1
|
Innocent TM, Sapountzis P, Zhukova M, Poulsen M, Schiøtt M, Nash DR, Boomsma JJ. From the inside out: Were the cuticular Pseudonocardia bacteria of fungus-farming ants originally domesticated as gut symbionts? PNAS NEXUS 2024; 3:pgae391. [PMID: 39411080 PMCID: PMC11474983 DOI: 10.1093/pnasnexus/pgae391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/20/2024] [Indexed: 10/19/2024]
Abstract
The mutualistic interaction specificity between attine ants and antibiotic-producing Actinobacteria has been controversial because Pseudonocardia strains cannot always be isolated from worker cuticles across attine ant species, while other actinobacteria can apparently replace Pseudonocardia and also inhibit growth of Escovopsis mycopathogens. Here we report that across field samples of Panamanian species: (i) Cuticular Pseudonocardia were largely restricted to species in the crown of the attine phylogeny and their appearance likely coincided with the first attines colonizing Central/North America. (ii) The phylogenetically basal attines almost always had cuticular associations with other Actinobacteria than Pseudonocardia. (iii) The sub-cuticular glands nourishing cuticular bacteria appear to be homologous throughout the phylogeny, consistent with an ancient general attine-Actinobacteria association. (iv) The basal attine species investigated always had Pseudonocardia as gut symbionts while Pseudonocardia presence appeared mutually exclusive between cuticular and gut microbiomes. (v) Gut-associated Pseudonocardia were phylogenetically ancestral while cuticular symbionts formed a derived crown group within the Pseudonocardia phylogeny. We further show that laboratory colonies often secondarily acquire cuticular Actinobacteria that they do not associate with in the field, suggesting that many previous studies were uninformative for questions of co-adaptation in the wild. An exhaustive literature survey showed that published studies concur with our present results, provided that they analyzed field colonies and that Actinobacteria were specifically isolated from worker cuticles shortly after field collection. Our results offer several testable hypotheses for a better overall understanding of attine-Pseudonocardia interaction dynamics and putative coevolution throughout the Americas.
Collapse
Affiliation(s)
- Tabitha M Innocent
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Panagiotis Sapountzis
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
- Medis 0454, INRAE, Centre INRAE Auvergne-Rhône-Alpes, Site de Theix 63122, France
| | - Mariya Zhukova
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Michael Poulsen
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Morten Schiøtt
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - David R Nash
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
2
|
Rødsgaard-Jørgensen A, Leal-Dutra CA, de Santana SF, Jensen AR, Marques RE, Aguiar ERGR, Shik JZ. Two +ssRNA mycoviruses cohabiting the fungal cultivar of leafcutter ants. Virol J 2024; 21:211. [PMID: 39232804 PMCID: PMC11373429 DOI: 10.1186/s12985-024-02465-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024] Open
Abstract
Leafcutter ants are dominant herbivores in the Neotropics and rely on a fungus (Leucoagaricus gongylophorus) to transform freshly gathered leaves into a source of nourishment rather than consuming the vegetation directly. Here we report two virus-like particles that were isolated from L. gongylophorus and observed using transmission electron microscopy. RNA sequencing identified two +ssRNA mycovirus strains, Leucoagaricus gongylophorus tymo-like virus 1 (LgTlV1) and Leucoagaricus gongylophorus magoulivirus 1 (LgMV1). Genome annotation of LgTlV1 (7401 nt) showed conserved domains for methyltransferase, endopeptidase, viral RNA helicase, and RNA-dependent RNA polymerase (RdRp). The smaller genome of LgMV1 (2636 nt) contains one open reading frame encoding an RdRp. While we hypothesize these mycoviruses function as symbionts in leafcutter farming systems, further study will be needed to test whether they are mutualists, commensals, or parasites.
Collapse
Affiliation(s)
- Asta Rødsgaard-Jørgensen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Caio Ambrosio Leal-Dutra
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
| | - Sabrina Ferreira de Santana
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Asger Roland Jensen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | | | - Jonathan Zvi Shik
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Smithsonian Tropical Research Institute, Apartado Postal, 0843-03092, Balboa, Ancon, Panama
| |
Collapse
|
3
|
Yin PK, Xiao H, Yang ZB, Yang DS, Yang YH. Shotgun metagenomics reveals the gut microbial diversity and functions in Vespa mandarinia (Hymenoptera: Vespidae) at multiple life stages. Front Microbiol 2024; 15:1288051. [PMID: 38529182 PMCID: PMC10961340 DOI: 10.3389/fmicb.2024.1288051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 02/12/2024] [Indexed: 03/27/2024] Open
Abstract
Wasps play important roles as predators and pollinators in the ecosystem. The Jingpo minority residing in Yunnan Province, China, has a traditional practice of using wine infused with mature wasps as a customary remedy for managing rheumatoid arthritis. The larva of the wasp is also a tasteful folk dish that has created a tremendous market. There is a paucity of survival knowledge, which has greatly restricted their potential applications in food and healthcare. Recent research has highlighted the importance of gut microbiota in insect growth. Nevertheless, there is still a lack of understanding regarding the composition, changes, and functions of the gut microbiota in Vespa mandarinia during development. In this research, the gut microbiota were investigated across three growth stages of Vespa mandarinia using a metagenomic technology. The result revealed that there are significant variations in the proportion of main gut microbes during the metamorphosis of Vespa mandarinia. Tenericutes were found to dominate during the larval stage, while Proteobacteria emerged as the dominant group post-pupation. Through a comprehensive analysis of the gut microbiota metagenome, this study revealed functional differences in the wasp gut microbiota at various growth stages. During the larval stage, the gut microbiota plays a central role in promoting metabolism. Following pupation, the gut microbiota exhibited diversified functions, likely due to the complex environments and diverse food sources encountered after metamorphosis. These functions included amino acid metabolism, compound degradation, and defense mechanisms. This research provides an extensive dataset on the gut microbiota during the metamorphosis of Vespa mandarinia, contributing to a deeper understanding of the influence of gut microbiota on wasp growth. Furthermore, this study uncovers a unique microbial treasure within insect guts, which is important for advancing the application of wasps in the fields of food and medicine.
Collapse
Affiliation(s)
- Peng-Kai Yin
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, China
- College of Pharmacy, Dali University, Dali, China
| | - Huai Xiao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, China
- College of Pharmacy, Dali University, Dali, China
| | - Zhi-Bin Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, China
- College of Pharmacy, Dali University, Dali, China
| | - Da-Song Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, China
- College of Pharmacy, Dali University, Dali, China
| | - Yin-He Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, China
- College of Pharmacy, Dali University, Dali, China
| |
Collapse
|
4
|
Matteau D, Duval A, Baby V, Rodrigue S. Mesoplasma florum: a near-minimal model organism for systems and synthetic biology. Front Genet 2024; 15:1346707. [PMID: 38404664 PMCID: PMC10884336 DOI: 10.3389/fgene.2024.1346707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Mesoplasma florum is an emerging model organism for systems and synthetic biology due to its small genome (∼800 kb) and fast growth rate. While M. florum was isolated and first described almost 40 years ago, many important aspects of its biology have long remained uncharacterized due to technological limitations, the absence of dedicated molecular tools, and since this bacterial species has not been associated with any disease. However, the publication of the first M. florum genome in 2004 paved the way for a new era of research fueled by the rise of systems and synthetic biology. Some of the most important studies included the characterization and heterologous use of M. florum regulatory elements, the development of the first replicable plasmids, comparative genomics and transposon mutagenesis, whole-genome cloning in yeast, genome transplantation, in-depth characterization of the M. florum cell, as well as the development of a high-quality genome-scale metabolic model. The acquired data, knowledge, and tools will greatly facilitate future genome engineering efforts in M. florum, which could next be exploited to rationally design and create synthetic cells to advance fundamental knowledge or for specific applications.
