, lost MCRY. Moreover, we found that MCRY and CPDII PL as well as DCRY and 6-4 PL occur very frequently together, suggesting an interaction between the two pairs.
Collapse
Affiliation(s)
- Peter Deppisch
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, Julius-Maximilians-University Würzburg, 97074, Würzburg, Germany
| | - Valentina Kirsch
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, Julius-Maximilians-University Würzburg, 97074, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, Julius-Maximilians-University Würzburg, 97074, Würzburg, Germany
| | - Pingkalai R Senthilan
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, Julius-Maximilians-University Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
25
|
Kundrata R, Hoffmannova J, Hinson KR, Keller O, Packova G. Rhagophthalmidae Olivier, 1907 (Coleoptera, Elateroidea): described genera and species, current problems, and prospects for the bioluminescent and paedomorphic beetle lineage. Zookeys 2022; 1126:55-130. [PMID: 36760860 PMCID: PMC9881481 DOI: 10.3897/zookeys.1126.90233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/12/2022] [Indexed: 02/11/2023] Open
Abstract
Rhagophthalmidae are a small beetle family known from the eastern Palaearctic and Oriental realms. Rhagophthalmidae are closely related to railroad worms (Phengodidae) and fireflies (Lampyridae) with which they share highly modified paedomorphic females and the ability to emit light. Currently, Rhagophthalmidae include 66 species classified in the following 12 genera: Bicladodrilus Pic, 1921 (two spp.), Bicladum Pic, 1921 (two spp.), Dioptoma Pascoe, 1860 (two spp.), Diplocladon Gorham, 1883 (two spp.), Dodecatoma Westwood, 1849 (eight spp.), Falsophrixothrix Pic, 1937 (six spp.), Haplocladon Gorham, 1883 (two spp.), Menghuoius Kawashima, 2000 (three spp.), Mimoochotyra Pic, 1937 (one sp.), Monodrilus Pic, 1921 (two spp. in two subgenera), Pseudothilmanus Pic, 1918 (two spp.), and Rhagophthalmus Motschulsky, 1854 (34 spp.). The replacement name Haplocladongorhami Kundrata, nom. nov. is proposed for Diplocladonhasseltii Gorham, 1883b (described in subgenus Haplocladon) which is preoccupied by Diplocladonhasseltii Gorham, 1883a. The genus Reductodrilus Pic, 1943 is tentatively placed in Lampyridae: Ototretinae. Lectotypes are designated for Pseudothilmanusalatus Pic, 1918 and P.marginalis Pic, 1918. Interestingly, in the eastern part of their distribution, Rhagophthalmidae have remained within the boundaries of the Sunda Shelf and the Philippines demarcated by the Wallace Line, which separates the Oriental and Australasian realms. This study is intended to be a first step towards a comprehensive revision of the group on both genus and species levels. Additionally, critical problems and prospects for rhagophthalmid research are briefly discussed.
Collapse
Affiliation(s)
- Robin Kundrata
- Department of Zoology, Faculty of Science, Palacky University, 17. listopadu 50, 77900, Olomouc, Czech RepublicPalacky UniversityOlomoucCzech Republic
| | - Johana Hoffmannova
- Department of Zoology, Faculty of Science, Palacky University, 17. listopadu 50, 77900, Olomouc, Czech RepublicPalacky UniversityOlomoucCzech Republic
| | - Kevin R. Hinson
- EpiLogic GmbH Agrarbiologische Forschung und Beratung, Hohenbachernstr. 19–21, 85354, Freising, GermanyEpiLogic GmbH Agrarbiologische Forschung und BeratungFreisingGermany
| | - Oliver Keller
- Florida State Collection of Arthropods, Florida Department of Agriculture and Consumer Services, P.O. Box 147100, Gainesville, FL, 32614-7100, USAFlorida Department of Agriculture and Consumer ServicesGainesvilleUnited States of America
| | - Gabriela Packova
- Department of Zoology, Faculty of Science, Palacky University, 17. listopadu 50, 77900, Olomouc, Czech RepublicPalacky UniversityOlomoucCzech Republic
| |
Collapse
|
26
|
Catalan A, Höhna S, Lower SE, Duchen P. Inferring the demographic history of the North American firefly Photinus pyralis. J Evol Biol 2022; 35:1488-1499. [PMID: 36168726 DOI: 10.1111/jeb.14094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/13/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
Abstract
The firefly Photinus pyralis inhabits a wide range of latitudinal and ecological niches, with populations living from temperate to tropical habitats. Despite its broad distribution, its demographic history is unknown. In this study, we modelled and inferred different demographic scenarios for North American populations of P. pyralis, which were collected from Texas to New Jersey. We used a combination of ABC techniques (for multi-population/colonization analyses) and likelihood inference (dadi, StairwayPlot2, PoMo) for single-population demographic inference, which proved useful with our RAD data. We uncovered that the most ancestral North American population lays in Texas, which further colonized the Central region of the US and more recently the North Eastern coast. Our study confidently rejects a demographic scenario where the North Eastern populations colonized more southern populations until reaching Texas. To estimate the age of divergence between of P. pyralis, which provides deeper insights into the history of the entire species, we assembled a multi-locus phylogenetic data covering the genus Photinus. We uncovered that the phylogenetic node leading to P. pyralis lies at the end of the Miocene. Importantly, modelling the demographic history of North American P. pyralis serves as a null model of nucleotide diversity patterns in a widespread native insect species, which will serve in future studies for the detection of adaptation events in this firefly species, as well as a comparison for future studies of other North American insect taxa.
