1
|
Qu J, Zhu R, Wu Y, Xu G, Wang D. Abnormal structural‒functional coupling patterning in progressive supranuclear palsy is associated with diverse gradients and histological features. Commun Biol 2024; 7:1195. [PMID: 39341965 PMCID: PMC11439051 DOI: 10.1038/s42003-024-06877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
The anatomy of the brain supports inherent processes, fostering mental abilities and eventually facilitating adaptive behavior. Recent studies have shown that progressive supranuclear palsy (PSP) is accompanied by alterations in functional and structural networks. However, how the structure and function of PSP coordinates change is not clear, and the relationships between structural‒functional coupling (SFC) and the gradient of hierarchical structure and cellular histology remain largely unknown. Here, we use neuroimaging data from two independent cohorts and a public histological dataset to investigate the relationships among the cellular histology, hierarchical structure, and SFC of PSP patients. We find that the SFC of the entire cortex in PSP is severely disrupted, with higher coupling in the visual network (VN). Moreover, coupling differences in PSP follow a macroscopic organizational principle from unimodal to transmodal gradients. Finally, we elucidate greater laminar differentiation in VN regions sensitive to SFC changes in PSP, which is related mainly to the higher cellular density and smaller size of the internal-granular layer. In conclusion, our findings provide an interpretable framework for understanding SFC changes in PSP and provide new insights into the consistency of structural and functional changes in PSP regarding hierarchical structure and cellular histology.
Collapse
Affiliation(s)
- Junyu Qu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China
| | - Rui Zhu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China
| | - Yongsheng Wu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China
| | - Guihua Xu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China.
- Research Institute of Shandong University: Magnetic Field-free Medicine & Functional Imaging, Jinan, China.
- Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Jinan, China.
| |
Collapse
|
2
|
Ding SL. Lamination, Borders, and Thalamic Projections of the Primary Visual Cortex in Human, Non-Human Primate, and Rodent Brains. Brain Sci 2024; 14:372. [PMID: 38672021 PMCID: PMC11048015 DOI: 10.3390/brainsci14040372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The primary visual cortex (V1) is one of the most studied regions of the brain and is characterized by its specialized and laminated layer 4 in human and non-human primates. However, studies aiming to harmonize the definition of the cortical layers and borders of V1 across rodents and primates are very limited. This article attempts to identify and harmonize the molecular markers and connectional patterns that can consistently link corresponding cortical layers of V1 and borders across mammalian species and ages. V1 in primates has at least two additional and unique layers (L3b2 and L3c) and two sublayers of layer 4 (L4a and L4b) compared to rodent V1. In all species examined, layers 4 and 3b of V1 receive strong inputs from the (dorsal) lateral geniculate nucleus, and V1 is mostly surrounded by the secondary visual cortex except for one location where V1 directly abuts area prostriata. The borders of primate V1 can also be clearly identified at mid-gestational ages using gene markers. In rodents, a novel posteromedial extension of V1 is identified, which expresses V1 marker genes and receives strong inputs from the lateral geniculate nucleus. This V1 extension was labeled as the posterior retrosplenial cortex and medial secondary visual cortex in the literature and brain atlases. Layer 6 of the rodent and primate V1 originates corticothalamic projections to the lateral geniculate, lateral dorsal, and reticular thalamic nuclei and the lateroposterior-pulvinar complex with topographic organization. Finally, the direct geniculo-extrastriate (particularly the strong geniculo-prostriata) projections are probably major contributors to blindsight after V1 lesions. Taken together, compared to rodents, primates, and humans, V1 has at least two unique middle layers, while other layers are comparable across species and display conserved molecular markers and similar connections with the visual thalamus with only subtle differences.