Collapse
Affiliation(s)
- Dominick Matteau
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Anthony Duval
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Vincent Baby
- Centre de diagnostic vétérinaire de l'Université de Montréal, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Sébastien Rodrigue
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
5
|
Bringhurst B, Greenwold M, Kellner K, Seal JN. Symbiosis, dysbiosis and the impact of horizontal exchange on bacterial microbiomes in higher fungus-gardening ants. Sci Rep 2024; 14:3231. [PMID: 38332146 PMCID: PMC10853281 DOI: 10.1038/s41598-024-53218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Advances in our understanding of symbiotic stability have demonstrated that microorganisms are key to understanding the homeostasis of obligate symbioses. Fungus-gardening ants are excellent model systems for exploring how microorganisms may be involved in symbiotic homeostasis as the host and symbionts are macroscopic and can be easily experimentally manipulated. Their coevolutionary history has been well-studied; examinations of which have depicted broad clade-to-clade specificity between the ants and fungus. Few studies hitherto have addressed the roles of microbiomes in stabilizing these associations. Here, we quantified changes in microbiome structure as a result of experimentally induced horizontal exchange of symbionts. This was done by performing cross-fostering experiments forcing ants to grow novel fungi and comparing known temporally unstable (undergoing dysbiosis) and stable combinations. We found that fungus-gardening ants alter their unstable, novel garden microbiomes into configurations like those found in native gardens. Patterns of dysbiosis/symbiosis appear to be predictable in that two related species with similar specificity patterns also show similar patterns of microbial change, whereas a species with more relaxed specificity does not show such microbiome change or restructuring when growing different fungi. It appears that clade-to-clade specificity patterns are the outcomes of community-level interactions that promote stability or cause symbiotic collapse.
Collapse
Affiliation(s)
- Blake Bringhurst
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 757998, USA
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, 1315 Kinnear Rd, Columbus, OH, 43212, USA
| | - Matthew Greenwold
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 757998, USA
| | - Katrin Kellner
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 757998, USA
| | - Jon N Seal
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 757998, USA.
| |
Collapse
|
6
|
Valdivia C, Newton JA, von Beeren C, O'Donnell S, Kronauer DJC, Russell JA, Łukasik P. Microbial symbionts are shared between ants and their associated beetles. Environ Microbiol 2023; 25:3466-3483. [PMID: 37968789 DOI: 10.1111/1462-2920.16544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023]
Abstract
The transmission of microbial symbionts across animal species could strongly affect their biology and evolution, but our understanding of transmission patterns and dynamics is limited. Army ants (Formicidae: Dorylinae) and their hundreds of closely associated insect guest species (myrmecophiles) can provide unique insights into interspecific microbial symbiont sharing. Here, we compared the microbiota of workers and larvae of the army ant Eciton burchellii with those of 13 myrmecophile beetle species using 16S rRNA amplicon sequencing. We found that the previously characterized specialized bacterial symbionts of army ant workers were largely absent from ant larvae and myrmecophiles, whose microbial communities were usually dominated by Rickettsia, Wolbachia, Rickettsiella and/or Weissella. Strikingly, different species of myrmecophiles and ant larvae often shared identical 16S rRNA genotypes of these common bacteria. Protein-coding gene sequences confirmed the close relationship of Weissella strains colonizing army ant larvae, some workers and several myrmecophile species. Unexpectedly, these strains were also similar to strains infecting dissimilar animals inhabiting very different habitats: trout and whales. Together, our data show that closely interacting species can share much of their microbiota, and some versatile microbial species can inhabit and possibly transmit across a diverse range of hosts and environments.
Collapse
Affiliation(s)
- Catalina Valdivia
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Justin A Newton
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Christoph von Beeren
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, USA
| | - Sean O'Donnell
- Department of Biodiversity, Earth & Environmental Science, Drexel University, Philadelphia, Pennsylvania, USA
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Aubé J, Cambon-Bonavita MA, Velo-Suárez L, Cueff-Gauchard V, Lesongeur F, Guéganton M, Durand L, Reveillaud J. A novel and dual digestive symbiosis scales up the nutrition and immune system of the holobiont Rimicaris exoculata. MICROBIOME 2022; 10:189. [PMID: 36333777 PMCID: PMC9636832 DOI: 10.1186/s40168-022-01380-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND In deep-sea hydrothermal vent areas, deprived of light, most animals rely on chemosynthetic symbionts for their nutrition. These symbionts may be located on their cuticle, inside modified organs, or in specialized cells. Nonetheless, many of these animals have an open and functional digestive tract. The vent shrimp Rimicaris exoculata is fueled mainly by its gill chamber symbionts, but also has a complete digestive system with symbionts. These are found in the shrimp foregut and midgut, but their roles remain unknown. We used genome-resolved metagenomics on separate foregut and midgut samples, taken from specimens living at three contrasted sites along the Mid-Atlantic Ridge (TAG, Rainbow, and Snake Pit) to reveal their genetic potential. RESULTS We reconstructed and studied 20 Metagenome-Assembled Genomes (MAGs), including novel lineages of Hepatoplasmataceae and Deferribacteres, abundant in the shrimp foregut and midgut, respectively. Although the former showed streamlined reduced genomes capable of using mostly broken-down complex molecules, Deferribacteres showed the ability to degrade complex polymers, synthesize vitamins, and encode numerous flagellar and chemotaxis genes for host-symbiont sensing. Both symbionts harbor a diverse set of immune system genes favoring holobiont defense. In addition, Deferribacteres were observed to particularly colonize the bacteria-free ectoperitrophic space, in direct contact with the host, elongating but not dividing despite possessing the complete genetic machinery necessary for this. CONCLUSION Overall, these data suggest that these digestive symbionts have key communication and defense roles, which contribute to the overall fitness of the Rimicaris holobiont. Video Abstract.
Collapse
Affiliation(s)
- Johanne Aubé
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Marie-Anne Cambon-Bonavita
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Lourdes Velo-Suárez
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France and Centre Brestois d’Analyse du Microbiote (CBAM), Brest University Hospital, Brest, France
| | - Valérie Cueff-Gauchard
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Françoise Lesongeur
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Marion Guéganton
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Lucile Durand
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Julie Reveillaud
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
- MIVEGEC, Univ. Montpellier, INRAe, CNRS, IRD, Montpellier, France
| |
Collapse
|
8
|
Teseo S, Otani S, Brinch C, Leroy S, Ruiz P, Desvaux M, Forano E, Aarestrup FM, Sapountzis P. A global phylogenomic and metabolic reconstruction of the large intestine bacterial community of domesticated cattle. MICROBIOME 2022; 10:155. [PMID: 36155629 PMCID: PMC9511753 DOI: 10.1186/s40168-022-01357-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/24/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND The large intestine is a colonization site of beneficial microbes complementing the nutrition of cattle but also of zoonotic and animal pathogens. Here, we present the first global gene catalog of cattle fecal microbiomes, a proxy of the large intestine microbiomes, from 436 metagenomes from six countries. RESULTS Phylogenomics suggested that the reconstructed genomes and their close relatives form distinct branches and produced clustering patterns that were reminiscent of the metagenomics sample origin. Bacterial taxa had distinct metabolic profiles, and complete metabolic pathways were mainly linked to carbohydrates and amino acids metabolism. Dietary changes affected the community composition, diversity, and potential virulence. However, predicted enzymes, which were part of complete metabolic pathways, remained present, albeit encoded by different microbes. CONCLUSIONS Our findings provide a global insight into the phylogenetic relationships and the metabolic potential of a rich yet understudied bacterial community and suggest that it provides valuable services to the host. However, we tentatively infer that members of that community are not irreplaceable, because similar to previous findings, symbionts of complex bacterial communities of mammals are expendable if there are substitutes that can perform the same task. Video Abstract.