Collapse
Affiliation(s)
- Ana Catalan
- Division of Evolutionary Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Sebastian Höhna
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sarah E Lower
- Department of Biology, Bucknell University, Lewisburg, PA, USA
| | - Pablo Duchen
- Institute for Organismal and Molecular Evolutionary Biology, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
27
|
Trabuco Amaral D, Mitani Y, Aparecida Silva Bonatelli I, Cerri R, Ohmiya Y, Viviani V. Genome analysis of Phrixothrix hirtus (Phengodidae) railroad worm shows the expansion of odorant-binding gene families and positive selection on morphogenesis and sex determination genes. Gene X 2022; 850:146917. [PMID: 36174905 DOI: 10.1016/j.gene.2022.146917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 10/14/2022] Open
Abstract
Among bioluminescent beetles of the Elateroidea superfamily, Phengodidae is the third largest family, with 244 bioluminescent species distributed only in the Americas, but is still the least studied from the phylogenetic and evolutionary points of view. The railroad worm Phrixothrix hirtus is an essential biological model and symbolic species due to its bicolor bioluminescence, being the only organism that produces true red light among bioluminescent terrestrial species. Here, we performed partial genome assembly of P. hirtus, combining short and long reads generated with Illumina sequencing, providing the first source of genomic information and a framework for comparative analyses of the bioluminescent system in Elateroidea. This is the largest genome described in the Elateroidea superfamily, with an estimated size of ∼3.4 Gb, displaying 32 % GC content, and 67 % transposable elements. Comparative genomic analyses showed a positive selection of genes and gene family expansion events of growths and morphogenesis gene products, which could be associated with the atypical anatomical development and morphogenesis found in paedomorphic females and underdeveloped males. We also observed gene family expansion among distinct odorant-binding receptors, which could be associated with the pheromone communication system typical of these beetles, and retrotransposable elements. Common genes putatively regulating bioluminescence production and control, including two luciferase genes corresponding to lateral lanterns green-emitting and head lanterns red-emitting luciferases with 7 exons and 6 introns, and genes potentially involved in luciferin biosynthesis were found, indicating that there are no clear differences about the presence or absence of gene families associated with bioluminescence in Elateroidea.
Collapse
Affiliation(s)
- Danilo Trabuco Amaral
- Programa de Pós-Graduação em Biotecnociência, Centro de Ciências Naturais e Humanas. Universidade Federal do ABC (UFABC), Santo André, Brazil
| | - Yasuo Mitani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | | | - Ricardo Cerri
- Department of Computational Science, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | - Yoshihiro Ohmiya
- Biomedical Research Institute, AIST, Ikeda-Osaka, Japan; Osaka Institute of Technology, OIT, Osaka, Japan
| | - Vadim Viviani
- Graduate Program of Evolutive Genetics and Molecular Biology, Federal University of São Carlos (UFSCar), São Carlos, Brazil; Graduate Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), Sorocaba, Brazil.
| |
Collapse
|
28
|
Fu N, Li J, Ren L, Li X, Wang M, Li F, Zong S, Luo Y. Chromosome-level genome assembly of Monochamus saltuarius reveals its adaptation and interaction mechanism with pine wood nematode. Int J Biol Macromol 2022; 222:325-336. [PMID: 36115455 DOI: 10.1016/j.ijbiomac.2022.09.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/22/2022] [Accepted: 09/10/2022] [Indexed: 11/05/2022]
Abstract
Monochamus saltuarius (Coleoptera: Cerambycidae) was reported as the vector beetle of the pine wood nematode (PWN, Bursaphelenchus xylophilus) in Japan and Europe. It was first reported to transmitted the PWN to native Pinus species in 2018 in Liaoning Province, China. However, the lack of genomic resources has limited the in-depth understanding of its interspecific relationship with PWN. Here, we obtained a chromosome-level reference genome of M. saltuarius combining Illumina, Nanopore and Hi-C sequencing technologies. We assembled the scaffolds into ten chromosomes (including an X chromosome) and obtained a 682.23 Mb chromosome-level genome with a N50 of 73.69 Mb. In total, 427.67 Mb (62.69 %) repeat sequences were identified and 14, 492 protein-coding genes were predicted, of which 93.06 % were annotated. We described the mth/mthl, P450, OBP and OR gene families associated with the vector beetle's development and resistance, as well as the host selection and adaptation, which serve as a valuable resource for understanding the host adaptation in insects during evolution. This high quality reference genome of M. saltuarius also provide new avenues for researching the mechanism of this synergistic damage between vector beetles and PWN.
Collapse
Affiliation(s)
- Ningning Fu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Jiaxing Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Lili Ren
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | | | - Ming Wang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Fengqi Li
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
29
|
Liu Z, Xing L, Huang W, Liu B, Wan F, Raffa KF, Hofstetter RW, Qian W, Sun J. Chromosome-level genome assembly and population genomic analyses provide insights into adaptive evolution of the red turpentine beetle, Dendroctonus valens. BMC Biol 2022; 20:190. [PMID: 36002826 PMCID: PMC9400205 DOI: 10.1186/s12915-022-01388-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biological invasions are responsible for substantial environmental and economic losses. The red turpentine beetle (RTB), Dendroctonus valens LeConte, is an important invasive bark beetle from North America that has caused substantial tree mortality in China. The lack of a high-quality reference genome seriously limits deciphering the extent to which genetic adaptions resulted in a secondary pest becoming so destructive in its invaded area. RESULTS Here, we present a 322.41 Mb chromosome-scale reference genome of RTB, of which 98% of assembled sequences are anchored onto fourteen linkage groups including the X chromosome with a N50 size of 24.36 Mb, which is significantly greater than other Coleoptera species. Repetitive sequences make up 45.22% of the genome, which is higher than four other Coleoptera species, i.e., Mountain pine beetle Dendroctonus ponderosae, red flour beetle Tribolium castaneum, blister beetle Hycleus cichorii, and Colorado potato beetle Leptinotarsa decemlineata. We identify rapidly expanded gene families and positively selected genes in RTB, which may be responsible for its rapid environmental adaptation. Population genetic structure of RTB was revealed by genome resequencing of geographic populations in native and invaded regions, suggesting substantial divergence of the North American population and illustrates the possible invasion and spread route in China. Selective sweep analysis highlighted the enhanced ability of Chinese populations in environmental adaptation. CONCLUSIONS Overall, our high-quality reference genome represents an important resource for genomics study of invasive bark beetles, which will facilitate the functional study and decipher mechanism underlying invasion success of RTB by integrating the Pinus tabuliformis genome.