Collapse
Affiliation(s)
- Song-Lin Ding
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| |
Collapse
|
3
|
Chen Z, Cai Y, Xiao L, Wei XE, Liu Y, Lin C, Liu D, Liu H, Rong L. Increased functional connectivity between default mode network and visual network potentially correlates with duration of residual dizziness in patients with benign paroxysmal positional vertigo. Front Neurol 2024; 15:1363869. [PMID: 38500812 PMCID: PMC10944895 DOI: 10.3389/fneur.2024.1363869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Objective To assess changes in static and dynamic functional network connectivity (sFNC and dFNC) and explore their correlations with clinical features in benign paroxysmal positional vertigo (BPPV) patients with residual dizziness (RD) after successful canalith repositioning maneuvers (CRM) using resting-state fMRI. Methods We studied resting-state fMRI data from 39 BPPV patients with RD compared to 38 BPPV patients without RD after successful CRM. Independent component analysis and methods of sliding window and k-means clustering were adopted to investigate the changes in dFNC and sFNC between the two groups. Additionally, temporal features and meta-states were compared between the two groups. Furthermore, the associations between fMRI results and clinical characteristics were analyzed using Pearson's partial correlation analysis. Results Compared with BPPV patients without RD, patients with RD had longer duration of BPPV and higher scores of dizziness handicap inventory (DHI) before successful CRM. BPPV patients with RD displayed no obvious abnormal sFNC compared to patients without RD. In the dFNC analysis, patients with RD showed increased FNC between default mode network (DMN) and visual network (VN) in state 4, the FNC between DMN and VN was positively correlated with the duration of RD. Furthermore, we found increased mean dwell time (MDT) and fractional windows (FW) in state 1 but decreased MDT and FW in state 3 in BPPV patients with RD. The FW of state 1 was positively correlated with DHI score before CRM, the MDT and FW of state 3 were negatively correlated with the duration of BPPV before CRM in patients with RD. Additionally, compared with patients without RD, patients with RD showed decreased number of states and state span. Conclusion The occurrence of RD might be associated with increased FNC between DMN and VN, and the increased FNC between DMN and VN might potentially correlate with the duration of RD symptoms. In addition, we found BPPV patients with RD showed altered global meta-states and temporal features. These findings are helpful for us to better understand the underlying neural mechanisms of RD and potentially contribute to intervention development for BPPV patients with RD.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yaxian Cai
- Department of Neurology, General Hospital of the Yangtze River Shipping, Wuhan, Hubei, China
| | - Lijie Xiao
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiu-E Wei
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yueji Liu
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cunxin Lin
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dan Liu
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Haiyan Liu
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liangqun Rong
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
4
|
Takakuwa N, Isa T. Visuomotor coordination and cognitive capacity in blindsight. Curr Opin Neurobiol 2023; 82:102764. [PMID: 37597456 DOI: 10.1016/j.conb.2023.102764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/07/2023] [Accepted: 07/22/2023] [Indexed: 08/21/2023]
Abstract
Classical literature on blindsight described that some patients with lesions to the primary visual cortex could respond to visual stimuli without subjective awareness. Recent studies addressed more complex arguments on the conscious state of blindsight subjects such as existence of partial awareness, namely "feeling of something happening" in the lesion-affected visual field, termed 'type II blindsight', and high-level performance in complex cognitive tasks in blindsight model monkeys. Endeavors to clarify the visual pathways for blindsight revealed the parallel thalamic routes mediating the visual inputs from the superior colliculus to extrastriate and frontoparietal cortices, which may underlie the flexible visuomotor association and cognitive control in the blindsight subjects. Furthermore, involvement of post-lesion plasticity is suggested for these neural systems to operate.
