1
|
Ly J, Xiang K, Su KC, Sissoko GB, Bartel DP, Cheeseman IM. Nuclear release of eIF1 restricts start-codon selection during mitosis. Nature 2024:10.1038/s41586-024-08088-3. [PMID: 39443796 DOI: 10.1038/s41586-024-08088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Regulated start-codon selection has the potential to reshape the proteome through the differential production of upstream open reading frames, canonical proteins, and alternative translational isoforms1-3. However, conditions under which start codon selection is altered remain poorly defined. Here, using transcriptome-wide translation-initiation-site profiling4, we reveal a global increase in the stringency of start-codon selection during mammalian mitosis. Low-efficiency initiation sites are preferentially repressed in mitosis, resulting in pervasive changes in the translation of thousands of start sites and their corresponding protein products. This enhanced stringency of start-codon selection during mitosis results from increased association between the 40S ribosome and the key regulator of start-codon selection, eIF1. We find that increased eIF1-40S ribosome interaction during mitosis is mediated by the release of a nuclear pool of eIF1 upon nuclear envelope breakdown. Selectively depleting the nuclear pool of eIF1 eliminates the change to translational stringency during mitosis, resulting in altered synthesis of thousands of protein isoforms. In addition, preventing mitotic translational rewiring results in substantially increased cell death and decreased mitotic slippage in cells that experience a mitotic delay induced by anti-mitotic chemotherapies. Thus, cells globally control stringency of translation initiation, which has critical roles during the mammalian cell cycle in preserving mitotic cell physiology.
Collapse
Affiliation(s)
- Jimmy Ly
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kehui Xiang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Kuan-Chung Su
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gunter B Sissoko
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David P Bartel
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Villamayor-Belinchón L, Sharma P, Gordiyenko Y, Llácer J, Hussain T. Structural basis of AUC codon discrimination during translation initiation in yeast. Nucleic Acids Res 2024; 52:11317-11335. [PMID: 39193907 PMCID: PMC11472065 DOI: 10.1093/nar/gkae737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/08/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024] Open
Abstract
In eukaryotic translation initiation, the 48S preinitiation complex (PIC) scans the 5' untranslated region of mRNAs to search for the cognate start codon (AUG) with assistance from various eukaryotic initiation factors (eIFs). Cognate start codon recognition is precise, rejecting near-cognate codons with a single base difference. However, the structural basis of discrimination of near-cognate start codons was not known. We have captured multiple yeast 48S PICs with a near-cognate AUC codon at the P-site, revealing that the AUC codon induces instability in the codon-anticodon at the P-site, leading to a disordered N-terminal tail of eIF1A. Following eIF1 dissociation, the N-terminal domain of eIF5 fails to occupy the vacant eIF1 position, and eIF2β becomes flexible. Consequently, 48S with an AUC codon is less favourable for initiation. Furthermore, we observe hitherto unreported metastable states of the eIF2-GTP-Met-tRNAMet ternary complex, where the eIF2β helix-turn-helix domain may facilitate eIF5 association by preventing eIF1 rebinding to 48S PIC. Finally, a swivelled head conformation of 48S PIC appears crucial for discriminating incorrect and selection of the correct codon-anticodon pair during translation initiation.
Collapse
Affiliation(s)
| | - Prafful Sharma
- Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India
| | | | - Jose L Llácer
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, 46010, Spain
- Centro para Investigación Biomédica en Red sobre Enfermedades Raras CIBERER-ISCIII, Valencia, Spain
| | - Tanweer Hussain
- Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
3
|
Petrychenko V, Yi SH, Liedtke D, Peng BZ, Rodnina MV, Fischer N. Structural basis for translational control by the human 48S initiation complex. Nat Struct Mol Biol 2024:10.1038/s41594-024-01378-4. [PMID: 39289545 DOI: 10.1038/s41594-024-01378-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 07/24/2024] [Indexed: 09/19/2024]
Abstract
The selection of an open reading frame (ORF) for translation of eukaryotic mRNA relies on remodeling of the scanning 48S initiation complex into an elongation-ready 80S ribosome. Using cryo-electron microscopy, we visualize the key commitment steps orchestrating 48S remodeling in humans. The mRNA Kozak sequence facilitates mRNA scanning in the 48S open state and stabilizes the 48S closed state by organizing the contacts of eukaryotic initiation factors (eIFs) and ribosomal proteins and by reconfiguring mRNA structure. GTPase-triggered large-scale fluctuations of 48S-bound eIF2 facilitate eIF5B recruitment, transfer of initiator tRNA from eIF2 to eIF5B and the release of eIF5 and eIF2. The 48S-bound multisubunit eIF3 complex controls ribosomal subunit joining by coupling eIF exchange to gradual displacement of the eIF3c N-terminal domain from the intersubunit interface. These findings reveal the structural mechanism of ORF selection in human cells and explain how eIF3 could function in the context of the 80S ribosome.
Collapse
Affiliation(s)
- Valentyn Petrychenko
- Project Group Molecular Machines in Motion, Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sung-Hui Yi
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Insempra GmbH, Planegg, Germany
| | - David Liedtke
- Project Group Molecular Machines in Motion, Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Bee-Zen Peng
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Niels Fischer
- Project Group Molecular Machines in Motion, Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
4
|
Ide NA, Gentry RC, Rudbach MA, Yoo K, Velez PK, Comunale VM, Hartwick EW, Kinz-Thompson CD, Gonzalez RL, Aitken CE. A dynamic compositional equilibrium governs mRNA recognition by eIF3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.581977. [PMID: 38712078 PMCID: PMC11071631 DOI: 10.1101/2024.04.25.581977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Eukaryotic translation initiation factor (eIF) 3 is a multi-subunit protein complex that binds both ribosomes and messenger RNAs (mRNAs) to drive a diverse set of mechanistic steps during translation of an mRNA into the protein it encodes. And yet, a unifying framework explaining how eIF3 performs these numerous activities is lacking. Using single-molecule light scattering microscopy, we demonstrate that Saccharomyces cerevisiae eIF3 is in dynamic exchange between the full complex, subcomplexes, and subunits. By extending our microscopy approach to an in vitro reconstituted eIF3 and complementing it with biochemical assays, we define the subspecies comprising this dynamic compositional equilibrium and show that mRNA binding by eIF3 is not driven by the full complex but instead by the eIF3a subunit within eIF3a-containing subcomplexes. Our findings provide a mechanistic model for the role of eIF3 in mRNA recruitment and establish a mechanistic framework for explaining and investigating the other activities of eIF3.
Collapse
Affiliation(s)
- Nicholas A. Ide
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Riley C. Gentry
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | - Kyungyoon Yoo
- Biochemistry Program, Vassar College, Poughkeepsie, NY, USA
- Current Address: Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | | | | | - Erik W. Hartwick
- Department of Chemistry, Columbia University, New York, NY, USA
- Current Address: Biochemistry Krios Electron Microscopy Facility, Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Colin D. Kinz-Thompson
- Department of Chemistry, Columbia University, New York, NY, USA
- Current Address: Department of Chemistry, Rutgers University-Newark, Newark, NJ, USA
| | | | - Colin Echeverría Aitken
- Biochemistry Program, Vassar College, Poughkeepsie, NY, USA
- Biology Department, Vassar College, Poughkeepsie, NY, USA
| |
Collapse
|
5
|
Gayen A, Alone P. eIF2β zinc-binding domain interacts with the eIF2γ subunit through the guanine nucleotide binding interface to promote Met-tRNAiMet binding. Biosci Rep 2024; 44:BSR20240438. [PMID: 38873976 PMCID: PMC11230868 DOI: 10.1042/bsr20240438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024] Open
Abstract
The heterotrimeric eIF2 complex consists of a core eIF2γ subunit to which binds eIF2α and eIF2β subunits and plays an important role in delivering the Met-tRNAiMet to the 40S ribosome and start codon selection. The intricacies of eIF2β-γ interaction in promoting Met-tRNAiMet binding are not clearly understood. Previously, the zinc-binding domain (ZBD) eIF2βS264Y mutation was reported to cause Met-tRNAiMet binding defect due to the intrinsic GTPase activity. We showed that the eIF2βS264Y mutation has eIF2β-γ interaction defect. Consistently, the eIF2βT238A intragenic suppressor mutation restored the eIF2β-γ and Met-tRNAiMet binding. The eIF2β-ZBD residues Asn252Asp and Arg253Ala mutation caused Met-tRNAiMet binding defect that was partially rescued by the eIF2βT238A mutation, suggesting the eIF2β-ZBD modulates Met-tRNAiMet binding. The suppressor mutation rescued the translation initiation fidelity defect of the eIF2γN135D SW-I mutation and eIF2βF217A/Q221A double mutation in the HTH domain. The eIF2βT238A suppressor mutation could not rescue the eIF2β binding defect of the eIF2γV281K mutation; however, combining the eIF2βS264Y mutation with the eIF2γV281K mutation was lethal. In addition to the previously known interaction of eIF2β with the eIF2γ subunit via its α1-helix, the eIF2β-ZBD also interacts with the eIF2γ subunit via guanine nucleotide-binding interface; thus, the eIF2β-γ interacts via two distinct binding sites.
Collapse
Affiliation(s)
- Aranyadip Gayen
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O Jatni, Khurda 752050, India
- Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai 400094, India
| | - Pankaj V. Alone
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O Jatni, Khurda 752050, India
- Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
6
|
Weiss B, Dikstein R. Unraveling the landscapes and regulation of scanning, leaky scanning, and 48S initiation complex conformations. Cell Rep 2024; 43:114126. [PMID: 38630588 DOI: 10.1016/j.celrep.2024.114126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 01/19/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Scanning and initiation are critical steps in translation. Here, we utilized translation complex profiling (TCP-seq) to investigate 48S organization and eIF4G1-eIF1 inhibition impact. We provide global views of scanning and leaky scanning, uncovering a central role of eIF4G1-eIF1 in their regulation. We confirm AUG context importance, with non-leaky genes featuring a Kozak context and cytosine at positions -1 and +5. Capturing 48S complexes associated with eIF1, eIF4G1, eIF3, and eIF2 through selective TCP-seq revealed that the eIF3-scanning ribosome is highly vulnerable to eIF4G1-eIF1 inhibition, and eIF1 tends to dissociate upon AUG recognition. Initiation-site footprint analysis revealed a class spanning -12 to +18/19 from the AUG, representing the entire 48S and enriched with eIF2, eIF1, and eIF4G1, indicative of early initiation. Another eIF3-dependent class extends up to +26 and exhibits reduced eIF2 and eIF4G1 association, suggesting a late/alternative initiation complex. Our analysis provides an overview of scanning, initiation, and evidence for conformational rearrangements in vivo.