Collapse
Affiliation(s)
- Zhudong Liu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 1000101, China
| | - Longsheng Xing
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | | | - Bo Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Fanghao Wan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Kenneth F Raffa
- Department of Entomology, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Wanqiang Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Jianghua Sun
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 1000101, China.
| |
Collapse
|
30
|
Powell GS, Saxton NA, Pacheco YM, Stanger-Hall KF, Martin GJ, Kusy D, Felipe Lima Da Silveira L, Bocak L, Branham MA, Bybee SM. Beetle bioluminescence outshines extant aerial predators. Proc Biol Sci 2022; 289:20220821. [PMID: 35855602 PMCID: PMC9297012 DOI: 10.1098/rspb.2022.0821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We understand very little about the timing and origins of bioluminescence, particularly as a predator avoidance strategy. Understanding the timing of its origins, however, can help elucidate the evolution of this ecologically important signal. Using fireflies, a prevalent bioluminescent group where bioluminescence primarily functions as aposematic and sexual signals, we explore the origins of this signal in the context of their potential predators. Divergence time estimations were performed using genomic-scale datasets providing a robust estimate for the origin of firefly bioluminescence as both a terrestrial and as an aerial signal. Our results recover the origin of terrestrial beetle bioluminescence at 141.17 (122.63-161.17) Ma and firefly aerial bioluminescence at 133.18 (117.86-152.47) Ma using a large dataset focused on Lampyridae; and terrestrial bioluminescence at 148.03 (130.12-166.80) Ma, with the age of aerial bioluminescence at 104.97 (99.00-120.90) Ma using a complementary Elateroidea dataset. These ages pre-date the origins of all known extant aerial predators (i.e. bats and birds) and support much older terrestrial predators (assassin bugs, frogs, ground beetles, lizards, snakes, hunting spiders and harvestmen) as the drivers of terrestrial bioluminescence in beetles. These ages also support the hypothesis that sexual signalling was probably the original function of this signal in aerial fireflies.
Collapse
Affiliation(s)
- Gareth S. Powell
- Department of Biology and Monte L. Bean Museum, Brigham Young University, 4102 LSB, Provo, UT 84602, USA
| | - Natalie A. Saxton
- Research and Collections Division, The Cleveland Museum of Natural History, 1 Wade Oval Drive, Cleveland, OH 44106, USA,Department of Biology, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA
| | - Yelena M. Pacheco
- Plant Biology Department, University of Georgia, 4510 Miller Plant Sciences Building, Athens, GA 30602, USA
| | - Kathrin F. Stanger-Hall
- Plant Biology Department, University of Georgia, 4510 Miller Plant Sciences Building, Athens, GA 30602, USA
| | - Gavin J. Martin
- School of Math and Sciences, Laramie County Community College, 1400 E. College Dr., Cheyenne, WY 82007, USA
| | - Dominik Kusy
- Laboratory of Biodiversity and Molecular Evolution, Czech Advanced Technology Research Institute (CRH), Palacky University, Slechtitelu 27, Olomouc 783 71, Czech Republic
| | - Luiz Felipe Lima Da Silveira
- Biology Department, Western Carolina University, 206 Stillwell Building, 1 University Dr., Cullowhee, NC 2723, USA
| | - Ladislav Bocak
- Laboratory of Biodiversity and Molecular Evolution, Czech Advanced Technology Research Institute (CRH), Palacky University, Slechtitelu 27, Olomouc 783 71, Czech Republic
| | - Marc A. Branham
- Department of Entomology and Nematology, University of Florida, P.O. Box 110620, Gainesville, FL 32611, USA
| | - Seth M. Bybee
- Department of Biology and Monte L. Bean Museum, Brigham Young University, 4102 LSB, Provo, UT 84602, USA
| |
Collapse
|
31
|
A high-quality genome of the dobsonfly Neoneuromus ignobilis reveals molecular convergences in aquatic insects. Genomics 2022; 114:110437. [PMID: 35902070 DOI: 10.1016/j.ygeno.2022.110437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/03/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022]
Abstract
Neoneuromus ignobilis is an archaic holometabolous aquatic predatory insect. However, a lack of genomic resources hinders the use of whole genome sequencing to explore their genetic basis and molecular mechanisms for adaptive evolution. Here, we provided a high-contiguity, chromosome-level genome assembly of N. ignobilis using high coverage Nanopore and PacBio reads with the Hi-C technique. The final assembly is 480.67 MB in size, containing 12 telomere-ended pseudochromosomes with only 17 gaps. We compared 42 hexapod species genomes including six independent lineages comprising 11 aquatic insects, and found convergent expansions of long wavelength-sensitive and blue-sensitive opsins, thermal stress response TRP channels, and sulfotransferases in aquatic insects, which may be related to their aquatic adaptation. We also detected strong nonrandom signals of convergent amino acid substitutions in aquatic insects. Collectively, our comparative genomic analysis revealed the evidence of molecular convergences in aquatic insects during both gene family evolution and convergent amino acid substitutions.
Collapse
|
32
|
Oba Y, Schultz DT. Firefly genomes illuminate the evolution of beetle bioluminescent systems. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100879. [PMID: 35091104 DOI: 10.1016/j.cois.2022.100879] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/30/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Fireflies are one of the best-known bioluminescent organisms, and the reaction mechanism and ecological utility of bioluminescence have been well-studied. Genome assemblies of six species of bioluminescent beetles have recently been published. These studies have focused on the evolution of novelties; luciferase, and the biosynthesis of luciferin and defensive chemicals. For example, clustering of the luciferase gene with acyl-CoA synthetase genes on a chromosome in luminous beetle genomes suggests the involvement of tandem gene duplications and neofunctionalization during the evolution of beetle bioluminescence. Several candidate genes for critical roles in beetle bioluminescence have been identified, but their functional analyses are still ongoing. The establishment of a long-term mass-rearing system and strain will be the key for the post-genome research on bioluminescent beetles. Lastly, the application of contemporary chromosome-scale genome assembly techniques to luminous beetles will help resolve outstanding evolutionary questions, such as how many times bioluminescence evolved in this clade.
Collapse
Affiliation(s)
- Yuichi Oba
- Department of Environmental Biology, Chubu University, Kasugai 487-8501, Japan.