Collapse
Affiliation(s)
- Norihiro Takakuwa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Max Planck Institute for Brain Research, 60438 Frankfurt am Main, Germany
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan; Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
5
|
A framework and resource for global collaboration in non-human primate neuroscience. CURRENT RESEARCH IN NEUROBIOLOGY 2023. [DOI: 10.1016/j.crneur.2023.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
6
|
Chen Z, Liu H, Wei XE, Wang Q, Liu Y, Hao L, Lin C, Xiao L, Rong L. Aberrant dynamic functional network connectivity in vestibular migraine patients without peripheral vestibular lesion. Eur Arch Otorhinolaryngol 2023; 280:2993-3003. [PMID: 36707433 DOI: 10.1007/s00405-023-07847-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/17/2023] [Indexed: 01/29/2023]
Abstract
PURPOSE This study aimed to investigate changes in dynamic functional network connectivity (FNC) in patients with vestibular migraine (VM) and explore their relationship with clinical manifestations. METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) data were scanned from 35 VM patients without peripheral vestibular lesion and 40 age-, sex- and education-matched healthy controls (HC). Independent component analysis (ICA), sliding window (SW) and k-means clustering analysis were performed to explore the difference in FNC and temporal characteristics between two groups. Additionally, Pearson's partial correlation analysis was adopted to investigate the relationship between clinical manifestations and rs-fMRI results in patients with VM. RESULTS Compared with HC, patients with VM showed increased FNC in pairs of extrastriate visual network (eVN)-ventral attention network (VAN), eVN-default mode network (DMN) and eVN-left frontoparietal network (lFPN), and exhibited decreased FNC in pairs of VAN-auditory network (AuN). The altered FNC was correlated with clinical manifestations of patients with VM. Additionally, we found increased mean dwell time and fractional windows in state 2 in VM patients compared with HC. Mean dwell time was positively correlated with headache impact test-6 (HIT-6) scores, fractional windows was positively associated with dizziness handicap inventory (DHI) scores. CONCLUSION Our results indicated that patients with VM showed altered FNC primarily between sensory networks and networks related to cognitive, emotional and attention implementation, with more time spent in a state characterized by positive FNC between sensor cortex system and dorsal attention network (DAN). These findings could help reinforce the understanding on the neural mechanisms of VM.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu Province, China
| | - Haiyan Liu
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu Province, China
| | - Xiu-E Wei
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu Province, China
| | - Quan Wang
- Medical Imaging Department, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu Province, China
| | - Yueji Liu
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu Province, China
| | - Lei Hao
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu Province, China
| | - Cunxin Lin
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu Province, China
| | - Lijie Xiao
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu Province, China.
| | - Liangqun Rong
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No. 32, Meijian Road, Xuzhou, 221006, Jiangsu Province, China.
| |
Collapse
|
7
|
Oishi H, Takemura H, Amano K. Macromolecular tissue volume mapping of lateral geniculate nucleus subdivisions in living human brains. Neuroimage 2023; 265:119777. [PMID: 36462730 DOI: 10.1016/j.neuroimage.2022.119777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The lateral geniculate nucleus (LGN) is a key thalamic nucleus in the visual system, which has an important function in relaying retinal visual input to the visual cortex. The human LGN is composed mainly of magnocellular (M) and parvocellular (P) subdivisions, each of which has different stimulus selectivity in neural response properties. Previous studies have discussed the potential relationship between LGN subdivisions and visual disorders based on psychophysical data on specific types of visual stimuli. However, these relationships remain speculative because non-invasive measurements of these subdivisions are difficult due to the small size of the LGN. Here we propose a method to identify these subdivisions by combining two structural MR measures: high-resolution proton-density weighted images and macromolecular tissue volume (MTV) maps. We defined the M and P subdivisions based on MTV fraction data and tested the validity of the definition by (1) comparing the data with that from human histological studies, (2) comparing the data with functional magnetic resonance imaging measurements on stimulus selectivity, and (3) analyzing the test-retest reliability. The findings demonstrated that the spatial organization of the M and P subdivisions was consistent across subjects and in line with LGN subdivisions observed in human histological data. Moreover, the difference in stimulus selectivity between the subdivisions identified using MTV was consistent with previous physiology literature. The definition of the subdivisions based on MTV was shown to be robust over measurements taken on different days. These results suggest that MTV mapping is a promising approach for evaluating the tissue properties of LGN subdivisions in living humans. This method potentially will enable neuroscientific and clinical hypotheses about the human LGN subdivisions to be tested.
Collapse
Affiliation(s)
- Hiroki Oishi
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita 565-0871, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; Department of Psychology, University of California, Berkeley, Berkeley, CA 94704, United States.
| | - Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita 565-0871, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki 444-8585, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193, Japan.