Collapse
Affiliation(s)
- Benjamin Weiss
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
7
|
Ly J, Xiang K, Su KC, Sissoko GB, Bartel DP, Cheeseman IM. Nuclear release of eIF1 globally increases stringency of start-codon selection to preserve mitotic arrest physiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.06.588385. [PMID: 38617206 PMCID: PMC11014515 DOI: 10.1101/2024.04.06.588385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Regulated start-codon selection has the potential to reshape the proteome through the differential production of uORFs, canonical proteins, and alternative translational isoforms. However, conditions under which start-codon selection is altered remain poorly defined. Here, using transcriptome-wide translation initiation site profiling, we reveal a global increase in the stringency of start-codon selection during mammalian mitosis. Low-efficiency initiation sites are preferentially repressed in mitosis, resulting in pervasive changes in the translation of thousands of start sites and their corresponding protein products. This increased stringency of start-codon selection during mitosis results from increased interactions between the key regulator of start-codon selection, eIF1, and the 40S ribosome. We find that increased eIF1-40S ribosome interactions during mitosis are mediated by the release of a nuclear pool of eIF1 upon nuclear envelope breakdown. Selectively depleting the nuclear pool of eIF1 eliminates the changes to translational stringency during mitosis, resulting in altered mitotic proteome composition. In addition, preventing mitotic translational rewiring results in substantially increased cell death and decreased mitotic slippage following treatment with anti-mitotic chemotherapeutics. Thus, cells globally control translation initiation stringency with critical roles during the mammalian cell cycle to preserve mitotic cell physiology.
Collapse
|
8
|
Brito Querido J, Sokabe M, Díaz-López I, Gordiyenko Y, Fraser CS, Ramakrishnan V. The structure of a human translation initiation complex reveals two independent roles for the helicase eIF4A. Nat Struct Mol Biol 2024; 31:455-464. [PMID: 38287194 PMCID: PMC10948362 DOI: 10.1038/s41594-023-01196-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 11/30/2023] [Indexed: 01/31/2024]
Abstract
Eukaryotic translation initiation involves recruitment of the 43S pre-initiation complex to the 5' end of mRNA by the cap-binding complex eIF4F, forming the 48S translation initiation complex (48S), which then scans along the mRNA until the start codon is recognized. We have previously shown that eIF4F binds near the mRNA exit channel of the 43S, leaving open the question of how mRNA secondary structure is removed as it enters the mRNA channel on the other side of the 40S subunit. Here we report the structure of a human 48S that shows that, in addition to the eIF4A that is part of eIF4F, there is a second eIF4A helicase bound at the mRNA entry site, which could unwind RNA secondary structures as they enter the 48S. The structure also reveals conserved interactions between eIF4F and the 43S, probaby explaining how eIF4F can promote mRNA recruitment in all eukaryotes.
Collapse
Affiliation(s)
- Jailson Brito Querido
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Biological Chemistry and Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Masaaki Sokabe
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | | | | | - Christopher S Fraser
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA, USA.
| | | |
Collapse
|
9
|
Brito Querido J, Díaz-López I, Ramakrishnan V. The molecular basis of translation initiation and its regulation in eukaryotes. Nat Rev Mol Cell Biol 2024; 25:168-186. [PMID: 38052923 DOI: 10.1038/s41580-023-00624-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 12/07/2023]
Abstract
The regulation of gene expression is fundamental for life. Whereas the role of transcriptional regulation of gene expression has been studied for several decades, it has been clear over the past two decades that post-transcriptional regulation of gene expression, of which translation regulation is a major part, can be equally important. Translation can be divided into four main stages: initiation, elongation, termination and ribosome recycling. Translation is controlled mainly during its initiation, a process which culminates in a ribosome positioned with an initiator tRNA over the start codon and, thus, ready to begin elongation of the protein chain. mRNA translation has emerged as a powerful tool for the development of innovative therapies, yet the detailed mechanisms underlying the complex process of initiation remain unclear. Recent studies in yeast and mammals have started to shed light on some previously unclear aspects of this process. In this Review, we discuss the current state of knowledge on eukaryotic translation initiation and its regulation in health and disease. Specifically, we focus on recent advances in understanding the processes involved in assembling the 43S pre-initiation complex and its recruitment by the cap-binding complex eukaryotic translation initiation factor 4F (eIF4F) at the 5' end of mRNA. In addition, we discuss recent insights into ribosome scanning along the 5' untranslated region of mRNA and selection of the start codon, which culminates in joining of the 60S large subunit and formation of the 80S initiation complex.
Collapse
Affiliation(s)
- Jailson Brito Querido
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Irene Díaz-López
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
10
|
Chen F, Tang H, Cai X, Lin J, Xiang L, Kang R, Liu J, Tang D. Targeting paraptosis in cancer: opportunities and challenges. Cancer Gene Ther 2024; 31:349-363. [PMID: 38177306 DOI: 10.1038/s41417-023-00722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
Cell death can be classified into two primary categories: accidental cell death and regulated cell death (RCD). Within RCD, there are distinct apoptotic and non-apoptotic cell death pathways. Among the various forms of non-apoptotic RCD, paraptosis stands out as a unique mechanism characterized by distinct morphological changes within cells. These alterations encompass cytoplasmic vacuolization, organelle swelling, notably in the endoplasmic reticulum and mitochondria, and the absence of typical apoptotic features, such as cell shrinkage and DNA fragmentation. Biochemically, paraptosis distinguishes itself by its independence from caspases, which are conventionally associated with apoptotic death. This intriguing cell death pathway can be initiated by various cellular stressors, including oxidative stress, protein misfolding, and specific chemical compounds. Dysregulated paraptosis plays a pivotal role in several critical cancer-related processes, such as autophagic degradation, drug resistance, and angiogenesis. This review provides a comprehensive overview of recent advancements in our understanding of the mechanisms and regulation of paraptosis. Additionally, it delves into the potential of paraptosis-related compounds for targeted cancer treatment, with the aim of enhancing treatment efficacy while minimizing harm to healthy cells.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Hu Tang
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Xiutao Cai
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Junhao Lin
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Limin Xiang
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
11
|
Kazan R, Bourgeois G, Lazennec-Schurdevin C, Coureux PD, Mechulam Y, Schmitt E. Structural insights into the evolution of late steps of translation initiation in the three domains of life. Biochimie 2024; 217:31-41. [PMID: 36773835 DOI: 10.1016/j.biochi.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
In eukaryotes and in archaea late steps of translation initiation involve the two initiation factors e/aIF5B and e/aIF1A. These two factors are also orthologous to the bacterial IF2 and IF1 proteins, respectively. Recent cryo-EM studies showed how e/aIF5B and e/aIF1A cooperate on the small ribosomal subunit to favor the binding of the large ribosomal subunit and the formation of a ribosome competent for elongation. In this review, pioneering studies and recent biochemical and structural results providing new insights into the role of a/eIF5B in archaea and eukaryotes will be presented. Recent structures will also be compared to orthologous bacterial initiation complexes to highlight domain-specific features and the evolution of initiation mechanisms.
Collapse
Affiliation(s)
- Ramy Kazan
- Laboratoire de Biologie Structurale de la Cellule, BIOC, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Gabrielle Bourgeois
- Laboratoire de Biologie Structurale de la Cellule, BIOC, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Christine Lazennec-Schurdevin
- Laboratoire de Biologie Structurale de la Cellule, BIOC, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Pierre-Damien Coureux
- Laboratoire de Biologie Structurale de la Cellule, BIOC, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule, BIOC, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule, BIOC, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France.
| |
Collapse
|
12
|
Sherwood DR, Kenny-Ganzert IW, Balachandar Thendral S. Translational regulation of cell invasion through extracellular matrix-an emerging role for ribosomes. F1000Res 2023; 12:1528. [PMID: 38628976 PMCID: PMC11019292 DOI: 10.12688/f1000research.143519.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 04/19/2024] Open
Abstract
Many developmental and physiological processes require cells to invade and migrate through extracellular matrix barriers. This specialized cellular behavior is also misregulated in many diseases, such as immune disorders and cancer. Cell invasive activity is driven by pro-invasive transcriptional networks that activate the expression of genes encoding numerous different proteins that expand and regulate the cytoskeleton, endomembrane system, cell adhesion, signaling pathways, and metabolic networks. While detailed mechanistic studies have uncovered crucial insights into pro-invasive transcriptional networks and the distinct cell biological attributes of invasive cells, less is known about how invasive cells modulate mRNA translation to meet the robust, dynamic, and unique protein production needs of cell invasion. In this review we outline known modes of translation regulation promoting cell invasion and focus on recent studies revealing elegant mechanisms that expand ribosome biogenesis within invasive cells to meet the increased protein production requirements to invade and migrate through extracellular matrix barriers.
Collapse
|
13
|
Fang JC, Liu MJ. Translation initiation at AUG and non-AUG triplets in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111822. [PMID: 37574140 DOI: 10.1016/j.plantsci.2023.111822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/22/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
In plants and other eukaryotes, precise selection of translation initiation site (TIS) on mRNAs shapes the proteome in response to cellular events or environmental cues. The canonical translation of mRNAs initiates at a 5' proximal AUG codon in a favorable context. However, the coding and non-coding regions of plant genomes contain numerous unannotated alternative AUG and non-AUG TISs. Determining how and why these unexpected and prevalent TISs are activated in plants has emerged as an exciting research area. In this review, we focus on the selection of plant TISs and highlight studies that revealed previously unannotated TISs used in vivo via comparative genomics and genome-wide profiling of ribosome positioning and protein N-terminal ends. The biological signatures of non-AUG TIS-initiated open reading frames (ORFs) in plants are also discussed. We describe what is understood about cis-regulatory RNA elements and trans-acting eukaryotic initiation factors (eIFs) in the site selection for translation initiation by featuring the findings in plants along with supporting findings in non-plant species. The prevalent, unannotated TISs provide a hidden reservoir of ORFs that likely help reshape plant proteomes in response to developmental or environmental cues. These findings underscore the importance of understanding the mechanistic basis of TIS selection to functionally annotate plant genomes, especially for crops with large genomes.