| | - Darrin T Schultz
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, United States
| |
Collapse
|
33
|
Ge XY, Liu T, Kang Y, Liu HY, Yang YX. First complete mitochondrial genomes of Ototretinae (Coleoptera, Lampyridae) with evolutionary insights into the gene rearrangement. Genomics 2022; 114:110305. [DOI: 10.1016/j.ygeno.2022.110305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/09/2022] [Accepted: 02/01/2022] [Indexed: 11/26/2022]
|
34
|
Genomic insight into the scale specialization of the biological control agent Novius pumilus (Weise, 1892). BMC Genomics 2022; 23:90. [PMID: 35100986 PMCID: PMC8805230 DOI: 10.1186/s12864-022-08299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Members of the genus Novius Mulsant, 1846 (= Rodolia Mulsant, 1850) (Coleoptera, Coccinellidae), play important roles in the biological control of cotton cushion scale pests, especially those belonging to Icerya. Since the best-known species, the vedalia beetle Novius cardinalis (Mulsant, 1850) was introduced into California from Australia, more than a century of successful use in classical biological control, some species of Novius have begun to exhibit some field adaptations to novel but related prey species. Despite their economic importance, relatively little is known about the underlying genetic adaptations associated with their feeding habits. Knowledge of the genome sequence of Novius is a major step towards further understanding its biology and potential applications in pest control. RESULTS We report the first high-quality genome sequence for Novius pumilus (Weise, 1892), a representative specialist of Novius. Computational Analysis of gene Family Evolution (CAFE) analysis showed that several orthogroups encoding chemosensors, digestive, and immunity-related enzymes were significantly expanded (P < 0.05) in N. pumilus compared to the published genomes of other four ladybirds. Furthermore, some of these orthogroups were under significant positive selection pressure (P < 0.05). Notably, transcriptome profiling demonstrated that many genes among the significantly expanded and positively selected orthogroups, as well as genes related to detoxification were differentially expressed, when N. pumilus feeding on the nature prey Icerya compared with the no feeding set. We speculate that these genes are vital in the Icerya adaptation of Novius species. CONCLUSIONS We report the first Novius genome thus far. In addition, we provide comprehensive transcriptomic resources for N. pumilus. The results from this study may be helpful for understanding the association of the evolution of genes related to chemosensing, digestion, detoxification and immunity with the prey adaptation of insect predators. This will provide a reference for future research and utilization of Novius in biological control programs. Moreover, understanding the possible molecular mechanisms of prey adaptation also inform mass rearing of N. pumilus and other Novius, which may benefit pest control.
Collapse
|
35
|
Shi Y, Qu Q, Wang C, He Y, Yang Y, Wu Y. Involvement of CYP2 and mitochondrial clan P450s of Helicoverpa armigera in xenobiotic metabolism. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 140:103696. [PMID: 34800643 DOI: 10.1016/j.ibmb.2021.103696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Insect CYP2 and mitochondrial clan P450s are relatively conserved genes encoding enzymes generally thought to be involved in biosynthesis or metabolism of endobiotics. However, emerging evidence argues they have potential roles in chemical defense as well, but their actual detoxification functions remain largely unknown. Here, we focused on the full complement of 8 CYP2 and 10 mitochondrial P450s in the generalist herbivore, Helicoverpa armigera. Their varied spatiotemporal expression profiles were analyzed and reflected their specific functions. For functional study of the mitochondrial clan P450s, the redox partners, adrenodoxin reductase (AdR) and adrenodoxin (Adx), were identified from genomes of eight insects and an efficient in vitro electron transfer system of mitochondrial P450 was established by co-expression with Adx and AdR of H. armigera. All CYP2 clan P450s and 8 mitochondrial P450s were successfully expressed in Sf9 cells and compared functionally. In vitro metabolism assays showed that two CYP2 clan P450s (CYP305B1 and CYP18A1) and CYP333B3 (mito clan) could epoxidize aldrin to dieldrin, while CYP305B1 and CYP339A1 (mito clan) have limited but significant hydroxylation capacities to esfenvalerate. CYP303A1 of the CYP2 clan exhibits high metabolic efficiency to 2-tridecanone. Screening the xenobiotic metabolism competence of CYP2 and mitochondrial clan P450s not only provides new insights on insect chemical defense but also can give indications on their physiological functions in H. armigera and other insects.
Collapse
Affiliation(s)
- Yu Shi
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qiong Qu
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Chenyang Wang
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yingshi He
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yihua Yang
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yidong Wu
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
36
|
Species-Specific Flash Patterns Track the Nocturnal Behavior of Sympatric Taiwanese Fireflies. BIOLOGY 2022; 11:biology11010058. [PMID: 35053057 PMCID: PMC8773436 DOI: 10.3390/biology11010058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 12/24/2021] [Indexed: 01/08/2023]
Abstract
It is highly challenging to evaluate the species' content and behavior changes in wild fireflies, especially for a sympatric population. Here, the flash interval (FI) and flash duration (FD) of flying males from three sympatric species (Abscondita cerata, Luciola kagiana, and Luciola curtithorax) were investigated for their potentials in assessing species composition and nocturnal behaviors during the A. cerata mating season. Both FI and FD were quantified from the continuous flashes of adult fireflies (lasting 5-30 s) via spatiotemporal analyses of video recorded along the Genliao hiking trail in Taipei, Taiwan. Compared to FD patterns and flash colors, FI patterns exhibited the highest species specificity, making them a suitable reference for differentiating firefly species. Through the case study of a massive occurrence of A. cerata (21 April 2018), the species contents (~85% of the flying population) and active periods of a sympatric population comprising A. cerata and L. kagiana were successfully evaluated by FI pattern matching, as well as field specimen collections. Our study suggests that FI patterns may be a reliable species-specific luminous marker for monitoring the behavioral changes in a sympatric firefly population in the field, and has implication values for firefly conservation.
Collapse
|
37
|
Mei Y, Jing D, Tang S, Chen X, Chen H, Duanmu H, Cong Y, Chen M, Ye X, Zhou H, He K, Li F. InsectBase 2.0: a comprehensive gene resource for insects. Nucleic Acids Res 2021; 50:D1040-D1045. [PMID: 34792158 PMCID: PMC8728184 DOI: 10.1093/nar/gkab1090] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/18/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Insects are the largest group of animals on the planet and have a huge impact on human life by providing resources, transmitting diseases, and damaging agricultural crop production. Recently, a large amount of insect genome and gene data has been generated. A comprehensive database is highly desirable for managing, sharing, and mining these resources. Here, we present an updated database, InsectBase 2.0 (http://v2.insect-genome.com/), covering 815 insect genomes, 25 805 transcriptomes and >16 million genes, including 15 045 111 coding sequences, 3 436 022 3'UTRs, 4 345 664 5'UTRs, 112 162 miRNAs and 1 293 430 lncRNAs. In addition, we used an in-house standard pipeline to annotate 1 434 653 genes belonging to 164 gene families; 215 986 potential horizontally transferred genes; and 419 KEGG pathways. Web services such as BLAST, JBrowse2 and Synteny Viewer are provided for searching and visualization. InsectBase 2.0 serves as a valuable platform for entomologists and researchers in the related communities of animal evolution and invertebrate comparative genomics.