| | - Kaoru Amano
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita 565-0871, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
8
|
Janssen P, Isa T, Lanciego J, Leech K, Logothetis N, Poo MM, Mitchell AS. Visualizing advances in the future of primate neuroscience research. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 4:100064. [PMID: 36582401 PMCID: PMC9792703 DOI: 10.1016/j.crneur.2022.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Future neuroscience and biomedical projects involving non-human primates (NHPs) remain essential in our endeavors to understand the complexities and functioning of the mammalian central nervous system. In so doing, the NHP neuroscience researcher must be allowed to incorporate state-of-the-art technologies, including the use of novel viral vectors, gene therapy and transgenic approaches to answer continuing and emerging research questions that can only be addressed in NHP research models. This perspective piece captures these emerging technologies and some specific research questions they can address. At the same time, we highlight some current caveats to global NHP research and collaborations including the lack of common ethical and regulatory frameworks for NHP research, the limitations involving animal transportation and exports, and the ongoing influence of activist groups opposed to NHP research.
Collapse
Affiliation(s)
- Peter Janssen
- Laboratory for Neuro- and Psychophysiology, KU Leuven, Belgium
| | - Tadashi Isa
- Graduate School of Medicine, Kyoto University, Japan
| | - Jose Lanciego
- Department Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, CiberNed., Pamplona, Spain
| | - Kirk Leech
- European Animal Research Association, United Kingdom
| | - Nikos Logothetis
- International Center for Primate Brain Research, Shanghai, China
| | - Mu-Ming Poo
- International Center for Primate Brain Research, Shanghai, China
| | - Anna S. Mitchell
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand,Department of Experimental Psychology, University of Oxford, United Kingdom,Corresponding author. School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
9
|
Volume reduction without neuronal loss in the primate pulvinar complex following striate cortex lesions. Brain Struct Funct 2021; 226:2417-2430. [PMID: 34324075 DOI: 10.1007/s00429-021-02345-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Lesions in the primary visual cortex (V1) cause extensive retrograde degeneration in the lateral geniculate nucleus, but it remains unclear whether they also trigger any neuronal loss in other subcortical visual centers. The inferior (IPul) and lateral (LPul) pulvinar nuclei have been regarded as part of the pathways that convey visual information to both V1 and extrastriate cortex. Here, we apply stereological analysis techniques to NeuN-stained sections of marmoset brain, in order to investigate whether the volume of these nuclei, and the number of neurons they comprise, change following unilateral long-term V1 lesions. For comparison, the medial pulvinar nucleus (MPul), which has no connections with V1, was also studied. Compared to control animals, animals with lesions incurred either 6 weeks after birth or in adulthood showed significant LPul volume loss following long (> 11 months) survival times. However, no obvious areas of neuronal degeneration were observed. In addition, estimates of neuronal density in lesioned hemispheres were similar to those in the non-lesioned hemispheres of same animals. Our results support the view that, in marked contrast with the geniculocortical projection, the pulvinar pathway is largely spared from the most severe long-term effects of V1 lesions, whether incurred in early postnatal or adult life. This difference can be linked to the more divergent pattern of pulvinar connectivity to the visual cortex, including strong reciprocal connections with extrastriate areas. The results also caution against interpretation of volume loss in brain structures as a marker for neuronal degeneration.
Collapse
|
10
|
Klink PC, Aubry JF, Ferrera VP, Fox AS, Froudist-Walsh S, Jarraya B, Konofagou EE, Krauzlis RJ, Messinger A, Mitchell AS, Ortiz-Rios M, Oya H, Roberts AC, Roe AW, Rushworth MFS, Sallet J, Schmid MC, Schroeder CE, Tasserie J, Tsao DY, Uhrig L, Vanduffel W, Wilke M, Kagan I, Petkov CI. Combining brain perturbation and neuroimaging in non-human primates. Neuroimage 2021; 235:118017. [PMID: 33794355 PMCID: PMC11178240 DOI: 10.1016/j.neuroimage.2021.118017] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/07/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Brain perturbation studies allow detailed causal inferences of behavioral and neural processes. Because the combination of brain perturbation methods and neural measurement techniques is inherently challenging, research in humans has predominantly focused on non-invasive, indirect brain perturbations, or neurological lesion studies. Non-human primates have been indispensable as a neurobiological system that is highly similar to humans while simultaneously being more experimentally tractable, allowing visualization of the functional and structural impact of systematic brain perturbation. This review considers the state of the art in non-human primate brain perturbation with a focus on approaches that can be combined with neuroimaging. We consider both non-reversible (lesions) and reversible or temporary perturbations such as electrical, pharmacological, optical, optogenetic, chemogenetic, pathway-selective, and ultrasound based interference methods. Method-specific considerations from the research and development community are offered to facilitate research in this field and support further innovations. We conclude by identifying novel avenues for further research and innovation and by highlighting the clinical translational potential of the methods.