Collapse
Affiliation(s)
- Jhen-Cheng Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Ming-Jung Liu
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
14
|
She R, Luo J, Weissman JS. Translational fidelity screens in mammalian cells reveal eIF3 and eIF4G2 as regulators of start codon selectivity. Nucleic Acids Res 2023; 51:6355-6369. [PMID: 37144468 PMCID: PMC10325891 DOI: 10.1093/nar/gkad329] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 04/13/2023] [Accepted: 05/03/2023] [Indexed: 05/06/2023] Open
Abstract
The translation initiation machinery and the ribosome orchestrate a highly dynamic scanning process to distinguish proper start codons from surrounding nucleotide sequences. Here, we performed genome-wide CRISPRi screens in human K562 cells to systematically identify modulators of the frequency of translation initiation at near-cognate start codons. We observed that depletion of any eIF3 core subunit promoted near-cognate start codon usage, though sensitivity thresholds of each subunit to sgRNA-mediated depletion varied considerably. Double sgRNA depletion experiments suggested that enhanced near-cognate usage in eIF3D depleted cells required canonical eIF4E cap-binding and was not driven by eIF2A or eIF2D-dependent leucine tRNA initiation. We further characterized the effects of eIF3D depletion and found that the N-terminus of eIF3D was strictly required for accurate start codon selection, whereas disruption of the cap-binding properties of eIF3D had no effect. Lastly, depletion of eIF3D activated TNFα signaling via NF-κB and the interferon gamma response. Similar transcriptional profiles were observed upon knockdown of eIF1A and eIF4G2, which also promoted near-cognate start codon usage, suggesting that enhanced near-cognate usage could potentially contribute to NF-κB activation. Our study thus provides new avenues to study the mechanisms and consequences of alternative start codon usage.
Collapse
Affiliation(s)
- Richard She
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Jingchuan Luo
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
15
|
Pichard-Kostuch A, Da Cunha V, Oberto J, Sauguet L, Basta T. The universal Sua5/TsaC family evolved different mechanisms for the synthesis of a key tRNA modification. Front Microbiol 2023; 14:1204045. [PMID: 37415821 PMCID: PMC10321239 DOI: 10.3389/fmicb.2023.1204045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
TsaC/Sua5 family of enzymes catalyzes the first step in the synthesis of N6-threonyl-carbamoyl adenosine (t6A) one of few truly ubiquitous tRNA modifications important for translation accuracy. TsaC is a single domain protein while Sua5 proteins contains a TsaC-like domain and an additional SUA5 domain of unknown function. The emergence of these two proteins and their respective mechanisms for t6A synthesis remain poorly understood. Here, we performed phylogenetic and comparative sequence and structure analysis of TsaC and Sua5 proteins. We confirm that this family is ubiquitous but the co-occurrence of both variants in the same organism is rare and unstable. We further find that obligate symbionts are the only organisms lacking sua5 or tsaC genes. The data suggest that Sua5 was the ancestral version of the enzyme while TsaC arose via loss of the SUA5 domain that occurred multiple times in course of evolution. Multiple losses of one of the two variants in combination with horizontal gene transfers along a large range of phylogenetic distances explains the present day patchy distribution of Sua5 and TsaC. The loss of the SUA5 domain triggered adaptive mutations affecting the substrate binding in TsaC proteins. Finally, we identified atypical Sua5 proteins in Archaeoglobi archaea that seem to be in the process of losing the SUA5 domain through progressive gene erosion. Together, our study uncovers the evolutionary path for emergence of these homologous isofunctional enzymes and lays the groundwork for future experimental studies on the function of TsaC/Sua5 proteins in maintaining faithful translation.
Collapse
Affiliation(s)
- Adeline Pichard-Kostuch
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Violette Da Cunha
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jacques Oberto
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Ludovic Sauguet
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Tamara Basta
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
16
|
Landry-Voyer AM, Mir Hassani Z, Avino M, Bachand F. Ribosomal Protein uS5 and Friends: Protein-Protein Interactions Involved in Ribosome Assembly and Beyond. Biomolecules 2023; 13:biom13050853. [PMID: 37238722 DOI: 10.3390/biom13050853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Ribosomal proteins are fundamental components of the ribosomes in all living cells. The ribosomal protein uS5 (Rps2) is a stable component of the small ribosomal subunit within all three domains of life. In addition to its interactions with proximal ribosomal proteins and rRNA inside the ribosome, uS5 has a surprisingly complex network of evolutionarily conserved non-ribosome-associated proteins. In this review, we focus on a set of four conserved uS5-associated proteins: the protein arginine methyltransferase 3 (PRMT3), the programmed cell death 2 (PDCD2) and its PDCD2-like (PDCD2L) paralog, and the zinc finger protein, ZNF277. We discuss recent work that presents PDCD2 and homologs as a dedicated uS5 chaperone and PDCD2L as a potential adaptor protein for the nuclear export of pre-40S subunits. Although the functional significance of the PRMT3-uS5 and ZNF277-uS5 interactions remain elusive, we reflect on the potential roles of uS5 arginine methylation by PRMT3 and on data indicating that ZNF277 and PRMT3 compete for uS5 binding. Together, these discussions highlight the complex and conserved regulatory network responsible for monitoring the availability and the folding of uS5 for the formation of 40S ribosomal subunits and/or the role of uS5 in potential extra-ribosomal functions.
Collapse
Affiliation(s)
- Anne-Marie Landry-Voyer
- Dept of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Zabih Mir Hassani
- Dept of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Mariano Avino
- Dept of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - François Bachand
- Dept of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| |
Collapse
|
17
|
Ikeuchi K, Ivic N, Buschauer R, Cheng J, Fröhlich T, Matsuo Y, Berninghausen O, Inada T, Becker T, Beckmann R. Molecular basis for recognition and deubiquitination of 40S ribosomes by Otu2. Nat Commun 2023; 14:2730. [PMID: 37169754 PMCID: PMC10175282 DOI: 10.1038/s41467-023-38161-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
In actively translating 80S ribosomes the ribosomal protein eS7 of the 40S subunit is monoubiquitinated by the E3 ligase Not4 and deubiquitinated by Otu2 upon ribosomal subunit recycling. Despite its importance for translation efficiency the exact role and structural basis for this translational reset is poorly understood. Here, structural analysis by cryo-electron microscopy of native and reconstituted Otu2-bound ribosomal complexes reveals that Otu2 engages 40S subunits mainly between ribosome recycling and initiation stages. Otu2 binds to several sites on the intersubunit surface of the 40S that are not occupied by any other 40S-binding factors. This binding mode explains the discrimination against 80S ribosomes via the largely helical N-terminal domain of Otu2 as well as the specificity for mono-ubiquitinated eS7 on 40S. Collectively, this study reveals mechanistic insights into the Otu2-driven deubiquitination steps for translational reset during ribosome recycling/(re)initiation.
Collapse
Affiliation(s)
- Ken Ikeuchi
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Nives Ivic
- Division of Physical Chemistry, Rudjer Boskovic Institute, Bijenicka cesta 54, 10000, Zagreb, Croatia
| | - Robert Buschauer
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Jingdong Cheng
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
- Institutes of biomedical science, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Fudan university, Dong'an Road 131, 200032, Shanghai, China
| | - Thomas Fröhlich
- LAFUGA, Laboratory for Functional Genome Analysis, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Yoshitaka Matsuo
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-ku, 108-8639, Japan
| | - Otto Berninghausen
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-ku, 108-8639, Japan
| | - Thomas Becker
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany.
| | - Roland Beckmann
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany.
| |
Collapse
|
18
|
Zhang D, Zhu L, Wang F, Li P, Wang Y, Gao Y. Molecular mechanisms of eukaryotic translation fidelity and their associations with diseases. Int J Biol Macromol 2023; 242:124680. [PMID: 37141965 DOI: 10.1016/j.ijbiomac.2023.124680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Converting genetic information into functional proteins is a complex, multi-step process, with each step being tightly regulated to ensure the accuracy of translation, which is critical to cellular health. In recent years, advances in modern biotechnology, especially the development of cryo-electron microscopy and single-molecule techniques, have enabled a clearer understanding of the mechanisms of protein translation fidelity. Although there are many studies on the regulation of protein translation in prokaryotes, and the basic elements of translation are highly conserved in prokaryotes and eukaryotes, there are still great differences in the specific regulatory mechanisms. This review describes how eukaryotic ribosomes and translation factors regulate protein translation and ensure translation accuracy. However, a certain frequency of translation errors does occur in translation, so we describe diseases that arise when the rate of translation errors reaches or exceeds a threshold of cellular tolerance.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
19
|
Archaea/eukaryote-specific ribosomal proteins - guardians of a complex structure. Comput Struct Biotechnol J 2023; 21:1249-1261. [PMID: 36817958 PMCID: PMC9932298 DOI: 10.1016/j.csbj.2023.01.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023] Open
Abstract
In three domains of life, proteins are synthesized by large ribonucleoprotein particles called ribosomes. All ribosomes are composed of ribosomal RNAs (rRNA) and numerous ribosomal proteins (r-protein). The three-dimensional shape of ribosomes is mainly defined by a tertiary structure of rRNAs. In addition, rRNAs have a major role in decoding the information carried by messenger RNAs and catalyzing the peptide bond formation. R-proteins are essential for shaping the network of interactions that contribute to a various aspects of the protein synthesis machinery, including assembly of ribosomes and interaction of ribosomal subunits. Structural studies have revealed that many key components of ribosomes are conserved in all life domains. Besides the core structure, ribosomes contain domain-specific structural features that include additional r-proteins and extensions of rRNA and r-proteins. This review focuses specifically on those r-proteins that are found only in archaeal and eukaryotic ribosomes. The role of these archaea/eukaryote specific r-proteins in stabilizing the ribosome structure is discussed. Several examples illustrate their functions in the formation of the internal network of ribosomal subunits and interactions between the ribosomal subunits. In addition, the significance of these r-proteins in ribosome biogenesis and protein synthesis is highlighted.
Collapse
|
20
|
Zhang J, Pi SB, Zhang N, Guo J, Zheng W, Leng L, Lin G, Fan HY. Translation regulatory factor BZW1 regulates preimplantation embryo development and compaction by restricting global non-AUG Initiation. Nat Commun 2022; 13:6621. [PMID: 36333315 PMCID: PMC9636173 DOI: 10.1038/s41467-022-34427-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Protein synthesis is an essential step in gene expression during the development of mammalian preimplantation embryos. This is a complex and highly regulated process. The accuracy of the translation initiation codon is important in various gene expression programs. However, the mechanisms that regulate AUG and non-AUG codon initiation in early embryos remain poorly understood. BZW1 is a key factor in determining the mRNA translation start codon. Here, we show that BZW1 is essential for early embryonic development in mice. Bzw1-knockdown embryos fail to undergo compaction, and show decreased blastocyst formation rates. We also observe defects in the differentiation capacity and implantation potential after Bzw1 interference. Further investigation revealed that Bzw1 knockdown causes the levels of translation initiation with CUG as the start codon to increase. The decline in BZW1 levels result in a decrease in protein synthesis in preimplantation embryos, whereas the total mRNA levels are not altered. Therefore, we concluded that BZW1 contributes to protein synthesis during early embryonic development by restricting non-AUG translational initiation.