Collapse
Affiliation(s)
- Yang Mei
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dong Jing
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shenyang Tang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xi Chen
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Chen
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haonan Duanmu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuyang Cong
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mengyao Chen
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinhai Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hang Zhou
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kang He
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fei Li
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
38
|
Acquisition of bioluminescent trait by non-luminous organisms from luminous organisms through various origins. Photochem Photobiol Sci 2021; 20:1547-1562. [PMID: 34714534 DOI: 10.1007/s43630-021-00124-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022]
Abstract
Bioluminescence is a natural light emitting phenomenon that occurs due to a chemical reaction between luciferin and luciferase. It is primarily an innate and inherited trait in most terrestrial luminous organisms. However, most luminous organisms produce light in the ocean by acquiring luminous symbionts, luciferin (substrate), and/or luciferase (enzyme) through various transmission pathways. For instance, coelenterazine, a well-known luciferin, is obtained by cnidarians, crustaceans, and deep-sea fish through multi-level dietary linkages from coelenterazine producers such as ctenophores, decapods, and copepods. In contrast, some non-luminous Vibrio bacteria became bioluminescent by obtaining lux genes from luminous Vibrio species by horizontal gene transfer. Various examples detailed in this review show how non-luminescent organisms became luminescent by acquiring symbionts, dietary luciferins and luciferases, and genes. This review highlights three modes (symbiosis, ingestion, and horizontal gene transfer) that allow organisms lacking genes for autonomous bioluminescent systems to obtain the ability to produce light. In addition to bioluminescence, this manuscript discusses the acquisition of other traits such as pigments, fluorescence, toxins, and others, to infer the potential processes of acquisition.
Collapse
|
39
|
Ogata N. Whole-Genome Sequence of the Trypoxylus dichotomus Japanese rhinoceros beetle. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000487. [PMID: 34723147 PMCID: PMC8553429 DOI: 10.17912/micropub.biology.000487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 11/06/2022]
Abstract
The draft whole-genome sequence of the Japanese rhinoceros beetle, Trypoxylus dichotomus was obtained using long-read PacBio sequence technology. The final assembled genome consisted of 739 Mbp in 2,347 contigs, with 24.5× mean coverage and a G+C content of 35.99%.
Collapse
Affiliation(s)
- Norichika Ogata
- Nihon BioData Corporation,
Correspondence to: Norichika Ogata ()
| |
Collapse
|
40
|
Riley WB, Rosa SP, Lima da Silveira LF. A comprehensive review and call for studies on firefly larvae. PeerJ 2021; 9:e12121. [PMID: 34616609 PMCID: PMC8459732 DOI: 10.7717/peerj.12121] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/16/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Fireflies (Coleoptera: Lampyridae) are commonly recognized by adult traits, such as a soft exoskeleton, lanterns and associated glow and flash patterns, but their larval stage is far less appreciated. However, fireflies spend most of their lives as larvae, and adults of most species rely solely on resources previously obtained. Therefore, studying the immature stages is imperative towards a comprehensive understanding of fireflies. This paper reviews and indicates key gaps in the biology of firefly larvae based on available literature. METHODOLOGY We reviewed the literature on firefly larvae to identify key issues and important taxonomic, geographic, and subject biases and gaps. RESULTS We found 376 papers that included information on firefly larvae. Only 139 species in 47 genera across eight of eleven lampyrid subfamilies have been studied during larval stages. These numbers reveal a staggering gap, since 94% of species and over half of the genera of fireflies were never studied in a crucial stage of their life cycle. Most studies on firefly larvae focus on two subfamilies (Luciolinae and Lampyrinae) in four zoogeographic regions (Sino-Japanese, Oriental, Nearctic, and Palearctic), whereas the other subfamilies and regions remain largely unstudied. These studies mainly dealt with morphology and behavior, other subjects remaining greatly understudied by comparison, including habitats, life cycle, physiology and interactions. CONCLUSIONS Together, these literature biases and gaps highlight how little is known about firefly larvae, and warmly invite basic and applied research, in the field and in the lab, to overcome these limitations and improve our understanding of firefly biology to better preserve them.
Collapse
Affiliation(s)
- William B. Riley
- Department of Biology, Western Carolina University, Cullowhee, NC, United States of America
| | - Simone Policena Rosa
- Instituto de Recursos Naturais, Universidade Federal de Itajubá, Itajubá, Minas Gerais, Brazil
| | | |
Collapse
|
41
|
He JW, Liu GC, Dong PX, Dong ZW, Zhao RP, Wang W, Li XY. Molecular cloning, characterization, and evolution analysis of the luciferase genes from three sympatric sibling fireflies (Lampyridae: Lampyrinae, Diaphanes). Photochem Photobiol Sci 2021; 20:1053-1067. [PMID: 34347281 DOI: 10.1007/s43630-021-00080-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022]
Abstract
Firefly adult bioluminescence functions as signal communication between sexes. How sympatric sibling species with similar glow pattern recognize their conspecific mates remains largely unknown. To better understand the role of the luciferases of sympatric fireflies in recognizing mates, we cloned the luciferase genes of three sympatric forest dwelling fireflies (Diaphanes nubilus, Diaphanes pectinealis, and Diaphanes sp2) and evaluated their enzyme characteristics. Our data show that the amino acid (AA) sequences of all three luciferases are highly conserved, including the identities (D. nubilus vs D. pectinealis: 99%; D. nubilus vs Diaphanes sp2: 98.5%; D. pectinealis vs Diaphanes sp2: 99.4%) and the protein structures. Three recombinant luciferases produced in vitro all possess significant luminescence activity at pH 7.8, and similar maximum emission spectrum (D. nubilus: 562 nm; D. pectinealis and Diaphanes sp2: 564 nm). They show the highest activity at 10 °C (D. pectinealis, Diaphanes sp2) and 15 °C (D. nubilus), and completely inactivation at 45 °C. Their KM for D-luciferin and ATP were 2.7 μM and 92 μM (D. nubilus), 3.7 μM and 49 μM (D. pectinealis), 3.5 μM and 46 μM (Diaphanes sp2). Phylogenetic analyses support that D. nubilus is sister to D. pectinealis with Diaphanes sp2 at their base, which further cluster with Pyrocoelia. All combined data indicate that sympatric Diaphanes species have similar luciferase characteristics, suggesting that other strategies (e.g., pheromone, active time, etc.) may be adopted to recognize mates. Our data provide new insights into Diaphanes luciferases and their evolution.