Collapse
Affiliation(s)
- S Teseo
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - S Otani
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - C Brinch
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - S Leroy
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - P Ruiz
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - M Desvaux
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - E Forano
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - F M Aarestrup
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - P Sapountzis
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France.
| |
Collapse
|
9
|
Zhukova M, Sapountzis P, Schiøtt M, Boomsma JJ. Phylogenomic analysis and metabolic role reconstruction of mutualistic Rhizobiales hindgut symbionts of Acromyrmex leaf-cutting ants. FEMS Microbiol Ecol 2022; 98:6652133. [PMID: 35906195 DOI: 10.1093/femsec/fiac084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/03/2022] [Accepted: 07/27/2022] [Indexed: 11/12/2022] Open
Abstract
Rhizobiales are well-known plant-root nitrogen-fixing symbionts, but the functions of insect-associated Rhizobiales are poorly understood. We obtained genomes of three strains associated with Acromyrmex leaf-cutting ants and show that, in spite of being extracellular gut symbionts, they lost all pathways for essential amino acid biosynthesis, making them fully dependent on their hosts. Comparison with 54 Rhizobiales genomes showed that all insect-associated Rhizobiales lost the ability to fix nitrogen and that the Acromyrmex symbionts had exceptionally also lost the urease genes. However, the Acromyrmex strains share biosynthesis pathways for riboflavin vitamin, queuosine and a wide range of antioxidant enzymes likely to be beneficial for the ant fungus-farming symbiosis. We infer that the Rhizobiales symbionts catabolize excess of fungus-garden-derived arginine to urea, supplementing complementary Mollicutes symbionts that turn arginine into ammonia and infer that these combined symbiont activities stabilize the fungus-farming mutualism. Similar to the Mollicutes symbionts, the Rhizobiales species have fully functional CRISPR/Cas and R-M phage defenses, suggesting that these symbionts are important enough for the ant hosts to have precluded the evolution of metabolically cheaper defenseless strains.
Collapse
Affiliation(s)
- Mariya Zhukova
- Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Panagiotis Sapountzis
- Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Morten Schiøtt
- Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Abstract
Within social insect colonies, microbiomes often differ between castes due to their different functional roles and between colony locations. Trachymyrmex septentrionalis fungus-growing ants form colonies throughout the eastern United States and northern Mexico that include workers, female and male alates (unmated reproductive castes), larvae, and pupae. How T. septentrionalis microbiomes vary across this geographic range and between castes is unknown. Our sampling of individual ants from colonies across the eastern United States revealed a conserved T. septentrionalis worker ant microbiome and revealed that worker ant microbiomes are more conserved within colonies than between them. A deeper sampling of individual ants from two colonies that included all available castes (pupae, larvae, workers, and female and male alates), from both before and after adaptation to controlled laboratory conditions, revealed that ant microbiomes from each colony, caste, and rearing condition were typically conserved within but not between each sampling category. Tenericute bacterial symbionts were especially abundant in these ant microbiomes and varied widely in abundance between sampling categories. This study demonstrates how individual insect colonies primarily drive the composition of their microbiomes and shows that these microbiomes are further modified by developmental differences between insect castes and the different environmental conditions experienced by each colony. IMPORTANCE This study investigates microbiome assembly in the fungus-growing ant Trachymyrmex septentrionalis, showing how colony, caste, and lab adaptation influence the microbiome and revealing unique patterns of mollicute symbiont abundance. We find that ant microbiomes differ strongly between colonies but less so within colonies. Microbiomes of different castes and following lab adaptation also differ in a colony-specific manner. This study advances our understanding of the nature of individuality in social insect microbiomes and cautions against the common practice of only sampling a limited number of populations to understand microbiome diversity and function.
Collapse
|
11
|
Béchade B, Hu Y, Sanders JG, Cabuslay CS, Łukasik P, Williams BR, Fiers VJ, Lu R, Wertz JT, Russell JA. Turtle ants harbor metabolically versatile microbiomes with conserved functions across development and phylogeny. FEMS Microbiol Ecol 2022; 98:6602351. [PMID: 35660864 DOI: 10.1093/femsec/fiac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/14/2022] Open
Abstract
Gut bacterial symbionts can support animal nutrition by facilitating digestion and providing valuable metabolites. However, changes in symbiotic roles between immature and adult stages are not well documented, especially in ants. Here, we explored the metabolic capabilities of microbiomes sampled from herbivorous turtle ant (Cephalotes sp.) larvae and adult workers through (meta)genomic screening and in vitro metabolic assays. We reveal that larval guts harbor bacterial symbionts with impressive metabolic capabilities, including catabolism of plant and fungal recalcitrant dietary fibers and energy-generating fermentation. Additionally, several members of the specialized adult gut microbiome, sampled downstream of an anatomical barrier that dams large food particles, show a conserved potential to depolymerize many dietary fibers. Symbionts from both life stages have the genomic capacity to recycle nitrogen and synthesize amino acids and B-vitamins. With help of their gut symbionts, including several bacteria likely acquired from the environment, turtle ant larvae may aid colony digestion and contribute to colony-wide nitrogen, B-vitamin and energy budgets. In addition, the conserved nature of the digestive capacities among adult-associated symbionts suggests that nutritional ecology of turtle ant colonies has long been shaped by specialized, behaviorally-transferred gut bacteria with over 45 million years of residency.
Collapse
Affiliation(s)
- Benoît Béchade
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Yi Hu
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America.,State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jon G Sanders
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America
| | - Christian S Cabuslay
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Piotr Łukasik
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Bethany R Williams
- Department of Biology, Calvin College, Grand Rapids, Michigan, United States of America
| | - Valerie J Fiers
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Richard Lu
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - John T Wertz
- Department of Biology, Calvin College, Grand Rapids, Michigan, United States of America
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
12
|
Dai X, Chen L, Liu M, Liu Y, Jiang S, Xu T, Wang A, Yang S, Wei W. Effect of 6-Methoxybenzoxazolinone on the Cecal Microbiota of Adult Male Brandt's Vole. Front Microbiol 2022; 13:847073. [PMID: 35422782 PMCID: PMC9002351 DOI: 10.3389/fmicb.2022.847073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
The anti-microbial effects of plant secondary metabolite (PSM) 6-methoxybenzoxazolinone (6-MBOA) have been overlooked. This study investigated the effect of 6-MBOA on the cecal microbiota of adult male Brandt’s voles (Lasiopodomys brandtii), to evaluate its effect on the physiology of mammalian herbivores. The growth of voles was inhibited by 6-MBOA. A low dose of 6-MBOA enhanced the observed species, as well as the Chao1 and abundance-based coverage estimator (ACE) indices and introduced changes in the structure of cecal microbiota. The abundance of the phylum Tenericutes, classes Mollicutes and Negativicutes, order Selenomonadales, families Ruminococcaceae and Veillonellaceae, genera Quinella, Caproiciproducens, Anaerofilum, Harryflintia, and unidentified Spirochaetaceae in the cecal microbiota was enhanced upon administration of a low dose of 6-MBOA, which also inhibited glucose metabolism and protein digestion and absorption in the cecal microbiota. 6-MBOA treatment also stimulated butyrate production and dose-dependently enhanced the metabolism of xenobiotics in the cecal microbiome. Our findings indicate that 6-MBOA can affect Brandt’s voles by inducing changes in the abundance of cecal bacteria, thereby, altering the contents of short-chain fatty acids (SCFAs) and pathway intermediates, ultimately inhibiting the growth of voles. Our research suggests that 6-MBOA could potentially act as a digestion-inhibiting PSM in the interaction between mammalian herbivores and plants.