Collapse
Affiliation(s)
- Jue Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, 410078, Changsha, China
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, 410078, Changsha, China
- College of Life Science, Hunan Normal University, 410006, Changsha, China
| | - Shuai-Bo Pi
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Nan Zhang
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, 410078, Changsha, China
| | - Jing Guo
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, 410078, Changsha, China
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, 410078, Changsha, China
| | - Wei Zheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, 410078, Changsha, China
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, 410078, Changsha, China
| | - Lizhi Leng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, 410078, Changsha, China
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, 410078, Changsha, China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, 410078, Changsha, China.
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, 410078, Changsha, China.
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
21
|
Cyst stem cell lineage eIF5 non-autonomously prevents testicular germ cell tumor formation via eIF1A/eIF2γ-mediated pre-initiation complex. Stem Cell Res Ther 2022; 13:351. [PMID: 35883200 PMCID: PMC9327282 DOI: 10.1186/s13287-022-03025-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stem cell niche maintains stem cell population identity and is essential for the homeostasis of self-renewal and differentiation in Drosophila testes. However, the mechanisms of CySC lineage signals-mediated soma-germline communications in response to external stimuli are unclear. METHODS Pre-initiation complex functions were evaluated by UAS-Gal4-mediated cell effects. RNA sequencing was conducted in NC and eIF5 siRNA-treated cells. Genetic interaction analysis was used to indicate the relationships between eIF5 and eIF1A/eIF2γ in Drosophila testes. RESULTS Here, we demonstrated that in CySCs, translation initiation factor eIF5 mediates cyst cell differentiation and the non-autonomously affected germ cell differentiation process. CySCs lacking eIF5 displayed unbalanced cell proliferation and apoptosis, forming testicular germ cell tumors (TGCTs) during spermatogenesis. eIF5 transcriptional regulation network analysis identified multiple metabolic processes and several key factors that might be involved in germ cell differentiation and TGCT formation. Importantly, knockdown of eIF1A and eIF2γ, key components of pre-initiation complex, mimicked the phenotype of knocking down eIF5 in the stem cell niche of Drosophila testes. Genetic interaction analysis indicated that eIF5 was sufficient to rescue the phenotype of tumorlike structures induced by down-regulating eIF1A or eIF2γ in CySCs. CONCLUSIONS These findings demonstrated that CySC lineage eIF5, together with eIF1A or eIF2γ, mediates soma-germline communications for the stem cell niche homeostasis in Drosophila testes, providing new insights for the prevention of TGCTs.
Collapse
|
22
|
Çetin B, O’Leary SE. mRNA- and factor-driven dynamic variability controls eIF4F-cap recognition for translation initiation. Nucleic Acids Res 2022; 50:8240-8261. [PMID: 35871304 PMCID: PMC9371892 DOI: 10.1093/nar/gkac631] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
mRNA 5′ cap recognition by eIF4F is a key element of eukaryotic translational control. Kinetic differences in eIF4F–mRNA interactions have long been proposed to mediate translation-efficiency differences between mRNAs, and recent transcriptome-wide studies have revealed significant heterogeneity in eIF4F engagement with differentially-translated mRNAs. However, detailed kinetic information exists only for eIF4F interactions with short model RNAs. We developed and applied single-molecule fluorescence approaches to directly observe real-time Saccharomyces cerevisiae eIF4F subunit interactions with full-length polyadenylated mRNAs. We found that eIF4E–mRNA association rates linearly anticorrelate with mRNA length. eIF4G–mRNA interaction accelerates eIF4E–mRNA association in proportion to mRNA length, as does an eIF4F-independent activity of eIF4A, though cap-proximal secondary structure still plays an important role in defining the final association rates. eIF4F–mRNA interactions remained dominated by effects of eIF4G, but were modulated to different extents for different mRNAs by the presence of eIF4A and ATP. We also found that eIF4A-catalyzed ATP hydrolysis ejects eIF4E, and likely eIF4E•eIF4G from the mRNA after initial eIF4F•mRNA complex formation, suggesting a mechanism to prepare the mRNA 5′ end for ribosome recruitment. Our results support a role for mRNA-specific, factor-driven eIF4F association rates in kinetically controlling translation.
Collapse
Affiliation(s)
- Burak Çetin
- Graduate Program in Cell, Molecular, and Developmental Biology, University of California Riverside , Riverside, CA 92521, USA
| | - Seán E O’Leary
- Graduate Program in Cell, Molecular, and Developmental Biology, University of California Riverside , Riverside, CA 92521, USA
- Department of Biochemistry, University of California Riverside , Riverside, CA 92521, USA
| |
Collapse
|
23
|
Lapointe CP, Grosely R, Sokabe M, Alvarado C, Wang J, Montabana E, Villa N, Shin BS, Dever TE, Fraser CS, Fernández IS, Puglisi JD. eIF5B and eIF1A reorient initiator tRNA to allow ribosomal subunit joining. Nature 2022; 607:185-190. [PMID: 35732735 PMCID: PMC9728550 DOI: 10.1038/s41586-022-04858-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/11/2022] [Indexed: 01/03/2023]
Abstract
Translation initiation defines the identity and quantity of a synthesized protein. The process is dysregulated in many human diseases1,2. A key commitment step is when the ribosomal subunits join at a translation start site on a messenger RNA to form a functional ribosome. Here, we combined single-molecule spectroscopy and structural methods using an in vitro reconstituted system to examine how the human ribosomal subunits join. Single-molecule fluorescence revealed when the universally conserved eukaryotic initiation factors eIF1A and eIF5B associate with and depart from initiation complexes. Guided by single-molecule dynamics, we visualized initiation complexes that contained both eIF1A and eIF5B using single-particle cryo-electron microscopy. The resulting structure revealed how eukaryote-specific contacts between the two proteins remodel the initiation complex to orient the initiator aminoacyl-tRNA in a conformation compatible with ribosomal subunit joining. Collectively, our findings provide a quantitative and architectural framework for the molecular choreography orchestrated by eIF1A and eIF5B during translation initiation in humans.
Collapse
Affiliation(s)
- Christopher P Lapointe
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Masaaki Sokabe
- Department of Molecular and Cellular Biology College of Biological Sciences, University of California, Davis, CA, USA
| | - Carlos Alvarado
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Elizabeth Montabana
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nancy Villa
- Department of Molecular and Cellular Biology College of Biological Sciences, University of California, Davis, CA, USA
| | - Byung-Sik Shin
- Section on Protein Biosynthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Thomas E Dever
- Section on Protein Biosynthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Christopher S Fraser
- Department of Molecular and Cellular Biology College of Biological Sciences, University of California, Davis, CA, USA
| | - Israel S Fernández
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
24
|
Basu I, Gorai B, Chandran T, Maiti PK, Hussain T. Selection of start codon during mRNA scanning in eukaryotic translation initiation. Commun Biol 2022; 5:587. [PMID: 35705698 PMCID: PMC9200866 DOI: 10.1038/s42003-022-03534-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Accurate and high-speed scanning and subsequent selection of the correct start codon are important events in protein synthesis. Eukaryotic mRNAs have long 5′ UTRs that are inspected for the presence of a start codon by the ribosomal 48S pre-initiation complex (PIC). However, the conformational state of the 48S PIC required for inspecting every codon is not clearly understood. Here, atomistic molecular dynamics (MD) simulations and energy calculations suggest that the scanning conformation of 48S PIC may reject all but 4 (GUG, CUG, UUG and ACG) of the 63 non-AUG codons, and initiation factor eIF1 is crucial for this discrimination. We provide insights into the possible role of initiation factors eIF1, eIF1A, eIF2α and eIF2β in scanning. Overall, the study highlights how the scanning conformation of ribosomal 48S PIC acts as a coarse selectivity checkpoint for start codon selection and scans long 5′ UTRs in eukaryotic mRNAs with accuracy and high speed. Molecular simulations of start codon selection by the eukaryotic ribosome during mRNA scanning provide further insight into high speed of scanning and how initiation factors contribute toward codon-anticodon-ribosome network stability.
Collapse
Affiliation(s)
- Ipsita Basu
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, India
| | - Biswajit Gorai
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, India.,Department of Chemical Engineering, University of New Hampshire, Durham, NH-03824, USA
| | - Thyageshwar Chandran
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore, 560012, India.,Department of Biotechnology, National Institute of Technology-Warangal, Telangana, 506004, India
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
| | - Tanweer Hussain
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
25
|
Andreev DE, Loughran G, Fedorova AD, Mikhaylova MS, Shatsky IN, Baranov PV. Non-AUG translation initiation in mammals. Genome Biol 2022; 23:111. [PMID: 35534899 PMCID: PMC9082881 DOI: 10.1186/s13059-022-02674-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Recent proteogenomic studies revealed extensive translation outside of annotated protein coding regions, such as non-coding RNAs and untranslated regions of mRNAs. This non-canonical translation is largely due to start codon plurality within the same RNA. This plurality is often due to the failure of some scanning ribosomes to recognize potential start codons leading to initiation downstream—a process termed leaky scanning. Codons other than AUG (non-AUG) are particularly leaky due to their inefficiency. Here we discuss our current understanding of non-AUG initiation. We argue for a near-ubiquitous role of non-AUG initiation in shaping the dynamic composition of mammalian proteomes.
Collapse
|
26
|
Yi SH, Petrychenko V, Schliep JE, Goyal A, Linden A, Chari A, Urlaub H, Stark H, Rodnina MV, Adio S, Fischer N. Conformational rearrangements upon start codon recognition in human 48S translation initiation complex. Nucleic Acids Res 2022; 50:5282-5298. [PMID: 35489072 PMCID: PMC9122606 DOI: 10.1093/nar/gkac283] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 01/10/2023] Open
Abstract
Selection of the translation start codon is a key step during protein synthesis in human cells. We obtained cryo-EM structures of human 48S initiation complexes and characterized the intermediates of codon recognition by kinetic methods using eIF1A as a reporter. Both approaches capture two distinct ribosome populations formed on an mRNA with a cognate AUG codon in the presence of eIF1, eIF1A, eIF2–GTP–Met-tRNAiMet and eIF3. The ‘open’ 40S subunit conformation differs from the human 48S scanning complex and represents an intermediate preceding the codon recognition step. The ‘closed’ form is similar to reported structures of complexes from yeast and mammals formed upon codon recognition, except for the orientation of eIF1A, which is unique in our structure. Kinetic experiments show how various initiation factors mediate the population distribution of open and closed conformations until 60S subunit docking. Our results provide insights into the timing and structure of human translation initiation intermediates and suggest the differences in the mechanisms of start codon selection between mammals and yeast.