Collapse
Affiliation(s)
- Jin-Wu He
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Gui-Chun Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Ping-Xuan Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Dezhou University, Dezhou, 253023, Shandong, China
| | - Zhi-Wei Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Ruo-Ping Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| | - Xue-Yan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|
42
|
Van Dam MH, Cabras AA, Henderson JB, Rominger AJ, Pérez Estrada C, Omer AD, Dudchenko O, Lieberman Aiden E, Lam AW. The Easter Egg Weevil (Pachyrhynchus) genome reveals syntenic patterns in Coleoptera across 200 million years of evolution. PLoS Genet 2021; 17:e1009745. [PMID: 34460814 PMCID: PMC8432895 DOI: 10.1371/journal.pgen.1009745] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/10/2021] [Accepted: 07/27/2021] [Indexed: 01/01/2023] Open
Abstract
Patterns of genomic architecture across insects remain largely undocumented or decoupled from a broader phylogenetic context. For instance, it is unknown whether translocation rates differ between insect orders. We address broad scale patterns of genome architecture across Insecta by examining synteny in a phylogenetic framework from open-source insect genomes. To accomplish this, we add a chromosome level genome to a crucial lineage, Coleoptera. Our assembly of the Pachyrhynchus sulphureomaculatus genome is the first chromosome scale genome for the hyperdiverse Phytophaga lineage and currently the largest insect genome assembled to this scale. The genome is significantly larger than those of other weevils, and this increase in size is caused by repetitive elements. Our results also indicate that, among beetles, there are instances of long-lasting (>200 Ma) localization of genes to a particular chromosome with few translocation events. While some chromosomes have a paucity of translocations, intra-chromosomal synteny was almost absent, with gene order thoroughly shuffled along a chromosome. This large amount of reshuffling within chromosomes with few inter-chromosomal events contrasts with patterns seen in mammals in which the chromosomes tend to exchange larger blocks of material more readily. To place our findings in an evolutionary context, we compared syntenic patterns across Insecta in a phylogenetic framework. For the first time, we find that synteny decays at an exponential rate relative to phylogenetic distance. Additionally, there are significant differences in decay rates between insect orders, this pattern was not driven by Lepidoptera alone which has a substantially different rate.
Collapse
Affiliation(s)
- Matthew H. Van Dam
- Entomology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, California, United States of America
- Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Science, San Francisco, California, United States of America
| | - Analyn Anzano Cabras
- Coleoptera Research Center, Institute for Biodiversity and Environment, University of Mindanao, Matina, Davao City, Philippines
| | - James B. Henderson
- Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Science, San Francisco, California, United States of America
| | - Andrew J. Rominger
- School of Biology and Ecology, University of Maine, Orono, Maine, United States of America
| | - Cynthia Pérez Estrada
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Arina D. Omer
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Athena W. Lam
- Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Science, San Francisco, California, United States of America
| |
Collapse
|
43
|
Guo YJ, Cui CX, Liu YJ. Theoretical Study on Storage and Release of Firefly Luciferin. Photochem Photobiol 2021; 98:184-192. [PMID: 34333799 DOI: 10.1111/php.13496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022]
Abstract
Among numerous bioluminescent organisms, firefly is the most studied one. Recent experiment proposed that sulfoluciferin (SLH2 ) may serve as a storage form of luciferin (LH2 ). In the present article, we employed density functional theory calculation to uncover the mechanism and detailed process of the storage and release reactions. Due to lack of available crystallographic structure of the related enzyme, the calculation was performed on a model system. For the storage reaction, possible amino acid residues were used for imitating the protein environment. For the release reaction, the dielectric constant of 3.0 was employed to simulate the polarity of the protein cavity. The computational results indicated that the reactions from LH2 to SLH2 and from SLH2 to LH2 are both exergonic, which favor the storage and release processes and coincide with the experimental observation. Basing on experimental and current theoretical study, we supplemented the stages of LH2 storage and release in the entire bioluminescent cycle of firefly. The current theoretical calculation could inspire the study on LH2 storage and release of other bioluminescent organisms.
Collapse
Affiliation(s)
- Ya-Jie Guo
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Cheng-Xing Cui
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China.,Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China
| |
Collapse
|
44
|
Berger A, Petschenka G, Degenkolb T, Geisthardt M, Vilcinskas A. Insect Collections as an Untapped Source of Bioactive Compounds-Fireflies (Coleoptera: Lampyridae) and Cardiotonic Steroids as a Proof of Concept. INSECTS 2021; 12:689. [PMID: 34442254 PMCID: PMC8396437 DOI: 10.3390/insects12080689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 11/20/2022]
Abstract
Natural history collections provide an invaluable basis for systematics, ecology, and conservation. Besides being an important source of DNA, museum specimens may also contain a plethora of natural products. Especially, dried insect collections represent a global repository with billions of inventoried vouchers. Due to their vast diversity, insects possess a great variety of defensive compounds, which they either produce autogenously or derive from the environment. Here, we present a case study on fireflies (Coleoptera: Lampyridae), which produce bufadienolides as a defense against predators. These toxins belong to the cardiotonic steroids, which are used for the treatment of cardiac diseases and specifically inhibit the animal enzyme Na+/K+-ATPase. Bufadienolides have been reported from only seven out of approximately 2000 described firefly species. Using a non-destructive approach, we screened 72 dry coleopteran specimens for bufadienolides using HPLC-DAD and HPLC-MS. We found bufadienolides including five novel compounds in 21 species of the subfamily Lampyrinae. The absence of bufadienolides in the phylogenetically related net-winged beetles (Lycidae) and the lampyrid subfamilies Luciolinae and Lamprohizinae indicates a phylogenetic pattern of bufadienolide synthesis. Our results emphasize the value of natural history collections as an archive of chemical information for ecological and evolutionary basic research and as an untapped source for novel bioactive compounds.
Collapse
Affiliation(s)
- Andreas Berger
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany; (A.B.); (T.D.)
| | - Georg Petschenka
- Department of Applied Entomology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Strasse 5, 70599 Stuttgart, Germany
| | - Thomas Degenkolb
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany; (A.B.); (T.D.)
| | | | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany; (A.B.); (T.D.)