Collapse
Affiliation(s)
- P Christiaan Klink
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands.
| | - Jean-François Aubry
- Physics for Medicine Paris, Inserm U1273, CNRS UMR 8063, ESPCI Paris, PSL University, Paris, France
| | - Vincent P Ferrera
- Department of Neuroscience & Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Andrew S Fox
- Department of Psychology & California National Primate Research Center, University of California, Davis, CA, USA
| | | | - Béchir Jarraya
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France; Foch Hospital, UVSQ, Suresnes, France
| | - Elisa E Konofagou
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Radiology, Columbia University, New York, NY, USA
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, USA
| | - Adam Messinger
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Anna S Mitchell
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
| | - Michael Ortiz-Rios
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom; German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Hiroyuki Oya
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neurosurgery, University of Iowa, Iowa city, IA, USA
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, United Kingdom
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | | | - Jérôme Sallet
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom; Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France; Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Michael Christoph Schmid
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom; Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland
| | - Charles E Schroeder
- Nathan Kline Institute, Orangeburg, NY, USA; Columbia University, New York, NY, USA
| | - Jordy Tasserie
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France
| | - Doris Y Tsao
- Division of Biology and Biological Engineering, Tianqiao and Chrissy Chen Institute for Neuroscience; Howard Hughes Medical Institute; Computation and Neural Systems, Caltech, Pasadena, CA, USA
| | - Lynn Uhrig
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, Neurosciences Department, KU Leuven Medical School, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven Belgium; Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital, Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Melanie Wilke
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Department of Cognitive Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Igor Kagan
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany.
| | - Christopher I Petkov
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
11
|
Isa T, Yoshida M. Neural Mechanism of Blindsight in a Macaque Model. Neuroscience 2021; 469:138-161. [PMID: 34153356 DOI: 10.1016/j.neuroscience.2021.06.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 11/15/2022]
Abstract
Some patients with damage to the primary visual cortex (V1) exhibit visuomotor ability, despite loss of visual awareness, a phenomenon termed "blindsight". We review a series of studies conducted mainly in our laboratory on macaque monkeys with unilateral V1 lesioning to reveal the neural pathways underlying visuomotor transformation and the cognitive capabilities retained in blindsight. After lesioning, it takes several weeks for the recovery of visually guided saccades toward the lesion-affected visual field. In addition to the lateral geniculate nucleus, the pathway from the superior colliculus to the pulvinar participates in visuomotor processing in blindsight. At the cortical level, bilateral lateral intraparietal regions become critically involved in the saccade control. These results suggest that the visual circuits experience drastic changes while the monkey acquires blindsight. In these animals, analysis based on signal detection theory adapted to behavior in the "Yes-No" task indicates reduced sensitivity to visual targets, suggesting that visual awareness is impaired. Saccades become less accurate, decisions become less deliberate, and some forms of bottom-up attention are impaired. However, a variety of cognitive functions are retained such as saliency detection during free viewing, top-down attention, short-term spatial memory, and associative learning. These observations indicate that blindsight is not a low-level sensory-motor response, but the residual visual inputs can access these cognitive capabilities. Based on these results we suggest that the macaque model of blindsight replicates type II blindsight patients who experience some "feeling" of objects, which guides cognitive capabilities that we naïvely think are not possible without phenomenal consciousness.