Collapse
Affiliation(s)
- Sung-Hui Yi
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Valentyn Petrychenko
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Jan Erik Schliep
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Akanksha Goyal
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Andreas Linden
- Bioanalytical Mass Spectroscopy Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Ashwin Chari
- Research Group Structural Biochemistry and Mechanisms, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectroscopy Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Sarah Adio
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Georg-August University of Göttingen, Göttingen 37077, Germany
| | - Niels Fischer
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| |
Collapse
|
27
|
Ram AK, Mallik M, Reddy RR, Suryawanshi AR, Alone PV. Altered proteome in translation initiation fidelity defective eIF5 G31R mutant causes oxidative stress and DNA damage. Sci Rep 2022; 12:5033. [PMID: 35322093 PMCID: PMC8943034 DOI: 10.1038/s41598-022-08857-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
The recognition of the AUG start codon and selection of an open reading frame (ORF) is fundamental to protein biosynthesis. Defect in the fidelity of start codon selection adversely affect proteome and have a pleiotropic effect on cellular function. Using proteomic techniques, we identified differential protein abundance in the translation initiation fidelity defective eIF5G31R mutant that initiates translation using UUG codon in addition to the AUG start codon. Consistently, the eIF5G31R mutant altered proteome involved in protein catabolism, nucleotide biosynthesis, lipid biosynthesis, carbohydrate metabolism, oxidation–reduction pathway, autophagy and re-programs the cellular pathways. The utilization of the upstream UUG codons by the eIF5G31R mutation caused downregulation of uridylate kinase expression, sensitivity to hydroxyurea, and DNA damage. The eIF5G31R mutant cells showed lower glutathione levels, high ROS activity, and sensitivity to H2O2.
Collapse
Affiliation(s)
- Anup Kumar Ram
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O Jatni, Khurda, 752050, India.,Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai, 400094, India
| | - Monalisha Mallik
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O Jatni, Khurda, 752050, India.,Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai, 400094, India
| | - R Rajendra Reddy
- Clinical Proteomics, DBT-Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
| | | | - Pankaj V Alone
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O Jatni, Khurda, 752050, India. .,Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
28
|
Ivanov IP, Saba JA, Fan CM, Wang J, Firth AE, Cao C, Green R, Dever TE. Evolutionarily conserved inhibitory uORFs sensitize Hox mRNA translation to start codon selection stringency. Proc Natl Acad Sci U S A 2022; 119:e2117226119. [PMID: 35217614 PMCID: PMC8892498 DOI: 10.1073/pnas.2117226119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/20/2022] [Indexed: 01/15/2023] Open
Abstract
Translation start site selection in eukaryotes is influenced by context nucleotides flanking the AUG codon and by levels of the eukaryotic translation initiation factors eIF1 and eIF5. In a search of mammalian genes, we identified five homeobox (Hox) gene paralogs initiated by AUG codons in conserved suboptimal context as well as 13 Hox genes that contain evolutionarily conserved upstream open reading frames (uORFs) that initiate at AUG codons in poor sequence context. An analysis of published cap analysis of gene expression sequencing (CAGE-seq) data and generated CAGE-seq data for messenger RNAs (mRNAs) from mouse somites revealed that the 5' leaders of Hox mRNAs of interest contain conserved uORFs, are generally much shorter than reported, and lack previously proposed internal ribosome entry site elements. We show that the conserved uORFs inhibit Hox reporter expression and that altering the stringency of start codon selection by overexpressing eIF1 or eIF5 modulates the expression of Hox reporters. We also show that modifying ribosome homeostasis by depleting a large ribosomal subunit protein or treating cells with sublethal concentrations of puromycin leads to lower stringency of start codon selection. Thus, altering global translation can confer gene-specific effects through altered start codon selection stringency.
Collapse
Affiliation(s)
- Ivaylo P Ivanov
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892
| | - James A Saba
- HHMI, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Ji Wang
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Chune Cao
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892
| | - Rachel Green
- HHMI, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892;
| |
Collapse
|
29
|
Paul EE, Lin KY, Gamble N, Tsai AWL, Swan SHK, Yang Y, Doran M, Marintchev A. Dynamic interaction network involving the conserved intrinsically disordered regions in human eIF5. Biophys Chem 2022; 281:106740. [PMID: 34923394 PMCID: PMC8741751 DOI: 10.1016/j.bpc.2021.106740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 02/03/2023]
Abstract
Translation initiation in eukaryotes requires multiple eukaryotic translation initiation factors (eIFs) and involves continuous remodeling of the ribosomal preinitiation complex (PIC). The GTPase eIF2 brings the initiator Met-tRNAi to the PIC. Upon start codon selection and GTP hydrolysis, promoted by eIF5, eIF2-GDP is released in complex with eIF5. Here, we report that two intrinsically disordered regions (IDRs) in eIF5, the DWEAR motif and the C-terminal tail (CTT) dynamically contact the folded C-terminal domain (CTD) and compete with each other. The eIF5-CTD•CTT interaction favors eIF2β binding to eIF5-CTD, whereas the eIF5-CTD•DWEAR interaction favors eIF1A binding, which suggests how intramolecular contact rearrangement could play a role in PIC remodeling. We show that eIF5 phosphorylation by CK2, which is known to stimulate translation and cell proliferation, significantly increases the eIF5 affinity for eIF2. Our results also indicate that the eIF2β subunit has at least two, and likely three eIF5-binding sites.
Collapse
Affiliation(s)
- Eleanor Elise Paul
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany St. W336, Boston, MA 02118, USA
| | - Kay Ying Lin
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany St. W336, Boston, MA 02118, USA
| | - Nathan Gamble
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany St. W336, Boston, MA 02118, USA
| | - Amy Wei-Lun Tsai
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany St. W336, Boston, MA 02118, USA
| | - Simon H. K. Swan
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany St. W336, Boston, MA 02118, USA
| | - Yu Yang
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany St. W336, Boston, MA 02118, USA
| | - Matthew Doran
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany St. W336, Boston, MA 02118, USA
| | - Assen Marintchev
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany St. W336, Boston, MA 02118, USA
| |
Collapse
|
30
|
RNA-Binding Proteins as Regulators of Internal Initiation of Viral mRNA Translation. Viruses 2022; 14:v14020188. [PMID: 35215780 PMCID: PMC8879377 DOI: 10.3390/v14020188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
Viruses are obligate intracellular parasites that depend on the host’s protein synthesis machinery for translating their mRNAs. The viral mRNA (vRNA) competes with the host mRNA to recruit the translational machinery, including ribosomes, tRNAs, and the limited eukaryotic translation initiation factor (eIFs) pool. Many viruses utilize non-canonical strategies such as targeting host eIFs and RNA elements known as internal ribosome entry sites (IRESs) to reprogram cellular gene expression, ensuring preferential translation of vRNAs. In this review, we discuss vRNA IRES-mediated translation initiation, highlighting the role of RNA-binding proteins (RBPs), other than the canonical translation initiation factors, in regulating their activity.
Collapse
|
31
|
Stanciu A, Luo J, Funes L, Galbokke Hewage S, Kulkarni SD, Aitken CE. eIF3 and Its mRNA-Entry-Channel Arm Contribute to the Recruitment of mRNAs With Long 5′-Untranslated Regions. Front Mol Biosci 2022; 8:787664. [PMID: 35087868 PMCID: PMC8787345 DOI: 10.3389/fmolb.2021.787664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/13/2021] [Indexed: 01/21/2023] Open
Abstract
Translation initiation in eukaryotes is a multi-step pathway and the most regulated phase of translation. Eukaryotic initiation factor 3 (eIF3) is the largest and most complex of the translation initiation factors, and it contributes to events throughout the initiation pathway. In particular, eIF3 appears to play critical roles in mRNA recruitment. More recently, eIF3 has been implicated in driving the selective translation of specific classes of mRNAs. However, unraveling the mechanism of these diverse contributions—and disentangling the roles of the individual subunits of the eIF3 complex—remains challenging. We employed ribosome profiling of budding yeast cells expressing two distinct mutations targeting the eIF3 complex. These mutations either disrupt the entire complex or subunits positioned near the mRNA-entry channel of the ribosome and which appear to relocate during or in response to mRNA binding and start-codon recognition. Disruption of either the entire eIF3 complex or specific targeting of these subunits affects mRNAs with long 5′-untranslated regions and whose translation is more dependent on eIF4A, eIF4B, and Ded1 but less dependent on eIF4G, eIF4E, and PABP. Disruption of the entire eIF3 complex further affects mRNAs involved in mitochondrial processes and with structured 5′-untranslated regions. Comparison of the suite of mRNAs most sensitive to both mutations with those uniquely sensitive to disruption of the entire complex sheds new light on the specific roles of individual subunits of the eIF3 complex.
Collapse
Affiliation(s)
- Andrei Stanciu
- Computer Science Department, Vassar College, Poughkeepsie, NY, United States
| | - Juncheng Luo
- Biochemistry Program, Vassar College, Poughkeepsie, NY, United States
| | - Lucy Funes
- Biology Department, Vassar College, Poughkeepsie, NY, United States
| | | | - Shardul D. Kulkarni
- Department of Biochemistry and Molecular Biology, Penn State Eberly College of Medicine, University Park, PA, United States
| | - Colin Echeverría Aitken
- Biochemistry Program, Vassar College, Poughkeepsie, NY, United States
- Biology Department, Vassar College, Poughkeepsie, NY, United States
- *Correspondence: Colin Echeverría Aitken,
| |
Collapse
|
32
|
Dong J, Hinnebusch AG. uS5/Rps2 residues at the 40S ribosome entry channel enhance initiation at suboptimal start codons in vivo. Genetics 2022; 220:iyab176. [PMID: 34791232 PMCID: PMC8733449 DOI: 10.1093/genetics/iyab176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/26/2021] [Indexed: 11/12/2022] Open
Abstract
The eukaryotic 43S pre-initiation complex (PIC) containing Met-tRNAiMet in a ternary complex (TC) with eIF2-GTP scans the mRNA leader for an AUG codon in favorable "Kozak" context. AUG recognition triggers rearrangement of the PIC from an open conformation to a closed state with more tightly bound Met-tRNAiMet. Yeast ribosomal protein uS5/Rps2 is located at the mRNA entry channel of the 40S subunit in the vicinity of mRNA nucleotides downstream from the AUG codon or rRNA residues that communicate with the decoding center, but its participation in start codon recognition was unknown. We found that nonlethal substitutions of conserved Rps2 residues in the entry channel reduce bulk translation initiation and increase discrimination against poor initiation codons. A subset of these substitutions suppress initiation at near-cognate UUG start codons in a yeast mutant with elevated UUG initiation, and also increase discrimination against AUG codons in suboptimal Kozak context, thus resembling previously described substitutions in uS3/Rps3 at the 40S entry channel or initiation factors eIF1 and eIF1A. In contrast, other Rps2 substitutions selectively discriminate against either near-cognate UUG codons, or poor Kozak context of an AUG or UUG start codon. These findings suggest that different Rps2 residues are involved in distinct mechanisms involved in discriminating against different features of poor initiation sites in vivo.