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergs-weg 12, 35392 Giessen, Germany
| |
Collapse
|
45
|
Inouye S. Multiple Cypridina Luciferase Genes in the Genome of Individual Ostracods, Vargula hilgendorfii (Cypridina hilgendorfii). Photochem Photobiol 2021; 98:1293-1302. [PMID: 34181758 DOI: 10.1111/php.13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/24/2021] [Indexed: 11/28/2022]
Abstract
The genomic structure of the Cypridina luciferase gene in Vargula hilgendorfii (formerly Cypridina hilgendorfii) was determined with three λ phage clones (λ34, λ45, and λ61). The luciferase genes in clones λ34 and λ61 consisted of 13 exons and 12 introns, and clone λ45 only contained exons 1-5. The splicing sites of the luciferase genes in λ34 and λ61 were conserved completely with the consensus sequence. The translated luciferases had 555 amino acid residues, which were over 98.6% identical to those of cDNA clones as previously reported. In contrast, each intron in clones λ34, λ45, and λ61 varied significantly in length. To explain the variation of intron length among the three V. hilgendorfii luciferase genes, genomic DNA was isolated from a single V. hilgendorfii specimen and the regions from exon 1-3 of the luciferase gene were amplified by polymerase chain reaction (PCR). PCR products with various lengths were detected and were confirmed as the luciferase gene fragments by Southern blot analysis. Furthermore, DNA sequence analysis indicated that at least seven luciferase gene groups might be present in the genome of a single specimen. Thus, multiple Cypridina luciferase genes exist in the genome of a single V. hilgendorfii specimen.
Collapse
Affiliation(s)
- Satoshi Inouye
- Yokohama Research Center, JNC Co, 5-1 Okawa, Kanazawa-ku, Yokohama, 236-8605, Japan
| |
Collapse
|
46
|
Mori N, Noge K. Recent advances in chemical ecology: complex interactions mediated by molecules. Biosci Biotechnol Biochem 2021; 85:33-41. [PMID: 33577654 DOI: 10.1093/bbb/zbaa034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022]
Abstract
Chemical ecology is the highly interdisciplinary study of biochemicals that mediate the behavior of organisms and the regulation of physiological changes that alter intraspecific and/or interspecific interactions. Significant advances are often achieved through the collaboration of chemists and biologists working to understand organismal survival strategies with an eye on the development of targeted technologies for controlling agricultural, forestry, medical, and veterinary pests in a sustainable world. We highlight recent advances in chemical ecology from multiple viewpoints and discuss future prospects for applications.
Collapse
Affiliation(s)
- Naoki Mori
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Koji Noge
- Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjyo-Nakano, Akita, Japan
| |
Collapse
|
47
|
Ge X, Yuan L, Kang Y, Liu T, Liu H, Yang Y. Characterization of the First Complete Mitochondrial Genome of Cyphonocerinae (Coleoptera: Lampyridae) with Implications for Phylogeny and Evolution of Fireflies. INSECTS 2021; 12:570. [PMID: 34206376 PMCID: PMC8307346 DOI: 10.3390/insects12070570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/11/2021] [Accepted: 06/19/2021] [Indexed: 11/16/2022]
Abstract
Complete mitochondrial genomes are valuable resources for phylogenetics in insects. The Cyphonoceridae represents an important lineage of fireflies. However, no complete mitogenome is available until now. Here, the first complete mitochondrial genome from this subfamily was reported, with Cyphonocerus sanguineus klapperichi as a representative. The mitogenome of C. sanguineus klapperichi was conserved in the structure and comparable to that of others in size and A+T content. Nucleotide composition was A+T-biased, and all genes exhibited a positive AT-skew and negative GC-skew. Two types of tandem repeat sequence units were present in the control region (136 bp × 2; 171 bp × 2 + 9 bp). For reconstruction of Lampyridae's phylogeny, three different datasets were analyzed by both maximum likelihood (ML) and Bayesian inference (BI) methods. As a result, the same topology was produced by both ML analysis of 13 protein-coding genes and 2rRNA and BI analysis of 37 genes. The results indicated that Lampyridae, Lampyrinae, Luciolinae (excluding Emeia) were monophyletic, but Ototretinae was paraphyletic, of which Stenocladius was recovered as the sister taxon to all others, while Drilaster was more closely related to Cyphonocerinae; Phturinae + Emeia were included in a monophyletic clade, which comprised sister groups with Lampyridae. Vesta was deeply rooted in the Luciolinae.
Collapse
Affiliation(s)
- Xueying Ge
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (X.G.); (L.Y.); (Y.K.); (T.L.)
| | - Lilan Yuan
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (X.G.); (L.Y.); (Y.K.); (T.L.)
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Ya Kang
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (X.G.); (L.Y.); (Y.K.); (T.L.)
| | - Tong Liu
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (X.G.); (L.Y.); (Y.K.); (T.L.)
| | - Haoyu Liu
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (X.G.); (L.Y.); (Y.K.); (T.L.)
| | - Yuxia Yang
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (X.G.); (L.Y.); (Y.K.); (T.L.)
| |
Collapse
|
48
|
Martin GJ, Lower SE, Suvorov A, Bybee SM. Molecular Evolution of Phototransduction Pathway Genes in Nocturnal and Diurnal Fireflies (Coleoptera: Lampyridae). INSECTS 2021; 12:insects12060561. [PMID: 34207188 PMCID: PMC8235688 DOI: 10.3390/insects12060561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 11/16/2022]
Abstract
Most organisms are dependent on sensory cues from their environment for survival and reproduction. Fireflies (Coleoptera: Lampyridae) represent an ideal system for studying sensory niche adaptation due to many species relying on bioluminescent communication; as well as a diversity of ecologies. Here; using transcriptomics; we examine the phototransduction pathway in this non-model organism; and provide some of the first evidence for positive selection in the phototransduction pathway beyond opsins in beetles. Evidence for gene duplications within Lampyridae are found in inactivation no afterpotential C and inactivation no afterpotential D. We also find strong support for positive selection in arrestin-2; inactivation no afterpotential D; and transient receptor potential-like; with weak support for positive selection in guanine nucleotide-binding protein G(q) subunit alpha and neither inactivation nor afterpotential C. Taken with other recent work in flies; butterflies; and moths; this represents an exciting new avenue of study as we seek to further understand diversification and constraint on the phototransduction pathway in light of organism ecology.
Collapse
Affiliation(s)
- Gavin J. Martin
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; (A.S.); (S.M.B.)
- Monte L. Bean Museum, Brigham Young University, Provo, UT 84602, USA
- Correspondence:
| | - Sarah E. Lower
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA;
| | - Anton Suvorov
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; (A.S.); (S.M.B.)
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Seth M. Bybee
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; (A.S.); (S.M.B.)