Collapse
Affiliation(s)
- Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Masatoshi Yoshida
- Center for Human Nature, Artificial Intelligence, and Neuroscience (CHAIN), Hokkaido University, Sapporo, 060-0812, Japan
| |
Collapse
|
12
|
Balezeau F, Nacef J, Kikuchi Y, Schneider F, Rocchi F, Muers RS, Fernandez-Palacios O'Connor R, Blau C, Wilson B, Saunders RC, Howard M, Thiele A, Griffiths TD, Petkov CI, Murphy K. MRI monitoring of macaque monkeys in neuroscience: Case studies, resource and normative data comparisons. Neuroimage 2021; 230:117778. [PMID: 33497775 PMCID: PMC8063182 DOI: 10.1016/j.neuroimage.2021.117778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/17/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
Information from Magnetic Resonance Imaging (MRI) is useful for diagnosis and treatment management of human neurological patients. MRI monitoring might also prove useful for non-human animals involved in neuroscience research provided that MRI is available and feasible and that there are no MRI contra-indications precluding scanning. However, MRI monitoring is not established in macaques and a resource is urgently needed that could grow with scientific community contributions. Here we show the utility and potential benefits of MRI-based monitoring in a few diverse cases with macaque monkeys. We also establish a PRIMatE MRI Monitoring (PRIME-MRM) resource within the PRIMatE Data Exchange (PRIME-DE) and quantitatively compare the cases to normative information drawn from MRI data from typical macaques in PRIME-DE. In the cases, the monkeys presented with no or mild/moderate clinical signs, were well otherwise and MRI scanning did not present a significant increase in welfare impact. Therefore, they were identified as suitable candidates for clinical investigation, MRI-based monitoring and treatment. For each case, we show MRI quantification of internal controls in relation to treatment steps and comparisons with normative data in typical monkeys drawn from PRIME-DE. We found that MRI assists in precise and early diagnosis of cerebral events and can be useful for visualising, treating and quantifying treatment response. The scientific community could now grow the PRIME-MRM resource with other cases and larger samples to further assess and increase the evidence base on the benefits of MRI monitoring of primates, complementing the animals' clinical monitoring and treatment regime.
Collapse
Affiliation(s)
- Fabien Balezeau
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jennifer Nacef
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Yukiko Kikuchi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Felix Schneider
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Francesca Rocchi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ross S Muers
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Christoph Blau
- Comparative Biology Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Benjamin Wilson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Richard C Saunders
- Laboratory of Neuropsychology, National Institutes of Health (NIMH), Bethesda, MD, United States
| | - Matthew Howard
- Department of Neurosurgery, University of Iowa, Iowa City, IA, United States
| | - Alexander Thiele
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christopher I Petkov
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Kathy Murphy
- Comparative Biology Centre, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
13
|
Jung B, Taylor PA, Seidlitz J, Sponheim C, Perkins P, Ungerleider LG, Glen D, Messinger A. A comprehensive macaque fMRI pipeline and hierarchical atlas. Neuroimage 2021; 235:117997. [PMID: 33789138 PMCID: PMC9272767 DOI: 10.1016/j.neuroimage.2021.117997] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/27/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Functional neuroimaging research in the non-human primate (NHP) has been advancing at a remarkable rate. The increase in available data establishes a need for robust analysis pipelines designed for NHP neuroimaging and accompanying template spaces to standardize the localization of neuroimaging results. Our group recently developed the NIMH Macaque Template (NMT), a high-resolution population average anatomical template and associated neuroimaging resources, providing researchers with a standard space for macaque neuroimaging . Here, we release NMT v2, which includes both symmetric and asymmetric templates in stereotaxic orientation, with improvements in spatial contrast, processing efficiency, and segmentation. We also introduce the Cortical Hierarchy Atlas of the Rhesus Macaque (CHARM), a hierarchical parcellation of the macaque cerebral cortex with varying degrees of detail. These tools have been integrated into the neuroimaging analysis software AFNI to provide a comprehensive and robust pipeline for fMRI processing, visualization and analysis of NHP data. AFNI's new @animal_warper program can be used to efficiently align anatomical scans to the NMT v2 space, and afni_proc.py integrates these results with full fMRI processing using macaque-specific parameters: from motion correction through regression modeling. Taken together, the NMT v2 and AFNI represent an all-in-one package for macaque functional neuroimaging analysis, as demonstrated with available demos for both task and resting state fMRI.