Collapse
Affiliation(s)
- Jinsheng Dong
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
33
|
Gamble N, Paul EE, Anand B, Marintchev A. Regulation of the interactions between human eIF5 and eIF1A by the CK2 kinase. Curr Res Struct Biol 2022; 4:308-319. [PMID: 36164648 PMCID: PMC9508154 DOI: 10.1016/j.crstbi.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Translation initiation in eukaryotes relies on a complex network of interactions that are continuously reorganized throughout the process. As more information becomes available about the structure of the ribosomal preinitiation complex (PIC) at various points in translation initiation, new questions arise about which interactions occur when, their roles, and regulation. The eukaryotic translation factor (eIF) 5 is the GTPase-activating protein (GAP) for the GTPase eIF2, which brings the initiator Met-tRNAi to the PIC. eIF5 also plays a central role in PIC assembly and remodeling through interactions with other proteins, including eIFs 1, 1A, and 3c. Phosphorylation by casein kinase 2 (CK2) significantly increases the eIF5 affinity for eIF2. The interaction between eIF5 and eIF1A was reported to be mediated by the eIF5 C-terminal domain (CTD) and the eIF1A N-terminal tail. Here, we report a new contact interface, between eIF5-CTD and the oligonucleotide/oligosaccharide-binding fold (OB) domain of eIF1A, which contributes to the overall affinity between the two proteins. We also show that the interaction is modulated by dynamic intramolecular interactions within both eIF5 and eIF1A. CK2 phosphorylation of eIF5 increases its affinity for eIF1A, offering new insights into the mechanisms by which CK2 stimulates protein synthesis and cell proliferation. eIF5-CTD interacts with both the N-terminal tail and the OB domain of eIF1A. The OB domain contacts stabilize the overall interaction. The eIF1A C-terminal tail and the eIF5 DWEAR motif interfere with OB domain binding. CK2 phosphorylation of eIF5 increases its affinity for eIF1A.
Collapse
|
34
|
Llácer JL, Hussain T, Dong J, Villamayor L, Gordiyenko Y, Hinnebusch AG. Large-scale movement of eIF3 domains during translation initiation modulate start codon selection. Nucleic Acids Res 2021; 49:11491-11511. [PMID: 34648019 PMCID: PMC8599844 DOI: 10.1093/nar/gkab908] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic initiation factor 3 (eIF3) complex is involved in every step of translation initiation, but there is limited understanding of its molecular functions. Here, we present a single particle electron cryomicroscopy (cryo-EM) reconstruction of yeast 48S ribosomal preinitiation complex (PIC) in an open conformation conducive to scanning, with core subunit eIF3b bound on the 40S interface near the decoding center in contact with the ternary complex eIF2·GTP·initiator tRNA. eIF3b is relocated together with eIF3i from their solvent interface locations observed in other PIC structures, with eIF3i lacking 40S contacts. Re-processing of micrographs of our previous 48S PIC in a closed state also suggests relocation of the entire eIF3b-3i-3g-3a-Cter module during the course of initiation. Genetic analysis indicates that high fidelity initiation depends on eIF3b interactions at the 40S subunit interface that promote the closed PIC conformation, or facilitate the relocation of eIF3b/eIF3i to the solvent interface, on start codon selection.
Collapse
Affiliation(s)
- Jose L Llácer
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia 46010, Spain.,Centro para Investigación Biomédica en Red sobre Enfermedades Raras CIBERER-ISCIII, Valencia, Spain
| | - Tanweer Hussain
- Molecular Reproduction, Development and Genetics (MRDG), Biological Sciences Building, Indian Institute of Science, Bangalore 560012, India
| | - Jinsheng Dong
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura Villamayor
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia 46010, Spain
| | | | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
35
|
Musielak M, Sterk CC, Schubert F, Meyer C, Paululat A, Heinisch JJ. The small GTPase KlRho5 responds to oxidative stress and affects cytokinesis. J Cell Sci 2021; 134:271953. [PMID: 34435638 DOI: 10.1242/jcs.258301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 08/19/2021] [Indexed: 01/11/2023] Open
Abstract
Rho5 is the yeast homolog of the human small GTPase Rac1. We characterized the genes encoding Rho5 and the subunits of its dimeric activating guanine-nucleotide-exchange factor (GEF), Dck1 and Lmo1, in the yeast Kluyveromyces lactis. Rapid translocation of the three GFP-tagged components to mitochondria upon oxidative stress and carbon starvation indicate a similar function of KlRho5 in energy metabolism and mitochondrial dynamics as described for its Saccharomyces cerevisiae homolog. Accordingly, Klrho5 deletion mutants are hyper-resistant towards hydrogen peroxide. Moreover, synthetic lethalities of rho5 deletions with key components in nutrient sensing, such as sch9 and gpr1, are not conserved in K. lactis. Instead, Klrho5 deletion mutants display morphological defects with strengthened lateral cell walls and protruding bud scars. The latter result from aberrant cytokinesis, as observed by following the budding process in vivo and by transmission electron microscopy of the bud neck region. This phenotype can be suppressed by KlCDC42G12V, which encodes a hyper-active variant. Data from live-cell fluorescence microscopy support the notion that KlRho5 interferes with the actin moiety of the contractile actomyosin ring, with consequences different from those previously reported for mutants lacking myosin.
Collapse
Affiliation(s)
- Marius Musielak
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, D-49076 Osnabrück, Germany
| | - Carolin C Sterk
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, D-49076 Osnabrück, Germany
| | - Felix Schubert
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, D-49076 Osnabrück, Germany
| | - Christian Meyer
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Zoologie, Barbarastr. 11, D-49076 Osnabrück, Germany
| | - Achim Paululat
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Zoologie, Barbarastr. 11, D-49076 Osnabrück, Germany
| | - Jürgen J Heinisch
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, D-49076 Osnabrück, Germany
| |
Collapse
|
36
|
Rana A, Gupta N, Thakur A. Post-transcriptional and translational control of the morphology and virulence in human fungal pathogens. Mol Aspects Med 2021; 81:101017. [PMID: 34497025 DOI: 10.1016/j.mam.2021.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
Host-pathogen interactions at the molecular level are the key to fungal pathogenesis. Fungal pathogens utilize several mechanisms such as adhesion, invasion, phenotype switching and metabolic adaptations, to survive in the host environment and respond. Post-transcriptional and translational regulations have emerged as key regulatory mechanisms ensuring the virulence and survival of fungal pathogens. Through these regulations, fungal pathogens effectively alter their protein pool, respond to various stress, and undergo morphogenesis, leading to efficient and comprehensive changes in fungal physiology. The regulation of virulence through post-transcriptional and translational regulatory mechanisms is mediated through mRNA elements (cis factors) or effector molecules (trans factors). The untranslated regions upstream and downstream of the mRNA, as well as various RNA-binding proteins involved in translation initiation or circularization of the mRNA, play pivotal roles in the regulation of morphology and virulence by influencing protein synthesis, protein isoforms, and mRNA stability. Therefore, post-transcriptional and translational mechanisms regulating the morphology, virulence and drug-resistance processes in fungal pathogens can be the target for new therapeutics. With improved "omics" technologies, these regulatory mechanisms are increasingly coming to the forefront of basic biology and drug discovery. This review aims to discuss various modes of post-transcriptional and translation regulations, and how these mechanisms exert influence in the virulence and morphogenesis of fungal pathogens.
Collapse
Affiliation(s)
- Aishwarya Rana
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India
| | - Nidhi Gupta
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India
| | - Anil Thakur
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India.
| |
Collapse
|
37
|
Singh CR, Glineburg MR, Moore C, Tani N, Jaiswal R, Zou Y, Aube E, Gillaspie S, Thornton M, Cecil A, Hilgers M, Takasu A, Asano I, Asano M, Escalante CR, Nakamura A, Todd PK, Asano K. Human oncoprotein 5MP suppresses general and repeat-associated non-AUG translation via eIF3 by a common mechanism. Cell Rep 2021; 36:109376. [PMID: 34260931 PMCID: PMC8363759 DOI: 10.1016/j.celrep.2021.109376] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/11/2021] [Accepted: 06/17/2021] [Indexed: 11/15/2022] Open
Abstract
eIF5-mimic protein (5MP) is a translational regulatory protein that binds the small ribosomal subunit and modulates its activity. 5MP is proposed to reprogram non-AUG translation rates for oncogenes in cancer, but its role in controlling non-AUG initiated synthesis of deleterious repeat-peptide products, such as FMRpolyG observed in fragile-X-associated tremor ataxia syndrome (FXTAS), is unknown. Here, we show that 5MP can suppress both general and repeat-associated non-AUG (RAN) translation by a common mechanism in a manner dependent on its interaction with eIF3. Essentially, 5MP displaces eIF5 through the eIF3c subunit within the preinitiation complex (PIC), thereby increasing the accuracy of initiation. In Drosophila, 5MP/Kra represses neuronal toxicity and enhances the lifespan in an FXTAS disease model. These results implicate 5MP in protecting cells from unwanted byproducts of non-AUG translation in neurodegeneration.
Collapse
Affiliation(s)
- Chingakham Ranjit Singh
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | - Chelsea Moore
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Naoki Tani
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Rahul Jaiswal
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Ye Zou
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Eric Aube
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Sarah Gillaspie
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Mackenzie Thornton
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Ariana Cecil
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Madelyn Hilgers
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Azuma Takasu
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Izumi Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Masayo Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Carlos R Escalante
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Akira Nakamura
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Ann Arbor VA Medical Center, Ann Arbor, MI 48105, USA
| | - Katsura Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA; Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan; Hiroshima Research Center for Healthy Aging, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan.
| |
Collapse
|
38
|
Nwokoye EC, AlNaseem E, Crawford RA, Castelli LM, Jennings MD, Kershaw CJ, Pavitt GD. Overlapping regions of Caf20 mediate its interactions with the mRNA-5'cap-binding protein eIF4E and with ribosomes. Sci Rep 2021; 11:13467. [PMID: 34188131 PMCID: PMC8242001 DOI: 10.1038/s41598-021-92931-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
By interacting with the mRNA 5' cap, the translation initiation factor eIF4E plays a critical role in selecting mRNAs for protein synthesis in eukaryotic cells. Caf20 is a member of the family of proteins found across eukaryotes termed 4E-BPs, which compete with eIF4G for interaction with eIF4E. Caf20 independently interacts with ribosomes. Thus, Caf20 modulates the mRNA selection process via poorly understood mechanisms. Here we performed unbiased mutagenesis across Caf20 to characterise which regions of Caf20 are important for interaction with eIF4E and with ribosomes. Caf20 binding to eIF4E is entirely dependent on a canonical motif shared with other 4E-BPs. However, binding to ribosomes is weakened by mutations throughout the protein, suggesting an extended binding interface that partially overlaps with the eIF4E-interaction region. By using chemical crosslinking, we identify a potential ribosome interaction region on the ribosome surface that spans both small and large subunits and is close to a known interaction site of eIF3. The function of ribosome binding by Caf20 remains unclear.