Collapse
Affiliation(s)
- Xin Dai
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Lin Chen
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Mengyue Liu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Ying Liu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Siqi Jiang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Tingting Xu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Aiqin Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Shengmei Yang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Wanhong Wei
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Zani RDOA, Ferro M, Bacci M. Three phylogenetically distinct and culturable diazotrophs are perennial symbionts of leaf-cutting ants. Ecol Evol 2021; 11:17686-17699. [PMID: 35003632 PMCID: PMC8717316 DOI: 10.1002/ece3.8213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 09/06/2021] [Accepted: 09/21/2021] [Indexed: 02/04/2023] Open
Abstract
The obligate mutualistic basidiomycete fungus, Leucocoprinus gongylophorus, mediates nutrition of leaf-cutting ants with carbons from vegetal matter. In addition, diazotrophic Enterobacteriales in the fungus garden and intestinal Rhizobiales supposedly mediate assimilation of atmospheric nitrogen, and Entomoplasmatales in the genus Mesoplasma, as well as other yet unidentified strains, supposedly mediate ant assimilation of other compounds from vegetal matter, such as citrate, fructose, and amino acids. Together, these nutritional partners would support the production of high yields of leafcutter biomass. In the present investigation, we propose that three phylogenetically distinct and culturable diazotrophs in the genera Ralstonia, Methylobacterium, and Pseudomonas integrate this symbiotic nutrition network, facilitating ant nutrition on nitrogen. Strains in these genera were often isolated and directly sequenced in 16S rRNA libraries from the ant abdomen, together with the nondiazotrophs Acinetobacter and Brachybacterium. These five isolates were underrepresented in libraries, suggesting that none of them is dominant in vivo. Libraries have been dominated by four uncultured Rhizobiales strains in the genera Liberibacter, Terasakiella, and Bartonella and, only in Acromyrmex ants, by the Entomoplasmatales in the genus Mesoplasma. Acromyrmex also presented small amounts of two other uncultured Entomoplasmatales strains, Entomoplasma and Spiroplasma. The absence of Entomoplasmatales in Atta workers implicates that the association with these bacteria is not mandatory for ant biomass production. Most of the strains that we detected in South American ants were genetically similar with strains previously described in association with leafcutters from Central and North America, indicating wide geographic dispersion, and suggesting fixed ecological services.
Collapse
Affiliation(s)
| | - Milene Ferro
- Centro de Estudos de Insetos Sociais (CEIS)Universidade Estadual Paulista (UNESP)Rio Claro ‐ SPBrazil
| | - Maurício Bacci
- Centro de Estudos de Insetos Sociais (CEIS)Universidade Estadual Paulista (UNESP)Rio Claro ‐ SPBrazil
- Departamento de Biologia Geral e AplicadaUniversidade Estadual Paulista (UNESP)Rio Claro ‐ SPBrazil
| |
Collapse
|
14
|
Worsley SF, Innocent TM, Holmes NA, Al-Bassam MM, Schiøtt M, Wilkinson B, Murrell JC, Boomsma JJ, Yu DW, Hutchings MI. Competition-based screening helps to secure the evolutionary stability of a defensive microbiome. BMC Biol 2021; 19:205. [PMID: 34526023 PMCID: PMC8444595 DOI: 10.1186/s12915-021-01142-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/03/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The cuticular microbiomes of Acromyrmex leaf-cutting ants pose a conundrum in microbiome biology because they are freely colonisable, and yet the prevalence of the vertically transmitted bacteria Pseudonocardia, which contributes to the control of Escovopsis fungus garden disease, is never compromised by the secondary acquisition of other bacterial strains. Game theory suggests that competition-based screening can allow the selective recruitment of antibiotic-producing bacteria from the environment, by providing abundant resources to foment interference competition between bacterial species and by using Pseudonocardia to bias the outcome of competition in favour of antibiotic producers. RESULTS Here, we use RNA-stable isotope probing (RNA-SIP) to confirm that Acromyrmex ants can maintain a range of microbial symbionts on their cuticle by supplying public resources. We then used RNA sequencing, bioassays, and competition experiments to show that vertically transmitted Pseudonocardia strains produce antibacterials that differentially reduce the growth rates of other microbes, ultimately biassing the bacterial competition to allow the selective establishment of secondary antibiotic-producing strains while excluding non-antibiotic-producing strains that would parasitise the symbiosis. CONCLUSIONS Our findings are consistent with the hypothesis that competition-based screening is a plausible mechanism for maintaining the integrity of the co-adapted mutualism between the leaf-cutting ant farming symbiosis and its defensive microbiome. Our results have broader implications for explaining the stability of other complex symbioses involving horizontal acquisition.
Collapse
Affiliation(s)
- Sarah F Worsley
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Tabitha M Innocent
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Neil A Holmes
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - Mahmoud M Al-Bassam
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Morten Schiøtt
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - J Colin Murrell
- School of Environmental Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Jacobus J Boomsma
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Douglas W Yu
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| | - Matthew I Hutchings
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK.
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK.
| |
Collapse
|
15
|
Crumière AJJ, James A, Lannes P, Mallett S, Michelsen A, Rinnan R, Shik JZ. The multidimensional nutritional niche of fungus-cultivar provisioning in free-ranging colonies of a neotropical leafcutter ant. Ecol Lett 2021; 24:2439-2451. [PMID: 34418263 PMCID: PMC9292433 DOI: 10.1111/ele.13865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/01/2021] [Indexed: 11/29/2022]
Abstract
Foraging trails of leafcutter colonies are iconic scenes in the Neotropics, with ants collecting freshly cut plant fragments to provision a fungal food crop. We hypothesised that the fungus‐cultivar's requirements for macronutrients and minerals govern the foraging niche breadth of Atta colombica leafcutter ants. Analyses of plant fragments carried by foragers showed how nutrients from fruits, flowers and leaves combine to maximise cultivar performance. While the most commonly foraged leaves delivered excess protein relative to the cultivar's needs, in vitro experiments showed that the minerals P, Al and Fe may expand the leafcutter foraging niche by enhancing the cultivar's tolerance to protein‐biased substrates. A suite of other minerals reduces cultivar performance in ways that may render plant fragments with optimal macronutrient blends unsuitable for provisioning. Our approach highlights how the nutritional challenges of provisioning a mutualist can govern the multidimensional realised niche available to a generalist insect herbivore.