Collapse
Affiliation(s)
- Benjamin Jung
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA; Department of Neuroscience, Brown University, Providence, RI, USA
| | - Paul A Taylor
- Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, MD, USA
| | - Jakob Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Caleb Sponheim
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Pierce Perkins
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Leslie G Ungerleider
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Daniel Glen
- Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, MD, USA.
| | - Adam Messinger
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Contribution of the Pulvinar and Lateral Geniculate Nucleus to the Control of Visually Guided Saccades in Blindsight Monkeys. J Neurosci 2020; 41:1755-1768. [PMID: 33443074 DOI: 10.1523/jneurosci.2293-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 01/16/2023] Open
Abstract
After damage to the primary visual cortex (V1), conscious vision is impaired. However, some patients can respond to visual stimuli presented in their lesion-affected visual field using residual visual pathways bypassing V1. This phenomenon is called "blindsight." Many studies have tried to identify the brain regions responsible for blindsight, and the pulvinar and/or lateral geniculate nucleus (LGN) are suggested to play key roles as the thalamic relay of visual signals. However, there are critical problems regarding these preceding studies in that subjects with different sized lesions and periods of time after lesioning were investigated; furthermore, the ability of blindsight was assessed with different measures. In this study, we used double dissociation to clarify the roles of the pulvinar and LGN by pharmacological inactivation of each region and investigated the effects in a simple task with visually guided saccades (VGSs) using monkeys with a unilateral V1 lesion, by which nearly all of the contralesional visual field was affected. Inactivating either the ipsilesional pulvinar or LGN impaired VGS toward a visual stimulus in the affected field. In contrast, inactivation of the contralesional pulvinar had no clear effect, but inactivation of the contralesional LGN impaired VGS to the intact visual field. These results suggest that the pulvinar and LGN play key roles in performing the simple VGS task after V1 lesioning, and that the visuomotor functions of blindsight monkeys were supported by plastic changes in the visual pathway involving the pulvinar, which emerged after V1 lesioning.SIGNIFICANCE STATEMENT Many studies have been devoted to understanding the mechanism of mysterious symptom called "blindsight," in which patients with damage to the primary visual cortex (V1) can respond to visual stimuli despite loss of visual awareness. However, there is still a debate on the thalamic relay of visual signals. In this study, to pin down the issue, we tried double dissociation in the same subjects (hemi-blindsight macaque monkeys) and clarified that the lateral geniculate nucleus (LGN) plays a major role in simple visually guided saccades in the intact state, while both pulvinar and LGN critically contribute after the V1 lesioning, suggesting that plasticity in the visual pathway involving the pulvinar underlies the blindsight.
Collapse
|
15
|
Prescott MJ, Poirier C. The role of MRI in applying the 3Rs to non-human primate neuroscience. Neuroimage 2020; 225:117521. [PMID: 33137476 DOI: 10.1016/j.neuroimage.2020.117521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 12/21/2022] Open
Abstract
Magnetic resonance imaging is playing a significant role in applying the 3Rs to neuroscience studies using non-human primates. MRI scans are contributing to refinement by enhancing the selection and assignment of animals, guiding the manufacture of custom-fitted recording and head fixation devices, and assisting with the diagnosis of health issues and their treatment. MRI is also being used to better understand the impact of neuroscience procedures on the welfare of NHPs. MRI has helped to optimise NHP use and make greater scientific progress than would otherwise be made using larger numbers of animals. Whilst human fMRI studies have replaced some NHP studies, their potential to directly replace NHP electrophysiology is limited at present. Given the considerable advantages of MRI for electrophysiology experiments, including improved welfare of NHPs, consideration should be given to focusing NHP electrophysiology laboratories around MRI facilities. Greater sharing of MRI data sets, and improvements in MRI contrast and resolution, are expected to further advance the 3Rs in the future.
Collapse
Affiliation(s)
- Mark J Prescott
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), Gibbs Building, 215 Euston Road, London NW1 2BE, UK.