Collapse
Affiliation(s)
- Ebelechukwu C Nwokoye
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,Department of Botany, Nnamdi Azikiwe University, Awka, Nigeria
| | - Eiman AlNaseem
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Robert A Crawford
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Lydia M Castelli
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, S10 2HQ, UK
| | - Martin D Jennings
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Christopher J Kershaw
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
39
|
Kameda T, Asano K, Togashi Y. Free energy landscape of RNA binding dynamics in start codon recognition by eukaryotic ribosomal pre-initiation complex. PLoS Comput Biol 2021; 17:e1009068. [PMID: 34125830 PMCID: PMC8224888 DOI: 10.1371/journal.pcbi.1009068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/24/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
Specific interaction between the start codon, 5'-AUG-3', and the anticodon, 5'-CAU-3', ensures accurate initiation of translation. Recent studies show that several near-cognate start codons (e.g. GUG and CUG) can play a role in initiating translation in eukaryotes. However, the mechanism allowing initiation through mismatched base-pairs at the ribosomal decoding site is still unclear at an atomic level. In this work, we propose an extended simulation-based method to evaluate free energy profiles, through computing the distance between each base-pair of the triplet interactions involved in recognition of start codons in eukaryotic translation pre-initiation complex. Our method provides not only the free energy penalty for mismatched start codons relative to the AUG start codon, but also the preferred pathways of transitions between bound and unbound states, which has not been described by previous studies. To verify the method, the binding dynamics of cognate (AUG) and near-cognate start codons (CUG and GUG) were simulated. Evaluated free energy profiles agree with experimentally observed changes in initiation frequencies from respective codons. This work proposes for the first time how a G:U mismatch at the first position of codon (GUG)-anticodon base-pairs destabilizes the accommodation in the initiating eukaryotic ribosome and how initiation at a CUG codon is nearly as strong as, or sometimes stronger than, that at a GUG codon. Our method is expected to be applied to study the affinity changes for various mismatched base-pairs.
Collapse
Affiliation(s)
- Takeru Kameda
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- RIKEN Center for Biosystems Dynamics Research (BDR), Wako, Saitama, Japan
| | - Katsura Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Yuichi Togashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- RIKEN Center for Biosystems Dynamics Research (BDR), Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
40
|
Moro SG, Hermans C, Ruiz-Orera J, Albà MM. Impact of uORFs in mediating regulation of translation in stress conditions. BMC Mol Cell Biol 2021; 22:29. [PMID: 33992089 PMCID: PMC8126119 DOI: 10.1186/s12860-021-00363-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022] Open
Abstract
Background A large fraction of genes contains upstream ORFs (uORFs) in the 5′ untranslated region (5’UTR). The translation of uORFs can inhibit the translation of the main coding sequence, for example by causing premature dissociation of the two ribosomal units or ribosome stalling. However, it is currently unknown if most uORFs are inhibitory or if this activity is restricted to specific cases. Here we interrogate ribosome profiling data from three different stress experiments in yeast to gain novel insights into this question. Results By comparing ribosome occupancies in different conditions and experiments we obtain strong evidence that, in comparison to primary coding sequences (CDS), which undergo translational arrest during stress, the translation of uORFs is mostly unaffected by changes in the environment. As a result, the relative abundance of uORF-encoded peptides increases during stress. In general, the changes in the translational efficiency of regions containing uORFs do not seem to affect downstream translation. The exception are uORFs found in a subset of genes that are significantly up-regulated at the level of translation during stress; these uORFs tend to be translated at lower levels in stress conditions than in optimal growth conditions, facilitating the translation of the CDS during stress. We find new examples of uORF-mediated regulation of translation, including the Gcn4 functional homologue fil1 and ubi4 genes in S. pombe. Conclusion We find evidence that the relative amount of uORF-encoded peptides increases during stress. The increased translation of uORFs is however uncoupled from the general CDS translational repression observed during stress. In a subset of genes that encode proteins that need to be rapidly synthesized upon stress uORFs act as translational switches. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00363-9.
Collapse
Affiliation(s)
- Simone G Moro
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute (IMIM) and Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cedric Hermans
- Bioinformatics Knowledge Center, Howest University of Applied Sciences, Bruges, Belgium
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - M Mar Albà
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute (IMIM) and Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
41
|
Karakas D, Ozpolat B. The Role of LncRNAs in Translation. Noncoding RNA 2021; 7:16. [PMID: 33672592 PMCID: PMC8005997 DOI: 10.3390/ncrna7010016] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), a group of non-protein coding RNAs with lengths of more than 200 nucleotides, exert their effects by binding to DNA, mRNA, microRNA, and proteins and regulate gene expression at the transcriptional, post-transcriptional, translational, and post-translational levels. Depending on cellular location, lncRNAs are involved in a wide range of cellular functions, including chromatin modification, transcriptional activation, transcriptional interference, scaffolding and regulation of translational machinery. This review highlights recent studies on lncRNAs in the regulation of protein translation by modulating the translational factors (i.e, eIF4E, eIF4G, eIF4A, 4E-BP1, eEF5A) and signaling pathways involved in this process as wells as their potential roles as tumor suppressors or tumor promoters.
Collapse
Affiliation(s)
- Didem Karakas
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istinye University, Istanbul 34010, Turkey;
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
42
|
Trainor BM, Ghosh A, Pestov DG, Hellen CUT, Shcherbik N. A translation enhancer element from black beetle virus engages yeast eIF4G1 to drive cap-independent translation initiation. Sci Rep 2021; 11:2461. [PMID: 33510277 PMCID: PMC7844027 DOI: 10.1038/s41598-021-82025-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/14/2021] [Indexed: 01/13/2023] Open
Abstract
Cap-independent translation initiation plays crucial roles in fine-tuning gene expression under global translation shutdown conditions. Translation of uncapped or de-capped transcripts can be stimulated by Cap-independent translation enhancer (CITE) elements, but the mechanisms of CITE-mediated translation initiation remain understudied. Here, we characterized a short 5ʹ-UTR RNA sequence from black beetle virus, BBV-seq. Mutational analysis indicates that the entire BBV-seq is required for efficient translation initiation, but this sequence does not operate as an IRES-type module. In yeast cell-free translation extracts, BBV-seq promoted efficient initiation on cap-free mRNA using a scanning mechanism. Moreover, BBV-seq can increase translation efficiency resulting from conventional cap-dependent translation initiation. Using genetic approaches, we found that BBV-seq exploits RNA-binding properties of eIF4G1 to promote initiation. Thus, BBV-seq constitutes a previously uncharacterized short, linear CITE that influences eIF4G1 to initiate 5′ end-dependent, cap-independent translation. These findings bring new insights into CITE-mediated translational control of gene expression.
Collapse
Affiliation(s)
- Brandon M Trainor
- Department of Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ, 08084, USA.,Graduate School of Biomedical Sciences, Rowan University, 42 E. Laurel Road, Suite 2200, Stratford, NJ, 08084, USA
| | - Arnab Ghosh
- Department of Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ, 08084, USA.,Center for Gene Regulation in Health and Disease, Cleveland State University, 2121 Euclid Ave, Cleveland, OH, 44115, USA
| | - Dimitri G Pestov
- Department of Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ, 08084, USA
| | - Christopher U T Hellen
- Department of Cell Biology, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue MSC 44, Brooklyn, NY, 11203, USA
| | - Natalia Shcherbik
- Department of Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ, 08084, USA.
| |
Collapse
|
43
|
Datta M, Pillai M, Modak MJ, Liiv A, Khaja FT, Hussain T, Remme J, Varshney U. A mutation in the ribosomal protein uS12 reveals novel functions of its universally conserved PNSA loop. Mol Microbiol 2021; 115:1292-1308. [PMID: 33368752 DOI: 10.1111/mmi.14675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 11/28/2022]
Abstract
The ribosomal protein uS12 is conserved across all domains of life. Recently, a heterozygous spontaneous mutation in human uS12 (corresponding to R49K mutation immediately downstream of the universally conserved 44 PNSA47 loop in Escherichia coli uS12) was identified for causing ribosomopathy, highlighting the importance of the PNSA loop. To investigate the effects of a similar mutation in the absence of any wild-type alleles, we mutated the rpsL gene (encoding uS12) in E. coli. Consistent with its pathology (in humans), we were unable to generate the R49K mutation in E. coli in the absence of a support plasmid. However, we were able to generate the L48K mutation in its immediate vicinity. The L48K mutation resulted in a cold sensitive phenotype and ribosome biogenesis defect in the strain. We show that the L48K mutation impacts the steps of initiation and elongation. Furthermore, the genetic interactions of the L48K mutation with RRF and Pth suggest a novel role of the PNSA loop in ribosome recycling. Our studies reveal new functions of the PNSA loop in uS12, which has so far been studied in the context of translation elongation.
Collapse
Affiliation(s)
- Madhurima Datta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Maalavika Pillai
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Mamata Jayant Modak
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Aivar Liiv
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Faisal Tarique Khaja
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Tanweer Hussain
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Jaanus Remme
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
44
|
Kratzat H, Mackens-Kiani T, Ameismeier M, Potocnjak M, Cheng J, Dacheux E, Namane A, Berninghausen O, Herzog F, Fromont-Racine M, Becker T, Beckmann R. A structural inventory of native ribosomal ABCE1-43S pre-initiation complexes. EMBO J 2020; 40:e105179. [PMID: 33289941 PMCID: PMC7780240 DOI: 10.15252/embj.2020105179] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 11/24/2022] Open
Abstract
In eukaryotic translation, termination and ribosome recycling phases are linked to subsequent initiation of a new round of translation by persistence of several factors at ribosomal sub‐complexes. These comprise/include the large eIF3 complex, eIF3j (Hcr1 in yeast) and the ATP‐binding cassette protein ABCE1 (Rli1 in yeast). The ATPase is mainly active as a recycling factor, but it can remain bound to the dissociated 40S subunit until formation of the next 43S pre‐initiation complexes. However, its functional role and native architectural context remains largely enigmatic. Here, we present an architectural inventory of native yeast and human ABCE1‐containing pre‐initiation complexes by cryo‐EM. We found that ABCE1 was mostly associated with early 43S, but also with later 48S phases of initiation. It adopted a novel hybrid conformation of its nucleotide‐binding domains, while interacting with the N‐terminus of eIF3j. Further, eIF3j occupied the mRNA entry channel via its ultimate C‐terminus providing a structural explanation for its antagonistic role with respect to mRNA binding. Overall, the native human samples provide a near‐complete molecular picture of the architecture and sophisticated interaction network of the 43S‐bound eIF3 complex and the eIF2 ternary complex containing the initiator tRNA.