Collapse
Affiliation(s)
- Antonin J J Crumière
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Aidan James
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Pol Lannes
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Mallett
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Michelsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Riikka Rinnan
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Z Shik
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Smithsonian Tropical Research Institute, Balboa, Ancon, Panama
| |
Collapse
|
16
|
Schapheer C, Pellens R, Scherson R. Arthropod-Microbiota Integration: Its Importance for Ecosystem Conservation. Front Microbiol 2021; 12:702763. [PMID: 34408733 PMCID: PMC8365148 DOI: 10.3389/fmicb.2021.702763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 01/10/2023] Open
Abstract
Recent reports indicate that the health of our planet is getting worse and that genuine transformative changes are pressing. So far, efforts to ameliorate Earth's ecosystem crises have been insufficient, as these often depart from current knowledge of the underlying ecological processes. Nowadays, biodiversity loss and the alterations in biogeochemical cycles are reaching thresholds that put the survival of our species at risk. Biological interactions are fundamental for achieving biological conservation and restoration of ecological processes, especially those that contribute to nutrient cycles. Microorganism are recognized as key players in ecological interactions and nutrient cycling, both free-living and in symbiotic associations with multicellular organisms. This latter assemblage work as a functional ecological unit called "holobiont." Here, we review the emergent ecosystem properties derived from holobionts, with special emphasis on detritivorous terrestrial arthropods and their symbiotic microorganisms. We revisit their relevance in the cycling of recalcitrant organic compounds (e.g., lignin and cellulose). Finally, based on the interconnection between biodiversity and nutrient cycling, we propose that a multicellular organism and its associates constitute an Ecosystem Holobiont (EH). This EH is the functional unit characterized by carrying out key ecosystem processes. We emphasize that in order to meet the challenge to restore the health of our planet it is critical to reduce anthropic pressures that may threaten not only individual entities (known as "bionts") but also the stability of the associations that give rise to EH and their ecological functions.
Collapse
Affiliation(s)
- Constanza Schapheer
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur Universidad de Chile, Santiago, Chile
- Laboratorio de Sistemática y Evolución, Departamento de Silvicultura y Conservación de la Naturaleza, Universidad de Chile, Santiago, Chile
| | - Roseli Pellens
- UMR 7205, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Ecole Pratique de Hautes Etudes, Institut de Systématique, Évolution, Biodiversité, Sorbonne Université, Université des Antilles, Paris, France
| | - Rosa Scherson
- Laboratorio de Sistemática y Evolución, Departamento de Silvicultura y Conservación de la Naturaleza, Universidad de Chile, Santiago, Chile
| |
Collapse
|
17
|
Bacterial Composition and Diversity of the Digestive Tract of Odontomachus monticola Emery and Ectomomyrmex javanus Mayr. INSECTS 2021; 12:insects12020176. [PMID: 33671250 PMCID: PMC7922086 DOI: 10.3390/insects12020176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 01/04/2023]
Abstract
Simple Summary Bacteria are considered to be one of the compelling participants in ant dietary differentiation. The digestive tract of ants is characterized by a developed crop, an elaborate proventriculus, and an infrabuccal pocket, which is a special filtrating structure in the mouthparts, adapting to their special trophallaxis behavior. Ponerine ants are true predators and a primitive ant group; notably, their gut bacterial communities get less attention than herbivorous ants. In this study, we investigated the composition and diversity of bacterial communities in the digestive tract and the infrabuccal pockets of two widely distributed ponerine species (Odontomachus monticola Emery and Ectomomyrmex javanus Mayr) in northwestern China using high-throughput sequencing of the bacterial 16S rRNA gene. The results revealed that, not only do the gut bacterial communities display significant interspecies differences, but they also possess apparent intercolony characteristics. Within each colony, the bacterial communities were highly similar between each gut section (crops, midguts, and hindguts) of workers, but significantly different from their infrabuccal pockets, which were similar to bacterial communities in larvae of O. monticola. The relationship of the bacterial communities among the infrabuccal pockets, gut sections and larvae provide meaningful information to understand the social life and feeding behavior of ants. Abstract Ponerine ants are generalist predators feeding on a variety of small arthropods, annelids, and isopods; however, knowledge of their bacterial communities is rather limited. This study investigated the bacterial composition and diversity in the digestive tract (different gut sections and the infrabuccal pockets (IBPs)) of two ponerine ant species (Odontomachus monticola Emery and Ectomomyrmex javanus Mayr) distributed in northwestern China using high-throughput sequencing. We found that several dominant bacteria that exist in other predatory ants were also detected in these two ponerine ant species, including Wolbachia, Mesoplasma, and Spiroplasma. Bacterial communities of these two ant species were differed significantly from each other, and significant differences were also observed across their colonies, showing distinctive inter-colony characteristics. Moreover, bacterial communities between the gut sections (crops, midguts, and hindguts) of workers were highly similar within colony, but they were clearly different from those in IBPs. Further, bacterial communities in the larvae of O. monticola were similar to those in the IBPs of workers, but significantly different from those in gut sections. We presume that the bacterial composition and diversity in ponerine ants are related to their social behavior and feeding habits, and bacterial communities in the IBPs may play a potential role in their social life.
Collapse
|
18
|
Matteau D, Lachance J, Grenier F, Gauthier S, Daubenspeck JM, Dybvig K, Garneau D, Knight TF, Jacques P, Rodrigue S. Integrative characterization of the near-minimal bacterium Mesoplasma florum. Mol Syst Biol 2020; 16:e9844. [PMID: 33331123 PMCID: PMC7745072 DOI: 10.15252/msb.20209844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
The near-minimal bacterium Mesoplasma florum is an interesting model for synthetic genomics and systems biology due to its small genome (~ 800 kb), fast growth rate, and lack of pathogenic potential. However, fundamental aspects of its biology remain largely unexplored. Here, we report a broad yet remarkably detailed characterization of M. florum by combining a wide variety of experimental approaches. We investigated several physical and physiological parameters of this bacterium, including cell size, growth kinetics, and biomass composition of the cell. We also performed the first genome-wide analysis of its transcriptome and proteome, notably revealing a conserved promoter motif, the organization of transcription units, and the transcription and protein expression levels of all protein-coding sequences. We converted gene transcription and expression levels into absolute molecular abundances using biomass quantification results, generating an unprecedented view of the M. florum cellular composition and functions. These characterization efforts provide a strong experimental foundation for the development of a genome-scale model for M. florum and will guide future genome engineering endeavors in this simple organism.
Collapse
Affiliation(s)
- Dominick Matteau
- Département de biologieUniversité de SherbrookeSherbrookeQCCanada
| | | | - Frédéric Grenier
- Département de biologieUniversité de SherbrookeSherbrookeQCCanada
| | - Samuel Gauthier
- Département de biologieUniversité de SherbrookeSherbrookeQCCanada
| | | | - Kevin Dybvig
- Department of GeneticsUniversity of Alabama at BirminghamBirminghamALUSA
| | - Daniel Garneau
- Département de biologieUniversité de SherbrookeSherbrookeQCCanada
| | | | | | | |
Collapse
|
19
|
Green EA, Klassen JL. Draft Genome Sequence of Spiroplasma platyhelix ATCC 51748, Isolated from a Dragonfly. Microbiol Resour Announc 2020; 9:e00422-20. [PMID: 33214290 PMCID: PMC7679083 DOI: 10.1128/mra.00422-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/02/2020] [Indexed: 11/21/2022] Open
Abstract
Spiroplasma platyhelix is a helical bacterium belonging to the class Mollicutes First isolated from a Pachydiplax longipennis dragonfly, it has the smallest reported Spiroplasma genome size of 740 kbp. Here, we report the genome sequence of S. platyhelix ATCC 51748.