- Monte L. Bean Museum, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
49
|
Kryuchkov M, Savitsky V, Wilts BD, Gray E, Katanaev VL. Light Polarization by Biological Nanocoatings. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23481-23488. [PMID: 33974394 DOI: 10.1021/acsami.1c05049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Light plays paramount functions for living beings in nature. In addition to color, the polarization of light is used by many animals for navigation and communication. In this study, we describe the light polarizing role of special nanostructures coating cuticular surfaces of diverse arthropods. These structures are built as parallel nanoscale ridges covering the eyes of the sunlight-navigating spider Drassodes lapidosus and of the water pond-swarming black fly Simulium vittatum, as well as the light-emitting abdominal lantern of the firefly Aquatica lateralis. Exact topography and dimensions of the parallel nanoridges provide different light polarizing efficiencies and wavelength sensitivity. Optical modeling confirms that the nanoscale ridges are responsible for the spectral polarization dependency. Co-opting from our recent work on the self-assembly of Drosophila corneal nanostructures, we engineer arthropod-like parallel nanoridges on artificial surfaces, which recapitulate the light polarization effects. Our work highlights the fundamental importance of nanocoatings in arthropods for the light polarization management and provides a new biomimetic approach to produce ordered nanostructures under mild conditions.
Collapse
Affiliation(s)
- Mikhail Kryuchkov
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CMU, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
| | - Vladimir Savitsky
- Zoological Museum of the Lomonosov Moscow State University, Bol'shaya Nikitskaya str. 2, Moscow 125009, Russian Federation
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Elmer Gray
- Department of Entomology, University of Georgia, Biological Sciences Building 413, Georgia 30602 Athens, United States
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CMU, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
- School of Biomedicine, Far Eastern Federal University, Sukhanova Street 8, Vladivostok 690922, Russian Federation
| |
Collapse
|
50
|
Douglas HB, Kundrata R, Brunke AJ, Escalona HE, Chapados JT, Eyres J, Richter R, Savard K, Ślipiński A, McKenna D, Dettman JR. Anchored Phylogenomics, Evolution and Systematics of Elateridae: Are All Bioluminescent Elateroidea Derived Click Beetles? BIOLOGY 2021; 10:biology10060451. [PMID: 34063961 PMCID: PMC8224040 DOI: 10.3390/biology10060451] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022]
Abstract
Simple Summary In the era of phylogenomics, new molecular sequencing and computational techniques can aid in resolving phylogenetic relationships that were previously intractable by morphological or limited molecular data. In this study, we used anchored hybrid enrichment—designed to recover DNA sequences from hundreds of single-copy orthologous genes—to resolve the phylogeny of the Elateridae (click-beetles) and establish their placement within superfamily Elateroidea. The resulting data were compatible with published transcriptomes, allowing for integrating our dataset with previously published data. Using a wide range of analyses on these molecular data, we tested hypotheses long-debated in the morphological literature and also the robustness of our phylogenetic inferences. Our results placed the bioluminescent lampyroids (fireflies and relatives) within the click-beetles, challenging the current classification of Elateridae, Lampyridae, Phengodidae, and Rhagophthalmidae. However, despite the large amount of molecular data analyzed, a few nodes with conflicting phylogenetic signals could not be unambiguously resolved. Overall, we recovered well-resolved tree topologies that will serve as a framework for further systematic and evolutionary studies of click-beetles. This work further demonstrates that the click-beetle lineage contains not only pest wireworms, but also many species that benefit agriculture. Abstract Click-beetles (Coleoptera: Elateridae) are an abundant, diverse, and economically important beetle family that includes bioluminescent species. To date, molecular phylogenies have sampled relatively few taxa and genes, incompletely resolving subfamily level relationships. We present a novel probe set for anchored hybrid enrichment of 2260 single-copy orthologous genes in Elateroidea. Using these probes, we undertook the largest phylogenomic study of Elateroidea to date (99 Elateroidea, including 86 Elateridae, plus 5 non-elateroid outgroups). We sequenced specimens from 88 taxa to test the monophyly of families, subfamilies and tribes. Maximum likelihood and coalescent phylogenetic analyses produced well-resolved topologies. Notably, the included non-elaterid bioluminescent families (Lampyridae + Phengodidae + Rhagophthalmidae) form a clade within the otherwise monophyletic Elateridae, and Sinopyrophoridae may not warrant recognition as a family. All analyses recovered the elaterid subfamilies Elaterinae, Agrypninae, Cardiophorinae, Negastriinae, Pityobiinae, and Tetralobinae as monophyletic. Our results were conflicting on whether the hypnoidines are sister to Dendrometrinae or Cardiophorinae + Negastriinae. Moreover, we show that fossils with the eucnemid-type frons and elongate cylindrical shape may belong to Eucnemidae, Elateridae: Thylacosterninae, ancestral hard-bodied cantharoids or related extinct groups. Proposed taxonomic changes include recognition of Plastocerini as a tribe in Dendrometrinae and Hypnoidinae stat. nov. as a subfamily within Elateridae.
Collapse
Affiliation(s)
- Hume B. Douglas
- Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada; (A.J.B.); (J.T.C.); (J.E.); (R.R.); (K.S.); (J.R.D.)
- Correspondence:
| | - Robin Kundrata
- Department of Zoology, Faculty of Science, Palacky University, 17. listopadu 50, 771 46 Olomouc, Czech Republic;
| | - Adam J. Brunke
- Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada; (A.J.B.); (J.T.C.); (J.E.); (R.R.); (K.S.); (J.R.D.)
| | - Hermes E. Escalona
- Australian National Insect Collection, National Collections Australia, CSIRO, Canberra, ACT 2601, Australia; (H.E.E.); (A.Ś.)
| | - Julie T. Chapados
- Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada; (A.J.B.); (J.T.C.); (J.E.); (R.R.); (K.S.); (J.R.D.)
| | - Jackson Eyres
- Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada; (A.J.B.); (J.T.C.); (J.E.); (R.R.); (K.S.); (J.R.D.)
| | - Robin Richter
- Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada; (A.J.B.); (J.T.C.); (J.E.); (R.R.); (K.S.); (J.R.D.)
| | - Karine Savard
- Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada; (A.J.B.); (J.T.C.); (J.E.); (R.R.); (K.S.); (J.R.D.)
| | - Adam Ślipiński
- Australian National Insect Collection, National Collections Australia, CSIRO, Canberra, ACT 2601, Australia; (H.E.E.); (A.Ś.)
| | - Duane McKenna
- Center for Biodiversity Research, Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA;
| | - Jeremy R. Dettman
- Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada; (A.J.B.); (J.T.C.); (J.E.); (R.R.); (K.S.); (J.R.D.)
| |
Collapse
|