Collapse
Affiliation(s)
- Hanna Kratzat
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Timur Mackens-Kiani
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Michael Ameismeier
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Mia Potocnjak
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Jingdong Cheng
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Estelle Dacheux
- Génétique des Interactions Macromoléculaires, UMR3525 CNRS, Institut Pasteur, Paris, France
| | - Abdelkader Namane
- Génétique des Interactions Macromoléculaires, UMR3525 CNRS, Institut Pasteur, Paris, France
| | - Otto Berninghausen
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Franz Herzog
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | | | - Thomas Becker
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Roland Beckmann
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Munich, Germany
| |
Collapse
|
45
|
Brito Querido J, Sokabe M, Kraatz S, Gordiyenko Y, Skehel JM, Fraser CS, Ramakrishnan V. Structure of a human 48 S translational initiation complex. Science 2020; 369:1220-1227. [PMID: 32883864 DOI: 10.1126/science.aba4904] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/07/2020] [Indexed: 12/20/2022]
Abstract
A key step in translational initiation is the recruitment of the 43S preinitiation complex by the cap-binding complex [eukaryotic initiation factor 4F (eIF4F)] at the 5' end of messenger RNA (mRNA) to form the 48S initiation complex (i.e., the 48S). The 48S then scans along the mRNA to locate a start codon. To understand the mechanisms involved, we used cryo-electron microscopy to determine the structure of a reconstituted human 48S The structure reveals insights into early events of translation initiation complex assembly, as well as how eIF4F interacts with subunits of eIF3 near the mRNA exit channel in the 43S The location of eIF4F is consistent with a slotting model of mRNA recruitment and suggests that downstream mRNA is unwound at least in part by being "pulled" through the 40S subunit during scanning.
Collapse
Affiliation(s)
| | - Masaaki Sokabe
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | | | | | | | - Christopher S Fraser
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA, USA.
| | | |
Collapse
|
46
|
Structural Differences in Translation Initiation between Pathogenic Trypanosomatids and Their Mammalian Hosts. Cell Rep 2020; 33:108534. [PMID: 33357443 PMCID: PMC7773551 DOI: 10.1016/j.celrep.2020.108534] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/08/2020] [Accepted: 11/25/2020] [Indexed: 11/25/2022] Open
Abstract
Canonical mRNA translation in eukaryotes begins with the formation of the 43S pre-initiation complex (PIC). Its assembly requires binding of initiator Met-tRNAiMet and several eukaryotic initiation factors (eIFs) to the small ribosomal subunit (40S). Compared to their mammalian hosts, trypanosomatids present significant structural differences in their 40S, suggesting substantial variability in translation initiation. Here, we determine the structure of the 43S PIC from Trypanosoma cruzi, the parasite causing Chagas disease. Our structure shows numerous specific features, such as the variant eIF3 structure and its unique interactions with the large rRNA expansion segments (ESs) 9S, 7S, and 6S, and the association of a kinetoplastid-specific DDX60-like helicase. It also reveals the 40S-binding site of the eIF5 C-terminal domain and structures of key terminal tails of several conserved eIFs underlying their activities within the PIC. Our results are corroborated by glutathione S-transferase (GST) pull-down assays in both human and T. cruzi and mass spectrometry data. Structure of the 43S pre-initiation complex from Trypanosoma cruzi is solved at 3.33 Å The kinetoplastids’ eIF3 core is a septamer that binds mainly the unique, extended ES7s A kinetoplastid-specific DDX60-like helicase binds to the 43S PIC entry pore The 40S positions of eIF5-CTD and key tails of several eIFs are determined
Collapse
|
47
|
Thakur A, Gaikwad S, Vijjamarri AK, Hinnebusch AG. eIF2α interactions with mRNA control accurate start codon selection by the translation preinitiation complex. Nucleic Acids Res 2020; 48:10280-10296. [PMID: 32955564 DOI: 10.1093/nar/gkaa761] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 11/13/2022] Open
Abstract
In translation initiation, AUG recognition triggers rearrangement of the 48S preinitiation complex (PIC) from an open conformation to a closed state with more tightly-bound Met-tRNAi. Cryo-EM structures have revealed interactions unique to the closed complex between arginines R55/R57 of eIF2α with mRNA, including the -3 nucleotide of the 'Kozak' context. We found that R55/R57 substitutions reduced recognition of a UUG start codon at HIS4 in Sui- cells (Ssu- phenotype); and in vitro, R55G-R57E accelerated dissociation of the eIF2·GTP·Met-tRNAi ternary complex (TC) from reconstituted PICs with a UUG start codon, indicating destabilization of the closed complex. R55/R57 substitutions also decreased usage of poor-context AUGs in SUI1 and GCN4 mRNAs in vivo. In contrast, eIF2α-R53 interacts with the rRNA backbone only in the open complex, and the R53E substitution enhanced initiation at a UUG codon (Sui- phenotype) and poor-context AUGs, while reducing the rate of TC loading (Gcd- phenotype) in vivo. Consistently, R53E slowed TC binding to the PIC while decreasing TC dissociation at UUG codons in vitro, indicating destabilization of the open complex. Thus, distinct interactions of eIF2α with rRNA or mRNA stabilize first the open, and then closed, conformation of the PIC to influence the accuracy of initiation in vivo.
Collapse
Affiliation(s)
- Anil Thakur
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.,Regional Centre for Biotechnology, 3rd milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India
| | - Swati Gaikwad
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Anil K Vijjamarri
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
48
|
Hao P, Yu J, Ward R, Liu Y, Hao Q, An S, Xu T. Eukaryotic translation initiation factors as promising targets in cancer therapy. Cell Commun Signal 2020; 18:175. [PMID: 33148274 PMCID: PMC7640403 DOI: 10.1186/s12964-020-00607-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
The regulation of the translation of messenger RNA (mRNA) in eukaryotic cells is critical for gene expression, and occurs principally at the initiation phase which is mainly regulated by eukaryotic initiation factors (eIFs). eIFs are fundamental for the translation of mRNA and as such act as the primary targets of several signaling pathways to regulate gene expression. Mis-regulated mRNA expression is a common feature of tumorigenesis and the abnormal activity of eIF complexes triggered by upstream signaling pathways is detected in many tumors, leading to the selective translation of mRNA encoding proteins involved in tumorigenesis, metastasis, or resistance to anti-cancer drugs, and making eIFs a promising therapeutic target for various types of cancers. Here, we briefly outline our current understanding of the biology of eIFs, mainly focusing on the effects of several signaling pathways upon their functions and discuss their contributions to the initiation and progression of tumor growth. An overview of the progress in developing agents targeting the components of translation machinery for cancer treatment is also provided. Video abstract
Collapse
Affiliation(s)
- Peiqi Hao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 Jingming South Road, Kunming, 650500, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jiaojiao Yu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 Jingming South Road, Kunming, 650500, China
| | - Richard Ward
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | - Yin Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qiao Hao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Tianrui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
49
|
Bresson S, Shchepachev V, Spanos C, Turowski TW, Rappsilber J, Tollervey D. Stress-Induced Translation Inhibition through Rapid Displacement of Scanning Initiation Factors. Mol Cell 2020; 80:470-484.e8. [PMID: 33053322 PMCID: PMC7657445 DOI: 10.1016/j.molcel.2020.09.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/14/2020] [Accepted: 09/21/2020] [Indexed: 12/03/2022]
Abstract
Cellular responses to environmental stress are frequently mediated by RNA-binding proteins (RBPs). Here, we examined global RBP dynamics in Saccharomyces cerevisiae in response to glucose starvation and heat shock. Each stress induced rapid remodeling of the RNA-protein interactome without corresponding changes in RBP abundance. Consistent with general translation shutdown, ribosomal proteins contacting the mRNA showed decreased RNA association. Among translation components, RNA association was most reduced for initiation factors involved in 40S scanning (eukaryotic initiation factor 4A [eIF4A], eIF4B, and Ded1), indicating a common mechanism of translational repression. In unstressed cells, eIF4A, eIF4B, and Ded1 primarily targeted the 5′ ends of mRNAs. Following glucose withdrawal, 5′ binding was abolished within 30 s, explaining the rapid translation shutdown, but mRNAs remained stable. Heat shock induced progressive loss of 5′ RNA binding by initiation factors over ∼16 min and provoked mRNA degradation, particularly for translation-related factors, mediated by Xrn1. Taken together, these results reveal mechanisms underlying translational control of gene expression during stress. A quantitative proteomic approach reveals global stress-induced changes in RNA binding Translation shutdown is driven by rapid loss of mRNA binding by key initiation factors Heat shock induces general mRNA degradation facilitated by Xrn1
Collapse
Affiliation(s)
- Stefan Bresson
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - Vadim Shchepachev
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Tomasz W Turowski
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK; Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - David Tollervey
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
50
|
Wang J, Wang J, Shin BS, Kim JR, Dever TE, Puglisi JD, Fernández IS. Structural basis for the transition from translation initiation to elongation by an 80S-eIF5B complex. Nat Commun 2020; 11:5003. [PMID: 33024099 PMCID: PMC7538418 DOI: 10.1038/s41467-020-18829-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/16/2020] [Indexed: 11/09/2022] Open
Abstract
Recognition of a start codon by the initiator aminoacyl-tRNA determines the reading frame of messenger RNA (mRNA) translation by the ribosome. In eukaryotes, the GTPase eIF5B collaborates in the correct positioning of the initiator Met-tRNAiMet on the ribosome in the later stages of translation initiation, gating entrance into elongation. Leveraging the long residence time of eIF5B on the ribosome recently identified by single-molecule fluorescence measurements, we determine the cryoEM structure of the naturally long-lived ribosome complex with eIF5B and Met-tRNAiMet immediately before transition into elongation. The structure uncovers an unexpected, eukaryotic specific and dynamic fidelity checkpoint implemented by eIF5B in concert with components of the large ribosomal subunit.
Collapse
Affiliation(s)
- Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jing Wang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, NY, USA
| | - Byung-Sik Shin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Joo-Ran Kim
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA.
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Israel S Fernández
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, NY, USA.
| |
Collapse
|