Collapse
Affiliation(s)
- Emily A Green
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Jonathan L Klassen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
20
|
Shik JZ, Kooij PW, Donoso DA, Santos JC, Gomez EB, Franco M, Crumière AJJ, Arnan X, Howe J, Wcislo WT, Boomsma JJ. Nutritional niches reveal fundamental domestication trade-offs in fungus-farming ants. Nat Ecol Evol 2020; 5:122-134. [PMID: 33106603 PMCID: PMC7610523 DOI: 10.1038/s41559-020-01314-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
During crop domestication, human farmers traded greater productivity for higher crop vulnerability outside specialized cultivation conditions. We found a similar domestication tradeoff across the major co-evolutionary transitions in farming systems of attine ants. First, the fundamental nutritional niches (FNNs) of cultivars narrowed during ~ 60 million years of naturally selected domestication, and laboratory experiments showed that ant farmers representing subsequent domestication stages strictly regulate protein harvest relative to cultivar FNNs. Second, ants with different farming systems differed in their abilities to harvest the resources that best matched the nutritional needs of their fungal cultivars. This was assessed by quantifying realized nutritional niches (RNNs) from analyses of items collected from the mandibles of laden ant foragers in the field. Third, extensive field collections suggest that among-colony genetic diversity of cultivars in small-scale farms may offer population-wide resilience benefits that species with large-scale farming colonies achieve by more elaborate and demanding cultivation practices of less diverse crops. Our results underscore that naturally selected farming systems have potential to shed light on nutritional tradeoffs that shaped the course of culturally evolved human farming.
Collapse
Affiliation(s)
- Jonathan Z Shik
- Section of Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark. .,Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark. .,Smithsonian Tropical Research Institute, Panama City, Republic of Panama.
| | - Pepijn W Kooij
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Comparative Fungal Biology, Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, London, UK.,Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil
| | - David A Donoso
- Departamento de Biología, Escuela Politécnica Nacional, Quito, Ecuador.,Centro de Investigación de la Biodiversidad y Cambio Climático, Universidad Tecnológica Indoamérica, Quito, Ecuador
| | - Juan C Santos
- Department of Biological Sciences, St. John's University, New York, NY, USA
| | - Ernesto B Gomez
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Mariana Franco
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Antonin J J Crumière
- Section of Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xavier Arnan
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Cerdanyola del Vallès, Spain.,Department of Biological Sciences, University of Pernambuco, Garanhuns, Brazil
| | - Jack Howe
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Department of Zoology, University of Oxford, Oxford, UK
| | - William T Wcislo
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Jacobus J Boomsma
- Section of Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
|
22
|
Lindsay EC, Metcalfe NB, Llewellyn MS. The potential role of the gut microbiota in shaping host energetics and metabolic rate. J Anim Ecol 2020; 89:2415-2426. [PMID: 32858775 DOI: 10.1111/1365-2656.13327] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
Abstract
It is increasingly recognized that symbiotic microbiota (especially those present in the gut) have important influences on the functioning of their host. Here, we review the interplay between this microbial community and the growth, metabolic rate and nutritional energy harvest of the host. We show how recent developments in experimental and analytical methods have allowed much easier characterization of the nature, and increasingly the functioning, of the gut microbiota. Manipulation studies that remove or augment gut microorganisms or transfer them between hosts have allowed unprecedented insights into their impact. Whilst much of the information to date has come from studies of laboratory model organisms, recent studies have used a more diverse range of host species, including those living in natural conditions, revealing their ecological relevance. The gut microbiota can provide the host with dietary nutrients that would be otherwise unobtainable, as well as allow the host flexibility in its capacity to cope with changing environments. The composition of the gut microbial community of a species can vary seasonally or when the host moves between environments (e.g. fresh and sea water in the case of migratory fish). It can also change with host diet choice, metabolic rate (or demands) and life stage. These changes in gut microbial community composition enable the host to live within different environments, adapt to seasonal changes in diet and maintain performance throughout its entire life history, highlighting the ecological relevance of the gut microbiota. Whilst it is evident that gut microbes can underpin host metabolic plasticity, the causal nature of associations between particular microorganisms and host performance is not always clear unless a manipulative approach has been used. Many studies have focussed on a correlative approach by characterizing microbial community composition, but there is now a need for more experimental studies in both wild and laboratory-based environments, to reveal the true role of gut microbiota in influencing the functioning of their hosts, including its capacity to tolerate environmental change. We highlight areas where these would be particularly fruitful in the context of ecological energetics.
Collapse
Affiliation(s)
- Elle C Lindsay
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Neil B Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Martin S Llewellyn
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
23
|
Francoeur CB, Khadempour L, Moreira-Soto RD, Gotting K, Book AJ, Pinto-Tomás AA, Keefover-Ring K, Currie CR. Bacteria Contribute to Plant Secondary Compound Degradation in a Generalist Herbivore System. mBio 2020; 11:e02146-20. [PMID: 32934088 PMCID: PMC7492740 DOI: 10.1128/mbio.02146-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Herbivores must overcome a variety of plant defenses, including coping with plant secondary compounds (PSCs). To help detoxify these defensive chemicals, several insect herbivores are known to harbor gut microbiota with the metabolic capacity to degrade PSCs. Leaf-cutter ants are generalist herbivores, obtaining sustenance from specialized fungus gardens that act as external digestive systems and which degrade the diverse collection of plants foraged by the ants. There is in vitro evidence that certain PSCs harm Leucoagaricus gongylophorus, the fungal cultivar of leaf-cutter ants, suggesting a role for the Proteobacteria-dominant bacterial community present within fungus gardens. In this study, we investigated the ability of symbiotic bacteria present within fungus gardens of leaf-cutter ants to degrade PSCs. We cultured fungus garden bacteria, sequenced the genomes of 42 isolates, and identified genes involved in PSC degradation, including genes encoding cytochrome P450 enzymes and genes in geraniol, cumate, cinnamate, and α-pinene/limonene degradation pathways. Using metatranscriptomic analysis, we showed that some of these degradation genes are expressed in situ Most of the bacterial isolates grew unhindered in the presence of PSCs and, using gas chromatography-mass spectrometry (GC-MS), we determined that isolates from the genera Bacillus, Burkholderia, Enterobacter, Klebsiella, and Pseudomonas degrade α-pinene, β-caryophyllene, or linalool. Using a headspace sampler, we show that subcolonies of fungus gardens reduced α-pinene and linalool over a 36-h period, while L. gongylophorus strains alone reduced only linalool. Overall, our results reveal that the bacterial communities in fungus gardens play a pivotal role in alleviating the effect of PSCs on the leaf-cutter ant system.IMPORTANCE Leaf-cutter ants are dominant neotropical herbivores capable of deriving energy from a wide range of plant substrates. The success of leaf-cutter ants is largely due to their external gut, composed of key microbial symbionts, specifically, the fungal mutualist L. gongylophorus and a consistent bacterial community. Both symbionts are known to have critical roles in extracting energy from plant material, yet comparatively little is known about their roles in the detoxification of plant secondary compounds. In this study, we assessed if the bacterial communities associated with leaf-cutter ant fungus gardens can degrade harmful plant chemicals. We identify plant secondary compound detoxification in leaf-cutter ant gardens as a process that depends on the degradative potential of both the bacterial community and L. gongylophorus Our findings suggest that the fungus garden and its associated microbial community influence the generalist foraging abilities of the ants, underscoring the importance of microbial symbionts in plant substrate suitability for herbivores.