| | - Colline Poirier
- Biosciences Institute & Centre for Behaviour and Evolution, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
16
|
|
17
|
Eichert N, Robinson EC, Bryant KL, Jbabdi S, Jenkinson M, Li L, Krug K, Watkins KE, Mars RB. Cross-species cortical alignment identifies different types of anatomical reorganization in the primate temporal lobe. eLife 2020; 9:e53232. [PMID: 32202497 PMCID: PMC7180052 DOI: 10.7554/elife.53232] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/19/2020] [Indexed: 01/03/2023] Open
Abstract
Evolutionary adaptations of temporo-parietal cortex are considered to be a critical specialization of the human brain. Cortical adaptations, however, can affect different aspects of brain architecture, including local expansion of the cortical sheet or changes in connectivity between cortical areas. We distinguish different types of changes in brain architecture using a computational neuroanatomy approach. We investigate the extent to which between-species alignment, based on cortical myelin, can predict changes in connectivity patterns across macaque, chimpanzee, and human. We show that expansion and relocation of brain areas can predict terminations of several white matter tracts in temporo-parietal cortex, including the middle and superior longitudinal fasciculus, but not the arcuate fasciculus. This demonstrates that the arcuate fasciculus underwent additional evolutionary modifications affecting the temporal lobe connectivity pattern. This approach can flexibly be extended to include other features of cortical organization and other species, allowing direct tests of comparative hypotheses of brain organization.
Collapse
Affiliation(s)
- Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Emma C Robinson
- Biomedical Engineering Department, King’s College LondonLondonUnited Kingdom
| | - Katherine L Bryant
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegenNetherlands
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Longchuan Li
- Marcus Autism Center, Children's Healthcare of Atlanta, Emory UniversityAtlantaUnited States
| | - Kristine Krug
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
- Institute of Biology, Otto-von-Guericke-Universität MagdeburgMagdeburgGermany
- Leibniz-Insitute for NeurobiologyMagdeburgGermany
| | - Kate E Watkins
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of OxfordOxfordUnited Kingdom
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegenNetherlands
| |
Collapse
|
18
|
Hankir MK, Rullmann M, Seyfried F, Preusser S, Poppitz S, Heba S, Gousias K, Hoyer J, Schütz T, Dietrich A, Müller K, Pleger B. Roux-en-Y gastric bypass surgery progressively alters radiologic measures of hypothalamic inflammation in obese patients. JCI Insight 2019; 4:131329. [PMID: 31465301 DOI: 10.1172/jci.insight.131329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022] Open
Abstract
There is increased interest in whether bariatric surgeries such as Roux-en-Y gastric bypass (RYGB) achieve their profound weight-lowering effects in morbidly obese individuals through the brain. Hypothalamic inflammation is a well-recognized etiologic factor in obesity pathogenesis and so represents a potential target of RYGB, but clinical evidence in support of this is limited. We therefore assessed hypothalamic T2-weighted signal intensities (T2W SI) and fractional anisotropy (FA) values, 2 validated radiologic measures of brain inflammation, in relation to BMI and fat mass, as well as circulating inflammatory (C-reactive protein; CrP) and metabolic markers in a cohort of 27 RYGB patients at baseline and 6 and 12 months after surgery. We found that RYGB progressively increased hypothalamic T2W SI values, while it progressively decreased hypothalamic FA values. Regression analyses further revealed that this could be most strongly linked to plasma CrP levels, which independently predicted hypothalamic FA values when adjusting for age, sex, fat mass, and diabetes diagnosis. These findings suggest that RYGB has a major time-dependent impact on hypothalamic inflammation status, possibly by attenuating peripheral inflammation. They also suggest that hypothalamic FA values may provide a more specific radiologic measure of hypothalamic inflammation than more commonly used T2W SI values.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Department of Experimental Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Rullmann
- IFB AdiposityDiseases and.,Department of Nuclear Medicine, University Hospital Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Collaborative Research Centre 1052 in Obesity Mechanisms, University of Leipzig, Leipzig, Germany
| | - Florian Seyfried
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Sven Preusser
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sindy Poppitz
- IFB AdiposityDiseases and.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Konstantinos Gousias
- Department of Neurosurgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Jana Hoyer
- Department of Behavioral Epidemiology, Department of Psychology, Technische Universität Dresden, Dresden, Germany
| | | | - Arne Dietrich
- IFB AdiposityDiseases and.,Department of Bariatric Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Karsten Müller
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Burkhard Pleger
- IFB AdiposityDiseases and.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Collaborative Research Centre 1052 in Obesity Mechanisms, University of Leipzig, Leipzig, Germany.,Department of Neurology and
| |
Collapse
|