Collapse
Affiliation(s)
- Charlotte B Francoeur
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lily Khadempour
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rolando D Moreira-Soto
- Sección de Entomología Medica, Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Kirsten Gotting
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adam J Book
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adrián A Pinto-Tomás
- Centro de Investigación en Estructuras Microscópicas, Universidad de Costa Rica, San José, Costa Rica
- Departamento de Bioquímica, Facultad de Medicina, Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San José, Costa Rica
| | - Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
24
|
Abstract
Abstract
Females mate multiply despite numerous costs. It is well established that polyandry can result in sexual conflict, favoring male adaptations that prevent sperm competition often to the disadvantage of the female. Such adaptations are extreme in spiders with one-shot genitalia of which parts break off and act as mating plugs, rendering them dysfunctional. In the spider Argiope bruennichi, mating plugs effectively prevent further males from inseminating and males that inseminate and plug both genital openings of a female secure exclusive paternity. However, females frequently prevent monopolization by attacking and cannibalizing males during their first copulation, leaving their second spermatheca free for another male. Here, we test whether the high frequency of sexual cannibalism evolved as a female adaptation to resist monopolization and secure indirect benefits of polyandry. To standardize conditions, we double-mated females either with the same or two different males and prevented male consumption. Using a split-brood design, we raised offspring to maturity under poor and rich food conditions and measured their survival, duration of juvenile phase, and adult body mass. Under low food, daughters of polyandrous mothers matured later but slightly heavier than daughters of monandrous females. Since the adaptive value of this combination is unclear, these findings lend no conclusive support to our hypothesis. We discuss the stereotypic nature of the female attack in the context of antagonistic co-evolution considering previous studies that found modest direct benefits of cannibalism as well as a potential for non-additive benefits.
Significance statement
Sexual conflict is extreme in spiders where sexual cannibalism impairs male mating rates. Males of the spider Argiope bruennichi possess one-shot genitalia which they break off to plug female genital openings. They gain exclusive paternity with a female if two copulations are achieved and both genital openings plugged. Females, however, stereotypically attack every male at the onset of copulation, limiting most males to single copulation but retaining the option to secure potential benefits of polyandry. Previous studies revealed weak direct and non-additive indirect benefits of multiple mating. In this study, we tested for the presence of additive genetic benefits but again found only inconclusive evidence for adaptive differences in offspring quality between monandrous and polyandrous females. All results combined, we here speculate that the stereotypic female attack might be a ghost of a past antagonistic co-evolution.
Collapse
|
25
|
Ramalho MDO, Martins C, Morini MSC, Bueno OC. What Can the Bacterial Community of Atta sexdens (Linnaeus, 1758) Tell Us about the Habitats in Which This Ant Species Evolves? INSECTS 2020; 11:E332. [PMID: 32481532 PMCID: PMC7349130 DOI: 10.3390/insects11060332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
Studies of bacterial communities can reveal the evolutionary significance of symbiotic interactions between hosts and their associated bacteria, as well as identify environmental factors that may influence host biology. Atta sexdens is an ant species native to Brazil that can act as an agricultural pest due to its intense behavior of cutting plants. Despite being extensively studied, certain aspects of the general biology of this species remain unclear, such as the evolutionary implications of the symbiotic relationships it forms with bacteria. Using high-throughput amplicon sequencing of 16S rRNA genes, we compared for the first time the bacterial community of A. sexdens (whole ant workers) populations according to the habitat (natural versus agricultural) and geographical location. Our results revealed that the bacterial community associated with A. sexdens is mainly influenced by the geographical location, and secondarily by the differences in habitat. Also, the bacterial community associated with citrus differed significantly from the other communities due to the presence of Tsukamurella. In conclusion, our study suggests that environmental shifts may influence the bacterial diversity found in A. sexdens.
Collapse
Affiliation(s)
- Manuela de Oliveira Ramalho
- Centro de Estudos de Insetos Sociais—CEIS, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil;
- Department of Entomology, Cornell University, 129 Garden Ave, Ithaca, NY 14850, USA
| | - Cintia Martins
- Campus Ministro Reis Velloso, Universidade Federal do Piauí, Av. São Sebastião, 2819, Parnaíba, Piauí 64202-020, Brazil;
| | - Maria Santina Castro Morini
- Núcleo de Ciências Ambientais, Universidade de Mogi das Cruzes, Av. Dr. Cândido Xavier de Almeida e Souza, 200, Centro Cívico, Mogi das Cruzes 08780-911, SP, Brazil;
| | - Odair Correa Bueno
- Centro de Estudos de Insetos Sociais—CEIS, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil;
| |
Collapse
|
26
|
Crumière AJJ, Stephenson CJ, Nagel M, Shik JZ. Using Nutritional Geometry to Explore How Social Insects Navigate Nutritional Landscapes. INSECTS 2020; 11:E53. [PMID: 31952303 PMCID: PMC7022258 DOI: 10.3390/insects11010053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/11/2020] [Accepted: 01/11/2020] [Indexed: 12/15/2022]
Abstract
Insects face many cognitive challenges as they navigate nutritional landscapes that comprise their foraging environments with potential food items. The emerging field of nutritional geometry (NG) can help visualize these challenges, as well as the foraging solutions exhibited by insects. Social insect species must also make these decisions while integrating social information (e.g., provisioning kin) and/or offsetting nutrients provisioned to, or received from unrelated mutualists. In this review, we extend the logic of NG to make predictions about how cognitive challenges ramify across these social dimensions. Focusing on ants, we outline NG predictions in terms of fundamental and realized nutritional niches, considering when ants interact with related nestmates and unrelated bacterial, fungal, plant, and insect mutualists. The nutritional landscape framework we propose provides new avenues for hypothesis testing and for integrating cognition research with broader eco-evolutionary principles.
Collapse
Affiliation(s)
- Antonin J. J. Crumière
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Calum J. Stephenson
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Manuel Nagel
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Jonathan Z. Shik
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancon, Panama
| |
Collapse
|
27
|
Sheffer MM, Uhl G, Prost S, Lueders T, Urich T, Bengtsson MM. Tissue- and Population-Level Microbiome Analysis of the Wasp Spider Argiope bruennichi Identified a Novel Dominant Bacterial Symbiont. Microorganisms 2019; 8:E8. [PMID: 31861544 PMCID: PMC7023434 DOI: 10.3390/microorganisms8010008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Many ecological and evolutionary processes in animals depend upon microbial symbioses. In spiders, the role of the microbiome in these processes remains mostly unknown. We compared the microbiome between populations, individuals, and tissue types of a range-expanding spider, using 16S rRNA gene sequencing. Our study is one of the first to go beyond targeting known endosymbionts in spiders and characterizes the total microbiome across different body compartments (leg, prosoma, hemolymph, book lungs, ovaries, silk glands, midgut, and fecal pellets). Overall, the microbiome differed significantly between populations and individuals, but not between tissue types. The microbiome of the wasp spider Argiope bruennichi features a novel dominant bacterial symbiont, which is abundant in every tissue type in spiders from geographically distinct populations and that is also present in offspring. The novel symbiont is affiliated with the Tenericutes, but has low sequence identity (<85%) to all previously named taxa, suggesting that the novel symbiont represents a new bacterial clade. Its presence in offspring implies that it is vertically transmitted. Our results shed light on the processes that shape microbiome differentiation in this species and raise several questions about the implications of the novel dominant bacterial symbiont on the biology and evolution of its host.
Collapse
Affiliation(s)
- Monica M. Sheffer
- Zoological Institute and Museum, University of Greifswald, 17489 Greifswald, Germany;
| | - Gabriele Uhl
- Zoological Institute and Museum, University of Greifswald, 17489 Greifswald, Germany;
| | - Stefan Prost
- LOEWE-Center for Translational Biodiversity Genomics, Senckenberg Museum, 60325 Frankfurt, Germany;
- South African National Biodiversity Institute, National Zoological Gardens of South Africa, Pretoria 0001, South Africa
| | - Tillmann Lueders
- Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, 95448 Bayreuth, Germany;
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, 174897 Greifswald, Germany;
| | - Mia M. Bengtsson
- Institute of Microbiology, University of Greifswald, 174897 Greifswald, Germany;
| |
Collapse
|
28
|
Pringle EG. Convergence, constraint and the potential for mutualism between ants and gut microbes. Mol Ecol 2019; 28:699-702. [PMID: 30811772 DOI: 10.1111/mec.14998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
Ants are a hugely diverse family of eusocial insects that dominate terrestrial ecosystems all over the planet. Did mutualistic gut microbes help ants to achieve their diversity and ecological dominance? Initial studies suggested the potential for widespread convergence in ant gut bacterial communities based on dietary niche, but it now seems possible that dedicated bacterial symbionts are restricted to a minority of ant lineages (Russell et al., ). Nevertheless, as most ants are omnivores, the evidence so far has suggested a broad, positive correlation between the evolution of dietary specialization and ant investment in nutrient-provisioning gut bacteria. In this issue of Molecular Ecology, Sapountzis et al. () and Rubin et al. () examine the evolution of gut bacterial communities in two iconic ant taxa-the attine fungus farmers and the Pseudomyrmex plant bodyguards, respectively-in a comparative context. By comparing gut bacteria between ant species of differing dietary specialization within each taxon, these studies demonstrate a hint of convergence in the midst of widespread apparent constraints. These results raise numerous interesting questions about the nature of these apparent constraints and whether they are causes or consequences of varying investment by ants to mutualism with their gut microbes.
Collapse
Affiliation(s)
- Elizabeth G Pringle
- Department of Biology, Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Nevada
| |
Collapse
|
29
|
Yeoman CJ, Brutscher LM, Esen ÖC, Ibaoglu F, Fowler C, Eren AM, Wanner K, Weaver DK. Genome-resolved insights into a novel Spiroplasma symbiont of the Wheat Stem Sawfly ( Cephus cinctus). PeerJ 2019; 7:e7548. [PMID: 31523509 PMCID: PMC6716498 DOI: 10.7717/peerj.7548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022] Open
Abstract
Arthropods often have obligate relationships with symbiotic microbes, and recent investigations have demonstrated that such host-microbe relationships could be exploited to suppress natural populations of vector carrying mosquitos. Strategies that target the interplay between agricultural pests and their symbionts could decrease the burden caused by agricultural pests; however, the lack of comprehensive genomic insights into naturally occurring microbial symbionts presents a significant bottleneck. Here we employed amplicon surveys, genome-resolved metagenomics, and scanning electron microscopy to investigate symbionts of the wheat stem sawfly (Cephus cinctus), a major pest that causes an estimated $350 million dollars or more in wheat yield losses in the northwestern United States annually. Through 16S rRNA gene sequencing of two major haplotypes and life stages of wheat stem sawfly, we show a novel Spiroplasma species is ever-present and predominant, with phylogenomic analyses placing it as a member of the ixodetis clade of mollicutes. Using state-of-the-art metagenomic assembly and binning strategies we were able to reconstruct a 714 Kb, 72.7%-complete Spiroplasma genome, which represents just the second draft genome from the ixodetis clade of mollicutes. Functional annotation of the Spiroplasma genome indicated carbohydrate-metabolism involved PTS-mediated import of glucose and fructose followed by glycolysis to lactate, acetate, and propionoate. The bacterium also encoded biosynthetic pathways for essential vitamins B2, B3, and B9. We identified putative Spiroplasma virulence genes: cardiolipin and chitinase. These results identify a previously undescribed symbiosis between wheat stem sawfly and a novel Spiroplasma sp., availing insight into their molecular relationship, and may yield new opportunities for microbially-mediated pest control strategies.
Collapse
Affiliation(s)
- Carl J Yeoman
- Department of Animal & Range Sciences, Montana State University, Bozeman, MT, United States of America
| | - Laura M Brutscher
- Department of Animal & Range Sciences, Montana State University, Bozeman, MT, United States of America.,Department of Microbiology & Immunology, Montana State University, Bozeman, MT, United States of America
| | - Özcan C Esen
- Department of Medicine, University of Chicago, Chicago, IL, United States of America
| | - Furkan Ibaoglu
- Department of Animal & Range Sciences, Montana State University, Bozeman, MT, United States of America.,Department of Microbiology & Immunology, Montana State University, Bozeman, MT, United States of America
| | - Curtis Fowler
- Department of Animal & Range Sciences, Montana State University, Bozeman, MT, United States of America
| | - A Murat Eren
- Department of Medicine, University of Chicago, Chicago, IL, United States of America.,Marine Biological Laboratory, The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, Massachuetts, United States of America
| | - Kevin Wanner
- Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT, United States of America
| | - David K Weaver
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, United States of America
| |
Collapse
|
30
|
Teseo S, van Zweden JS, Pontieri L, Kooij PW, Sørensen SJ, Wenseleers T, Poulsen M, Boomsma JJ, Sapountzis P. The scent of symbiosis: gut bacteria may affect social interactions in leaf-cutting ants. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2018.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Sapountzis P, Nash DR, Schiøtt M, Boomsma JJ. The evolution of abdominal microbiomes in fungus-growing ants. Mol Ecol 2018; 28:879-899. [PMID: 30411820 PMCID: PMC6446810 DOI: 10.1111/mec.14931] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/08/2018] [Accepted: 10/03/2018] [Indexed: 01/01/2023]
Abstract
The attine ants are a monophyletic lineage that switched to fungus farming ca. 55-60 MYA. They have become a model for the study of complex symbioses after additional fungal and bacterial symbionts were discovered, but their abdominal endosymbiotic bacteria remain largely unknown. Here, we present a comparative microbiome analysis of endosymbiotic bacteria spanning the entire phylogenetic tree. We show that, across 17 representative sympatric species from eight genera sampled in Panama, abdominal microbiomes are dominated by Mollicutes, α- and γ-Proteobacteria, and Actinobacteria. Bacterial abundances increase from basal to crown branches in the phylogeny reflecting a shift towards putative specialized and abundant abdominal microbiota after the ants domesticated gongylidia-bearing cultivars, but before the origin of industrial-scale farming based on leaf-cutting herbivory. This transition coincided with the ancestral single colonization event of Central/North America ca. 20 MYA, documented in a recent phylogenomic study showing that almost the entire crown group of the higher attine ants, including the leaf-cutting ants, evolved there and not in South America. Several bacterial species are located in gut tissues or abdominal organs of the evolutionarily derived, but not the basal attine ants. The composition of abdominal microbiomes appears to be affected by the presence/absence of defensive antibiotic-producing actinobacterial biofilms on the worker ants' cuticle, but the significance of this association remains unclear. The patterns of diversity, abundance and sensitivity of the abdominal microbiomes that we obtained explore novel territory in the comparative analysis of attine fungus farming symbioses and raise new questions for further in-depth research.
Collapse
Affiliation(s)
- Panagiotis Sapountzis
- Centre for Social Evolution, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - David R Nash
- Centre for Social Evolution, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Morten Schiøtt
- Centre for Social Evolution, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| |
Collapse
|